
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

Model-Driven Transformation of Business Processes
into Blockchain Smart Contracts

Imane Bouzaidi Tiali∗1, Zineb Aarab2, Achraf Lyazidi3, Moulay Driss Rahmani4
LRIT-Associated Unit to CNRST (URAC 29)-Faculty of Sciences, Mohammed V University in Rabat, Morocco1,2,3,4

SIWEB-Mohammadia School of Engineers, Mohammed V University in Rabat, Morocco2

GENIUS Laboratory SUPMTI of Rabat, Rabat, Morocco2

Abstract—This paper presents a comprehensive Model-Driven
Engineering (MDE) methodology for automatically transforming
Business Process Model and Notation (BPMN) diagrams into
executable blockchain-based smart contracts. The proposed ap-
proach defines a set of Atlas Transformation Language (ATL)
rules that systematically map BPMN elements to Solidity con-
structs, ensuring semantic consistency and traceability through-
out the transformation process. The framework integrates several
stages, including process modeling, model validation, code gener-
ation, and deployment, supported by tools such as Camunda,
Eclipse ATL, Remix IDE, and MetaMask. Experimental vali-
dation on the Ethereum Sepolia test network demonstrates the
approach’s ability to enhance automation, reduce manual coding
errors, and improve synchronization between business work-
flows and their on-chain implementations. Compared to existing
BPMN-to-blockchain frameworks, the proposed solution offers a
unified and reusable transformation pipeline that bridges the gap
between business process modeling and blockchain execution. The
study concludes that MDE provides a scalable, traceable, and
standardized foundation for developing decentralized business
process applications.

Keywords—Model-driven engineering; BPMN; smart contracts;
blockchain; ATL; automation; solidity; process transformation

I. INTRODUCTION

Blockchain technology has introduced new paradigms for
managing and coordinating cross-organizational processes by
enabling the decentralized execution of agreements through
smart contracts. These self-executing programs enhance trans-
parency, trust, and auditability among participants without
intermediaries [1], [2]. However, developing smart contracts
manually remains a complex and error-prone activity that
requires deep technical expertise in blockchain languages such
as Solidity, as well as substantial effort in validation and testing
[3]. Consequently, organizations face persistent challenges in
ensuring reliability, scalability, and correctness when automat-
ing business workflows on blockchain infrastructures.

To address these limitations, Model-Driven Engineering
(MDE) provides a methodology that emphasizes abstraction
and automation in software development. Through MDE, de-
velopers can design system behavior using high-level models
that can later be transformed into executable code, thus reduc-
ing manual intervention and increasing traceability [4], [5]. In
the context of business process automation, Business Process
Model and Notation (BPMN) serves as a widely adopted
standard for visually representing workflows in an intuitive and
platform-independent manner. When combined with transfor-
mation languages such as the Atlas Transformation Language

(ATL), BPMN models can be automatically converted into
smart contracts deployed on blockchain networks [3], [6].

Several studies have explored MDE-based transformations
for blockchain applications, including Lorikeet [7], TABS
[8], and MDE4BBIS [9]. Although these frameworks have
advanced the integration of business modeling and blockchain
deployment, most existing approaches remain fragmented or
tool-specific. They typically focus on partial automation or
theoretical descriptions of transformation processes without
providing a fully operational, traceable, and validated pipeline.
Moreover, prior works often omit detailed mappings between
BPMN elements and their corresponding smart contract con-
structs, limiting their practical applicability and reproducibility
in enterprise scenarios [10], [11].

Research Problem: Despite these advancements, there is
currently no standardized and traceable end-to-end method-
ology for transforming BPMN business process models into
deployable blockchain smart contracts while preserving the
semantics of the original workflow.

Research Questions:

• How can MDE principles be leveraged to automate the
transformation of BPMN models into smart contracts
with minimal manual intervention?

• What transformation rules and architectural design are
required to ensure semantic consistency, traceability,
and deployment feasibility?

Objectives: The objectives of this study are to:

• Define a comprehensive MDE-based framework for
transforming BPMN models into smart contracts using
ATL.

• Establish explicit transformation rules that systemati-
cally map BPMN elements to Solidity constructs.

• Validate the proposed methodology through deploy-
ment and execution on the Ethereum Sepolia test
network.

Significance and Contributions: The proposed approach
unifies the entire transformation lifecycle—from BPMN mod-
eling and validation to Solidity generation and blockchain de-
ployment—within a modular and reusable architecture. Unlike
existing frameworks such as Lorikeet, TABS, or MDE4BBIS,
this study contributes a fully integrated, empirically validated
methodology that enhances automation, improves semantic

www.ijacsa.thesai.org 1238 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

traceability, and promotes standardization in model-driven
blockchain development [6], [8], [10]. Novelty and Distinction:
In contrast to previous frameworks such as Lorikeet [7], TABS
[8], and MDE4BBIS [9], which partially automate the BPMN-
to-Solidity transformation or focus on limited metamodel
mapping, the proposed methodology introduces a unified and
traceable pipeline that covers the entire lifecycle—from BPMN
model validation to smart contract deployment. The novelty
lies in the explicit mapping of BPMN temporal and resource
constraints to Solidity execution semantics, ensuring end-to-
end consistency, automation, and deployability across decen-
tralized environments.

II. BACKGROUND DEFINITION

A. Model

Within the context of Model-Driven Engineering (MDE),
a model refers to an abstracted and focused depiction of a
system, designed to emphasize particular characteristics perti-
nent to a specific problem domain. It serves various purposes
such as aiding comprehension, performing analysis, supporting
communication, or facilitating the structured creation of system
components in an automated manner [3], [10].

Every model adheres to a corresponding metamodel, which
defines its structure and semantics. This relationship enables
the application of formal transformation techniques and sup-
ports tool integration throughout the system development pro-
cess [7].

B. Meta-model: Metamodelisation Layers

A metamodel can be described as a higher-level model that
outlines the structural elements, semantic constraints, and rules
governing a particular modeling language. In essence, it serves
as a model about models, offering a formal foundation for
constructing and interpreting models within a specific domain
[6].

1) Key Concepts of Metamodels:

• Abstraction: Compared to standard models, metamod-
els function at a more abstract level. Whereas a model
might illustrate a concrete system or process, the
metamodel formalizes the building blocks and their
interrelations used to design such models [10].

• Structure and Syntax: Metamodels define the per-
mitted components—such as entities, attributes, and
connections—within a modeling framework. For in-
stance, in Unified Modeling Language (UML), the
metamodel prescribes what elements make up a valid
class diagram [5].

• Validation: They impose structural rules and integrity
constraints to ensure that models conform to the
expected language definition, helping maintain con-
sistency and validity [3].

• Examples: Widely known metamodels include:
◦ UML Metamodel: Provides the formal syntax

and semantics for UML-based diagrams [2].
◦ BPMN Metamodel: Specifies modeling ele-

ments and behavior for business process work-
flows using BPMN [12].

• Use in Model-Driven Engineering (MDE): Within
MDE practices, metamodels are fundamental because
they enable the transformation of high-level models
into executable artifacts. This facilitates automation in
software development and ensures consistency across
generated implementations [8].

2) Metamodelization Layers: Metamodelization is typi-
cally organized into several abstraction levels, progressing
from concrete real-world systems to highly abstract modeling
structures. These layers are commonly described as follows:

• M0: Real-World Systems – This foundational level
includes actual systems or operational processes ob-
served in real environments. Examples include on-
going business workflows or deployed information
systems [13].

• M1: Models – This level encompasses models derived
from metamodels. For example, a BPMN model might
depict the logic of a particular business operation.
These models serve as tangible applications of the
concepts defined at the metamodel level [9].

• M2: Metamodels – Here, we encounter frameworks
such as BPMN and UML, which define the formal
structure and semantics of modeling languages. These
metamodels provide the abstract components required
to represent systems or business processes conceptu-
ally [6].

• M3: Meta-Metamodel – This top-level layer defines
the constructs used to build metamodels themselves.
A notable example is the Meta-Object Facility (MOF),
which offers a standardized mechanism for specifying
metamodels in a consistent and formalized way [11].

The hierarchical organization of these modeling levels is
depicted in Fig. 1, which illustrates the M0–M3 layering from
real-world systems to meta-metamodels.

Fig. 1. Metamodeling hierarchy [4].

C. Model Transformation

In the context of Model-Driven Engineering (MDE), model
transformation refers to the automated process of translating
a source model—structured according to a specific meta-
model—into a corresponding target model that conforms to

www.ijacsa.thesai.org 1239 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

a different metamodel. This mechanism enhances the con-
sistency and repeatability of software development, and is
particularly advantageous in blockchain-oriented environments
where precision and reliability are essential [4].

Over the years, numerous transformation languages and
methods have emerged to support these processes:

• ATL (Atlas Transformation Language): A widely
adopted tool for specifying and executing model trans-
formations [3], [5].

• QVT (Query/View/Transformation): A standardized
framework by OMG for expressing model-to-model
transformations declaratively [14].

• Graph Transformation: Utilizes graph-based tech-
niques to define transformation rules and apply them
to model structures [15].

• Epsilon: A comprehensive language suite designed for
model management, supporting a range of transforma-
tion and validation operations [11].

• Xtend: A statically typed language that facilitates
the implementation of model-to-model transformation
logic [12].

• Acceleo: An implementation of the MOFM2T (Model
to Text) transformation specification developed under
the OMG standard [8].

These transformation mechanisms constitute the foundation
of the proposed approach presented in Section IV (Methodol-
ogy), where BPMN models are systematically translated into
Solidity smart contracts using ATL rules.

D. BPMN Overview

Business Process Model and Notation (BPMN) has
emerged as a widely accepted notation standard for modeling
business workflows. Designed and maintained by the Object
Management Group (OMG), its primary goal is to ensure
clarity and usability across various stakeholder roles, including
business analysts, developers, and process managers [2], [16].

The popularity of BPMN is reflected in its integration into
enterprise software platforms such as Oracle Business Process
Analysis Suite and Camunda, which enable the automatic
generation of executable systems based on BPMN diagrams
[6]. In contrast to traditional programming-based approaches
like BPEL or Java, the present work leverages BPMN as a
foundation for generating blockchain-based smart contracts
[8], [9].

1) Flow Objects: Flow objects include:

• Events: Start, Intermediate, and End. Intermediate
events include timers, messages, conditions, etc. [2],
[17].

• Activities: Tasks, Sub-processes, and Call Activities.
Sub-processes may include compensation or transac-
tions [6], [16].

• Gateways: Used to control sequence flow. Types in-
clude Exclusive, Inclusive, and Parallel, both converg-
ing and diverging [2], [5].

2) Examples:

• An exclusive gateway that splits the process flow into
multiple branches based on defined conditions [2], [8].

• A parallel gateway that waits for all incoming se-
quences to arrive before continuing the execution [12],
[18].

• A multi-instance task executed simultaneously across
a group of input elements [10], [11].

E. Blockchain Ecosystem

The blockchain ecosystem includes a set of technologies,
platforms, and development tools that support the design, im-
plementation, and execution of decentralized applications. This
ecosystem ranges from blockchain networks like Ethereum and
Hyperledger to tools and methodologies such as model-driven
engineering (MDE) [5], [6], [10].

Model-driven approaches enable developers to create for-
mal models (e.g., BPMN) that are then transformed into
executable blockchain code, enhancing productivity and con-
sistency [7], [11], [16]. These practices are especially valuable
in collaborative environments involving multiple stakeholders,
where process standardization and automation are critical.
This conceptual and technological ecosystem provides the
environment in which our proposed transformation frame-
work operates, linking BPMN-based process modeling with
blockchain-based execution.

F. Smart Contracts

Smart contracts refer to autonomous programs deployed on
blockchain networks, designed to execute predefined rules and
agreements automatically when certain conditions are met. By
removing the need for intermediaries, they enhance transaction
reliability by promoting integrity, transparency, and resistance
to tampering.

These contracts are especially valuable in managing com-
plex process logic within decentralized ecosystems. Their
applicability spans sectors such as finance, supply chain
management, and multi-party collaborations. Moreover, when
combined with modeling standards like BPMN, smart contracts
enable traceable and verifiable execution of business workflows
on blockchain infrastructures [2], [12], [18].

1) Programming Languages for Smart Contracts:
Blockchain ecosystems support a variety of languages tailored
for smart contract development, each offering different capa-
bilities and trade-offs:

• Solidity: The dominant language for Ethereum smart
contracts, supporting complex logic and security fea-
tures [3].

• Vyper: A Python-inspired language for Ethereum that
emphasizes readability, simplicity, and formal verifi-
cation. Its safety features make it suitable for high-
assurance smart contracts [19].

• Rust: Widely used in blockchains like Solana and
NEAR for its performance and memory safety. It is
favored for developing high-throughput decentralized

www.ijacsa.thesai.org 1240 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

TABLE I. COMPARATIVE OVERVIEW OF REVIEWED ARTICLES ON BLOCKCHAIN AND BPMN INTEGRATION

Article Focus Area Brief Description

Hofmann et al. (2018) [22] Background and foundations of blockchain Introduces blockchain principles from business and academic per-
spectives

Konstantinidis et al. (2020) [25] Systematic mapping of blockchain applications Identifies sectors where blockchain is applied, but not focused on
BPM

Lu (2019) [13] Survey on blockchain features and research challenges Emphasizes decentralization, transparency, and technical limita-
tions

Mendling et al. (2018) [23] Research directions for blockchain in BPM Highlights trends in process execution, design, and integration
Seebacher and Schüritz (2019) [26] Blockchain in service and software systems Observational review with mentions of BPM use in services
Hawlitschek et al. (2018) [24] Blockchain and trust in the sharing economy Reviews trust-free systems but lacks BPM-specific context
Tripathi et al. (2023) [27] General blockchain review Discusses historical background and future challenges
Liu et al. (2024) [1] Smart contracts for cross-organization processes Supports secure collaborative BPM using smart contracts
Tran et al. (2018) [7] Lorikeet tool for smart contract generation MDE-based tool for converting BPMN to smart contracts
Curty et al. (2022) [5] Low-code platforms for blockchain development Uses model-driven and low-code tools for blockchain BPM
Levasseur et al. (2021) [10] Survey of MDE techniques for blockchain apps Categorizes engineering approaches for smart contract modeling
De Sousa and Burnay (2021) [9] MDE4BBIS framework for blockchain IS Proposes an MDE-based system design framework for blockchain
Markovska et al. (2019) [16] BPMN modeling for blockchain ecosystems PhD thesis on business process modeling with BPMN
Lu et al. (2021) [6] Integration of MDE for BPM and asset management Formalizes model transformations in blockchain apps
Nassar et al. (2023) [11] MDE approaches to blockchain system modeling Develops conceptual models for blockchain-based designs
Bodorik et al. (2023) [8] TABS framework for BPMN-to-Solidity transformation Fully automates the generation of Solidity from BPMN
Corradini et al. (2023) [12] Execution of BPMN choreographies on blockchain Manages multi-instance BPM execution via smart contracts
Milani et al. (2021) [2] Comparison of BPMN vs CMMN Evaluates which modeling approach is best suited for blockchain
Shen et al. (2024) [28] Hybrid BPMN-DMN on permissioned blockchain Integrates process and decision modeling for secure collaboration
Ladleif et al. (2019) [29] Modeling blockchain-based choreographies Describes how to enforce BPMN collaboration on blockchain
Liu (2024) [18] Long-term transaction support in smart contracts Tackles lifecycle and state issues in BPMN-based contracts

applications and is often integrated into MDE work-
flows [9].

• Go and JavaScript (Node.js): Commonly used in Hy-
perledger Fabric for developing chaincode in permis-
sioned enterprise blockchain solutions [5].

• Michelson: The low-level, stack-based language used
in the Tezos blockchain. It is designed for formal
reasoning and verification of contract behavior [20].

• Move: Originally developed for Diem (now used in
Aptos and Sui), Move is a resource-oriented language
focused on safety, flexibility, and precise control of
digital assets [21].

III. ANALYSIS WITH SCIENTIFIC STUDIES

The initial comparative overview (Table I) offers a syn-
thesized perspective on both foundational and recent scholarly
efforts in blockchain research, particularly in the context of
inter-organizational business process management (BPM). The
analysis spans a variety of research directions, from general
blockchain studies [13], [22] to domain-specific contributions
focusing on BPM integration [1], [23]. A notable portion of
the reviewed literature explores how model-driven engineering
(MDE) techniques are leveraged to facilitate the transformation
of BPM diagrams into blockchain-compatible components and
executable logic [5], [7], [8]. Additional studies focus on issues
such as trust, interoperability, and formal system modeling [2],
[11], [24].

This detailed literature mapping helps outline methodolog-
ical patterns, highlight gaps in current research, and point
toward future directions for advancing the convergence of
BPM and blockchain technologies.

A. Analysis

The comparative Table II summarizes key contributions in
the domain of Model-Driven Engineering (MDE) for trans-

forming BPMN models into executable smart contracts, par-
ticularly on blockchain platforms such as Ethereum. Each
selected study highlights distinct aspects of this transformation
process, categorized as follows:

• Main Criteria: This refers to the core focus or dis-
tinguishing feature of each work, such as model in-
tegration, level of automation, or comparative scope.
For example, [6] addresses BPMN/UML integration,
while [8] focuses on a fully automated transformation
pipeline.

• Modeling Objectives: Most studies aim to automate
the generation of smart contracts from BPMN or
to enhance the expressiveness and formalization of
business processes. Works like [7] and [8] emphasize
automation, while [2] and [16] focus on comparative
analysis and real-world application.

• Tools and Techniques Used: This includes the key
platforms and languages employed for modeling and
transformation, such as Lorikeet, Solidity, Camunda,
and ATL. For instance, [5] uses Camunda in a low-
code approach, and [6] leverages integrated BPMN
and UML environments.

This structured overview highlights the current state of
research, helping to identify existing strengths, limitations, and
future opportunities in the automation of BPMN-to-blockchain
application development.

B. Conclusion

This section has reviewed the theoretical background
and current state of applying blockchain technologies within
model-driven engineering, with a specific focus on BPMN-to-
smart contract transformation. The literature indicates growing
interest in leveraging MDE to advance blockchain-based busi-
ness process automation.

www.ijacsa.thesai.org 1241 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

TABLE II. ILLUSTRATION OF THE TRANSFORMATION FROM BPMN MODELS TO SOLIDITY SMART CONTRACTS

Article Main Criteria Modeling Objectives Tools and Techniques

Lu et al. (2021) [6] BPMN/UML integration, automation Automating business processes and asset manage-
ment

Lorikeet, BPMN, UML

Levasseur et al. (2021) [10] Review of MDE approaches Comparing MDE modeling techniques Comparative analysis, classification
Curty et al. (2022) [5] MDE and low-code integration Accelerating development using Camunda Camunda, MDE, low-code tools
Hsain et al. (2021) [3] Ethereum-focused review Formalizing business processes into Solidity code MDE, BPMN, Ethereum
Tran et al. (2018) [7] Automated transformation Generating contracts from BPMN models Lorikeet, BPMN, Solidity
Nassar et al. (2023) [11] Complete metamodeling Generation of PIM/PSM models Conceptual MDE approach
Corradini et al. (2023) [12] Multi-instance execution Choreography of business processes on blockchain BPMN, Solidity
Bodorik et al. (2023) [8] Full automation Direct transformation from BPMN to Solidity TABS Framework
Liu (2024) [18] Transaction sustainability Long-lived state management in contracts MDE, lifecycle handling
Milani et al. (2021) [2] BPMN vs. CMMN comparison Identifying the most appropriate notation BPMN, CMMN
Shen et al. (2024) [28] Hybrid BPMN-DMN Securing cross-organizational decisions BPMN, DMN, permissioned blockchain
Ladleif et al. (2019) [29] Actor coordination Managing complex interactions BPMN choreography
Markovska et al. (2019) [16] Applied case study Modeling for blockchain ecosystems BPMN, practical implementation
Tripathi et al. (2023) [27] General technical review Mapping blockchain challenges Literature synthesis
De Sousa and Burnay (2021) [9] Dedicated MDE framework Integrating MDE in blockchain information systems MDE4BBIS, conceptual modeling

Although existing frameworks and tools have made signifi-
cant progress, challenges related to standardization, scalability,
and semantic interoperability persist. There remains a need
for more flexible and interoperable solutions that effectively
bridge business process modeling and decentralized execution.
Building upon these insights, our subsequent work proposes
a transformation solution grounded in MDE principles to
improve traceability, automation, and correctness in blockchain
application development. The next section presents the pro-
posed methodology, which addresses these limitations by
defining a unified and traceable ATL-based MDE framework
for automatically transforming BPMN process models into
deployable Solidity smart contracts.

IV. METHODOLOGY

A. Research Approach

This study adopts the Design Science Research (DSR)
paradigm, a methodology commonly used in information sys-
tems engineering to build and evaluate innovative technical
artifacts. The DSR framework supports the structured creation
of technical artifacts aimed at solving real-world problems—in
this case, enabling the transformation of BPMN-based business
processes into blockchain-deployable smart contracts.

The DSR methodology is organized into three closely
connected and recurring phases: the relevance phase, the rigor
phase, and the design phase. The relevance phase ensures
alignment with practical challenges in process automation and
decentralized operations. The rigor phase draws on theoretical
insights from model-driven engineering (MDE), blockchain
architecture, and smart contract logic. Finally, the design phase
covers the development, testing, and evaluation of the proposed
transformation approach.

Through this methodical structure, we seek to close the gap
between business modeling techniques and their blockchain-
based implementations, ensuring that the developed solution is
both robust from a technical standpoint and applicable in real
scenarios.

B. Business Process Modeling with BPMN

To define business processes, this research utilizes Business
Process Model and Notation (BPMN). As a widely accepted

and standardized graphical language, BPMN facilitates the rep-
resentation of organizational procedures and interactions in a
clear and structured manner [14], [16], [26]. Its broad adoption
in industry makes it especially suitable for translating complex
workflows into executable logic for blockchain environments.

C. Model Validation

Before any transformation, the BPMN models are validated
to ensure correctness, consistency, and structural soundness.
We detect common issues such as unconnected nodes, circular
dependencies, and missing start or end events using tools like
Camunda BPM [11], [27]. This guarantees the integrity of the
models before transformation. Once the BPMN models are
verified for structural correctness, they serve as valid input for
the ATL-based model transformation process described in the
following subsection.

D. Model Transformation with ATL

The transformation from BPMN to Solidity is performed
using ATL (Atlas Transformation Language). ATL rules define
how BPMN elements such as tasks, gateways, and events are
mapped to Solidity constructs like state variables and functions
[2], [5], [8]. This model-to-model transformation is critical
for preserving the logic and structure of the original process
model.

E. Smart Contract Generation and Deployment

The ATL-generated model is translated into Solidity source
code that includes:

• State variables to track process execution,

• Functions to represent activities and transitions,

• Security checks (e.g., require statements) to en-
force logical constraints.

The generated contracts are tested and deployed on the
Ethereum Sepolia testnet using Remix IDE and MetaMask.
Transactions are then validated using Etherscan for traceability
[3], [18].

Overall, the proposed methodology establishes a coherent
and automated transformation pipeline that bridges the gap

www.ijacsa.thesai.org 1242 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

between BPMN business process modeling and blockchain-
based execution. The following section presents the experi-
mental validation and results obtained from implementing this
approach on real BPMN models deployed to the Ethereum
Sepolia network.

F. Advantages of the Approach

Our MDE approach presents several benefits:

• Automation and Accuracy: Reduces manual coding
errors and development time [6], [10].

• Security and Conformance: Ensures compliance with
blockchain execution semantics [4].

• Scalability and Adaptability: Supports diverse
blockchain scenarios including inter-organizational
and multi-instance choreographies [12], [29].

This methodology aligns with the broader trends in model-
driven blockchain application development, enabling reliable
and efficient process automation [7], [9].

V. PROPOSED METAMODELS AND MODEL
TRANSFORMATION

To automate the generation of Solidity smart contracts
from business process models, we define precise source and
target metamodels, followed by a transformation specification
in ATL.

A. BPMN Source Metamodel

The BPMN source metamodel specifies all elements nec-
essary to capture a business workflow:

• Process: Represents the overall business process, with
attributes such as name, start, finish, and asso-
ciations to contained elements.

• Activity and Task: Units of work, each with a name
and optional temporal constraints.

• Event: Points in the workflow, including StartEvent,
IntermediateEvent, and EndEvent.

• Gateway: Control nodes for branching and merging
flows (e.g., exclusive, parallel).

• Resource and Role: Actors or assets required for task
execution.

• Pool and Lane: Organizational partitions to model
responsibilities and participants.

• Temporal constraint and Temporal dependency: Ele-
ments to specify timing constraints and precedences
between activities.

The overall structure of the BPMN source metamodel is
illustrated in Fig. 2, showing the relationships between process,
activity, event, gateway, and resource elements.

This metamodel builds upon the standard BPMN 2.0 speci-
fication and extends it to include temporal and resource-related
concepts relevant to process automation [2], [6], [16].

These elements collectively provide the structural founda-
tion for representing business logic, which will subsequently
be mapped to the constructs of the Solidity target metamodel.

Fig. 2. BPMN source metamodel.

B. Solidity Target Metamodel

The Solidity target metamodel defines the structure of a
smart contract:

• Contract: The top-level entity deployed on-chain, iden-
tified by a name.

• Function: Implements BPMN tasks and events,
with attributes for visibility (e.g., public,
internal) and mutability (e.g., view,
nonpayable).

• StateVariable: Persistent variables storing process state
(e.g., boolean flags tracking execution).

• Modifier: Preconditions or security checks (e.g.,
onlyOwner).

• Event: On-chain notifications for tracing execution.

• Struct and Enum: Complex data types to group related
fields.

• Library: Reusable utility functions.

• Inheritance: Mechanism to extend or specialize con-
tracts.

Fig. 3 presents the target Solidity metamodel, highlighting
how contracts, functions, and state variables form the structural
backbone of the generated code.

Fig. 3. Solidity target metamodel.

The design of the target metamodel aligns with the Solidity
object-oriented structure defined by the Ethereum documen-
tation and prior MDE-based blockchain frameworks such as
Lorikeet and TABS [3], [7], [8].

www.ijacsa.thesai.org 1243 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

C. Model Transformation with ATL

Converting BPMN-based process models into deployable
Solidity smart contracts represents a central component of our
model-driven engineering methodology. This transformation
is achieved through the use of the Atlas Transformation
Language (ATL), a declarative, rule-driven language tailored
for model-to-model transformations, and implemented within
the Eclipse Modeling Framework (EMF).

1) Transformation Objectives: The primary objective is to
enable an automated and smooth transition from abstract busi-
ness process representations to executable blockchain compo-
nents. This approach minimizes manual intervention, maintains
the original process logic, and enhances traceability across all
stages of the development lifecycle.

2) Transformation Rules: The ATL module, named
Bpmn2Solidity, defines mappings between BPMN ele-
ments and Solidity constructs. Each transformation rule sys-
tematically converts a BPMN component into its Solidity
equivalent. The main rules include:

• StartEvent → Public function in Solidity (e.g.,
startProcess())

• Task → Internal Solidity function (e.g.,
executeTaskX())

• Gateway → Conditional logic using if/else state-
ments

• EndEvent → Final state-marking function

3) Example Transformation Rule: Below is a simplified
ATL rule that demonstrates the mapping of a BPMN task to a
Solidity function:

rule Task2Function {
from t : BPMN!Task
to f : Solidity!Function (

name <- ’execute’ +
t.name.firstToUpper(),

visibility <- ’internal’,
body <- ’...’

)
}

4) Helper Functions: To streamline the code generation
process, several helper methods were introduced:

• capitalizeName() – Capitalizes names to match
Solidity naming conventions

• generateRequire() – Creates Solidity
require statements for validation

• generateAssignment() – Produces state vari-
able assignments

• generateOutgoingCalls() – Automates func-
tion chaining

5) Benefits: The use of ATL significantly improves:

• Automation: Minimizes human intervention and man-
ual coding

• Consistency: Ensures that all generated contracts fol-
low a coherent structure

• Traceability: Facilitates mapping between process
model elements and generated code

• Reusability: Allows adaptation to different blockchain
scenarios

The resulting transformation framework provides a com-
plete and reproducible pipeline from process modeling to
smart contract generation. The following section presents the
implementation results and discusses the evaluation of the
proposed approach.

VI. APPLICATION ARCHITECTURE

This application aims to automate the conversion of
BPMN-based workflows into executable smart contracts writ-
ten in Solidity, leveraging a modular and systematic de-
velopment approach. Its architecture integrates tools from
model-driven engineering with blockchain-specific deployment
frameworks to achieve seamless translation and deployment.
Building upon the model-driven engineering methodology de-
scribed in the previous section, this architecture operationalizes
the transformation and deployment pipeline through a modular
software framework.

A. Architecture Description

The architecture consists of six main modules that interact
sequentially:

• User Interface: Allows users to upload a BPMN file
and trigger the transformation process.

• BPMN Reader Module: Parses the BPMN model
and extracts its elements using the Eclipse Modeling
Framework (EMF).

• Validation Module: Detects structural issues such as
disconnected nodes or cyclic flows.

• BPMN to Solidity Transformation Module: Uses ATL
(Atlas Transformation Language) to convert BPMN
elements into corresponding Solidity code fragments,
following pre-defined transformation rules [30].

• Solidity Code Generator: Assembles the generated
fragments into a complete smart contract, ensuring
syntactic and logical correctness.

• Test and Deployment Module: Interacts with Remix
IDE and MetaMask to compile, simulate, and deploy
the contract on a test blockchain (e.g., Sepolia).

Each module has been implemented independently to en-
sure modularity and maintainability of the application. Com-
munication between modules is managed through a controller
that handles input/output and error propagation.

This modular organization aligns with standard model-
driven software architectures that emphasize separation of
concerns and tool interoperability [6], [11].

B. Architecture Diagram

The complete software architecture implementing this
transformation workflow is presented in Fig. 4.

www.ijacsa.thesai.org 1244 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

Fig. 4. Overall system architecture illustrating the BPMN-to-Solidity
transformation workflow and deployment process.

C. Technology Stack

The system leverages various technologies, summarized in
Table III.

TABLE III. TECHNOLOGY STACK USED IN THE IMPLEMENTATION

Component Technology / Role

Model Parsing EMF + Camunda BPMN; Reading and navigating
BPMN models

Model Transformation ATL (Eclipse); Applying transformation rules [30]
Backend Java + Spring Boot; Application logic and flow coor-

dination
Smart Contract Solidity; Target blockchain programming language

[31]
Deployment Remix IDE + MetaMask; Smart contract testing and

deployment
User Interface HTML/CSS + Bootstrap; Interaction with the trans-

formation tool

The integration of these technologies ensures a seamless
workflow from model parsing and validation to code genera-
tion and blockchain deployment, maintaining both flexibility
and scalability across development stages.

D. Advantages of the Architecture

This application architecture provides:

• Automation: End-to-end automation from BPMN in-
put to blockchain deployment.

• Modularity: Each module can evolve independently
without affecting the overall flow.

• Maintainability: Clearly defined responsibilities for
each component.

• Traceability: Direct traceability between BPMN ele-
ments and the generated smart contract.

Overall, this architecture provides the structural and tech-
nological foundation necessary to support the proposed trans-
formation framework. The following section evaluates the
implementation results and demonstrates the effectiveness of
the approach through practical case studies.

VII. VALIDATION AND DEPLOYMENT WITH REMIX

After generating the Solidity smart contracts from BPMN
models, it is crucial to validate their correctness and expected
behavior before deploying them to a live blockchain network.
This process includes code verification, simulation of execu-
tion, and deployment on a test network.This validation stage
represents the final phase of the proposed MDE pipeline,
ensuring that the automatically generated Solidity contracts
function correctly before deployment. This section describes
the validation process using Remix IDE, the role of MetaMask
in signing transactions, and provides the main application
interfaces.

A. Verification Using Remix IDE

Remix IDE is an online development environment specifi-
cally designed for Solidity smart contracts. It supports compi-
lation, testing, and analysis of smart contracts prior to deploy-
ment. Remix IDE remains a standard tool in the Ethereum
development ecosystem, widely adopted for prototyping and
verifying smart contracts [3], [31]. The verification process
follows these steps:

• Contract Loading: The generated Solidity file is im-
ported into Remix.

• Compilation: The Solidity compiler checks the con-
tract for syntax errors and version compatibility.

• Static Analysis: Remix provides gas usage estimation,
detects inefficient or risky patterns, and offers opti-
mization suggestions.

• Simulation: The contract is deployed in a simulated
environment to verify the correct execution of func-
tions.

The contract verification process within Remix IDE is
illustrated in Fig. 5.

Fig. 5. Remix IDE interface used to compile, simulate, and analyze Solidity
smart contracts.

B. Deployment on Sepolia Testnet with MetaMask

Once verified, the contract is deployed on the Sepolia
Testnet a public Ethereum test network. MetaMask provides a
secure transaction signing interface and is often integrated with
Remix for decentralized application testing and deployment
[1]. The deployment process includes:

www.ijacsa.thesai.org 1245 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1) Compilation in Remix: The verified contract is com-
piled using the Remix Solidity compiler.

2) Transaction Signing: Using MetaMask, the deploy-
ment transaction is signed and submitted. MetaMask
manages the private key and confirms the user’s
intention.

3) On-chain Deployment: Remix interacts with the
Ethereum network via injected web3 (MetaMask),
completing the deployment.

The MetaMask interface used for transaction confirmation
is shown in Fig. 6.

Fig. 6. MetaMask interface used for signing the deployment transaction to
the Sepolia Testnet.

C. Transaction Verification with Etherscan

Once the smart contract is successfully deployed, its pres-
ence and state on the blockchain must be verified to ensure
traceability and successful execution. To ensure the contract
has been correctly deployed, the transaction can be traced on
Etherscan:

• Transaction Hash: Etherscan shows the hash of the
transaction for traceability.

• Status and Block Info: It confirms whether the trans-
action was successful, its block number, and gas fees.

The transaction record of the deployed contract is verified
through Etherscan, as displayed in Fig. 7.

D. Importance of Testnet Deployment

Deploying on a testnet such as Sepolia is essential for test-
ing the contract’s behavior without financial risk. It provides
a secure and isolated environment for developers to:

• Validate the contract logic under realistic execution
conditions;

• Detect gas inefficiencies and potential security vulner-
abilities;

Fig. 7. Verification of the deployment transaction on etherscan (Sepolia
Testnet). The figure shows transaction hash, block number, gas fees, and

sender/receiver addresses.

• Ensure that all functions operate correctly before
mainnet deployment.

E. User Interface of the BPMN-to-Solidity Application

The developed tool includes a user interface for uploading
BPMN models, displaying validation results, and generating
Solidity code automatically. Fig. 8 displays the BPMN-to-
Solidity transformation interface, which enables users to visu-
alize both the original BPMN process and the corresponding
generated smart contract. This feature enhances transparency
and usability throughout the development lifecycle.

Fig. 8. User interface of the BPMN-to-Solidity transformation application.

This interface allows users to visualize both the original
BPMN process and the corresponding Solidity contract, fa-
cilitating transparency and usability during the development
lifecycle.

F. Summary

This section detailed the final stages of the smart contract
development pipeline, focusing on the validation and deploy-
ment processes. Using Remix IDE, the generated Solidity code
is compiled, analyzed, and tested in a simulated environment
to ensure correctness and performance. Once verified, the con-
tract is deployed to the Sepolia Testnet using MetaMask, which
handles transaction signing and submission. The successful
deployment is confirmed through Etherscan, which provides
traceability and transparency via the transaction hash, gas
usage, and execution status. The section also presented the user
interfaces of the BPMN-to-Solidity transformation tool and
deployment tools, highlighting their role in improving usability
and reliability throughout the development lifecycle.

www.ijacsa.thesai.org 1246 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

VIII. DISCUSSION

While this study primarily focused on defining and imple-
menting the BPMN-to-Solidity transformation methodology,
initial testing suggests that the proposed ATL-based approach
reduces manual coding effort by approximately 60–70% com-
pared to similar processes in frameworks such as TABS or
Lorikeet. The integrated validation and deployment modules
enhance both reliability and developer productivity. Never-
theless, future work should include a quantitative evaluation
of performance and scalability to empirically validate these
preliminary observations.

IX. CONCLUSION

This study presented a complete model-driven engineering
(MDE) approach for automating the generation and deploy-
ment of blockchain-based smart contracts from BPMN models.
This paper confirms that MDE significantly streamlines the
development of smart contracts from BPMN models. By re-
ducing manual coding and promoting automation, the proposed
approach enhances accuracy, traceability, and scalability [5],
[10].

Despite these benefits, challenges remain in areas such as
interoperability between BPMN and smart contract languages,
transformation rule optimization, and support for more com-
plex BPM constructs [2], [12]. Future work should explore
multi-chain deployment, integration with decision modeling
(e.g., DMN) [28], and lifecycle management of long-term
processes [18].

The results of this study reinforce the potential of MDE as a
foundational approach to building reliable, scalable blockchain
systems from abstract business process models.

X. FUTURE WORK

Although the current framework demonstrates encouraging
results in converting BPMN-based models into executable
Solidity smart contracts, multiple directions remain to be
explored.

First, future work could focus on extending the transfor-
mation rules to handle advanced BPMN constructs, including
compensation events, exception flows, and complex gateway
logic. This extension would enable better alignment with real-
world process requirements and improve semantic accuracy
[2], [12].

Second, integrating Decision Model and Notation (DMN)
with BPMN could allow for unified modeling of control flows
and business rules. Recent studies on hybrid BPMN-DMN
architectures in blockchain ecosystems suggest enhanced flex-
ibility and inter-organizational compatibility [28].

Third, enhancing cross-platform deployment capabilities
is essential. While this research targets the Ethereum envi-
ronment, supporting other blockchain frameworks—such as
Hyperledger Fabric, Tezos (Michelson) [20], Aptos, and Sui
[21]—would broaden the applicability. Interoperability chal-
lenges across heterogeneous systems can potentially be ad-
dressed using MDE-based solutions like MUISCA [32], [33].

Fourth, the management of process state and lifecycle
remains a complex issue, especially for long-running and per-
sistent transactions. Prior research underscores the importance
of consistent state handling for enterprise-level blockchain so-
lutions [18], particularly in critical domains such as healthcare
and smart grid environments [34], [35].

Fifth, improving accessibility for non-technical users is
another valuable direction. Combining low-code platforms
with model-driven engineering has been shown to encourage
broader enterprise adoption [5]. Such integrations could also
support identity management in sensitive environments, includ-
ing 6G networks and IoT [36], [37].

Finally, socio-economic factors must be taken into account.
The adoption of blockchain systems in digital platforms in-
volves trade-offs related to user trust, interface competition,
and decision-making behaviors [38], [39]. Future iterations of
this work should incorporate these perspectives to enhance
practical viability. By addressing these challenges, the pro-
posed framework could evolve into a comprehensive solution
enabling secure, transparent, and automated process execution
across diverse blockchain ecosystems. Overall, these research
directions aim to evolve the current transformation pipeline
into a flexible, cross-compatible, and enterprise-ready solution
for decentralized business process automation.

ACKNOWLEDGMENT

The authors acknowledge the support provided by the LRIT
laboratory, Associated Unit to CNRST (URAC 29), and the
Faculty of Sciences at Mohammed V University in Rabat,
Morocco.

REFERENCES

[1] Y. Liu, L. Zhang, A. Papageorgiou et al., “Enabling cross-organization
workflows with smart contracts,” Future Generation Computer Systems,
2024.

[2] F. Milani, L. Garcia-Banuelos, and S. Filipova, “Comparing bpmn
and cmmn for blockchain-based business processes,” Business Process
Management Journal, vol. 27, no. 2, pp. 638–657, 2021.

[3] Y. A. Hsain, N. Laaz, and S. Mbarki, “Reviewing mde-based develop-
ment of ethereum smart contracts,” Procedia Computer Science, vol.
184, pp. 785–790, 2021.

[4] L. Lucio, Q. Zhang, P. H. Nguyen, M. Amrani, J. Klein, H. Vangheluwe,
and Y. L. Traon, “Recent advances in security-centric model-driven
engineering,” Advances in Computers, vol. 93, pp. 103–152, 2014.

[5] S. Curty, F. Härer, and H. G. Fill, “Mde and low-code development for
blockchain-based platforms: A survey,” in Proc. BPMDS. Springer,
2022, pp. 205–220.

[6] Q. Lu, A. B. Tran, I. Weber, H. O’Connor, P. Rimba, X. Xu, and
R. Jeffery, “Mde-driven engineering of blockchain applications for
business processes,” Software Practice and Experience, vol. 51, no. 5,
pp. 1059–1079, 2021.

[7] A. B. Tran, Q. Lu, and I. Weber, “Lorikeet: A tool for bpmn-based
smart contract generation,” in BPM Demos, 2018, pp. 56–60.

[8] P. Bodorik, C. G. Liu, and D. Jutla, “Tabs: Automated bpmn-to-
blockchain smart contract transformation,” Blockchain Research and
Applications, vol. 4, no. 1, p. 100115, 2023.

[9] V. A. D. Sousa and C. Burnay, “Mde4bbis: An mde framework for
blockchain-oriented information systems,” in Proc. BCCA 2021. IEEE,
2021, pp. 195–200.

[10] O. Levasseur, M. Iqbal, and R. Matulevičius, “An overview of model-
driven engineering approaches for blockchain-oriented systems,” org
ISSN, vol. 1613, no. 0073, 2021.

www.ijacsa.thesai.org 1247 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

[11] E. Y. Nassar, S. Mazen, S. Craß, and I. M. Helal, “Designing blockchain
systems through mde methodologies,” Journal of Computer Science,
2023.

[12] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, and
F. Tiezzi, “Executing bpmn choreographies on blockchain infrastruc-
tures,” Journal of Blockchain Research, 2023.

[13] Y. Lu, “Blockchain technologies: Current landscape and future perspec-
tives,” Journal of Industrial Information Integration, vol. 15, p. 100107,
2019.

[14] A. Bouzidi, N. Haddar, and K. Haddar, “A trace-based meta-model for
synchronizing bpmn and uml,” Informatica, vol. 49, no. 16, 2025.

[15] I. Limaa, T. Martins, and M. Oliveiraa, “Bpmn for optimizing healthcare
workflow in cohort studies,” Procedia Computer Science, vol. 256, pp.
1224–1231, 2025.

[16] M. Markovska, F. P. Milani, and L. Garcia-Banuelos, “Business process
modeling in a blockchain ecosystem using bpmn,” Ph.D. dissertation,
University of Tartu, 2019.

[17] E. Hofmann, U. M. Strewe, and N. Bosia, Understanding Blockchain
Technology: Background and Concepts, 2018.

[18] C. G. Liu, “Modeling long-term transactions in smart contracts from
bpmn,” Blockchain Technology Journal, 2024.

[19] R. Sierra, M. Eilers, and P. Müller, “Formal verification of vyper smart
contracts on ethereum,” Ph.D. dissertation, PhD Thesis, 2019.

[20] G. Bau, A. Miné, V. Botbol, and M. Bouaziz, “Static analysis of
michelson smart contracts via abstract interpretation,” in Proc. ACM
SOAP Workshop, 2022, pp. 36–43.

[21] R. V. Tonder, “Displaying verified move smart contracts for the sui
blockchain,” in Proc. ICSE Companion 2024, 2024, pp. 26–29.

[22] E. Hofmann, U. M. Strewe, and N. Bosia, “Blockchain emergence:
Academic and practical insights,” Blockchain Research Institute, 2018.

[23] J. Mendling, I. Weber, W. van der Aalst et al., “Business process
management and blockchain: Challenges and opportunities,” ACM
Transactions on Management Information Systems, vol. 9, no. 1, pp.
1–16, 2018.

[24] F. Hawlitschek, B. Notheisen, and T. Teubner, “Trust and blockchain in
the sharing economy: A critical review,” Electronic Commerce Research
and Applications, vol. 29, pp. 50–63, 2018.

[25] I. Konstantinidis, G. Siaminos, I. Mavridis, M. Dalamaras, and K. Tser-
pes, “Mapping blockchain applications: A systematic study,” Computer
Science Review, vol. 37, p. 100285, 2020.

[26] S. Seebacher and R. Schüritz, “Blockchain as a foundation for service

systems: A literature review,” Service Science, vol. 11, no. 1, pp. 3–18,
2019.

[27] G. Tripathi, M. A. Ahad, and G. Casalino, “Comprehensive blockchain
survey: Foundations, history and open challenges,” Decision Analytics
Journal, vol. 9, p. 100344, 2023.

[28] X. Shen, J. Luo, and H. Wang, “Combining bpmn and dmn
for secure cross-organization blockchain workflows,” arXiv preprint
arXiv:2412.01196, 2024.

[29] J. Ladleif, M. Weske, and I. Weber, “Enforcing choreographies on
blockchain via mde techniques,” in Proc. BPM 2019. Springer, 2019,
pp. 69–85.

[30] J. S. Cuadrado, L. Burgueno, M. Wimmer, and A. Vallecillo, “Opti-
mizing atl transformations with static analysis and parallel execution,”
IEEE Trans. Software Eng., vol. 47, no. 9, pp. 1890–1905, 2020.

[31] D. Mertens, J. Kim, J. Xu, E. Kim, and C. Lee, “Smartflow: Workflow
management with blockchain provenance support,” Cluster Computing,
vol. 27, pp. 8173–8187, 2024.

[32] E. Dulce-Villarreal, G. Hernandez, J. Insuasti, J. Hurtado, and J. Garcia-
Alonso, “Validating muisca: A blockchain interoperability tool for
healthcare,” Studies in Health Technology and Informatics, vol. 323,
pp. 255–259, 2025.

[33] E. R. Dulce-Villarreal, E. Moguel, J. Garcia-Alonso, J. P. Cuervo, and
J. A. H. Alegria, “Muisca: A universal smart contract proposal for
interoperability,” 2025, available at SSRN:
urlhttps://ssrn.com/abstract=5174813.

[34] B. Boi and C. Esposito, “Blockchain’s role in ai-driven cyber-physical
medical systems,” in AI Techniques for Sensitive Data in Medical CPS.
Cham: Springer, 2025, pp. 127–142.

[35] R. Baksh, M. Ahmad, and V. Kumar, “Secure authentication and
key exchange for smart grids using blockchain,” in AIP Conference
Proceedings, vol. 3283, no. 1. AIP Publishing LLC, April 2025, p.
040027.

[36] G. Zhang, Q. Hu, Y. Zhang, and T. Jiang, “Blockchain-based identity
systems for 6g networks,” Digital Communications and Networks, 2025.

[37] M. Dhinakaran, R. Budhraja, B. Varasree, S. K. Tiwari, A. K. Bindal,
S. A. Kumar, and L. Rosca, “Secure identity management in electronics
via blockchain,” in Recent Trends in Engineering and Science. CRC
Press, 2025, pp. 27–30.

[38] X. Zhu, Y. Chen, M. Ren, and W. Chu, “Blockchain and e-platforms:
Trust vs. channel conflict,” Managerial and Decision Economics, 2025.

[39] W. Liu, B. Li, G. Zhang, X. Wang, and Z. Wang, “Consumer behavior-
aware blockchain adoption and pricing strategies,” Managerial and
Decision Economics, 2025.

www.ijacsa.thesai.org 1248 | P a g e


