
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

HCC: A Hierarchical Chart Captioning Model for
Enhanced Accessibility of Chart Data for Visually

Impaired Users

Yoojeong Song1, Kanghyeon Seo2, Svetlana Kim3, Joo Hyun Park4
Department of Computer Software Engineering, Soonchunhyang University, Asan, Republic of Korea1

Department of Artificial Intelligence, Republic of Korea Naval Academy, Chanwon-si, Republic of Korea2

Department of AI Convergence and Engineering, Open Cyber University of Korea, Seoul, Republic of Korea3

ICT Convergence Research Institute, Sookmyung Women’s University, Seoul, Republic of Korea4

Abstract—In educational settings, charts and graphs are
commonly used to convey complex information in a simple and
understandable manner. However, these visual representations
often present accessibility challenges regarding Accessibility for
Visually Impaired users, as they cannot be directly interpreted
by screen readers without proper alternative text. This pa-
per proposes a novel hierarchical captioning model (HCC:
Hierarchical Chart Captioning) designed to facilitate effective
Chart Interpretation. The model utilizes spatial token features
to generate captions at multiple levels, each offering varying
degrees of detail and abstraction, mimicking human cognitive
processing. Three hierarchical levels are developed: Level 1 offers
basic and factual descriptions, Level 2 presents more detailed
information, and Level 3 provides intuitive interpretations and
inferences. By integrating a fine-tuned Transformer Models, this
approach ensures efficient caption generation and supports user-
selectable caption lengths. The model’s effectiveness is evaluated
through user surveys involving 20 instructors, confirming that
Level 2 captions provide the most comprehensible descriptions.
Experimental results demonstrate that the proposed method
outperforms existing captioning approaches, improving both the
efficiency and accessibility of educational materials for visually
impaired students. These findings highlight the potential of hier-
archical learning models to create more inclusive and accessible
educational experiences.
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impaired; chart interpretation; transformer models

I. INTRODUCTION

Various chart materials, including graphs, are used in edu-
cational curricula. These charts and graphs are presented in a
visual format and are an effective means of conveying complex
information in a simple and understandable way. However,
materials presented in visual form cannot be directly conveyed
to individuals with visual impairments, as they are transmitted
in text form through services such as screen readers [1], [2].
For visually impaired learners, the inability to directly perceive
these visual materials not only limits their comprehension
during lessons but also creates a persistent accessibility gap
in real-world educational settings, reducing their opportunities
for equal participation and achievement.

First, screen readers deliver content composed of text and
images to people with visual impairments in an audio form. For
graphs and charts, typically provided as images, instructors or
content creators must manually input alternative text. Without

it, visually impaired users cannot access the image content [3],
[4].

Second, in most classes, when graphs or charts appear in
lecture materials, instructors often assume that students have
already perceived the visual information from the chart and
focus on explaining its features. As a result, visually impaired
students, lacking basic information about the chart, must rely
solely on the instructor’s spoken explanation, which limits the
completeness of information they receive.

Third, this situation creates additional challenges for
instructors when preparing lecture materials, as they must
manually provide explanations for every graph and chart.
The laborious task of setting alternative text often leads to
omissions, resulting in images with insufficient descriptions.

The visually impaired learners, thus, struggle to access in-
formation through visual materials, and lack equal educational
opportunities compared to other learners. The need to interpret
images such as charts used in educational materials is critical to
improving the quality of education for people with disabilities.
While charts and graphs help to deliver and understand infor-
mation quickly, for individuals with disabilities, accessing data
in this visual form may be restricted. Therefore, research that
helps individuals with disabilities easily access and interpret
chart and graph information carries significant social value
and meaning. To achieve this, this paper proposes a new
methodology for generating image descriptions for individuals
with disabilities. The approach leverages the spatial features of
tokens—small image patches extracted from the chart that pre-
serve both their content and position within the overall layout.
By analyzing these tokens not only for their visual appearance
but also for their location and relative arrangement, our method
captures the structural context of the chart, which is essential
for generating accurate and context-aware descriptions across
multiple layers. This approach leverages hierarchical struc-
tures divided into four layers based on principles of human
cognitive processing—progressing from basic visual percep-
tion to higher-level abstraction. Each layer corresponds to a
distinct stage in how humans interpret visual information: 1)
recognizing simple visual elements, 2) identifying relationships
between elements, 3) summarizing overall patterns or trends,
and 4) inferring contextual or conceptual meaning. Captions
at each level vary in length and detail to align with different
user needs and preferences. This method is referred to as
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HCC: Hierarchical Chart Captioning, highlighting its focus
on providing multi-level descriptions that enhance accessibility
for visually impaired users.

For individuals with visual impairments who receive all
information through auditory means, only intuitive and concise
information will be provided to facilitate their understanding of
sound-based data [22]. Existing research on caption generation
for charts and graphs primarily focuses on the accuracy of
the generated captions, typically evaluated by measuring the
similarity between human-generated and machine-generated
captions. For instance, models such as PReFIL [12] and
MATCHA [18] emphasize improving caption accuracy ... with-
out explicitly addressing varying user needs or accessibility
for visually impaired users. The main contributions of this
work are as follows: 1) This study proposes a hierarchi-
cal captioning framework that generates captions at multiple
levels of detail, enabling user-selectable descriptions tailored
for accessibility needs. 2) Principles of hierarchical human
cognition are integrated into caption generation, producing
captions that balance factual accuracy and interpretability. 3)
A user-centered evaluation is conducted to determine the most
effective caption level for visually impaired users. Unlike
prior works that produce a single, static caption optimized
for text-similarity metrics, the proposed method introduces
a multi-level captioning framework designed specifically for
accessibility. This approach enables users—especially those
with visual impairments—to select captions that balance fac-
tual accuracy and interpretability according to their needs, an
aspect largely overlooked in existing chart captioning research.
The novelty lies in integrating hierarchical human cognition
principles into caption generation, coupled with a user-centered
evaluation to determine the most effective caption level. The
primary goal of this study is to develop a hierarchical chart
captioning model (HCC) that enhances accessibility for visu-
ally impaired users by providing multi-level, user-selectable
captions that balance factual accuracy with interpretability.
This approach allows for the exploration of the optimal level
and length for caption generation for chart images.

Unlike prior works that produce a single, static caption
optimized for text-similarity metrics, our method introduces
a multi-level captioning framework designed specifically for
accessibility. This framework enables users—especially those
with visual impairments—to select captions that balance fac-
tual accuracy and interpretability according to their needs, an
aspect largely overlooked in existing chart captioning research.
The novelty lies in integrating hierarchical human cognition
principles into caption generation, coupled with a user-centered
evaluation to determine the most effective caption level. The
primary goal of this study is to develop a hierarchical chart
captioning model (HCC) that enhances accessibility for visu-
ally impaired users by providing multi-level, user-selectable
captions that balance factual accuracy with interpretability.

II. RELATED RESEARCH

A. Image Captioning Datasets

Datasets related to chart image interpretation and caption-
ing have expanded from Question-Answering datasets [5], [6]
to Image-caption pair datasets [7], [8]. Compared to large-scale
natural language processing datasets [9], [10], the number of

image captioning-related datasets is relatively small, limiting
the use of large datasets like Transformer models [11]. PReFIL
[12] has been proposed as a solution for Question-Answering
data and has become a mainstream model for chart explana-
tions. However, issues such as the complexity of Question-
Answering data remain unresolved. Most natural language
processing models primarily utilize the powerful capabilities
of Transformers. These efforts have led to the successful
integration with Large Language Models (LLMs) [13], [14],
but practical applications of chart explanation models still
focus mainly on their relation to labels. To build an effective
caption generation model for charts, an approach based on
human cognition is needed to facilitate smooth information
delivery. Additionally, while image-based data should be fac-
tually accurate, overly narrow information delivery should be
avoided.

B. Attention Mechanism for Natural Language Process

The attention mechanism primarily works through three
components: K (key), V (value), and Q (query). Its main
goal is to recognize information related to the input data
and understand dependencies within sequences. This atten-
tion mechanism is used in various artificial intelligence (AI)
models, primarily in encoder-decoder architectures. For exam-
ple, GPT (Generative Pre-trained Transformer) [15], which is
based on a decoder structure, utilizes attention mechanisms to
perform unidirectional learning. This model calculates atten-
tion for input sequences and generates subsequent words. In
contrast, BERT (Bidirectional Encoder Representations from
Transformers) [16], based on an encoder structure, performs
bidirectional learning by applying attention to both directions
of the input sequence to understand context and learn effective
representations. These models use the attention mechanism to
dynamically detect and process relevant information in its input
data, demonstrating excellent performance in natural language
processing and other AI tasks.

C. Deep Learning-based Image Captioning Models

Image captioning has drawn significant attention with the
advancement of deep learning techniques. Models that gen-
erate captions for images combine visual feature extraction
and natural language processing. The most commonly used
deep learning-based image captioning models are those that
combine Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN) architectures. CNN models such as
VGG [26] and ResNet [27] extract visual features from images,
which are then used as input for natural language generation
models. After obtaining the visual features of the image, an
RNN-based model generates sentences, and model perfor-
mance is evaluated using automatic metrics (such as BLEU
[24], METEOR [25]) and human evaluation. Deep learning-
based image captioning models learn meaningful relationships
between images and text and are utilized to generate descrip-
tions for images. However, most existing caption generation
models focus on creating captions at a single level by con-
sidering the overall context of the image. However, people’s
perception and information processing involve multiple stages
of abstraction, gradually moving from detailed information to
higher-level concepts [19].
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Recent large-scale vision-language models, such as
BLIP [29] and DePlot [30], have achieved state-of-the-art
performance in general image captioning and chart-to-table
translation. These models primarily focus on maximizing data
extraction accuracy and reasoning capabilities, often treating
chart captioning as a “one-shot” generation task optimized for
text-similarity metrics (e.g., BLEU, CIDEr). However, from
an accessibility perspective, these approaches exhibit a critical
limitation: they produce a single, static output that fails to
account for the cognitive constraints of visually impaired users
receiving information via audio.

In an auditory environment, presenting a lengthy, un-
structured description generated by these models can induce
cognitive overload, making it difficult for users to grasp
the overall context before diving into details. Unlike these
general-purpose models, the HCC model is fundamentally
distinct in its architectural assumption and task formulation.
Chart captioning redefined not as a static translation task
but as a user-centric, hierarchical scaffolding process. By
explicitly modeling human cognitive stages—from fragmented
perception to concrete interpretation—HCC offers variable-
level captions that allow users to control the granularity of
information. This “accessibility-first” design ensures that the
generated captions are not just factually accurate, but also
cognitively digestible for screen reader users, addressing a
dimension of usability that standard vision-language models
overlook.

III. HIERARCHICAL CHART CAPTION GENERATION
MODEL

A. Model Design for Hierarchical Chart Extraction

The goal of this section is to present the design and
methodology of our proposed Hierarchical Chart Captioning
(HCC) model, which generates multi-level captions for chart
images to enhance accessibility for visually impaired users.In
this work, the term hierarchical captions refers to a structured
set of captions describing the same chart image at multiple
levels of detail and abstraction, where lower levels focus on
basic, factual elements and higher levels provide progressively
richer, more interpretive information. The dataset and model
architecture used for hierarchical caption extraction are first
outlined, followed by the strategy for generating captions at
varying levels of detail. This study is guided by the follow-
ing research question: “Can a transformer-based captioning
model, when fine-tuned to generate descriptions at multiple
hierarchical levels, improve the comprehensibility and acces-
sibility of chart data for visually impaired users compared to
single-level captioning approaches?” The working hypothesis
is that generating captions across multiple levels—aligned
with human cognitive processing—will provide flexibility for
different user needs while preserving factual accuracy and
enhancing interpretability.

This study develops a model that generates hierarchical
captions for chart images based on the LineCAP dataset [28].
The dataset is a comprehensive collection of annotated line
chart images designed to enhance automatic chart analysis and
processing in the fields of computer vision and machine learn-
ing. It includes various types of line charts with annotations
for chart type, labels, axes, and data points, which can be

used to extract hierarchical captions. For training the proposed
model, pre-existing multi-level captions in the dataset were not
relied upon; instead, three separate training subsets—one for
each hierarchical level—were constructed by programmatically
transforming the original LineCAP annotations. Specifically,
Level 1 captions were generated by extracting only the most
basic factual elements from the annotations (e.g., axis labels,
line identifiers), Level 2 captions incorporated more detailed
relationships and trends between elements, and Level 3 cap-
tions added shallow inferential statements derived from the
annotated data. These level-specific subsets were then used
to fine-tune the model in a multi-task learning setup, where
each input chart image was paired with three corresponding
captions, one per level. Fig. 1 shows the structure of the hi-
erarchical caption generation model based on the Transformer
architecture.

This model uses the attention mechanism to focus on the
features of the chart image and generate captions focused
on three different types, allowing for hierarchical caption
generation. The hierarchical generation of captions in this
study was achieved by fine-tuning the T5 model [17], a
large-scale, multi-purpose pre-trained text-to-text Transformer,
with sequence lengths limited to 16, 32, and 64 tokens.
These lengths were chosen to balance accessibility for visually
impaired users—avoiding overly long captions that hinder
auditory processing and overly short captions that omit key
details—with empirical stability observed during preliminary
experiments. The T5-base configuration was utilized, which
contains 12 layers in the encoder and 12 layers in the decoder,
each with a hidden size of 768 and 12 attention heads. The
base architecture was preserved, but the input embedding
layer was modified to accept spatial token features from the
chart image encoder instead of standard text embeddings, and
the output projection layer was adjusted to generate captions
at three predefined sequence lengths corresponding to the
hierarchical levels. No other structural changes were made to
the Transformer blocks.

Other lengths such as 24 and 48 tokens were also tested, but
they provided no significant improvement in comprehension
or training stability, leading to the adoption of the 16–32–64
configuration. Multiple experiments were conducted to explore
the optimal setup, starting with an initial learning rate of 3e-5,
weight decay of 0.01, batch size of 32, and gradient clipping at
a maximum norm of 1.0. Hyperparameters were tuned through
an iterative manual adjustment process guided by validation
loss trends. Common defaults from prior Transformer-based
captioning studies were initially employed, after which each
parameter—learning rate, weight decay, and batch size—was
adjusted individually while monitoring validation loss and
caption quality on a held-out set. Configurations yielding the
lowest validation loss without overfitting signs were selected
as the final values. When validation loss plateaued for three
consecutive epochs or increased by more than 10.

Despite the powerful tokenizer and architecture of the
original model, instability during training led to adjustments to
the learning rate and repeated implementations. If divergence
was observed, training parameters were adjusted to prevent
information loss due to sequence length limitations. T5, a text-
to-text model, uses both the original image caption data and
the input sequences limited in length during training. As a
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Fig. 1. Overall architecture of the proposed Hierarchical Chart Captioning (HCC) model. The visual encoder (left) processes spatial token features extracted
from the input chart image, capturing both visual content and positional structure. These features are fed into the hierarchical caption generator (center, based
on the T5 Transformer), where the encoder stack refines the representations and the decoder stack produces captions at three target sequence lengths (16, 32,
64 tokens) corresponding to different abstraction levels (Level 1–3). The encoder and decoder interact via cross-attention, allowing the decoder to selectively
attend to relevant encoded features while generating the caption. MATCHA is used as a baseline comparison model, and the generated captions are evaluated

for accessibility and comprehension.

result, captions of lengths 16, 32, and 64 are generated as
outputs. These outputs are compared with MATCHA’s image
feature description text for performance evaluation. In this
study, MATCHA is used solely as a benchmarking baseline to
evaluate the quality of generated captions. It is not involved in
the training process of our model. Specifically, after generating
hierarchical captions with our fine-tuned T5-based model,
The descriptive quality of the generated captions is compared
against captions produced by MATCHA, following the same
chart image inputs, to provide a consistent reference for
performance assessment. MATCHA adopts the same structure
as Pix2Struct [18], where the image encoder processes the
input image through a series of Transformer layers to extract
features, while the text decoder generates token sequences
representing the structural layout of the image.

B. Hierarchical Caption Extraction Method

The hierarchical structure of the caption generation model
proposed in this study consists of three levels: Level 1, Level
2, and Level 3, as shown in Fig. 2. This figure illustrates the
link between these caption levels and information granularity.
Specifically, the graph on the left (PDR% vs. percentage

of source nodes) demonstrates how selecting different cap-
tion levels allows for balancing interpretability, detail, and
performance under varying data conditions. The reason for
dividing the caption into three levels is that human information
recognition is performed in four stages, and Layers 1–4 corre-
spond to fragmented information, refined information, specific
information, and abstract information [19]. Therefore, captions
were initially derived in four types to align with these cognitive
stages. However, Level 4 captions were excluded from the
final analysis because, despite being intended to represent the
“abstract” stage of cognition, they exhibited substantial textual
redundancy with the human-written reference captions. This
meant that Level 4 did not introduce a genuinely new cognitive
layer but instead reproduced the reference captions with mini-
mal lexical changes, thereby failing to capture an additional
abstraction process beyond Level 3. Quantitative evidence
supports this decision: the average BLEU-4 score between
Level 4 captions and the references was 0.92, and over 85%
of sentences matched almost verbatim. For instance, in many
samples, Level 4 captions duplicated entire reference sentences
except for minor punctuation differences. Given this lack of
conceptual distinction, retaining Level 4 would confound the
analysis of hierarchical abstraction. Consequently, the focus
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remained exclusively on Levels 1–3, which demonstrated
clearer, progressive gradations in detail and interpretability.
The captions of Level 1 explain the basic and factual elements
of the chart in simple and intuitive language, focusing only
on the basic expression of the data. The Level 2 captions
provide more detailed expressions than the Level 1, offering
information that can be directly extracted from the chart.
Lastly, the captions of the Level 3 add interpretations to the
chart by providing shallow inferences based on intuitive facts.
This hierarchical expression structure expands the model’s

Fig. 2. Hierarchical caption levels in the proposed HCC model and their link
to information granularity.

practical application in chart explanation, reflecting an attempt
to reflect subjective human interpretation. This is a strategic
approach to appropriately interpret the complexity of data
visualization and offers deeper insights. In this study, the
sequence length was limited to 16, 32, and 64 during training
to maintain model learning efficiency while considering the
necessary information to generate appropriate captions related
to the input image.

In the context of the attention mechanism in neural net-
works, computational complexity is closely related to the
number of tokens (n). In our model, controlling n is directly
tied to the sequence length settings (16, 32, 64 tokens) used
for different hierarchical caption levels. This allows us to
balance descriptive detail with computational feasibility for
accessibility-focused caption generation. Despite not perform-
ing computations for all token pairs, the computational burden
increases proportionally to the square of n, as described in Eq.
(1).

T (n) = O(n2 · d) (1)

Moreover, the model’s processing capacity in the input
space increases linearly with n, as outlined in Eq. (2), where c
represents a model-dependent constant. In practical terms, this
reflects how increasing caption length expands the model’s
ability to capture detailed chart features, but at the cost of
higher processing demands.

T (n) = c · n (2)

Considering inductive bias within the framework of Ridge
Regression [23], the cost function (J) can be formulated by set-
ting the attention mechanism as the hypothesis function.Here,
inductive bias is interpreted as a form of regularization that
constrains the model’s attention weights when generating
captions of varying lengths. When computing dependencies

between text sequences x and y, the parameters (θ) and the
regularization parameter (λ) can be derived from the number
of training samples (m) and the number of features (n). By
controlling n through sequence length limits, consequently, the
inductive bias is implicitly regulated, which helps maintain
stable learning across hierarchical levels without overfitting to
any single caption length. This suggests that by controlling the
number of tokens (n) within a constrained space of m,x, and
y, the inductive bias can be effectively regulated [Eq. (3)].

J(θ) =

m∑
i=1

(
hθ(x

(i))− y(i)
)2

+ λ

n∑
j=1

θ2j (3)

IV. EXPERIMENT AND EVALUATION

A. Experiment and Results

The primary objective of our experiments is to comprehen-
sively evaluate the proposed HCC model in terms of four key
aspects: 1) its ability to control the input space while preserv-
ing the intrinsic properties of the attention mechanism, 2) its
usability for visually impaired users through clarity-focused
caption generation, and 3) the validity and effectiveness of the
newly introduced performance metric M .

This paper proposes a model that can effectively control
the input space while preserving the intrinsic properties of
the attention mechanism. To develop this model, a pre-trained
T5-base Transformer model [17] is utilized, originally trained
on the Colossal Clean Crawled Corpus (C4) dataset [20]
containing 60,000 tokens.

All encoder and decoder layers were fine-tuned, while only
the input embedding layer was modified to accept spatial token
features from the chart image encoder and the output projection
layer was adjusted to support multiple sequence length targets
(16, 32, 64 tokens) corresponding to the proposed hierarchical
captioning levels. This fine-tuning was necessary to adapt
the model from its original text-to-text objective to the chart
captioning task, ensuring it could effectively map spatial visual
features to multi-level textual descriptions.

For fine-tuning, the learning rate was set to 3e-5, the batch
size to 32, and the model was trained for 20 epochs using
the AdamW optimizer with a weight decay of 0.01. These
parameters were selected based on preliminary experiments to
ensure stable convergence and reproducibility. Cross-entropy
loss was utilized as the objective function. Prior to training,
all chart images were resized to 512×512 pixels, normalized
to the range [0, 1], and converted into spatial tokens via patch
embedding. The LineCAP dataset was split into 80% training,
10% validation, and 10% testing sets, ensuring that charts
from the same source did not appear in multiple splits to
prevent data leakage. All experiments were implemented in
Python 3.10 using PyTorch 2.1.0 and HuggingFace Transform-
ers 4.36.2, with supporting libraries including NumPy 1.26.4,
OpenCV 4.8.1, and scikit-learn 1.3.2. Training was performed
on Ubuntu 22.04 with an NVIDIA RTX 3090 GPU (24 GB
VRAM) and CUDA 12.1.

This extensive dataset ensures that the model can recog-
nize and represent complex patterns and relationships in the
data. As shown in Table I, hleach hierarchical level offers
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TABLE I. COMPARISON OF HIERARCHICAL CAPTIONS GENERATED BY HCC MODEL AND ORIGINAL CAPTIONS

Chart ID Chart Image Captions

1

Original Caption: Lines 2 and 4 intersect a total of
three times. They first intersect at xlabel 12, then at
xlabel 20, and lastly at xlabel 25.

Layer 1: Lines 2 and 4 intersect at xlabel 12, then
at xlabel 20, and lastly at x.

Layer 2: Lines 2 and 4 intersect at xlabel 12, then
at xlabel 20, and lastly at x.

Layer 3: Lines 2 and 4 intersect three times at xlabel
12, then at xlabel 20, and lastly at x.

2

Original Caption: ylabel at first decreases at a
decreasing rate, then increases roughly at an
increasing rate, and then increases at a decreasing
rate.

Layer 1: The line at first decreases, then increases.

Layer 2: The line at first decreases at a decreasing
rate, then increases at an increasing rate.

Layer 3: The line at first decreases at a decreasing
rate, then increases roughly at an increasing rate.

3

Original Caption: All lines share the same trend
from xlabel 5 to 200. Lines 2 and 3 even share the
same trend for all values of xlabel.

Layer 1: All lines have the same trend from xlabel
5 to 200.

Layer 2: All lines have the same trend from xlabel
5 to 200.

Layer 3: All lines have the same trend from xlabel
5 to 200. Lines 2 and 3 share the same trend for all
xlabel values.

a distinct balance between brevity and detail. Specifically,
Layer 1 captions provide concise factual descriptions, Layer
2 adds moderate detail for improved clarity, and Layer 3
incorporates the most comprehensive explanation, sometimes
adding interpretive insights. Layer 2 captions, for example,
provide sufficient context without excessive complexity, which
aligns with our usability study finding that Layer 2 is the
most comprehensible for visually impaired users. This supports
our claim that an intermediate level of abstraction maximizes
accessibility. It is noteworthy that the captions at each layer
convey the same information from diverse perspectives, and
all of the explanations highlight the tendency of the third and
fourth lines to be similar. Overall, in Layer 1, it is challenging
to discern the extent of data representation in the chart due
to the uniformity of the lines in their description of the trend.
Layer 2 offers slightly more descriptive capabilities than Layer
1. Layer 3 augments the information in Layer 2, incorporating
an explanation of the data represented by the chart.

To apply the generated captions as descriptions for chart
materials provided to individuals with visual impairments,
usability evaluation is crucial. To evaluate the proposed hierar-
chical chart caption generation model, a within-subjects survey
was conducted with 20 actual instructors. The participants
rated three caption layers for five samples, including those
shown in Table I, using a 5-point Likert scale. The remaining

samples were randomly selected from the LINECAP dataset.
Each respondent was tasked with selecting the most compre-
hensible caption from the provided options for each layer, with
a 5-point Likert scale utilized to assess the perceived clarity
of each caption. The 5-point Likert scale was composed of 1
= Very Dissatisfied and 5 = Very Satisfied. The results of this
survey indicated that the captions generated by Layer 2 seem
to be the most comprehensible, as shown in Fig. 3. Fig. 3
presents a graph showing the average understanding score for
each caption layer, evaluated on a 5-point Likert scale.

According to Fig. 3, the captions generated by the Layer
3 were also rated as highly relevant, while Layer 1 had the
lowest score (Layer 2=3.35, Layer 3 = 2.88, Layer 1 =2.75).
In addition, an analysis of variance (ANOVA) was performed
to determine if the mean comprehension scores between each
layer were statistically significant. The P value of 0.019
confirmed that the mean comprehension scores between the
groups were different and statistically significant. In fact, the
Diagram Center Image Description [21], which is used by
the U.S. Department of Education as a guideline for writing
descriptions to make visuals accessible and usable by students
with disabilities, suggests that when writing descriptions for
diagrams, the captions should be minimal and informative
such as the captions in the layer 2. The hierarchical captions
generated by this model not only automatically generates
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Fig. 3. Graph showing the average understanding score for each caption layer, evaluated on a 5-point Likert scale.

captions when an image is entered, but also automatically
assigns the layer 2 captions selected by the usability evaluation
so that it can be entered.

B. Caption Generation Performance Evaluation

Before introducing the new metric M , the data preparation
process used for this evaluation is first described. The datasets
LineCAP, DVQA, and FigureQA were selected because they
provide diverse chart types and high-quality annotations nec-
essary for training a robust chart captioning model, covering
both low-level data extraction and high-level reasoning tasks.
For each of these datasets, the same preprocessing pipeline was
applied as in model training: all chart images were resized to
512×512 pixels, normalized to the range [0,1], and converted
into spatial tokens via patch embedding. For each test set,
hierarchical captions (Levels 1–3) were generated using the
fine-tuned HCC model. The corresponding attention masks
from the decoder cross-attention layers were stored to enable
the computation of SVam in the metric formula. No training
or validation samples were included, ensuring that all metric
computations were performed on unseen data to maintain
evaluation integrity.

Traditional captioning metrics such as BLEU or CIDEr
are designed to reward lexical overlap between a generated
caption and a single reference caption. In our hierarchical
setting, captions at different levels (e.g., Level 1 vs. Level
3) are intentionally diverse in length, detail, and abstraction,
meaning that a low lexical match does not imply poor quality.

For example, a concise Level 1 caption can be perfectly
accurate yet achieve a low BLEU score simply due to its
brevity. Similarly, CIDEr’s term-frequency weighting favors n-
gram overlap, which biases against higher-level captions that
incorporate interpretive language absent from the reference.
These metrics are therefore discarded because they conflate
intended stylistic variation with error, and metric M is adopted
instead to directly assess feature preservation and attention
distribution properties that remain meaningful across levels

Therefore, the objective of this research is not to ensure
high performance on the correct answer labels generated by the
model, but rather to prioritize stable learning through caption
generation to enhance the practical utility of the model. To this
end, the following metric was established, given in Eq. (4).

M = cos(fθ(x), y) · k + σ(SVam) (4)

This metric comprises two terms. The first utilizes cosine
similarity to ensure that the model’s output preserves the
features of the input tokens without compromising their char-
acteristics. Here, “input” refers to the vectorized embedding
representation of the spatial tokens extracted from the chart
image encoder, and “output” refers to the embedding represen-
tation of the generated caption tokens produced by the decoder.
Both are mapped into the same latent space using the final
projection layer before similarity computation. This ensures
that cosine similarity measures alignment between semantic
feature vectors rather than raw token IDs or unprocessed
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TABLE II. EVALUATION OF CAPTION GENERATION PERFORMANCE ACROSS THREE DATASETS (LINECAP, DVQA, FIGUREQA) USING THE PROPOSED
METRIC M . HIGHER SCORES INDICATE BETTER SEMANTIC FEATURE PRESERVATION AND BALANCED ATTENTION FOCUS. ‘M(OURS)’ REPRESENTS THE

PROPOSED HCC MODEL, WHILE ‘M(NEW BASELINE)’ DENOTES A STANDARD FINE-TUNED T5 MODEL

M/dataset LineCAP DVQA FigureQA
Existing performance evaluation metrics BLEU-4/CIDEr Structure/Data/Reasoning Accuracy

Existing evaluation metrics results 0.418/1.096 94.47/65.40/44.03 72.54

TABLE III. COMPARE THE NEW “M (BASELINE)” RESULTS WITH OUR “M (OURS)” RESULTS

M/dataset LineCAP DVQA FigureQA
M(New baseline) 15.98 13.24 16.98

M(Ours) 10.92 9.84 7.34

sequences, avoiding ambiguity between “input tokens” and
“output tokens.”

The second term examines the standard deviation of the
singular values (SVam) of the attention mask. SVam denotes
the set of singular values obtained by applying Singular Value
Decomposition (SVD) to the attention mask matrices extracted
from the decoder’s cross-attention layers. For each generated
caption, the attention mask A ∈ Rn×n is collected, where n
is the sequence length, and SVD is performed: A = UΣV ⊤.
The diagonal entries of Σ represent the singular values, which
capture the distribution of energy across attention components.
Singular values are aggregated across all heads and layers
for each caption, and the standard deviation is computed to
quantify the variability in attention focus. This process is
repeated for all samples in the test set to produce the final
SVam value used in the metric M . Rather than implying
that lower variance always equates to better expressiveness,
a moderate reduction is interpreted as desirable because it
suggests a balanced allocation of attention that preserves
relevant structural information while avoiding noise-induced
dispersion.

The earlier discussion of attention complexity in Eq. (1)
and (2) directly informs the interpretation of metric M . Con-
trolling the sequence length n in the hierarchical captions
not only constrains the O(n2 · d) computational cost but also
influences the structure of the attention masks from which
SVam is computed. Shorter sequences reduce potential atten-
tion dispersion, leading to a more concentrated singular value
spectrum, whereas longer sequences increase complexity and
variability in attention focus. By incorporating SVam into M ,
this trade-off between descriptive richness and computational
efficiency is captured.

This value k = 10 was selected through preliminary
sensitivity analysis, where k was varied across 1, 5, 10, 20
and the resulting metric distributions were inspected. It was
observed that k = 10 provided a balanced scaling between the
cosine similarity term and the singular value variability term.

Table II and III demonstrate that our model consistently
achieves lower M scores across all datasets compared to the
baseline, with reductions of up to 56.8% (FigureQA). Since
a lower M indicates better semantic alignment and more
balanced attention distribution, these results provide quanti-
tative evidence that the proposed HCC model more effectively
preserves key features of the input space while controlling
complexity.

Focusing on the results of the newly proposed
‘M(baseline)’ and our ‘M(Ours)’, the following observations
can be made. In the LineCAP dataset, the baseline achieved
15.98, while our model achieved 10.92. Similarly, for DVQA,
the baseline scored 13.24, and our model scored 9.84, while
in FigureQA, the baseline result was 16.98, and our model
scored 7.34. In all datasets, our model outperformed the
baseline. Notably, in FigureQA, the M value decreased by
almost half, indicating an improvement in performance.

V. DISCUSSION : ENHANCING ACCESSIBILITY THROUGH
USER-COGNIZANT HIERARCHICAL CAPTIONING

The Hierarchical Chart Captioning (HCC) model is fun-
damentally distinguished from prior works, which primarily
focused on maximizing lexical similarity metrics, by aiming to
resolve the practical accessibility gap through a user-centered
approach. This section discusses the behavioral and cognitive
implications of our hierarchical framework.

A. The Mechanism of Hierarchical Captioning in Mitigating
Cognitive Load

HCC’s effectiveness is rooted in its ability to translate
the complex stages of human visual information process-
ing—which progresses from visual perception to higher-level
abstraction—into a manageable auditory information delivery
structure. This mechanism directly addresses the significant
cognitive load associated with processing lengthy, undifferen-
tiated auditory descriptions in non-visual environments.

The multi-level structure segments chart information into
ascending cognitive levels: Level 1 (basic facts), Level 2
(relationships and trends), and Level 3 (shallow inferences).
This managed segmentation allows users to assimilate the
chart data incrementally, supporting a fundamental principle
of Universal Access by providing flexible information deliv-
ery based on individual processing needs. Furthermore, the
approach of offering user-selectable sequence lengths (16,
32, 64 tokens) introduces a critical HCI benefit, empowering
the visually impaired user to tailor the information depth to
their immediate needs, thereby overcoming the inefficiency of
auditory searching through overly long, static narratives.

B. Level 2 as the Optimal Threshold for Information Compre-
hension

The user evaluation, which involved a survey with 20
instructors, empirically confirmed that the Layer 2 caption
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achieved the highest comprehensibility score (3.35), position-
ing it as the optimal level for driving positive information
comprehension behavior. This finding is central to our work,
highlighting a critical trade-off between descriptive detail and
cognitive feasibility. The inadequacy of extremes was clearly
demonstrated, as Level 1 captions, due to their limited and
fragmented information, scored the lowest (2.75) because
they failed to establish the necessary overall context or data
relationships. Conversely, Level 3 captions, while relevant due
to the inclusion of inferences, imposed a higher cognitive
burden due to their increased length and complexity, resulting
in a comprehension score (2.88) lower than Level 2. Level 2 is
thus identified as the optimal point of cognitive equilibrium. By
detailing the relationships and trends directly extractable from
the chart, Level 2 provides sufficient context while judiciously
avoiding the excessive complexity and subjective interpretation
of Level 3. This balanced delivery strategy aligns precisely
with accessibility best practices, such as those recommended
by the U.S. Department of Education’s Diagram Center, which
advocates for minimal yet informative descriptions. The supe-
rior performance of Level 2 captions provides strong empirical
evidence that effective accessibility solutions must be driven
not merely by technological performance metrics, but by an
HCI design balance that explicitly accounts for user-specific
cognitive capacities to yield successful behavioral outcomes.

Consequently, this finding challenges the prevailing as-
sumption in captioning research that higher text similarity
scores (e.g., BLEU) automatically equate to better utility.
By confirming that instructors—the domain experts in edu-
cation—prioritize the ’refined’ information of Level 2 over the
more exhaustive Level 3, this study provides a concrete HCI
design guideline: accessibility tools should prioritize cognitive
load management over mere data exhaustion. This shift from
technical optimization to human-centered validation is the core
contribution of our work, demonstrating that the ’best’ model
is not the one with the most detailed output, but the one that
aligns with the pedagogical needs of the users.

VI. CONCLUSION

Visually impaired individuals, particularly those who are
completely blind, face significant challenges in accessing and
understanding descriptive information about graph or chart
images. If an image lacks recorded descriptions, screen readers
are unable to convey its content; therefore, when a graph
or chart image is provided, an accompanying explanation
is essential to enhance accessibility for visually impaired
users. However, conventional graph captions are often overly
detailed, deviating from their original intent and hindering
practical usability and scalability. This highlights a critical
need to re-examine the purpose of such descriptions by refining
the levels of human cognitive processing and applying this to
chart explanation methodologies.

This study proposed the HCC (Hierarchical Chart Cap-
tioning) model to address this accessibility gap by generating
multi-level, user-selectable captions. Unlike traditional cap-
tioning methods that provide information at a single layer, the
HCC model utilizes spatial token features to generate three
hierarchical levels of captions that mimic human cognitive
processing. This design ensures that the model provides vary-
ing degrees of detail and abstraction, allowing users to select

the description length that best suits their needs.The model’s
effectiveness was rigorously evaluated through user surveys
involving 20 instructors, which revealed a critical insight:
Layer 2 captions were the easiest to understand, scoring
3.353. This result confirms that the most effective solution lies
in achieving an optimal balance between factual detail and
cognitive load, aligning with the ”minimal yet informative”
approach advocated by guidelines like the Diagram Center
Image Description4444. Consequently, this finding underscores
that technical complexity does not guarantee practical utility.
Future accessibility metrics must therefore evolve beyond
statistical correlation to prioritize human-centric clarity. By
identifying Level 2 as the optimal granularity, this study
establishes a practical standard that bridges AI capabilities with
real-world educational needs.

Furthermore, the model’s performance was validated using
a newly introduced evaluation metric, M , which confirmed
that the proposed methodology achieved performance levels
comparable to existing baseline architectures5. This demon-
strates that our approach ensures both reliable performance and
effective learning, highlighting its strong potential applicability
to hierarchical learning frameworks.

While this study demonstrates the efficacy of the HCC
model, several limitations remain. Currently, our validation
is primarily focused on line charts; thus, further research is
required to assess the model’s adaptability to more complex
or composite scientific visualizations. Future work will address
this by expanding the dataset diversity and conducting in-depth
end-user testing directly with visually impaired participants to
gather qualitative feedback. Additionally, we plan to explore
the real-time integration of our hierarchical captioning system
with Text-to-Speech (TTS) interfaces to support live learning
environments.

In conclusion, the HCC model offers a novel, user-centered
approach to enhancing digital accessibility by translating com-
plex visual data into cognitively manageable auditory descrip-
tions. Ultimately, this work aims to advance Universal Design
for Learning (UDL), ensuring that educational insights are
equally accessible to every learner regardless of visual ability.
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