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Abstract—In vitro fertilization (IVF) has become a primary
therapeutic intervention for couples worldwide addressing in-
fertility challenges. IVF success depends critically on embryo
quality assessment, where cell cleavage timing serves as a key
developmental parameter. Traditional morphological evaluation
methods suffer from inter-observer variability and labor-intensive
manual analysis. This study presents an automated Al-based
framework for cleavage stage detection and cleavage onset timing
estimation from Time-Lapse Microscopy (TLM) videos to assist
embryologists in embryo selection. The proposed YOLO-based
approach addresses significant class imbalance through selec-
tive data augmentation and random undersampling strategies.
To ensure precise temporal data, an OCR (Optical Character
Recognition) library was integrated to automatically read and
record the Hours Post-Insemination (HPI) timestamps from the
video frames. The proposed framework accurately identifies
cell division stages up to the seven-cell stage with 1-2 hours
mean timing delay post-insemination. The framework achieves an
overall Accuracy of 86.61% , F1-score of 86.24% ,and precision of
86.24% in cleavage stage classification, demonstrating significant
improvements over existing methods, particularly in intermediate
and later stages (4-cell to 8-cell transitions) where previous
research have demonstrated challenges in accurately detecting
them. Automated extraction of morphokinetic parameters enables
objective embryo assessment, reducing subjectivity in clinical
decision-making. The proposed framework demonstrated signif-
icant improvements over previous research, which frequently
has trouble accurately classifying beyond early cleavage stages.
This has implications in improving the selection of good-quality
embryos, and thus to help improve the success rate of IVF. This
work contributes to advancing assisted reproductive technology
by providing reliable, automated embryo quality assessment tools.

Keywords—In vitro fertilization; Time-Lapse Microscopy (TLM)
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I. INTRODUCTION

Infertility affects approximately 17. 5% of adults world-
wide each year, and 1 in 6 people are affected by infertility
in their lifetime [1]. Serious consequences can negatively
affect the lives of infertile couples in terms of physical and
psychological well-being, social life, and finances [2]]. Among
assisted reproductive technology (ART), in vitro fertilization

(IVF) is the most popular treatment for infertility since the
first successful IVF birth in the UK in 1978. In a typical IVF
cycle, the ovaries are stimulated hormonally, mature oocytes
are surgically removed, fertilization takes place in a lab, and
the embryo is then transferred to the uterus. Currently, there
are 35 ART centers in Saudi Arabia that perform more than
20,000 IVF treatment a year [3]. However, the success rates of
these treatments are still low. In general, only 20-30% of the
transferred embryos result in implant [4] and less than half of
the implanted embryos survive to live birth. Thus, selecting
the best quality embryo is crucial to ensure the success
of the IVF process. Embryologists categorize each embryo
based on different morphological criteria and morphokinetic
parameters that have been linked to successful embryo devel-
opment ,including the examination of cell division dynamics
[S. In addition, irregular timings have been associated with
genetic abnormalities, implantation failure, and miscarriage
that normally manifest during the 8-cell stage [6], [7]. The
number of embryonic cells and their subsequent cell division
define a cell cleavage stage. It has been demonstrated that
the time of cell divisions in human IVF embryos correlates
with embryonic viability [6], [[8]. Time-lapse studies showed
that embryos that cleave in middle time periods have a higher
probability of implantation compared to those that develop
faster or slower [9], [10]. To assess timing features, embry-
ologists manually annotate the cleavage occurrences of each
embryo. Annotating a single embryo usually takes less than
two minutes [11f], but when examining many embryos (e.g.,
5-10), the total time needed can increase significantly - up
to 20 minutes [12]. Although manual annotation of embryo
morphokinetics is considered efficient, this process is often
tiresome and prone to subjectivity or human error. When
counting cells in the early stages of embryonic development,
cell overlap presents a significant challenge. It becomes harder
to identify individual cells as they multiply because they are
more densely packed, especially in the stage of 7-8 cells. This
overlap makes accurate counting and monitoring more difficult.
With rapid technological advancements, artificial intelligence
(AI) offers a promising solution to these challenges. Al can
help embryologists overcome these obstacles by automating
routine tasks such as counting cells, tracking video clips,
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and keeping track of division times. The use of artificial
intelligence, particularly deep learning models such as con-
volutional neural networks (CNNs), has expanded significantly
in embryo evaluation. These models are capable of automating
tasks such as object detection, image segmentation, and optical
character recognition (OCR), which contribute to faster and
more consistent assessments of embryo development [13]-
[16]. In particular, time-lapse imaging combined with Al
methods has shown promise in analyzing human embryo
development, enabling continuous monitoring of cell division
dynamics [17]. Manual annotation of time-lapse microscopy
(TLM) videos in embryology is a significant challenge, as it is
a time-consuming task and subject to human variation and bias.
With the increasing number of cases requiring embryological
assessment, the burden on embryologists is increasing. This
research develops an Al-based solution to fully automate the
annotation of embryo development in TLM videos. The goals
include cell detection and counting, cleavage time estimation,
and enhancement of precision, productivity, and the reliability
of embryo assessment. Achieving these automation objectives
will help embryologists in their workflows by facilitating
real-time, evidence-based decision-making, thus enhancing the
practice of reproductive medicine.

The remainder of this paper is structured as follows. Sec-
tion II reviews related work. Section III describes the proposed
framework in detail. Section IV presents the experimental
results, and Section V offers a discussion and analysis of these
findings. Finally, Section VI concludes the paper and outlines
potential directions for future research.

II. RELATED WORK

Recent decades have witnessed a significant transformation
in the medical scene due to technological advancements, with
Al emerging as a pivotal factor in transforming healthcare
[18]]. The incorporation of the two fields has revolutionized
various aspects of medical practice, including accurate diag-
nosis [19], early disease detection [20], [21]], and the reading
and maintenance of medical records [22]. Medical imag-
ing has benefited greatly from Al, especially deep learning,
which can identify intricate patterns and characteristics that
the human eye misses [23] By offering fresh viewpoints on
pertinent image attributes, these technologies not only improve
diagnostic precision but also aid in clinical decision-making.
In the context of assisted reproductive technologies (ART),
several studies have investigated the potential of employing
Al at various stages of the reproductive process. Supervised
learning models have been used to evaluate embryo motility
[24], assess the cost-effectiveness of egg freezing [25[], and
classify sperm cells [26]. Artificial neural networks (ANNs),
including deep learning models, have also been widely utilized
in embryo image segmentation [27]], blastocyst assessment
[28]], and prediction of implantation outcomes, thereby enhanc-
ing consistency and scalability in clinical decision-making.
Building on these broader applications, recent research has
shown increasing interest in exploiting Al, particularly object
detection models, to analyze embryo development using TLM.
This trend has opened up unprecedented opportunities to
automate the detection of critical embryonic developmental
stages, such as cell divisions and stage transitions, which are
essential criteria for embryo evaluation and selection in the
context of assisted reproductive treatments. Studies have varied
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in their approaches, with an increasing number using Al-based
approaches, ranging from probabilistic models to deep learning
frameworks.

Among the early efforts that used probabilistic models to
automate cleavage detection were [29]] proposed a conditional
random field (CRF) framework that combines tracking- based
and tracking-free elements within a data-driven approach.
The model leverages a rich set of discriminative image and
geometric features, along with their spatiotemporal context,
to enhance the detection of cleavage stages. Using time-lapse
embryo microscopy image showed an increased accuracy in
identifying mitotic events. Upon assessment of 275 clinical
sequences, the suggested model demonstrated an enhanced
accuracy of 24.2% compared to traditional tracking-based tech-
niques and 35.7% over tracking-free approaches in measuring
division events within the initial 48 hours of development.

Building upon this concept, [30]. extended the use of CRF
to automate monitoring for human embryonic cells beyond
the 4-cell stage using TLM images. Instead of segmenting
or tracking individual cells, their method used a conditional
random field framework to predict the number of cells in each
frame. This gets around the drawbacks of earlier techniques
that were limited to 4-cell analysis. The CRF model incor-
porates temporal dependencies between frames as well as a
wide range of discriminative frame-based and cell evolution
features. To further enhance predictions, authors also suggested
incorporating learned probabilities of cell transitions. Their ap-
proach outperformed alternative models, achieving over 92.4%
accuracy in counting cells up to 5 or more when tested on a
dataset of 33 embryo sequences.

In a subsequent work [31]], the same authors introduced a
hybrid model that integrates CNN with CRF to automatically
count cells in TLM images of human embryos. Cell counting
was formulated as a classification problem, and an end-to-
end convolutional neural network trained directly on raw mi-
croscopy images were utilized, with the only annotation needed
being the total cell count. Their deep CNN method signifi-
cantly outperformed manual feature-based counting techniques
by generating hierarchical visual representations from massive
amounts of data. It achieved 92.18% accuracy in predicting
cell numbers up to the 5-cell stage. Using a conditional
random field to model the growth of embryos over time,
they introduced temporal constraints and further improved
performance. Despite obstacles from cell overlaps, noise, and
image variability, evaluation on a dataset of 265 embryo
sequences showed that their deep learning framework could
count cells in early embryonic development with reliability.
The findings indicate the potential of deep learning techniques
to automate cell counting in TLM images without performing
segmentation steps.

While earlier methods primarily used probabilistic models
and hand-crafted features, more recent research utilizes deep
learning techniques to automate feature learning straight from
raw images. For instance, Malmsten et al. [32] suggested an
automated approach employing a CNN to identify and classify
cell divisions directly from raw TLM images, with the goal of
reducing the subjectivity and manual effort normally associated
with embryonic assessment. Two datasets were used to test
their approach: a private human embryo dataset (up to the 8-
cell stage) and a public mouse embryo dataset (up to the 4-cell
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stage). In 93.9% of cases, the model detected human cleavage
stage transitions within a five-frame margin, while it attained
nearly 100% accuracy for mouse embryos. This work showed
how CNN-based systems can improve annotation uniformity
and facilitate automated evaluation of embryo viability in IVF
situations.

Contributing to this line of research, Sharma et al. [17]
used a YOLO-based detection framework instead of traditional
CNN classifiers, which enabled the extraction of accurate
timing metrics, which can be used to which can be used
to make predictions of embryo viability and the real-time
detection of cell divisions. Their approach used YOLOVS to
detect embryonic cells and Pytesseract to extract timestamps
from TLM videos. Focusing on embryos up to the five-cell
stage, the system achieved an average temporal deviation
of only 2-3 hours post-insemination. The model effectively
detected important features like blastocysts and morulae and
separated cells from detritus, despite performance declining in
later stages due to increased cell overlap. Their study further
emphasizes the expanding significance of automated, data-
driven analysis in improving consistency and efficiency in IVF
operations by demonstrating the ability to annotate videos at
a rate of roughly one minute apiece.

Despite significant advances in automated embryo monitor-
ing using deep learning and computer vision, existing methods
continue to have critical limitations in accurately detecting
and tracking cleavage events, especially in complex scenarios
involving rapid cell divisions, high overlap, and fragmentation.
Many previous studies used CRF or CNN for cell counting
and stage classification. Still these methods often lack direct
cleavage stage detection or rely on suboptimal OCR methods,
such as Pytesseract, to extract hpi, leading to reduced accuracy
in time annotation. Additionally, the majority of studies have
concentrated on human embryos, but our research utilizes
mouse embryo datasets, which have distinct morphological
traits and developmental dynamics. An Al-based automated
framework is proposed to fill these gaps by utilizing YOLOv11
for accurate cell detection and a more sophisticated OCR
library tailored for TLM conditions, which guarantees reliable
and accurate hpi extraction.

III. METHODOLOGY

This research proposes an Al-based automated annotation
framework that predicts cell cleavage onset and cell stage
from TLM videos. The pipeline is composed of three main
components:

1)  Object Detection Model: This uses a deep learning
approach to localize and count blastomere cells in
TLM embryo frames, supporting fast and accurate
cleavage detection even in the presence of overlap-
ping cells or fragments.

2) Cleavage Stage Transition Detection: It monitors
changes in the number of detected cells and captures
the first frame where a new cell count appears, as this
corresponds to the earliest moment of morphological
transition that indicates cell cleavage. reflecting the
onset of a cleavage stage. Biologically, this is consis-
tent with embryologists’ approach of identifying the
beginning point of cleavage as the key developmental
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indicator. The primary output of this step is an
organized list of key frames that mark the beginning
of each cell division stage, with one frame assigned
to each stage. This list forms a valuable basis for the
subsequent step in analyzing embryonic development.

3) Time Extraction: It uses OCR to read the hpi from
each selected frame. When OCR fails due to low
contrast or visual artifacts, the timing is estimated
using the video’s frame rate and fertilization start
time.

For object detection, YOLO (You Only Look Once) is used
because of its real-time detection capabilities and track record
of accuracy in biomedical image analysis [33]. YOLOv11
was selected despite the consideration of competing models
because it strikes a compromise between speed, accuracy,
and ease of integration with video-based pipelines. For hpi
extraction, Three OCR tools—PyTesseract, EasyOCR, and
PaddleOCR— are evaluated and compared chosen for their
various underlying technology and relevance to TLM video
conditions. While PyTesseract is a typical rule-based image
processing OCR engine, EasyOCR and PaddleOCR use deep
learning-based designs, which provide more robustness when
dealing with noisy, low-contrast, or irregular timestamps. Fig.
illustrates the workflow of the methodology. The proposed
framework produces two primary outputs: 1) annotated frames
enriched with relevant metadata, and 2) an Excel file con-
taining cleavage timing data. As shown in the methodology
flowchart, the system identifies the cleavage time points t2—t8,
where tn represents the hpi time at which the embryo reaches
n cells. The reported temporal outputs correspond to sequential
inter-cleavage durations between consecutive developmental
stages (e.g., t3 - t2, t4 - t3, t5 - t4). This structured output
enables embryologists to systematically analyze early embryo
developmental dynamics.

A. Dataset Description

Due to ethical considerations and privacy issues, it is
challenging to obtain human embryo dataset. Thus, a dataset
of mouse embryos was used instead. According to the National
Institutes of Health, mice are a model organism with benefits,
including genetic homogeneity, affordability, and simplicity
of access [34]. Moreover, the limited availability of publicly
accessible resources of human embryos emphasizes the impor-
tance of using mouse embryos to enhance this field of study.
The study utilizes a TLM dataset that has been previously de-
veloped and documented in [35]]. The dataset consists of video
sequences recorded during the development of approximately
100 mouse embryos, taken from the 2-cell stage through to the
blastocyst stage. The videos record cell divisions and dynamic
changes in embryo morphology throughout important stages
of preimplantation development (e.g. 2-8 cell stage, morula,
blastocyst). The dataset was captured using EmbryoScope™
(Vitrolife), a specialized culture device designed with 12 indi-
vidual wells per slide to allow parallel monitoring of multiple
embryos under identical conditions. The dataset consisted
of 18 videos, each containing 12 embryos, along with an
additional video containing 8 embryos, resulting in a total of
224 individual mice embryo development sequences. These
videos were recorded under controlled laboratory conditions
[35] and include various cleavage events from the 2-cell stage
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Fig. 1. Al-based automated framework for predicting cell cleavage stages and timing from Time-Lapse Microscopy videos.

to later stages, such as 8-cell or blastocyst formation. All
of the videos were saved in AVI format and were captured
at a constant 5 frames per second (FPS). The videos also
contained time information that was embedded and crucial to
our study: the elapsed time since fertilization in hpi is indicated
by a visible timestamp in the bottom-right corner of each
frame, which is shown as white digits on a black rectangular
background.

B. Preprocessing Pipeline

As a first step, each TLM video undergoes basic prepro-
cessing to ensure consistency in frame dimensions, format,
and temporal alignment. Using Python and the OpenCV (cv2)
package, the videos are cropped to remove unnecessary white
space at the top, ensuring that the focus remains on the
embryos. For every video, this results in a consistent resolution
of 1000x752 pixels and contains 12 embryo wells arranged in
a fixed 3-row by 4-column grid. To isolate individual embryos
for independent analysis, the video frame is uniformly divided
along both axes—width divided by 4 and height divided by 3
resulting in a consistent crop size of 250x250 pixels per well.
This standardized resolution ensures that each embryo is spa-
tially separated, uniformly scaled, and appropriately formatted
for subsequent deep learning-based object detection and OCR-
based timing analysis. As a result of this preprocessing stage,
the framework extracts 224 individual embryo videos from
the original dataset, each corresponding to a single embryo
well and standardized at a resolution of 250x250 pixels. For
each video, video frames are extracted at 5 FPS, matching the
dataset’s native recording rate. This uniform sampling ensured
consistent data representation across recordings, supporting
reliable analysis and classification of embryos at varying
developmental stages. Fig. [2]illustrates the preprocessing steps
used for spatial isolation of individual embryos.

a-cropping

b-divide into regions

c-resizing to 250250 pixels

Fig. 2. Preprocessing steps for embryo isolation: (a) cropping of the original
TLM field of view, (b) division into fixed regions corresponding to
individual embryos, and (c) resizing of each isolated embryo sequence to
250 x 250 pixels.

C. Data Annotation

Annotation was conducted using 100 TLM videos to pro-
vide spatial and temporal oversight of the model development.
An experienced embryologist from King Abdulaziz University
Hospital was involved to ensure the accuracy of the labeled
data and provide the biological “ground truth” needed to ef-
fectively train the Al model. First, a frame-level annotation file
was created for each embryo video, recording three attributes
for every frame: the frame number, the hours post-insemination
(hpi), and the cell stage. The dataset included frames from the
following cell stages: two-, three-, four -, five -, six -, seven-,
and eight-cells. Bounding boxes were manually drawn around
each individual blastomere(cell) using the Roboflow platform.
Roboflow’s annotation tool offers an easy-to-use interface for
effective annotation, to ensure consistency and high-quality
labeling throughout the dataset [36], [|37]]. This discrete object
detection strategy was adopted over global embryo localization
to provide the model with the high-resolution morphological
data required to differentiate between consecutive cleavage
states (e.g., 2-cell vs. 3-cell). By identifying each cell as an
independent instance, the proposed framework calculates the
developmental stage through the aggregate count of detected
bounding boxes per frame, ensuring that subtle internal bound-
aries are recognized as primary features for classification .
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D. Data Augmentation and Class Distribution Balancing

The dataset comprises frames capturing various stage of
cell development, such as the 2-, 3-, 4-, 5-, 6-, 7-, and 8-
cell stages. With earlier stages (like 2-cell and 4-cell) being
over- represented and later stages (like 6-cell, 7-cell, and 8-
cell) being relatively underrepresented, in Fig. [ a thorough
distribution analysis shows a notable imbalance across the
stages. The observed imbalance in the number of frames
across cleavage stages—characterized by a higher proportion
of frames in earlier stages and fewer in later stages—can be
attributed to two main factors. The first is short Later Stage
Duration: Compared to earlier stages, later stages—Ilike 6-
cell and 7-cell—occur over significantly shorter time intervals,
resulting in fewer frames being recorded. The second factor is
cell Overlap in Advanced Stages: Individual cells spatially
overlap as cell division advances, making precise cell differ-
entiation more difficult. Both data collection and annotation
are made more difficult by this phenomenon. All images were
scaled to a consistent resolution of 416 x 416 pixels to ensure
consistency throughout the dataset. To guarantee sufficient
representation of every cell stage for model development and
assessment, the dataset is divided into 70% for training, 20%
for validation, and 10% for testing. Some of the dataset’s
original images showed blurring and focus issues, which are
common problems with (TLM) generated images. These flaws
can occur as a result of lens focus errors or image noise,
which, if not addressed, can have a negative impact on the
model’s performance. The dataset was artificially expanded
while maintaining biological relevance through the use of
images augmentation. The changes consist of:

1)  Flipping both horizontally and vertically: To take into
consideration variations in imaging angles.

2)  Brightness Adjustment (+8%): To improve resilience
to changes in lighting, exposure changes are simu-
lated.

3) Random Gaussian Blur (sigma = 1 px): To improve
generalization and simulate noise, making the model
more tolerant to minor image flaws and obstacles
experienced in TLM imaging.

Number of Frames in Each Cell Stage
2000 1971

1750 1729

1500

g 1250

f Fram

2 1000

Numb:

201

172 155
111
65

2-cell 3-cell a-cell 5-cell 6-cell 7-cell 8-cell
Cell Stage

Fig. 3. Dataset distribution.

Undersampling was used to lessen the dominance of over-
represented stages following augmentation. The goal was to
maintain adequate representation for efficient training while
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achieving a more consistent distribution of 700 frames across
all cell stages. Fig. ] shows the distribution of the dataset for
all cell stages after undersampling and augmentation.

Number of Frames in Each Split for All Stages

Number of Frames (Images)

6stage 7-stage &stage

5 stage
Cell Stages

Fig. 4. Distribution of dataset frames for each cell stage: 70% for training,
20% for validation, and 10% for testing after handling class imbalance.

E. Cell Detection

Object Detection is one of the principal application areas in
computer vision. The aim of object detection is to detect and
localize objects in images through class labels and bounding
boxes [38], [39]. There are two main types of detection
methods: two-stage detectors like Faster R-CNN and Mask
R-CNN that are guaranteed to produce an accurate answer,
and one-stage detectors like YOLO and SSD that produce
fast answers. There is a growing cadre of methods, including
DETR and EfficientDet, that are focused on efficiency and
scalability. Among these detection methods, YOLO is a promi-
nent method for real-time detection. YOLO divides images into
grids, predicting the bounding boxes and confidence scores for
the object(s) contained in each of the grid cells. Using layers
that are pre-trained among other bounding box layers, YOLO
is able to produce good performance across a range of objects.

YOLOV11 is the most recent model in Ultralytics’ YOLO
series of real-time object detectors. it comes in a variety
of model sizes, from nano to extra-large, making it suitable
for a wide range of applications, from resource-limited edge
devices to powerful computing systems. It adds new archi-
tectural features such as the C3k2 block, SPPF, and C2PSA,
which improve its ability to extract and process features more
efficiently. These enhancements enable YOLOv11 to better an-
alyze and interpret complex visual data, potentially improving
detection accuracy in a variety of scenarios. The integration of
advanced spatial attention mechanisms, such as the C2PSA, is
a significant improvement because it allows the model to focus
on important regions of an image. YOLOV11 was selected
for cell detection due to its ability to efficiently process large-
scale time-lapse microscopy (TLM) datasets while maintaining
reliable localization performance. Unlike two-stage object de-
tectors, YOLO'’s single-stage architecture enables rapid frame-
wise inference, which is essential for analyzing long TLM
video sequences at high temporal resolution. Furthermore,
the proposed framework uses YOLO exclusively for detecting
individual cells rather than directly classifying cleavage stages.
Developmental stages are subsequently inferred by counting
detected cells across consecutive frames, thereby avoiding
reliance on subtle morphological distinctions between stages
and improving robustness under variable illumination and cell
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a)lou=0.20
Low overlap

b) loU =0.40
Moderate overlap

¢) loU=0.70
High overlap

Fig. 5. Impact of IoU threshold on detection accuracy.

overlap conditions. Our proposed model operated as follows:
Detection, Identifying and locating every instance of the “cell”
class in the frame. Stage Assignment: The overall count of
detected cells within a frame determines the cleavage stage
label for that frame. For example, the existence of five unique
cells signifies the 5-cell stage. The YOLOv11 model was set
up on Ultralytics Hub [40]. To improve accuracy and shorten
training time, a pre-trained model served as a foundation for
the training process. The training procedure was set up with
100 epochs using 416x416 resized input images, a 100-epoch
patience threshold to avoid overfitting. The batch size of 22 is
determined by the AutoBatch mechanism, which automatically
determines the maximum batch size that can be accommodated
in the GPU memory during training to adjust to the available
computational resources. The optimizer was configured with a
momentum of 0.9 and a learning rate of 0.002. To train the
YOLOvV11 model efficiently, two NVIDIA T4 GPUs were used
in a Kaggle environment.

YOLOV11 efficiently locates and categorizes overlapping
objects, such as cells in our case, by employing anchor boxes to
predict bounding boxes and their associated confidence scores
in a single forward pass. During detection, many bounding
boxes may be proposed for the same object. In order to
overcome this, YOLO employs Non-Maximum Suppression
(NMS), which selects the box with the highest confidence
score after suppressing overlapping boxes based on their
Intersection over Union (IoU) values. This ensures precise
localization of individual cells, even when they significantly
overlap, and sustains a high detection performance as indicated
by measures like mean Average Precision (mAP). accuracy.
Fig. E] illustrates the impact of Intersection over Union (IoU)
thresholds on detection accuracy. A higher IoU value (e.g.,
0.70) facilitates more precise and reliable cell localization,
whereas lower IoU values (e.g., 0.20 or 0.40) are associated
with increased misdetections or overlapping prediction errors.

F. Cleavage Stage Identification and HPI Determination

Using a fixed confidence threshold of 0.55 across all cleav-
age stages, a YOLOv11 model is employed to detect individual
cells within each frame. Additionally, an IoU threshold of
0.70 is applied by the model to provide precise bounding
box predictions. The cell count is shown on the frame, and
bounding boxes are drawn around any cells that are found.
Only cleavage stages containing between 2 and 8 cells are
considered in this analysis. A frame is saved to the output
folder only when it corresponds to the initiation of a new
cleavage stage, defined by the following criteria:

1)  Uniqueness: if the number of detected cells is unique,
meaning it hasn’t been recorded before.
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2)  Progression: The current cell count is higher than the
previous count that was noted.

Because of the inherent heterogeneity of embryo growth,
certain division phases might not be captured in the video,
necessitating this second requirement. For instance, the three-
cell stage might not be apparent in the video, or some
embryos might split straight from two to four cells without
going through it. This criterion reduces the possibility of
errors resulting from overlapping cells that could otherwise
be misinterpreted for example, falsely recognizing three cells
when only two are present by guaranteeing that only major
stage transitions are recorded. Determining the correspond-
ing hpi of the saved frames is the next step. Accurate hpi
calculation is essential to monitor embryo development over
time. OCR is a technology that transforms handwritten or
printed text in images into digital formats that can be read
by machines [41]. OCR is essential to biomedical research
because it allows the extraction of quantitative data from med-
ical images, including Medical Records [42], Ocular Biometry
reports [43]], text from figures in full-text biomedical articles
[44]], and experimental annotations. Numerous efficient Python
libraries have been developed for OCR, including Tesseract,
a popular open-source engine; Pytesseract [45], a Python
wrapper for Tesseract; OpenCV, a flexible computer vision
library; and EasyOCR [46], an open-source OCR tool based
on deep learning. EasyOCR uses long short-term memory
(LSTM) architectures and CNNs to detect and recognize text.
PaddleOCR, deep learning-based OCR system created by the
PaddlePaddle group. For high text detection and recognition
accuracy, PaddleOCR utilizes CNNs, attention mechanisms,
and sequence models like recurrent neural networks (RNNs)
[47], [48]]. Deep learning-based OCR tools were chosen for
their robustness and ability to handle the complex imaging
conditions common in biomedical TLM data, thus making sure
that the annotations of hpi are accurately extracted.

The timestamp was extracted by cropping a fixed region
of interest corresponding to the white rectangular overlay
containing the hpi value, which appears at a consistent location
across all time-lapse images. The cropping coordinates (x =
300, y = 350, width = 200, height = 200) were predefined
and automatically applied to all frames, without manual inter-
vention or sequence-specific adjustment, ensuring standardized
OCR input across the dataset. To ensure the reliability of
the extracted hpi values, a simple numerical validation step
was applied to the OCR output. Since all embryos in the
dataset fall within a biologically plausible range below 73
hours post-insemination, any extracted value exceeding 73
hpi was treated as an OCR artifact caused by an erroneous
leading digit and was automatically corrected by removing
the leading digit, restoring the expected temporal range. This
lightweight validation step effectively filtered OCR misreads
while preserving correct timestamps for downstream cleavage
timing analysis. Due to variability in image brightness or
quality, OCR is not always flawless and sometimes misreads
numbers. Three OCR libraries—PyTesseract, EasyOCR, and
PaddleOCR—were tested for performance. The hpi value is
allocated to the frame if OCR is successful in extracting it.
When OCR is unable to retrieve the timestamp. Several reasons
can lead to OCR failures:

e creation of out-of-bound values, where valid times-
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tamps (e.g., 69.9 h) are misinterpreted as wrong values
like ‘4569, which exceeds the system’s maximum
allowed hpi range (mice embryo typically reaches the
8-cell stage around 48 to 72 hpi).

e  misrecognition of digits, where the algorithm finds or
interprets numbers improperly.

An alternate approach has to be used. In these situations, our
dataset of TLM videos’ empirical observations of cleavage
timing serve as the basis for this alternate approach. After
examining several embryos, it was observed that the cleavage
stages occurred at a comparatively constant interval of about
0.6 hpi each frame. Previous studies have employed a similar
approach, in which, in the absence of precise hpi values, the
time annotations for cleavage stages were obtained using frame
rate and time-lapse system setups [17].

tn =t 4+ 0.6 X (F, — 1)

where:

e t; — The hpi of the first frame.

e [, — The frame number for which the time is being
calculate.

e (0.6 — The frame interval.

IV. RESULTS

This section presents the results of the proposed method-
ology on two major tasks: cell-cleavage stage detection and
OCR evaluation that used for cleavage onset time prediction.
For clarity, the findings are divided into two corresponding
subsections.

A. Cell Stage Detection

This section presents a detailed evaluation of the YOLOvI11
model in detecting embryo cell stages (two to eight cells),
using a test set of 218 images sized (416x416 pixels). The
YOLOvI1 model achieved strong performance, with a pre-
cision of 0.9793, a recall of 0.9565, and an Fl-score of
0.9678. The mAP@0.5 (mean Average Precision at an IoU
threshold of 0.5) was 0.9767. This shows that our model suc-
cessfully identified and localized most cells, achieving a strong
alignment between the predicted and ground-truth bounding
boxes. while mAP@0.5:0.95, which evaluates precision across
various IoU thresholds from 0.5 to 0.95 in increments of 0.05,
was measured at 0.74. was 0.7407. Fig. [6] shows the overall
precision and recall, as well as the mean Average Precision
(mAP) at thresholds 50 (mAP50) and 50-95 (mAP50-95), for
the validation set throughout training epochs. Fig. [/| shows the
confusion matrix for the model in detecting and classifying
cell stages generally. For the majority of cell stages, the matrix
shows high classification accuracy; this is especially true for
the 2-cell and 4-cell stages, when most predictions match the
actual labels. Compared to the earlier cleavage stages in the
matrix, there were more incorrect classifications between the
seven-cell stage and the nearby phases of five, six, and eight
cells.

A set of key metrics was used to evaluate the model’s per-
formance: accuracy, precision, recall, F1-score, and specificity.
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Fig. 6. Validation metrics over epochs.
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TABLE 1. EVALUATION METRICS FOR EVERY CELL STAGE

Category  Precision Recall F1-Score  Specificity = Accuracy
2-cell 98.55% 97.14% 97.84% 99.32% 98.53%
3-cell 80% 82.76% 81.35% 96.83% 94.86%
4-cell 92.06% 82.86% 87.25% 96.62% 92.02%
5-cell 62.50% 88.24% 73.17% 95.52% 94.86%
6-cell 75% 80% 77.42% 98.03% 96.97%
7-cell 75% 54.55% 63.27% 99.04% 96.88%
8-cell 62.50% 83.33% 71.43% 98.60% 98.26%

Overall 86.24% 86.24% 86.24% 97.71% 86.61%

These metrics offer a thorough grasp of the model’s capacity
to accurately identify and categorize every cell stage based on
the number of detected cells in the frame. Precision measures
the percentage of all predicted cell stages correctly identified
as instances of the target cell stage. Recall (also known as
sensitivity) measures the ratio of true positives (correctly
detected instances of the target stage) to the sum of true
positives and false negatives (i.e., all frames that truly belong
to that stage). The precision and recall weighted average is
known as the Fl-score. Specificity is calculated as the ratio of
true negatives (i.e., frames that are correctly identified as not
belonging to the target stage) to the total number of frames that
truly do not represent that stage. It demonstrated the ability of
the model to prevent misclassifications for non-target stages.
The accuracy reflects the overall effectiveness of the model by
measuring the proportion of correctly classified instances (both
positives and negatives) out of all predictions made. Table
M summarizes these metrics for each cell stage using input
images of size (416x416 pixels).

Although the table presents the raw quantitative results,
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the subsequent list presents a brief overview of the model’s
performance at each stage, emphasizing both its advantages
and limitations:

e Two-cell stage: The model demonstrated strong ef-
ficacy in this category by classifying 2-cell stages
with high precision 98.55%, recall 97.14% , and
Fl-score 97.84%. These results indicate robust and
consistent detection of two-cell instances with a low
misclassification rate.

e  Three-cell and four-cell stages: With Fl-scores of
81.35% and 87.25% , respectively, both stages demon-
strated high performance, although with somewhat
reduced precision and recall when compared to the
2-cell stage.

e Five-cell and Six-cell stages: The model’s perfor-
mance showed moderate accuracy. For the 5-cell stage,
the F1-score of 73.17% reflects low precision 62.50%
and high recall 88.24%, indicating frequent false pos-
itives despite successfully identifying most true cases.
In contrast, the 6-cell stage achieved a more balanced
outcome (Fl-score 77.42%; precision 75%; recall
80%), suggesting that most instances were correctly
classified with a moderate level of misclassification.

e seven-cell and eight-cell stages: The model struggled
most with the 7-cell stage, hitting an F1-score of just
63% and recall at 55%. This happened mostly because
there weren’t many examples in the dataset, and the
cells tended to overlap a lot, which led to confusion
with the 6- or 8-cell stages. On the other hand, the 8-
cell stage did better, landing an F1-score of 71% The
recall was strong 83% so the model caught most of the
real 8-cell stages. But the precision dropped to 63%,
which means it also flagged quite a few that weren’t
actually 8-cell, so false positives were still a problem.

e  Overall Performance: With an overall Fl-score of
86.24% and specificity of 0.9771, demonstrating a
strong ability to distinguish between target and non-
target classes and consistent classification performance
across all cell stages.

B. OCR Evaluation

Three OCR libraries were assessed to determine their
performance in extracting HPI timestamps: PyTesseract, Easy-
OCR, and PaddleOCR. The objective text was a time stamp
in the format xx.x h, placed in a small white rectangle with
black numbers in the bottom right corner of each frame. Due
to the large variation in contrast between the images in the
dataset, no pre-processing was applied, rendering the generic
enhancement techniques unreliable. Instead, each frame was
cropped to the region of interest to isolate the timestamp and
minimize noise. The performance of PyTesseract, EasyOCR,
and PaddleOCR was evaluated using Manual Recognition Ac-
curacy. To establish a ground truth, To perform this, a dataset
of frames was randomly selected, and the timestamps visible
in the images were manually annotated as ground truth. The
output of each OCR engine was manually compared against the
visual timestamp visible in the Time-Lapse Monitoring (TLM)
images. An “Exact Match” criterion was utilized, where a de-
tection was marked as correct only if it perfectly mirrored the
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visual data. The following list summarizes the OCR libraries’
performance, highlighting the progression from less to more
effective approaches depending on digit recognition under
varying image conditions in terms of accuracy, dependability,
and robustness.

e  PyTesseract: Initially, PyTesseract was tested with var-
ious configurations but showed unsatisfactory results.
The library had difficulties in accurately reading digits,
either misreading them or failing to extract them at all.
For example, “13.7” was incorrectly read as “3.7”.

e EasyOCR: Next, EasyOCR was subsequently evalu-
ated and demonstrated improved performance com-
pared to PyTesseract.However, the library continued
to have challenges in accurately recognizing some
numbers. In particular, the library failed to read the
tens place in some cases, such as reading “31.5”
as “1.57, or completely ignoring the tens place and
reading “1.5” as “5”.

e PaddleOCR: PaddleOCR was evaluated last and
demonstrated the highest accuracy. All values ex-
tracted by Paddle were accurately matched to the an-
notations provided by embryologists. Due to this con-
sistent and reliable performance, Paddle was adopted
as the preferred tool in our methodology for automat-
ing the hpi annotation process.

Table |lIl summarizes the performance of the three OCR
libraries in extracting hpi values, compared to the expert-
annotated ground truth.

TABLE II. COMPARISON OF EXPERT-ANNOTATED HPI VALUES WITH
PREDICTIONS FROM THREE OCR ToOOLS

Error Description
Misread digit (EasyOCR) ,Missing value (PyTesseract)
Misread digit (EasyOCR) Missing value (PyTesseract)
Extra digits (EasyOCR) ,Missing value (PyTesseract)

Expert (hpi) PaddleOCR  EasyOCR  PyTesseract
1.5 1.5 5 -
35.1 35.1 354 -
46.5 46.5 646.5 -

V. DISCUSSION

This study aimed to automate the process of tracking
embryonic development by identifying cleavage stages and
accurately determining the onset times of cell division. Deep
learning and image processing techniques were used to analyze
TLM videos. This was achieved by constructing an efficient
methodology that annotates hpi of each cleavage stage while
accurately locating cells within the corresponding stage im-
ages. This study showcases the power of deep learning and
computer vision in automating the identification of crucial
cleavage stages in embryo development. By providing precise,
frame-by-frame predictions and organized data on cleavage
timing, the proposed approach gives embryologists valuable
developmental insights that exceed those gained from tradi-
tional manual observation. This level of accuracy in stage
detection allows for more objective and consistent evaluations
of embryos. Our methodology demonstrated the ability to
accurately identify the onset of cell division stages up to
the seven-cell stage, with an average time delay of 1-2 hpi.
However, at the eight-cell stage, a significant time delay was
observed compared to the embryologists’ annotations. This
disparity is explained by the more significant overlap between
cell borders, which intensifies with increasing cell count. This
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annotated: 4-cell annotated: 4-cell annotated: 4-cell annotated: 5-cell

annotated: 4-cell

predicated: 4-cell predicated: 4-cell predicated: 3-cell predicated: 3-cell predicated: 5-cell

Fig. 8. Time-series of frames illustrating cell occlusion: A 4-cell stage can

be seen in the first frame, but as the series goes on, one cell trails behind

another, giving the impression that the stage contains only three cells. This
illustrates how difficult it is to find overlapping cells.

overlap between cells was also observed in [14,17], and the
inferiority of their methodology caused a delay of 2-3 hours
in detecting the starting time of cell cleavage. The occurrence
of overlapping cells and visual obstructions in certain frames,
particularly during the later stages (after the six-cell stage), led
to a decrease in detection accuracy. This was especially evident
in the counting and differentiation of closely packed cells. This
illustrates a challenge with the dataset, which contains overlaps
that occur naturally in the later stages of cleavage. Adding a
wider variety of overlapping cell configurations to the dataset
could help overcome this restriction. Future enhancements,
such as the integration of temporal context or refined segmen-
tation techniques, could significantly bolster performance in
these challenging scenarios. Our proposed methodology also
faces challenges in detecting hidden cells: cells with dark
shadows or those that are partially hidden behind other cells
are not recognized. This problem is particularly important in
the transition state between one stage and another, as shown
in Fig. [8] More occluded cell samples should be included in
the dataset in future studies so that the model can better learn
and generalize these patterns.

The proposed model operated directly on raw TLM frames
to ensure that the training data closely matched real-world
scenarios. This design choice aims to enhance the robustness
and generalizability of the method by avoiding transformations
that may alter biologically relevant visual cues. Given the
heterogeneous illumination conditions present in the TLM
dataset, applying global image normalization or contrast en-
hancement could introduce inconsistencies across samples and
potentially distort meaningful morphological information. As
part of our research, the time differences between subsequent
cleavage stages were calculated. This feature helps to improve
the assessment of embryo quality by giving embryologists
comprehensive data on developmental dynamics. Two com-
plementary techniques were combined to address the dataset’s
class imbalance issue. Selective data augmentation was applied
to increase the number of samples in minority classes. Then,
random undersampling is used to decrease the number of
samples in the majority classes. This combined strategy yielded
satisfactory evaluation metrics, demonstrating its effectiveness
in addressing class disparity. In order to put the performance of
the proposed YOLOv1-based cell stage detection model into
perspective, the obtained results are compared with those of
earlier studies that used YOLOVS for the detection of human
embryo cell stage. Applying data augmentation techniques
[17], the model performed well on early cleavage stages
(e.g., Fl-score of 95% for 1-cell and 88% for 2-cell), but
performance significantly declined on later stages, with F1-
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scores falling to 0.32 for 3-cell, 0.36 for 5-cell, and 17% for
6-cell. Our method, on the other hand, produced consistently
high overall F1-scores of 0.8624 and accuracy of 86.61% when
applied to mouse embryo time-lapse videos. The Fl-scores
were relatively stable across stages, ranging from a minimum
of 63.27% (7-cell) to a maximum of 97.84% (2-cell). Higher
specificity (97.71% overall) and a better balance between
sensitivity and precision at every stage further supported this
performance. The superiority of the proposed framework is
quantitatively validated through a comparative analysis with
the recent study by Sharma et al. [17], as detailed in Table
I1I} Furthermore, our approach corrects for class imbalance by
undersampling and targeted data augmentation, which prob-
ably helped to improve minority-stage class detection. The
framework demonstrates high adaptability to diverse clinical
environments through a calibratable OCR pipeline. By utilizing
coordinate-based ROI localization. The system can be seam-
lessly adjusted to different incubator display formats. Direct
quantitative comparison with prior time-lapse embryo analysis
studies is constrained by the absence of publicly available,
standardized datasets and by differences in embryo species,
imaging systems, and annotation protocols. This limitation
is explicitly acknowledged in the present study. Accordingly,
performance claims are restricted to improvements observed
within the same experimental setting and under a consistent
evaluation protocol. Where comparisons with related work
are discussed, they are intended to illustrate relative gains
in robustness and detection capability—particularly at later
cleavage stages—rather than to assert absolute superiority
across heterogeneous datasets. The comparative analysis high-
lights the generalizability and robustness of our deep learning
pipeline, especially in managing class imbalance and handling
transitional stages with greater stability, despite the differences
in the dataset.

TABLE III. PERFORMANCE BENCHMARKING AND COMPARATIVE
ANALYSIS: PROPOSED YOLOV11 FRAMEWORK VS. STATE-OF-THE-ART
BASELINE OF SHARMA ET AL.[17] (YOLOVS)

Sharma et al.[17] - yolov5 Proposed Model
Cell Stage Accuracy (%)y Acl;uracy (%)
2-cell 85% 98%
3-cell 57% 94%
4-cell 55% 92%
5-cell 51% 94%
6-cell 39% 96%
T-cell 31% 96%
8-cell 47% 98%

VI. CONCLUSION

Given that the timing of cell cleavage is a critical parameter
of embryo viability and developmental potential, it certainly
plays a major role in embryo assessment. Detecting and
extracting the onset of these cleavage events automatically can
help embryologists Assess the quality of embryos and select
candidates with better chances of implantation. In this work,
YOLOvVI11 and OCR-based timing extraction are used to auto-
matically annotate mouse embryos’ cleavage stage and onset
time. The suggested approach, despite the challenging class
imbalance present in the dataset, achieves high performance in
cleavage stage detection and cleavage onset timing extraction.
Through the combination of selective data augmentation and
random undersampling. The problem of class imbalance was
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successfully addressed, which enhanced the model’s robustness
and evaluation metrics. Our methodology demonstrated the
ability to accurately identify the onset of cell division stages up
to the seven-cell stage, with an average time delay of 1-2 hpi,
and showed excellent performance in differentiating between
various developmental phases in mouse embryo TLM videos,
achieving Accuracy of 86.61% , Fl-score of 86.24% ,and
precision of 86.24% in identifying and classifying cleavage
stages. One of the key difficulties encountered in this work
is the significant cell overlap, which affected the model’s
performance, particularly at the later stages of cleavage. As
it influenced the accuracy of detection and caused minimal
delays in determining the onset of division. In addition, the ap-
proach was having issues identifying cells that were occluded
partially or overshadowed, particularly with fast changes in
developmental phases. There are several promising avenues for
future research in this field to overcome the present limitations.
Accumulating larger and well-annotated TLM datasets is a
crucial step to increase model robustness and promote more
balanced learning across all cleavage stages. Future work could
utilize 3D imaging techniques or incorporate temporal context
using video-based models that analyze frame sequences rather
than individual frames to address issues such as partially
hidden and overlapping cells.

DATA AVAILABILITY

While the dataset is not publicly available due to clinical
privacy and institutional ethical constraints, it can be shared
upon reasonable request to support reproducibility, subject to
applicable data governance protocols.
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