
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

Bridging the Gap Between Text-Based and Visual
Programming: A Comparative Study of Efficiency
and Student Engagement in Game Development

Álvaro Villagómez-Palacios1, Claudia De la Fuente-Burdiles2, Cristian Vidal-Silva∗3
Facultad de Ciencias e Ingenierías, Universidad Estatal de Milagro, Milagro, Ecuador1

Department of Interactive Visualization and Virtual Reality-Faculty of Engineering
University of Talca, Talca, Chile2,3

Abstract—The integration of Low-Code and No-Code (LCNC)
tools in higher education challenges traditional text-based pro-
gramming pedagogies. While visual environments are often rel-
egated to K-12 education, their adoption in professional engines
like Unity suggests a need to re-evaluate their role in engineering
curricula. This study analyzes the effectiveness, development
efficiency, and perceived utility of Unity Visual Scripting com-
pared to traditional C# programming (MonoGame) within a
“Physics for Videogames" undergraduate course. Employing
a quasi-experimental design with a within-subjects approach
(N = 22), students first developed a game using C#/MonoGame
and subsequently a complex variant using Unity Visual Scripting.
Metrics included development time for core mechanics, project
grades, and pre/post surveys on self-efficacy. Results demonstrate
a statistically significant reduction in development time (30–50%
faster for core mechanics) using Visual Scripting. Furthermore,
academic performance improved slightly, and students reported
higher confidence levels. Crucially, participants identified Visual
Scripting not as a replacement, but as a cognitive bridge that
facilitates the understanding of algorithmic logic before tackling
syntactic complexities. Consequently, Visual Scripting serves as
an efficient accelerator for prototyping and conceptual learning
in higher education, fostering a “logic-first, syntax-second" ap-
proach.

Keywords—Visual scripting; higher education; development
efficiency; engineering curricula

I. INTRODUCTION

The development of algorithmic and programming compe-
tencies is widely regarded as essential for modern scientific
thinking and computational literacy [1]. As society transitions
towards Industry 4.0, programming has evolved from a niche
skill into a transversal competence required across disciplines,
enabling the construction of applications ranging from data-
intensive systems to simulations and videogames [2], [3]. In
this context, identifying the components of “Education 4.0"
becomes critical to align academic training with 21st-century
skills frameworks [4].

Throughout this article, the following terminology is
adopted for clarity. The term block-based programming is used
to refer to environments that represent instructions as interlock-
ing blocks in a two-dimensional workspace (e.g., Scratch, Tin-
kercad, Alice), which are mostly used in K–12 settings. Visual
programming is reserved as a broader umbrella concept that

*Corresponding author.

includes both block-based tools and other graphical notations
for specifying program behaviour. When referring specifically
to tools integrated into professional game engines, such as
Unity Visual Scripting or Unreal Blueprints, the term visual
scripting is employed, and node-based scripting is treated as
a synonym, since programs are constructed by connecting
typed nodes instead of writing textual code. Consequently,
in the remainder of the paper, block-based programming is
consistently used for K–12 tools, while visual scripting refers
to the Unity-based intervention studied here.

However, in educational contexts, specifically in engineer-
ing and computer science, introductory programming courses
often act as “gatekeepers." These courses historically suffer
from high dropout rates and low student motivation due to
the steep learning curve associated with traditional syntax-
heavy languages like C++, Java, or C# [5]. Novices are often
overwhelmed by what Sim and Lau [6] describe as the “double
burden": the simultaneous need to master abstract problem-
solving logic (semantics) and strict language rules (syntax).
Even when a conceptual task is relatively simple, such as
determining whether a person is of legal age, translating that
task into syntactically correct C# code requires knowledge of
data types, memory management, and compiler error handling
that novices do not yet possess.

This “syntactic barrier" disconnects the student’s mental
model from the computational implementation, introducing
extraneous cognitive load. To address this, block-based pro-
gramming environments have been successfully deployed in
K-12 education to foster computational thinking without the
frustration of syntax errors [7], [8]. Yet, in higher education,
there is a reluctance to adopt these tools, often perceiving them
as insufficiently professional. The emergence of Unity Visual
Scripting (formerly Bolt) challenges this perception by offer-
ing a professional-grade, node-based environment integrated
directly into a market-leading game engine [9].

This article presents a quasi-experimental comparative
study to determine if professional Visual Scripting tools can
act as efficient accelerators in university curricula. Unlike
previous studies that focus solely on satisfaction, this study
analyzes development efficiency (time-to-prototype) and struc-
tural quality, hypothesizing that visual paradigms can bridge
the gap between novice intuition and professional engineering
practices. The main contributions of this study are:

• A quantitative analysis of development efficiency

www.ijacsa.thesai.org 1249 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

(time-to-prototype) comparing text-based vs. visual
scripting in a higher education context.

• A validation of Visual Scripting not just as an intro-
ductory tool, but as a professional “Cognitive Bridge”
for engineering students.

• A “Logic-First, Syntax-Second” pedagogical frame-
work for integrating Game Engines into engineering
curricula.

The remainder of this article is structured as follows. Sec-
tion II reviews the state-of-the-art regarding visual program-
ming barriers, the use of game engines in academia, and cur-
rent assessment models. Section III establishes the theoretical
framework that guides this study, integrating Cognitive Load
Theory, Flow Theory, and the Technology Acceptance Model.
Section IV details the quasi-experimental design, including
participant demographics and the two-phase instructional in-
tervention (MonoGame vs. Unity). Section V presents the
empirical findings, highlighting the comparative analysis of
development efficiency and a qualitative taxonomy of errors.
Section VI discusses the pedagogical trade-offs and interprets
the role of Visual Scripting as a didactic bridge. Finally,
Section VII summarizes the main contributions, acknowledges
limitations, and outlines directions for future research.

II. RELATED WORK

The intersection of game development, visual program-
ming, and engineering education has been a fertile ground
for research. This section reviews key contributions regarding
learning barriers, the use of hardware/software visual analo-
gies, and game-based assessment.

A. Learning Barriers and Novice Programming

Visual Programming Languages (VPLs) have long been ad-
vocated to lower the barrier to entry for novices. Ko et al. [10]
identified early on that syntax errors often discourage learners
before they grasp algorithmic logic. Recent systematic reviews
by Sim and Lau [6] reaffirm that syntax remains the primary
source of frustration for beginners. Sun et al. [11] conducted
a comparative study showing that block-based environments
significantly reduce the frequency of compilation errors, al-
lowing students to focus on “computational action." However,
the transition from blocks to text remains complex. Wörister
and Knobelsdorf [12] argue that block-based programming
facilitates the understanding of low-level computing concepts,
suggesting that visual abstractions are valid even for complex
engineering topics like Assembly, provided there is a clear
mapping to the underlying logic.

B. Visual Metaphors in Robotics and STEM

The efficacy of visual programming is not limited to pure
software; it has been extensively validated in physical comput-
ing. Vidal-Silva et al. [13], [7] demonstrated that block-based
tools (e.g., Scratch, Tinkercad) significantly improve program-
ming competencies in school students across Latin America by
allowing them to control Arduino hardware visually. Similarly,
Rojas-Valdés et al. [8] found that removing syntactic friction
allows students to solve complex hardware control problems
more effectively. Tramonti et al. [14] further emphasized that

design thinking combined with visual tools enhances problem-
solving in educational robotics. These findings in the hardware
domain support the hypothesis that visual scripting in Unity,
which controls “virtual hardware" (game physics), can yield
similar educational benefits.

C. Game Engines and Serious Games in Academia

The adoption of professional game engines in academia
has shifted the focus from building engines to building with
engines. Hussain et al. [15] provide a technical survey of
Unity, emphasizing its versatility for both 2D and 3D devel-
opment. Recent work by Maraffi [16] introduces “Level-Up
Logics," leveraging game design platforms to teach coding
fundamentals. This aligns with the notion of Serious Games
as assessment tools; Gomez et al. [17] conducted a systematic
review concluding that game-based assessment can capture
competencies that traditional tests miss. Furthermore, Maxim
and Arnedo-Moreno [18] identify key principles in serious
game design, suggesting that the development tool itself (visual
vs. text) influences the quality of the final learning artifact.
The present study contributes to this body of knowledge by
quantifying the efficiency gains of visual tools in this specific
context.

III. THEORETICAL FRAMEWORK

A. Cognitive Load Theory in Programming

Cognitive Load Theory (CLT) posits that working memory
is limited. In the context of learning programming, the load
can be categorized as:

• Intrinsic Load: The inherent difficulty of the algorithm
(e.g., understanding a nested loop).

• Extraneous Load: The effort required to deal with
the instructional material or environment (e.g., syntax
errors, IDE configuration).

• Germane Load: The effort dedicated to creating per-
manent schemas (learning).

Text-based programming often imposes a high Extraneous
Load due to syntax. Visual Scripting reduces this load by
preventing syntax errors by construction, potentially freeing up
cognitive resources for the Intrinsic and Germane load (logic
and physics concepts) [19], [20].

Fig. 1 illustrates the theoretical redistribution of cognitive
resources observed in this study. According to Sweller’s frame-
work, the total cognitive capacity of a novice student is limited.

In the Text-Based approach (left bar), a significant portion
of this capacity is consumed by Extraneous Load (represented
in red). This corresponds to the mental effort required to
process syntax rules, case sensitivity, and compiler error codes,
elements that are not central to the logical problem but are nec-
essary for the code to run. Consequently, the available capacity
for Germane Load (green), the processing space used for actual
learning and schema construction, is compressed. In contrast,
the Visual Scripting approach (right bar) drastically reduces the
Extraneous Load by eliminating syntax errors through a “drag-
and-drop" interface that prevents invalid connections. Since
the Intrinsic Load (blue), the inherent difficulty of the game

www.ijacsa.thesai.org 1250 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

Text-Based (C#) Visual Scripting

To
ta

l
C

og
ni

tiv
e

C
ap

ac
ity

Theoretical Distribution of Cognitive Load

Germane (Learning) Intrinsic (Logic) Extraneous (Syntax)

Fig. 1. Comparison of cognitive Load distribution. The reduction of extraneous load (Syntax) in visual scripting frees up cognitive capacity for germane load
(Deep Learning), assuming constant intrinsic load (logic).

logic, remains constant across both paradigms, the reduction
in extraneous noise directly liberates cognitive resources. This
surplus capacity is shifted towards Germane Load, allowing
students to focus deeper on the causal relationships of the
physics simulation rather than debugging missing semicolons.

This disparity is visually captured in the “Cognitive Gap".
As illustrated in Fig. 2, while the algorithmic flow is intuitive,
the textual implementation introduces extraneous cognitive
load via syntax rules (braces, semicolons, pointers). This
barrier often discourages learners before they can grasp the
core logic [10].

B. Flow Theory and Engagement in Coding

Beyond cognitive load, the emotional state of the learner
plays a crucial role. Csikszentmihalyi’s Flow Theory suggests
that optimal learning occurs when the challenge level matches
the student’s skill. In text-based programming, syntax errors
often interrupt this flow, causing frustration. Ke et al. [21]
and Tsai et al. [22] have explored engagement in game-based
learning, finding that visual feedback loops help maintain the
“Flow" state. By removing syntax errors, Visual Scripting
allows students to stay in the flow of logic construction, po-
tentially increasing persistence as observed by Israel-Fishelson
and Hershkovitz [23].

IV. METHODOLOGY

A. Course Context, Participants and Demographics

The study was conducted during the “Physics for
Videogames" course (3rd semester) at the University of Talca.
The participants (N = 22) were engineering students with
basic prior knowledge of Java/C but no experience in Unity
Visual Scripting. The demographic distribution was 77% male
and 23% female, with an age range of 19-22 years. Prior

to the course, 100% of students had taken “Introduction to
Programming" (C/Java), but a diagnostic survey revealed that
only 15% felt “confident" with Object-Oriented Programming
(OOP) concepts.

B. Instructional Design and Tasks

The intervention was structured over 8 weeks:

• Weeks 1-4 (MonoGame/C#): Students implemented a
Snake game from scratch. This involved creating a
GameLoop, handling SpriteBatch rendering, and
manually calculating AABB (Axis-Aligned Bounding
Box) collisions.

• Weeks 5-8 (Unity Visual Scripting): Students recreated
the game with added complexity (obstacles, particle
effects). Instead of writing code, they used the Bolt/Vi-
sual Scripting graph to manipulate Rigidbody2D
and BoxCollider2D components.

This structure ensures that students faced the exact same
algorithmic challenges (movement vectors, collision response)
in both paradigms.

C. Experimental Design

A Within-Subjects Quasi-Experimental Design was
adopted. The semester was divided into two phases to force a
comparison within the same group of learners (see Fig. 3).

1) Phase 1: Text-Based Approach (MonoGame): Students
developed a classic *Snake* game. This framework requires
writing the game loop, handling inputs, and calculating colli-
sions manually in C# code.

Listing 1: Snippet of C# collision logic required in Phase 1.
i f (head . P o s i t i o n .X == food . P o s i t i o n .X &&

www.ijacsa.thesai.org 1251 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

Start

Input Age

Age ≥
18?

Print
“Adult"

Print
“Minor"

Stop

Yes
No

a) Algorithm (Mental Model)

#include <stdio.h>

int main() {
int age;
printf("Enter age: ");
// SYNTAX BARRIER:
// Format specifiers, addresses (&)
scanf("%d", &age);

if (age >= 18) {
printf("Adult\n");

} else {
printf("Minor\n");

}
// SEMANTIC BARRIER:
// Return types, scope
return 0;

}

b) Implementation (Syntactic Barrier)

Fig. 2. The “Cognitive Gap" in introductory programming. While the flowchart (a) is intuitive, the text implementation (b) introduces extraneous load via
syntax rules (braces, semicolons, pointers), as identified by Ko et al. [10].

Start: Diagnostic Test

Phase 1: MonoGame (C#) Metrics: Time, Grades

Phase 2: Unity Visual Scripting Metrics: Time, Grades

End: Post-Survey

Fig. 3. Methodological workflow of the study. All students participated in both phases.

head . P o s i t i o n .Y == food . P o s i t i o n .Y) {
GrowSnake () ;
SpawnFood () ;

}

2) Phase 2: Visual Approach (Unity): Students developed
an enhanced *Snake* with physics obstacles. They used Unity
Visual Scripting graphs.

V. RESULTS

A. Development Efficiency Analysis

Instructors tracked the time taken to complete specific
milestones in both phases. The differences were substantial.

As seen in Fig. 5, the most significant gain was in Collision
Logic (50 min vs 30 min). In MonoGame, students had to
debug mathematical bounding box errors. In Unity, they simply
connected an ‘OnCollisionEnter‘ node, allowing them to focus
on the consequence of the collision rather than its detection.

B. Academic Performance

Table I details the grade distribution. While the mean
increase is modest (6.15 to 6.46), the Standard Deviation
decreased, indicating that fewer students were “left behind"
when using visual tools.

www.ijacsa.thesai.org 1252 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

Fig. 4. Unity visual scripting solution. Nodes represent events and data flow, abstracting the syntax.

Object Creation Force/Movement Collisions
0

20

40

60

35

40

50

20

25

30

Ti
m

e
(m

in
ut

es
)

Text-Based (C#) Visual Scripting

Fig. 5. Average development time per task. Visual scripting provided a 30-40% reduction in time-to-prototype.

TABLE I. DETAILED COMPARISON OF PROJECT GRADES (SCALE
1.0–7.0)

Statistic Phase 1 (C#) Phase 2 (Visual)

Mean Grade 6.15 6.46 (+5%)
Std. Deviation 0.55 0.49
Min Grade 5.0 5.5
Max Grade 6.9 6.9

C. Student Perception and Self-Efficacy

The post-intervention survey (Table II) revealed high sat-
isfaction. Crucially, students did not view Visual Scripting as
a “toy," but as a legitimate learning tool.

TABLE II. SELECTED POST-SURVEY RESULTS (SCALE 1–10)

Statement Mean

“Visual Scripting helped me understand programming logic." 8.9
“It reduced the difficulties I had with textual syntax." 8.7
“It is useful for learning fundamentals before moving to text." 8.8
“I would recommend it to beginners." 9.0

www.ijacsa.thesai.org 1253 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

Table III presents a qualitative taxonomy of errors observed
during laboratory sessions. The contrast is striking. In the
MonoGame phase, instructors spent the majority of their time
helping students fix “Syntactic" errors, issues that prevent
compilation but have no bearing on the game’s logic. This
confirms the observations of Sim and Lau [6] regarding novice
frustration. In contrast, the Visual Scripting phase shifted the
error distribution almost entirely to “Logic/Physics". While
students still made mistakes (e.g., calculating the wrong vector
direction), these were *productive failures*. The visual envi-
ronment allowed them to “see" the error in the graph’s data
flow (Fig. 4), transforming the debugging process from a code-
inspection task into a logic-inspection task. This shift is critical
for developing Computational Thinking as defined by Wing
[1].

VI. DISCUSSION

A. Efficiency vs. Control Trade-off

The results support the hypothesis that Visual Scripting
is significantly more efficient for prototyping (Fig. 5). By
abstracting the “boilerplate" code, students entered a state
of “Flow" more easily. However, some advanced students
noted in open-ended comments that for complex mathematical
algorithms, visual graphs could become “spaghetti code,"
confirming that text is superior for density, while visual is
superior for architecture and events.

B. The “Didactic Bridge" Effect

The high score (8.8) on the bridging question suggests that
Visual Scripting acts as a scaffold. Seeing the logic laid out
spatially helps build the mental model required for text-based
coding. This challenges the notion that visual languages hinder
the transition to “real" coding; instead, they appear to prepare
the cognitive ground for it.

The “Pedagogical Bridge Model” (Fig. 6) is proposed as
a formal framework for curriculum design. Previous research
often treats Visual Scripting as a distinct, alternative path.
However, the findings align with Vinueza et al. [24], suggesting
it is a transitional stage.

• Stage 1 (K-12): Tools like Scratch maximize abstrac-
tion to engage children [7].

• Stage 2 (The Bridge): Unity Visual Scripting exposes
the Game Object Component model and professional
API structure (Logic) but retains the visual safety net
(Visual Syntax).

• Stage 3 (Professional): Once the API structure is un-
derstood visually, the student transitions to C# solely
for fine-grained control and optimization.

This model explains why students reported high “Perceived
Usefulness" in the survey; they intuitively understood they
were learning professional concepts without the syntactic
penalty.

C. Implications for Engineering Curricula

The efficiency gains observed in this study suggest that
Visual Scripting should not be viewed merely as a prototyping

tool, but as a strategic pedagogical scaffold. Caeiro-Rodríguez
et al. [25] emphasize the need for teaching soft skills and
adaptability in engineering; by mastering Visual Scripting,
students learn “systemic thinking" before getting bogged down
in “syntactic details."

Furthermore, as highlighted by Fahmideh et al. [26] in
the context of IoT and Software Engineering, the industry is
moving towards higher levels of abstraction. Integrating tools
like Unity Visual Scripting aligns with Industry 4.0 trends
[4], where the ability to rapidly configure and connect logic
blocks is becoming as valuable as writing raw code. However,
agreement is found with Perera et al. [27] that text-based
languages remain fundamental. Therefore, a “Hybrid Syllabus"
is proposed for introductory game development courses: start
with Visual Scripting to build confidence and mental models
(Weeks 1-6), and transition to C# scripting for performance
optimization and complex architecture (Weeks 7-16).

VII. CONCLUSION

This study demonstrates that Unity Visual Scripting is
not merely an accessibility tool for non-programmers, but an
efficient pedagogical accelerator for engineering students. The
empirical results show a statistically significant reduction in
development time (30–40%) for core mechanics compared to
the text-based MonoGame approach, without compromising
academic grades. Crucially, students reported higher self-
efficacy and lower frustration, identifying Visual Scripting as a
“cognitive bridge" that allows them to visualize abstract logic
before committing to syntax.

A “Hybrid Scaffolded Curriculum" is recommended for
introductory game development and engineering courses. Ed-
ucators should leverage Visual Scripting in the early stages
to teach high-level concepts, such as Game Loops, Event-
Driven Programming, and Physics Interactions, allowing stu-
dents to build mental models free from syntactic noise. Once
these models are solidified, the curriculum should transition
to C #, defining it as a tool for optimization, architectural
refinement, and granular control. This approach “Logic-First,
Syntax-Second," aligns with the requirements of Industry 4.0,
prioritizing systemic thinking over rote memorization.

From a curriculum and policy perspective, this hybrid
model has concrete implications for program design. At the
institutional level, integrating visual scripting as an explicit
component of early-semester courses requires aligning syllabi,
learning outcomes, and assessment rubrics with the idea of
a gradual transition from graphical to textual representations.
This may involve, for example, dedicating specific modules
to Unity Visual Scripting in courses such as “Introduction
to Programming” or “Game Development I”, and mapping
those modules to accreditation criteria related to computational
thinking, design of interactive systems, and teamwork. At the
faculty level, the adoption of visual tools calls for targeted
professional development so that lecturers can design tasks
that go beyond simple drag-and-drop exercises and connect
the graphs with the underlying C# constructs. Finally, on a
broader policy scale, the results support curricular guidelines
that recognize visual environments as legitimate vehicles for
engineering education, rather than remedial tools, which is par-
ticularly relevant for institutions seeking to widen participation
and reduce early attrition in programming-heavy degrees.

www.ijacsa.thesai.org 1254 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

TABLE III. TAXONOMY OF FREQUENT ERRORS: TEXT-BASED VS. VISUAL APPROACH

Error Category MonoGame (C#) Unity Visual Scripting

Syntactic High Frequency (65%)
Missing semicolons, mismatched braces, case sensitiv-
ity (e.g., gameTime vs GameTime).

Null / Negligible
Syntax is enforced by node shapes. Connections are
validated instantly by the UI.

Type Safety Moderate (20%)
Casting errors (e.g., float to int), null reference
exceptions at runtime.

Low (10%)
Visual conversion nodes are auto-suggested. Data ports
are color-coded (e.g., Boolean is purple).

Logic / Physics Low Visibility (15%)
Logic errors buried inside valid syntax. Hard to visual-
ize vector math.

High Visibility (90%)
Errors like “Snake passing through walls" are immedi-
ately visible in the graph flow execution.

Complexity / Professionalism

Abstraction Level

Block-Based
(Scratch/Alice)

High Abstraction
Low Syntax

Visual Scripting
(Unity/Unreal)

The Didactic Bridge
Professional Logic

Visual Syntax

Text-Based
(C#/C++)

Low Abstraction
High Control

Fig. 6. The Proposed “Pedagogical Bridge Model". Visual Scripting serves as the necessary scaffold between K-12 block tools and professional text coding,
aligning with Vinueza et al. [24].

The study has limitations inherent to its quasi-experimental
design. First, the sample size is modest (N = 22) and
restricted to a single course at a Chilean university, which
constrains the statistical power of the analyzes and limits
the extent to which the findings can be generalized to other
institutions, disciplines, or educational systems. The cohort
also corresponds to students who had already passed an
introductory programming course and enrolled in a videogame-
oriented course; their attitudes and prior experiences may not
be representative of more heterogeneous populations or of
students with low interest in game development.

Second, the within-subject structure of the intervention
introduces a potential learning effect: performance in the
Unity Visual Scripting phase may partly reflect the consoli-
dation of conceptual understanding acquired during the earlier
MonoGame phase. Although the second project deliberately
incorporated additional mechanics to increase task difficulty,
this design cannot fully disentangle the impact of the tool from
that of accumulated practice. Finally, all measures were col-
lected within a single semester and context, so the study does
not capture long-term retention or transfer to subsequent text-
based courses. These constraints should be considered when
interpreting the results and suggest caution when extrapolating
them to different institutional realities.

Future research avenues are twofold. First, future work
aims to explore the integration of Artificial Intelligence assis-
tants within visual environments, investigating how AI-driven

suggestions might further reduce cognitive load in serious
game design. Second, drawing from software product line
engineering, the reuse of visual modules to manage variability
in student projects will be analyzed, potentially automating
the assessment of game mechanics. Longitudinal studies are
needed to track whether the conceptual gains from Visual
Scripting translate into better long-term performance in ad-
vanced text-based programming courses.

Ultimately, this study advocates for a paradigm shift in
engineering education. By legitimizing Visual Scripting as a
rigorous component of the curriculum, institutions can reduce
the “syntactic friction” that drives attrition, fostering a new
generation of engineers who are proficient in algorithmic logic
before they even write their first line of syntax. This “Bridge”
model offers a scalable path for adopting Industry 4.0 tools in
higher education.

REFERENCES

[1] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49,
no. 3, p. 33–35, Mar. 2006. [Online]. Available: https://doi.org/10.
1145/1118178.1118215

[2] M. A. Kuhail, S. Farooq, R. Hammad, and M. Bahja, “Characterizing
visual programming approaches for end-user developers: A systematic
review,” IEEE Access, vol. 9, pp. 14 181–14 202, 2021.

[3] N. Wongta and J. Natwichai, “End-to-end data pipeline in games for
real-time data analytics,” in Advances in Internet, Data and Web Tech-
nologies, ser. Lecture Notes on Data Engineering and Communications

www.ijacsa.thesai.org 1255 | P a g e

https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

Technologies, L. Barolli, J. Natwichai, and T. Enokido, Eds. Cham:
Springer, 2021, vol. 65.

[4] L. I. González-Pérez and M. S. Ramírez-Montoya, “Components of
education 4.0 in 21st century skills frameworks: systematic review,”
Sustainability, vol. 14, no. 3, p. 1493, 2022.

[5] I. Mekterović, L. Brkić, B. Milašinović, and M. Baranović, “Building
a comprehensive automated programming assessment system,” IEEE
Access, vol. 8, pp. 81 154–81 172, 2020.

[6] T. Y. Sim and S. L. Lau, “Review on challenges and solutions in novice
programming education,” in 2022 IEEE International Conference on
Computing (ICOCO), 2022, pp. 55–61.

[7] C. Vidal-Silva, J. Cárdenas-Cobo, M. Tupac-Yupanqui, J. Serrano-
Malebrán, and A. Sánchez Ortiz, “Developing programming compe-
tencies in school-students with block-based tools in chile, ecuador, and
peru,” IEEE Access, vol. 12, pp. 118 924–118 936, 2024.

[8] P. Rojas-Valdés, C. Vidal-Silva, and C. d. L. Fuente, “Successful
development of problem-solving and computing programming compe-
tences in children using arduino,” in 2022 International Symposium on
Measurement and Control in Robotics (ISMCR), 2022, pp. 1–6.

[9] L. Castillo-Salvatierra, J. Cárdenas-Cobo, C. de la Fuente-Burdiles,
and C. Vidal-Silva, “Programming competencies in university students
through game development,” Frontiers in Education, vol. 10, 2025.
[Online]. Available: https://doi.org/10.3389/feduc.2025.1585602

[10] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in
end-user programming systems,” in 2004 IEEE Symposium on Visual
Languages - Human Centric Computing, 2004, pp. 199–206.

[11] D. Sun, C.-K. Looi, Y. Li, C. Zhu, C. Zhu, and M. Cheng,
“Block-based versus text-based programming: a comparison of
learners’ programming behaviors, computational thinking skills and
attitudes toward programming,” Educational Technology Research and
Development, vol. 72, no. 2, pp. 1067–1089, 2024. [Online]. Available:
https://doi.org/10.1007/s11423-023-10328-8

[12] F. Wörister and M. Knobelsdorf, “A block-based programming environ-
ment for teaching low-level computing,” in Proceedings of the 23rd Koli
Calling International Conference on Computing Education Research
(Koli Calling ’23). ACM, 2023, pp. 1–7.

[13] C. Vidal-Silva, J. Serrano-Malebran, and F. Pereira, “Scratch and ar-
duino for effectively developing programming and computing-electronic
competences in primary school children,” in 2019 38th International
Conference of the Chilean Computer Science Society (SCCC), 2019,
pp. 1–7.

[14] M. Tramonti, A. M. Dochshanov, and A. S. Zhumabayeva, “Design
thinking as an auxiliary tool for educational robotics classes,”
Applied Sciences, vol. 13, no. 2, 2023. [Online]. Available:
https://www.mdpi.com/2076-3417/13/2/858

[15] A. Hussain, H. Shakeel, F. Hussain, N. Uddin, and T. Ghouri, “Unity
game development engine: A technical survey,” University of Sindh
Journal of Information and Communication Technology, vol. 4, 10 2020.

[16] T. Maraffi, “Level-up logics: Leveraging three game design platforms

to teach coding,” in ACM SIGGRAPH 2024 Educator’s Forum, ser.
SIGGRAPH ’24. New York, NY, USA: Association for Computing
Machinery, 2024. [Online]. Available: https://doi.org/10.1145/3641235.
3664434

[17] M. J. Gomez, J. A. Ruipérez-Valiente, and F. J. G. Clemente, “A
systematic literature review of game-based assessment studies: Trends
and challenges,” IEEE Transactions on Learning Technologies, vol. 16,
no. 4, pp. 500–515, 2023.

[18] R. I. Maxim and J. Arnedo-Moreno, “Identifying key principles and
commonalities in digital serious game design frameworks: Scoping
review,” JMIR Serious Games, vol. 13, p. e54075, Mar 2025. [Online].
Available: https://games.jmir.org/2025/1/e54075

[19] J. H. Berssanette and A. C. de Francisco, “Cognitive load theory in the
context of teaching and learning computer programming: A systematic
literature review,” IEEE Transactions on Education, vol. 65, no. 3, pp.
440–449, 2022.

[20] C.-Y. Chen, “Effects of worked examples with explanation types and
learner motivation on cognitive load and programming problem-solving
performance,” ACM Trans. Comput. Educ., vol. 25, no. 2, Jun. 2025.
[Online]. Available: https://doi.org/10.1145/3732791

[21] F. Ke, K. Xie, and Y. Xie, “Game-based learning engagement: A
theory- and data-driven exploration,” British Journal of Educational
Technology, vol. 47, no. 6, pp. 1183–1201, 2016. [Online]. Available:
https://doi.org/10.1111/bjet.12314

[22] M.-J. Tsai, L.-J. Huang, H.-T. Hou, C.-Y. Hsu, and G.-L. Chiou,
“Visual behavior, flow and achievement in game-based learning,”
Computers & Education, vol. 98, pp. 115–129, 2016. [Online].
Available: https://doi.org/10.1016/j.compedu.2016.03.011

[23] R. Israel-Fishelson and A. Hershkovitz, “Persistence in a game-
based learning environment: The case of elementary school students
learning computational thinking,” Journal of Educational Computing
Research, vol. 58, no. 5, pp. 891–918, 2020. [Online]. Available:
https://doi.org/10.1177/0735633119887187

[24] M. Vinueza-Morales, J. Cárdenas-Cobo, J. Cabezas-Quinto, and
C. Vidal-Silva, “Applying the block-based programming language alice
for developing programming competencies in university students,” IEEE
Access, vol. 13, pp. 21 471–21 485, 2025.

[25] M. Caeiro-Rodríguez, M. Manso-Vázquez, F. A. Mikic-Fonte,
M. Llamas-Nistal, M. J. Fernández-Iglesias, H. Tsalapatas, O. Heid-
mann, C. V. De Carvalho, T. Jesmin, J. Terasmaa, and L. T. Sørensen,
“Teaching soft skills in engineering education: An european perspec-
tive,” IEEE Access, vol. 9, pp. 29 222–29 242, 2021.

[26] M. Fahmideh, A. Ahmad, A. Behnaz, J. Grundy, and W. Susilo, “Soft-
ware engineering for internet of things: The practitioners’ perspective,”
IEEE Transactions on Software Engineering, vol. 48, no. 8, pp. 2857–
2878, 2022.

[27] P. Perera, G. Tennakoon, S. Ahangama, R. Panditharathna, and
B. Chathuranga, “A systematic mapping of introductory programming
languages for novice learners,” IEEE Access, vol. 9, pp. 88 121–88 136,
2021.

www.ijacsa.thesai.org 1256 | P a g e

https://doi.org/10.3389/feduc.2025.1585602
https://doi.org/10.1007/s11423-023-10328-8
https://www.mdpi.com/2076-3417/13/2/858
https://doi.org/10.1145/3641235.3664434
https://doi.org/10.1145/3641235.3664434
https://games.jmir.org/2025/1/e54075
https://doi.org/10.1145/3732791
https://doi.org/10.1111/bjet.12314
https://doi.org/10.1016/j.compedu.2016.03.011
https://doi.org/10.1177/0735633119887187

	Introduction
	Related Work
	Learning Barriers and Novice Programming
	Visual Metaphors in Robotics and STEM
	Game Engines and Serious Games in Academia

	Theoretical Framework
	Cognitive Load Theory in Programming
	Flow Theory and Engagement in Coding

	Methodology
	Course Context, Participants and Demographics
	Instructional Design and Tasks
	Experimental Design
	Phase 1: Text-Based Approach (MonoGame)
	Phase 2: Visual Approach (Unity)

	Results
	Development Efficiency Analysis
	Academic Performance
	Student Perception and Self-Efficacy

	Discussion
	Efficiency vs. Control Trade-off
	The ``Didactic Bridge" Effect
	Implications for Engineering Curricula

	Conclusion
	References

