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Abstract—In recent years, as a critical pillar supporting the
national economy and daily life, the safe and efficient operation of
road traffic has highly relied on precise environmental perception
capabilities. To address this, this study proposes a two-stage
“denoising-detection” framework: the first stage restores clear
images using an improved Uformer algorithm, which funda-
mentally merges a probabilistic sparse self-attention mechanism.
In contrast, the second stage leverages YOLOv11 for real-time
object detection. This framework is introduced in the field for the
first time and enhances the accuracy and robustness of vehicle
detection in traffic images under complex weather scenarios,
providing technical support for intelligent driving systems and
traffic monitoring applications. Our experimental validation on
our own flexible weather car detection database demonstrated
the superior performance of the proposed model: CM-YOLO
achieved 0.95 precision and 0.91 mAP50, which promoted 0.2
than the YOLOv11.
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I. INTRODUCTION

In recent years, highway transportation has become an
important support for the national economy and daily life, and
its safe and efficient operation highly relies on accurate en-
vironmental perception capabilities. However, severe weather
can significantly reduce the quality of traffic images, seriously
affecting the performance of object detection algorithms and
increasing the risk of traffic accidents. According to statistics,
the incidence of traffic accidents under complex weather
conditions is 3-5 times higher than that under normal weather
conditions[1]. Traditional object detection algorithms face two
core problems in foggy scenes. On the one hand, complex
weather scenes lead to blurry image features and reduced
contrast between the target and background. On the other hand,
the integration between existing denoising algorithms and
detection models is insufficient, making it difficult to balance
denoising effectiveness and detection efficiency. However, in
recent years, transformer-based computer vision algorithms
have provided new directions for image denoising and object
detection by leveraging the advantages of the self-attention
mechanism in global information capture. Therefore, this study
proposes a two-stage framework of “denoising detection”, in
which the first stage restores clear images through an improved
Uformer algorithm, and the second stage uses YOLOv11 to
achieve real-time object detection, aiming to improve the
accuracy and robustness of traffic vehicle detection in com-
plex weather scenes and provide technical support for traffic
monitoring systems.

*Corresponding author.

Image denoising algorithms can be divided into traditional
methods and deep learning methods. Traditional methods,
represented by dark channel prior (DCP) [2], estimate transmit-
tance and atmospheric light through physical models, but edge
distortion is prone to occur in complex scenes. In deep learning
based methods, convolutional neural network (CNN) models
such as AOD Net [3] and DehazeNet [4] achieve denoising
through end-to-end learning, but are limited by local receptive
fields and difficult to capture global complex noise distribution
patterns. In recent years, transformer-based denoising algo-
rithms have become a research hotspot. The Uformer model[5]
integrates Transformer and U-Net structures, captures long-
range dependencies through self self-attention mechanism, and
performs well in denoising and other tasks. However, the
traditional Uformer’s window self-attention mechanism has the
problem of high computational complexity, which limits its
application in real-time scenes.

Object detection algorithms can be divided into two stages
such as Faster R-CNN and single-stage, such as YOLO method
[6]. YOLOv11, as the latest single-stage algorithm, achieves
high-precision detection while maintaining real-time perfor-
mance through anchor-free design and a feature fusion mech-
anism. However, YOLOv8 lacks the ability to recognize blurry
targets in low-quality images and needs to be combined with
dehazing preprocessing to improve performance. Moreover,
existing joint frameworks often adopt a ”denoising+detection”
serial structure, and there are still shortcomings in the col-
laborative optimization of dehazing and detection modules.
Based on this, this study improves the attention mechanism
of Uformer and deeply combines it with YOLOv11 to achieve
efficient object detection in complex sky scenes.

In addition, in the field of image restoration, many related
studies have provided ideas for enhancing complex weather
scene images, such as the application of enhanced deep
residual networks in super-resolution tasks [7], the hierar-
chical visual Transformer design of Swin Transformer [8],
and the exploration of spatial attention mechanisms [9] and
model-driven deep neural networks [10] in complex weather
denoising tasks. At the same time, the solution to specific
image restoration tasks, such as removing patterns [11], also
provides a reference for processing complex foggy scenes. In
terms of model optimization, techniques such as decoupling
weight decay regularization [12] and dual residual networks
[13] provide effective means to improve the performance and
stability of denoising and detection models.

To address vehicle detection in complex traffic scene im-
ages, this paper proposes a system framework named CM-
YOLO, which autonomously denoises and analyzes complex
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Fig. 1. Schematic of the Uformer.

scene information within images. Owing to the dual require-
ments of accuracy and real-time performance imposed by
dispatch centers for traffic flow regulation, the target detec-
tion algorithm must maintain high detection accuracy while
completing tasks with high efficiency. In this framework, all
module is trained separately. The image will first be denoised
by the improved Uformer algorithm to simplify image scenes,
and then use the YOLOv11 algorithm as the recognition
module to perform target detection on the simplified images.
This cascaded architecture effectively achieves target detection
in complex traffic scene images.

A. Denoising Module

To address the challenges of vehicle detection in complex
traffic image scenarios with variable weather conditions on
highways, this paper employs the Uformer model as the
denoising module of CM-YOLO. This algorithm, as shown in
Fig. 1, rooted in a Transformer-based architecture, integrates
the classic U-Net structure, enabling high-quality execution
of diverse image denoising tasks such as noise reduction,
deblurring, and defogging. Notably, Uformer excels at captur-
ing long-range dependencies within images, making it partic-
ularly well-suited for processing high-resolution images. By
balancing restoration quality with computational efficiency,
it effectively reduces computational complexity while main-
taining high-quality image recovery, thus addressing the dual
requirements of accuracy and real-time performance in traffic
flow regulation scenarios.

Meanwhile, given the characteristics of terminal devices
with limited memory and slow computing speeds, it is im-
perative to reduce the complexity of Uformer. To address this,
this paper replaces the window-based multi-head self-attention
mechanism used in traditional Uformer with a probabilistic
sparse self-attention mechanism.

In the probabilistic sparse self-attention mechanism, each
self-attention operation defines attention through a query spar-
sity measurement based on

qi(K,V ) =
∑
j=1

k(qi, kj)∑
l=1 k(qi, kl)

vj = Ep(kj |qi)[Vj ] (1)

In the probabilistic sparse self-attention mechanism[14], the
attention of the i-th feature over all values is defined as
a probability p(kj |qi), and the output is generated by k
combining this probability with the corresponding value v. If
p(kj |qi) approaches a uniform distribution

q(kj , qi) =
1

LK
(2)

Self-attention then degenerates into the summation of value
V , becoming repetitive with other fixed inputs. Therefore, the
similarity between two distributions p and q can be used to
distinguish the importance of queries. The probabilistic sparse
self-attention mechanism measures the similarity between
these two distributions using the Kullback-Leibler divergence.

KL(q||p) = ln

LK∑
l=1

e
qik

t
l√

d − 1

LK

LK∑
j=1

qik
t
l√
d

(3)

Here, the first term represents the average of the log-
sum-exp over all features, and the second term denotes their
arithmetic mean. If the i-th query obtains a larger M(qi,K)
its attention probability becomes more diverse, increasing the
likelihood of including key head-field pairs in the head-tail
self-attention distribution that determines the output.

Based on the proposed measurement method, the proba-
bilistic sparse self-attention mechanism ensures each feature
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Fig. 2. The detection module structure.

only attends to u key queries:

A(Q,K, V ) = Softmax(
QKT

√
d

)V (4)

Here, Q denotes a sparse matrix of the same size as q,
containing only the M(q,K) most critical queries under the
sparsity measure u.

By utilizing this strategy, the space and time complexity
ultimately approximates to O(LlnL). and the Table I shows
the superiority of this self-attention mechanism.

TABLE I. COMPARISON OF ROAD DAMAGE DETECTION RESULTS FOR
VARIOUS MODEL SETS

method time complexity space complexity runtime memory

window-based self-attention O(LKLQ) O(LKLQ) 3.01ms 15.60GB
probabilistic sparse self-attention O(LKlnLQ) O(LKlnLQ) 2.57ms 11.35GB

B. Detection Module

To ensure efficient processing of simplified images, the
model proposed in this paper employs the YOLOv11 algorithm
as shown in Fig. 2 for vehicle recognition. Compared to
traditional object detection algorithms such as R-CNN and
its variants (e.g., Fast R-CNN, Faster R-CNN), the most
significant advantage of YOLOv11 lies in its processing speed.
The R-CNN series first generates region proposals and then
classifies each region individually. Although this two-stage
process achieves superior accuracy, its slower speed renders
it unsuitable for real-time applications. In contrast, the holistic
architectural design of YOLOv11 enables it to execute de-
tection tasks at extremely high speeds, thereby meeting the
rapid detection requirements of dispatch centers in this vehicle
recognition task.

II. RESULTS

A. Datasets

In this study, the I-HAZE[15] and NH-Haze[16][17] were
used to train the Denoising module and test on SPAD[18] for
denoising. The train image samples were shown as Fig. 3. The
BITVehicle dataset cite dongVehicleTypeClassification2015
was used to train the detection module. For efficient validation
of our model, we built our own flexible weather car detection
database, which has 6789 pictures with 17355 annotations.
The Denoising module and the Detection module were trained
separately, but detected sequentially; the undetected image will
first utilize the improved Uformer module to denoise and use
YOLOv11 to detect.

B. Evaluation Metrics

To rigorously validate the performance of CM-YOLO in
multi-scale pavement crack detection, we adopted the follow-
ing metrics aligned with real-time detection challenges:

The peak signal-to-noise ratio (PSNR) is an objective
metric that quantifies the quality of a reconstructed image by
measuring the ratio of the maximum possible pixel intensity
to the noise power. It is widely used in image processing and
compression tasks.

MSE =
1

MN

M−1∑
i=0

N−1∑
j=0

[I(i, j)−K(i, j)]2 (5)

where I represents the original image, K represents the
processed image, M and N are the dimensions of the image.

PSNR = 10log10
MAX2

I

MSE
(6)
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Haze Image 

Non-Haze Image 

Fig. 3. Samples of I-HAZE and NH-Haze database.

Fig. 4. Samples of BITVehicle database.

where MAX is the maximum pixel value.

SSIM evaluates the similarity between two images by an-
alyzing structural, luminance, and contrast information, mim-
icking human visual perception.

Precision (P) measures the proportion of correct crack
predictions among all detected regions and is critical for
reducing false alarms in crack detection.

Precision =
TP

TP + FP
(7)

where TP (true positive) denotes predicted boxes with IoU ≥
0.5 and correct class labels, and FP (false positive) indicates
spurious detection.

Recall(R) evaluates the model’s ability to capture all gen-
uine cracks, which is essential for avoiding missed defects in
safety-critical scenarios.

Recall =
TP

TP + FP
(8)

where FN (false negatives) represent undetected ground-truth
cracks (IoU ≤ 0.5)

The average precision (AP) quantifies the model’s
category-specific detection consistency by computing the mean
of the maximum precision values achieved across varying
recall rates. The mean average precision (mAP) extends this
evaluation by averaging AP scores across all object classes,
thereby serving as a comprehensive metric for the model’s
cross-category detection performance. The mathematical for-
mulation is

AP =

∫ 1

0

P (r) dr (9)

www.ijacsa.thesai.org 1206 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

input SPANet RCDNet Improved Uformer

Fig. 5. Comparison of denoising results in SPAD database.

mAP =

∑C
i=1 AP (i)

C
(10)

Here, C is the number of crack subtypes.

C. Experimental Environment

The experimental framework in this study was imple-
mented on a high-performance computing system running
Ubuntu 11.04 as the operating system. The hardware setup
included an Intel® Xeon® Platinum 8474C processor and an
NVIDIA RTX 4090D graphics card with 24 GB of video mem-
ory, ensuring efficient computation for deep-learning tasks. The
software environment was built using PyTorch 2.0.1, Python
3.10.8, and CUDA 11.8, which provided a robust foundation
for model training and evaluation. The key hyperparameters
were carefully tuned to optimize performance: The input
images were resized to a resolution of 640 × 640 pixels, the
initial learning rate was set to 0.0001, and the momentum for
the learning rate was configured at 0.9. This combination of
hardware, software, and Adaptive Moments with Weight Decay
(AdamW) optimizer was used for training. These parameter
settings ensured a stable and efficient training process for the
proposed model.

D. Experimental Implementation and Results

1) Comparison of denosing results: This paper employs the
improved Uformer algorithm for training on the I-HAZE data
set and testing on the SPAD dataset. By analysing the PSNR
and SSIM metrics of the improved Uformer algorithm, SPANet
and RCDNet models, as Table II, which were tested by SPAD,
and Fig. 5 shows that the improved Uformer algorithm can
effectively restore images while retaining image features, with
less noise, good denoising performance and small memory
usage.

2) Ablation experiment results: To comprehensively assess
the superiority of the denoising module, we primarily use
three evaluation metrics: mAP50, recall, and precision. These

TABLE II. COMPARISON OF DENOSING RESULTS IN SPAD DATABASE

method PSNR SSIM runtime(per image) memory

SPANet 40.24 0.9811 - -
RCDNet 41.47 0.9834 - -
Uformer 47.92 0.9928 3.01ms 15.60GB

Ours 47.84 0.9925 2.57ms 11.35GB

TABLE III. COMPARISON OF DETECTION RESULTS FOR VARIOUS MODEL
SETS IN OUR DATABASE

method Denoising Model P R mPA50

YOLOv11 0.93 0.86 0.89
✓ 0.95 0.88 0.91

metrics are compared against the baseline to validate the
performance of the denoising module.

As Table III , the results demonstrate that the introduced
denoising model has positively affected model performance.

3) Comparison of results: To comprehensively assess the
performance of the CM-YOLO model, we primarily use three
evaluation metrics: mAP50, recall, and precision. These met-
rics are compared against YOLOv11 and YOLOv8 models to
validate the effectiveness of our multi-modal fusion approach.

TABLE IV. COMPARISON OF DETECTION RESULTS IN OUR DATABASE

method P R mAP50

YOLOv8n 0.90 0.84 0.88
RT-DETR(resnet18) 0.92 0.88 0.86
YOLOv11n 0.93 0.86 0.89
Ours 0.95 0.88 0.91

As the Table IV and Fig. 6 show that the proposed
CM-YOLO algorithm demonstrates superior detection per-
formance, achieving P = 0.95 and mAP50 = 0.91, out-
performing YOLOv8n, RT-DETR(resnet18), and YOLOv11n.
This advancement enables precise detection of vehicle models
in complex weather scenarios, including rain, snow, and fog,
where traditional models struggle due to noise interference and
reduced visibility.
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YOLOv11n Ours 

Fig. 6. Comparison of detection figures in our database.

III. CONCLUSION

CM-YOLO demonstrates strong adaptability to the com-
plex scenario requirements of real-world traffic conditions,
enabling effective image object detection tasks in challeng-
ing weather-related traffic environments. By fully leveraging
the respective strengths of the Transformer model and the
YOLOv11n model, it enhances the performance and efficacy of
vehicle model detection in complex scenarios. However, prac-
tical applications of this algorithm still face certain limitations.
Specifically, its object detection workflow requires parallel
execution of two algorithms, imposing higher computational
performance demands compared to standalone algorithms. In
real-world deployments, its performance is constrained by the
processing capabilities of vehicle systems.

For future research on such vehicle detection algorithms,
the following directions warrant further exploration:

(1) Model optimization to accelerate detection speed: Cur-
rent Uformer algorithms-even the version used in this study
with probabilistic sparse self-attention mechanisms-exhibit
larger parameter counts compared to previous de-fogging
models, despite superior de-fogging performance. Continued
optimization of model parameters is necessary.

(2) Algorithm/training strategy refinement for stability and
accuracy: While the algorithm achieves competitive accuracy
on normal scene images, there remains room for improvement.
Iterative upgrades to the algorithm are needed. Addition-
ally, scenario-specific data and training strategies should be
prioritized. For example, pre-training the model on a dedi-
cated dataset, adjusting pre-trained weights, and fine-tuning
on downstream tasks could further enhance performance.

(3) Joint training of detection and de-noising algorithms:
Collecting paired normal and complex weather traffic images
under the same scenarios, followed by annotation, would

enable pre-trained detection and de-noising models to be fine-
tuned on this dataset.

In summary, the Transformer-based foggy weather traffic
video object detection algorithm still has significant room for
development. Ongoing research is essential to continuously
improve detection speed, accuracy, and robustness in real-
world applications.
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