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Abstract—In this paper, we propose a modelling approach for
real-time intelligent systems using Fuzzy Petri Nets (FPNs), a for-
malism that generates dynamic fuzzy rules, supports uncertainty,
and enables concurrent reasoning. FPNs offer a well-defined
tool for dynamically evaluating Fuzzy Production Rules (FPRs),
Certainty Factors (CFs), and truth degrees, and for making real-
time decisions. To reduce the complexity of manually constructed
or probabilistically modelled fuzzy rules, we extend the modelling
toolkit with the Adaptive Neuro-Fuzzy Inference System (ANFIS).
ANFTIS learns membership functions and Sugeno-type rules from
numeric datasets through a feature. This results in a richer and
more accurate set of rules. At the novelty level, we propose a rule-
integrating scheme that maps Sugeno rules learned by ANFIS into
FPN transitions to obtain more clearly explained reasoning and
traceable rule execution within a neuro-fuzzy Petri net. Based
on these learned rules, FPN executes them within a two-layer
real-time (prediction and decision) while maintaining concurrent
inference and real-time execution. The hybrid methodology is
verified by fitting a real-time expert system for solar collector
cleaning. Results from the experiments demonstrate that, in terms
of predictive performance, ANFIS-induced rules drastically boost
accuracy (from 85% to 93%) and reduce Root Mean Square
Error (RMSE) from 4.82 to 2.57 relative to those generated
by a single probabilistic FPN model. These results indicate
that using neural learning combined with an FPN-based expert
system makes real-time decision-making much more accurate and
reliable.

Keywords—Fuzzy petri net; adaptive neuro-fuzzy inference
system; expert systems; fuzzy logic; real-time system; artificial
intelligence

I. INTRODUCTION

Expert systems support decision-making in uncertain and
dynamic environments. Classical fuzzy expert systems rely on
expert-defined linguistic rules, CFs, and membership functions,
which makes them interpretable but labour-intensive, subjec-
tive, and challenging to scale to real-time or highly nonlinear
settings [1], [2]. These limits are exacerbated when reasoning
must continuously adapt to streaming data. FPNs have recently
been proposed as a novel approach to handling expert systems
because of their ability to represent FPRs and to support real-
time reasoning through concurrency, formal semantics, and
structural transparency [1], [3]. In many present-day FPN-
based expert systems, the rule base is written offline. It
depends on probabilistic derivation, which extracts CF and
Thresholds (TH) from conditional probabilities [4]. While the
aforementioned rule-generation methods are generally valid in
many applications, they do not evolve over time and sometimes
fail to describe real-time behaviour, such as that of dynami-
cally changing systems. Alternatively, data-driven neuro-fuzzy

learning combines the learning capabilities of neural networks
and the interpretability of Fuzzy logic (FL) to offer a new
approach [5], [6].

This work proposes a unified real-time modelling method-
ology. This strategy merges a new rule-based preparation
technique that integrates Sugeno-type fuzzy inference repre-
sentation with ANFIS learning with a new FPN model and
execution infrastructure. The new concept is that the rule
base is not treated as a static thing but as a dynamic model.
A dynamic rule base was created using ANFIS, trained on
data, and then integrated into an FPN-based inference and
decision process. As well as explicating the whole procedure
(rule preparation, mapping, modelling semantics, and real-
time implementation), we present a controlled validation under
a real-time case study, an expert system for solar collector
Cleaning Decision-making (CD), a real-time validation of the
proposed solution in the same experiment and comparison
with other rule generation and decision-making strategies. This
proves that the novelty is not merely a hybrid solution of two
existing tools but a consistent modelling paradigm for real-
time expert systems that connects data-driven rule learning
with interpretable FPN execution. The main contributions of
this work are as follows:

e Real-time unified model and execution of FPN: We
introduce a unified FPN modelling and execution ar-
chitecture for real-time expert systems, enabling con-
current reasoning and transparent rule-based inference
within a single formal tool.

e  Two-layer real-time modelling pattern: We develop a
two-layer FPN decision model that separates a pre-
dictive layer (system-state estimation from streaming
inputs) from a decision layer (action selection un-
der real-time constraints), explicitly linking prediction
outputs to decision transitions.

e Novel data-driven rule construction: We propose a
rule-base preparation method that uses Sugeno-type
fuzzy representation and ANFIS learning to generate
a data-driven fuzzy rule base from numerical datasets
for interpretable real-time execution.

e  Expert-system rule integration pipeline: We define
a systematic pipeline that converts ANFIS-learned
Sugeno rules into FPRs and embeds them as exe-
cutable FPN transitions, including explicit modelling
of CF and TH for faithful truth propagation and firing
behaviour.
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e  Real-time dynamic rule and model update: We support
dynamic learning and dynamic modelling by updating
the FPN structure during operation.

e  Controlled comparison and real-time validation: We
evaluate the proposed approach on real-time solar-
collector CD-making and compare it fairly against a
probabilistic rule-extraction baseline under identical
execution conditions, demonstrating improved predic-
tive accuracy and reduced RMSE using the ANFIS-
learned rule base.

To complete the introduction and provide a clear read-
ing guide, the remainder of this paper is organised as fol-
lows. Section II reviews representative FPN-, fuzzy-logic-,
and ANFIS-based methods and highlights the gap addressed
by our work. Section IIl summarises our unified real-time
methodology, comprising a two-layer FPN architecture for
prediction and decision-making, a probabilistic baseline, and a
Sugeno-ANFIS rule-learning and rule-integration pipeline that
explicitly handles CF/TH. Section IV provides an overview of
the experimental setup and presents results on solar-collector
CD-making regarding accuracy and RMSE under consistent
conditions. Section V investigates the implications of the
results, justifying the enhancement of ANFIS performance, the
trade-off between rule-base size and real-time execution, and
the proposed modelling paradigm’s propensity to generalise.
Finally, Section VI presents the concluding results and future
research directions.

II. RELATED WORKS

Research on intelligent decision-making systems has long
focused on how to represent uncertainty, model dynamic en-
vironments, and formalise knowledge-based reasoning. Within
this context, FPN have emerged as an influential modelling
formalism, capable of representing fuzzy rules, degrees of
truth, and causal relationships while supporting concurrency
and interpretability. Foundational work by Chen [1], [3]
showed how FPNs can encode FPRs and provide transparent
mechanisms for both reasoning and verification. Building on
these foundations, later studies extended FPNs to applications
such as fault diagnosis, production rescheduling, exception
handling, and complex rule-based automation [7], [9], [10].
Further contributions introduced reversed reasoning for diag-
nostic analysis [11], invariant-based structural control [12],
and learning-enabled FPN architectures [13], [14], improving
the adaptability of Petri Net-based reasoning in uncertain
environments. In contrast, our work targets three missing
elements that make prior hybrid solutions difficult to compare:
1) an explicit rule-integration pipeline that converts ANFIS-
learned Sugeno rules into FPRs and embeds them as FPN
transitions with CF/TH handling, 2) a two-layer real-time
modelling pattern within one FPN execution engine (predic-
tion of reflectivity followed by decision-making), and 3) a
controlled comparison between probabilistic rule extraction
and ANFIS learning under identical execution conditions.
Table I summarises these distinctions against representative
FPN, probabilistic, and ANFIS-based approaches.

Verifying and validating fuzzy rule systems is essential
to ensure their accuracy. For instance, Kouzehgar et al. [15]
developed a method that gathers insights from experts through
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questionnaires to create rule bases. They then transform these
into hierarchical fuzzy rules and connect them to FPN models.
To identify semantic errors, they use reachability graphs,
demonstrating how FPNs can serve as practical tools for
reasoning and verification. Beyond this, Petri nets have been
applied in various fields, such as modelling the behaviour
of neural networks [16], optimising business processes [17],
analysing power consumption in wireless sensor networks
[18], and managing evolving workflows in healthcare [19]. FL
remains a vital approach for addressing uncertainty across a
range of applications, including diabetes detection [20], edu-
cational assessments [21], intelligent traffic control [22], and
renewable energy management [23]. These studies highlight
the importance of developing data-driven fuzzy systems to re-
duce our reliance on manually constructed rules. To overcome
these limitations, ANFIS proposes a model that automatically
optimises membership functions and rule parameters, combin-
ing neural learning with Sugeno-type fuzzy inference [6], [24],
which was presented by Jang [5]. ANFIS has been used for
nonlinear, interpretable modelling in various fields [25], [26],
[27], [28] and is effective for predicting and managing renew-
able energy [29], [30], [31]. ANFIS has thus demonstrated a
method that can provide data-driven fuzzy rules while also
retaining interpretability. Reflectors/heliostats of solar energy
systems are very sensitive to soiling, as reported reflectivity
losses of up to 35% within weeks in dusty environments [32],
[33], [34]. Thus, cleaning strategies and predictive maintenance
have been investigated, including effective restoration meth-
ods [35] and learning-based reflectivity prediction [36], but
black-box models pose explainability issues [37], [38]. Others
have employed state-space methods in CSP plants [39], [40]
and studied soiling and cleaning economics in a PV/Saharan
area [41], [42], [43]. However, there is still a potential gap
between interpretable fuzzy rule systems such as FPNs and
adaptive neuro-fuzzy models such as ANFIS: FPNs represent
precise causal semantics and have manual rule bases, whereas
ANFIS recognises nonlinear behaviour but lacks a real-time,
concurrent execution tool for decision support. There are,
however, relatively few studies on hybrid neuro-fuzzy Petri
Nets [13], [14]. In addition, probabilistic FPNs construct CF
as conditional probabilities [44], [45], [46], and more recent
work has assessed confidence values from errors in ANFIS
training to optimise rules based on data-derived evidence.

Motivated by these observations, the present study inte-
grates ANFIS-generated fuzzy rules into a formal FPN rea-
soning tool. This hybridisation combines the adaptability of
neuro-fuzzy learning with the interpretability, concurrency, and
structural rigour of Petri Nets. In doing so, it supports the
construction of a real-time expert system capable of predicting
solar reflectivity and determining optimal CDs under rapidly
changing environmental conditions.

III. METHODOLOGY FOR MODELLING REAL-TIME
EXPERT SYSTEMS USING ANFIS AND PROBABILISTIC
METHODS INTEGRATED WITHIN A FUZZY PETRI NET
APPROACH

This section presents the methodological tool used to model
a real-time intelligent decision system with the FPN formalism.
FPNs provide a transparent, interpretable, and concurrent rea-
soning mechanism that can represent fuzzy knowledge, handle
uncertainty, and dynamically propagate degrees of truth. To
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TABLE I. RELATED WORK COMPARISON (MULTI-LAYER REFERS TO THE DECISION PIPELINE, NOT THE INTERNAL LAYERS OF ANFIS)

Paper / Approach Rule learning (how rules | How rules are embed- | Real-time Multi- What our work adds beyond it
are obtained) ded in FPN evaluation layer

FPN decision-making [2] Manual fuzzy rules, cer- | Rules encoded as | Not No Adds data-driven rule learning + explicit CF/TH
tainty values attached to | places/transitions with | evaluated handling + prediction—decision
propositions/tokens fuzzy truth tokens

FPN knowledge represen- | Manual FPR  (expert- | FPR encoded in | Not No Adds learned-rule generation (ANFIS) + sys-

tation [1], [3] defined rules) FPN structure evaluated tematic rule-to-transition integration pipeline

(places/transitions)

Learning on FPN [7] Supervised learning | Learning changes | Not No Adds explicit Sugeno-rule extraction (ANFIS) +
by adapting transition | FPN parameters | evaluated rule-to-FPN transition embedding + controlled
thresholds in a layered FPN | (thresholds/weights) baseline comparison

ANFIS + FPN) — FPN

(with CF/TH)

bilistic baseline

Probabilistic FPN (reflec- | Rule base extracted by an | Extracted rules mapped | Yes  (real- | Yes (predic- | Adds ANFIS-learned rules + richer rule bound-
tivity prediction) [4] expert system (association | to FPN transitions with | time tion only) aries + full prediction—decision pipeline under
rules), CF/TH derived from | CF/TH prediction the same execution tool
conditional probability stated)
Probabilistic FPN (predic- | Probabilistic ~/  expert- | Rules mapped to two | Yes (real- | Yes (two- | Adds ANFIS(Sugeno) learning, automatic rule
tion + cleaning decision) system rule preparation (no | FPN expert systems (pre- | time stage derivation, and dynamic enrichment by adding
[8] neuro-fuzzy learning) diction and decision) cleaning pipeline) new transitions when rules are learned
decision
setting)
ANFIS / Sugeno neuro- | ANFIS learns Sugeno-type | Not FPN-based (stan- | Not No Adds formal FPN execution + CF/TH
fuzzy [5], [6] rule parameters and mem- | dalone inference model) evaluated as semantics + concurrent rule execution +
bership functions (hybrid a real-time prediction—decision
learning), supports online execution
updates in principle framework
Our approach (Sugeno- | ANFIS learning + proba- | ANFIS rules — FPR | Yes Yes Unified comparative tool, learned-rule em-

transitions

bedding/execution, supports online enrich-
ment by adding transitions as new rules are
learned

validate the proposed approach, we model a complete real-
time decision-making system that integrates expert reasoning,
dynamic data streams, and multi-layer fuzzy inference. The
modelling process relies on two distinct expert systems: 1) a
probabilistic expert system based on conditional probabilities,
and 2) a neuro-fuzzy expert system based on the ANFIS. Both
expert systems generate fuzzy rules, expressed as FPR, which
are then embedded into a unified multi-layer FPN architecture
for real-time execution. This shared tool enables a direct, rigor-
ous comparison of manually engineered probabilistic rules and
automatically learned ANFIS rules under identical operating
conditions.

Fig. 1 summarises the overall modelling workflow of the
real-time intelligent decision system. The diagram shows how
raw environmental data are progressively transformed into
actionable CDs by coupling the probabilistic and ANFIS-based
expert systems within a multi-layer FPN tool. The workflow
commences with continuous meteorological data from sensors
(direct normal irradiance (DNI), temperature, humidity, precip-
itation, and wind speed). The measurements are kept in an ac-
tive database. The noise reduction module removes inaccurate
readings and reconstructs missing values, producing consistent,
accurate data. In addition to this cleaned dataset, a Markov
Chain-based prediction block generates short-term predictions
for key environmental variables, enabling the system to predict
reflectivity degradation rather than simply responding to it.
Then, numerical sensor measurements and predicted values are
altered into linguistic variables via a fuzzification step by using
trapezoidal membership functions. This creates the fuzzy input
space needed by both expert systems. Herefrom, two paths
running together for rule generation are established:

e In the probabilistic pathway, fuzzy rules are also
introduced by abstracting away conditional probabil-
ity distributions and subjected to human evaluations.

Every rule will have a CF and a TH. To maintain inter-
pretability and consistency, only rules with CF > 0.5
and TH > 0.3 are kept.

e In the ANFIS pathway, we use Least Squares Es-
timation and Gradient Descent as hybrid learning
algorithms to automatically learn fuzzy IF-THEN
rules, membership functions, and associated param-
eters from historical meteorological and reflectivity
data. Every ANFIS rule has a confidence level defined
by its RMSE, and only high-confidence rules are
exported for reintegration.

All probabilistic and ANFIS rules are first written as
FPR and then encoded in the FPN. Places represent fuzzy
propositions with truth degrees (), while transitions represent
rules parameterised by CF and TH. Tokens carry truth values
through the net: a transition fires when antecedent places
satisfy TH constraints, and consequent places are updated.
This mechanism ensures transparent inference and consistent
uncertainty propagation. The decision system is implemented
as a two-layer FPN. Layer 1 predicts reflector reflectivity in
real time from meteorological inputs using rules generated
by the two expert methods. Layer 2 combines the predicted
reflectivity with real-time sensor data to infer the CD using
a separate rule set. Token propagation across both layers
supports dynamic tracking of reflectivity and estimation of
appropriate cleaning time. Overall, the methodology unifies
interpretable probabilistic rules with scalable ANFIS learning
within an executable FPN tool for real-time operation, and is
validated on an intelligent solar-collector CD system.

A. Data Preparation and Fuzzification

The data used in this study originates from five years
of meteorological observations collected at one-hour intervals
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Fig. 1. Crafting and deploying our real-time decision model: step-by-step guidance for seamless implementation.

from a solar power plant in Morocco. The dataset includes
five key environmental parameters-Direct Normal Irradiation
(DNI), Temperature (T), Humidity (H), Wind Speed (WS), and
Precipitation (P)-and one performance variable, Reflectivity
(R). To prepare the data:

1)  Data Cleaning: Outliers and erroneous readings (e.g.,
negative irradiance or reflectivity) are removed.

2)  Normalisation : Each parameter is normalised into the
range [0,1] to standardise the learning process.

3)  Fuzzification: Quantitative data are transformed into
linguistic variables (e.g., “Low,” “Medium,” “High”)
using trapezoidal membership functions. Each input
variable is divided into fuzzy intervals defined by TH
(a, b, c,d) describing the shape of each fuzzy set.

The trapezoidal membership function is defined mathemat-
ically as:

0, z < a,
T a<xz<b,
as(r) =<1, b<z<ec, (D
‘é:i, c<z<d,
0, x> d.

where «4(z) is the membership degree of element z in
the fuzzy set A.

The linguistic representation of variables ensures inter-
pretability and forms the foundation of the FPR used in both
expert systems.

B. Expert System Based on Conditional Probability

In the probabilistic expert system, fuzzy rules are generated
based on conditional probability relationships between input
and output variables. The probability of an event A given B
is expressed as:

P(ANB)
P(A|B) = ——— 2
(AI1B) = ~ 55 @
Using this concept, the CF for each rule is derived as:
P(R|d;)
F;, = 1, 3
¢ max(P(R)) )

The TH is set based on the frequency or confidence level
required for the rule to be considered valid:
N, valid

THl = )
Ntotal

“)

where N,4i:q 1S the number of successful occurrences satisfy-
ing the rule condition.

The resulting fuzzy rules are then represented in FPR
format and encoded into the FPN. This approach ensures
interpretability and transparency but lacks dynamic learning,
requiring manual updates as conditions change.

C. Expert System Based on ANFIS

ANFIS, introduced by Jang [5] and based on the Sugeno-
type model [6], merges the clarity of FL (interpretable IF-
THEN rules) with the adaptation of neural networks. This sys-
tem is crucial for generating rule-based, interpretable insights
in data-heavy, real-time environments, automatically tuning
both membership functions and rule parameters.

ANFIS employs a five-layer structure (see Fig. 2) based
on the first-order Sugeno fuzzy model.

A first-order Sugeno fuzzy rule is defined as: [31], [5]
If zis A; and y is B;, then f; =pix +qy+7r;  (5)

Where: x,y are inputs, A;, B; are fuzzy sets, and p;, g;, r; are
consequent parameters.

Each layer (see Fig. 2) performs a specific inference step
(311, [5], [6]:

1) Layer 1: Fuzzification (Antecedent Parameters) Cal-
culates the membership degree p4,(x) for input
in fuzzy set A;. Trapezoidal functions, defined by
parameters a, b, ¢, d, are common [see Fig. 2]:

Ol,i = HA; (93) (6)

_ d—
w(x,a,b, c,d) = max (0, min (H, 1, di))
7)

2)  Layer 2: Rule Firing Strength Computes the strength
w; of the rule using the product operator:
Oz = wi = pa,(x) - uB, (y) (8)

3) Layer 3: Normalization Normalizes the firing strength
to ensure proportional rule contribution (> @, = 1):

©))

Wi

Zzlcvzl Wk
4)  Layer 4: Defuzzification (Partial Output) Calculates

the weighted output of each rule using the normalised
strength @; and the Sugeno function f;:

Oy =wifi = wi(pix + qiy +13) (10

Oz =w; =
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The linear output can be expressed as:
[i=Ci 2 (11

where C; = [p;, ¢i,7i] and Z = [z,y, 1].

5) Layer 5: Aggregation (Final Output) Sums all
weighted outputs to produce the final crisp system
output O:

N
O5:=0=> &f; (12)
i=1

ANFIS training relies on a hybrid algorithm combining
LSE and Gradient Descent [47]. The objective is to minimize
the total error E' between the predicted output O and the actual
target 7.

The total squared error across M data points is:

11%

E= 5};(7;—(%)2 (13)

The hybrid training algorithm has two primary phases:

e Forward Pass (LSE): Input propagates forward. C;
(consequent, linear parameters) are optimized using
Least Squares Estimation to minimize error.

e  Backward Pass (Gradient Descent): Error propagates
backward. a,b,c,d (premise, nonlinear parameters)
are optimized using the Gradient Descent method to
reduce the error gradient.

This parallel approach ensures efficiency and scalability, man-
aging large datasets effectively [48].

The structured process for building an ANFIS expert sys-
tem involves:

1) Data Collection and Preprocessing: Compile high-
quality, preprocessed data.

2)  ANFIS Design: Establish input-output associations
and select appropriate membership functions.

3) Training ANFIS: Execute the hybrid algorithm to
optimise all parameters.

4)  Rule Extraction: Generate and prune fuzzy rules from
the converged model [49]. Example rule:
If Speed is Medium and Load is Normal, then Fuel
Consumption

f=0.6z+ 0.4y + 1.2 (14)

5)  System Implementation: Integrate rules into the infer-
ence engine. Validate performance using metrics like
RMSE.

D. FPN Representation of FPR in Knowledge Base Construc-
tion

The fuzzy knowledge base is represented through FPR,
which encode expert knowledge or learned relationships be-
tween input and output variables. Each rule follows the general
structure:

Ri . IF djl /\dj2 VA '/\djm THEN dk (CF = Wi, TH = )\Z),
5)
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where:
e dj;,...,d; are fuzzy antecedent propositions (in-
pUtS)’

ey is the fuzzy consequent proposition (output),

e C(CF = yu; is the CF of the rule, representing its
reliability,

e TH =), is the activation TH required for the rule to
fire.

The firing condition for each rule is defined by:

e = min(y;,, ..., Yj5,.) X ta, if min(y;,, ..., ¥5.) = A,
k 0, otherwise.
(16)

The complete fuzzy rule base R is therefore a collection
of all valid rules:

R ={R1,Ry,..., Ry} (17)

E. Formal Definition of Fuzzy Petri Net

An FPN is a bipartite-directed graph with two types of
nodes: places and transitions. Circles represent places, and
bars represent transitions (see Fig. 3). A token with a truth
value between zero and one may or may not be present in
each place in an FPN. A CF value between zero and one is
assigned to each transition in an FPN. Directed arcs represent
the relationships between places and transitions in an FPN.
A collection of eight tuples can define a generalised FPN [1]
structure

Fuzzy Petri Net = (P, T, D, I, O, f, o, 8) (18)
Where

P = {p1, p2, ..., pn} denotes a finite set of places,
represented by circles and corresponding to the propositions
of FPR (see Fig. 3). T = {t1, ta, ..., tm} denotes a finite
set of transitions, represented by bars and corresponding to the
execution of FPR (see Fig. 3). D ={d;, da, ..., d,} denotes a
finite set of propositions of FPR which may contain some fuzzy
linguistic variables such as “high,” “low,” “hot,” etc. I: T" —
P> is the input function, a mapping from transitions to bags
of places, represented by arcs directed from proposition (P)
to rules (T). O: T' — P* is the output function, a mapping
from transitions to bags of places, represented by arcs directed
from the rule (T) to propositions (P). f : T — [0, 1] is an
association function, a mapping from transitions to real values
between zero and one, f = p1, 2, ..., 4; Where p; € [0,1]
denotes (CF = p;) of rules R;,aa = a1, 9, ..., . @ : P —>
[0, 1] is an association function, a mapping from places to real
values between zero and one, a = oy, aa, ..., a,, Where a; €
[0,1] denotes the degree of truth of propositions represented
by the token in a place. 8: P — D is an association function,
a bijective mapping from places to a set of propositions.

In an FPN, if p; € I(¢;), a directed arc aj; exists from
the place p; to the transition ¢;. If p;, € O(%;), there exists a
directed arc a;; from the transition ¢; to the place py.The CF
is a real value u; of a rule associated with its corresponding
transition if f(¢;) = p; where u; € [0, 1].The place p is said
to be related to the proposition d if 8(p;) = d;, where d; € D.
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Fig. 2. Overall workflow of ANFIS-based expert systems integrated into a multi-layer FPN.

A marked FPN (see Fig. 1) is one in which a labeled dot
represents some tokens in some places, a labeled dot represents
the token in place p;, and the token value in a place p; € P, is
denoted by a(p;), where a(p;) € [0,1]. if a(p;) = y;, where
y; € 0,1] and S(p;) = d;, then we can see that proposition d;
has a degree of truth of y;. To reinforce the evolution capacity
of our model, we can improve it by including a function Th =
AL, Az, ...\, where A, € [0, 1] denotes the TH of transitions.
When the values of tokens a(p;) in all input places p; € I(t;)
of the transition are greater than the TH a(p;) > A, the
transition ¢; is enabled and can be fired.

FE A Multi-layer Approach to Dynamic Prediction and
Decision-making

When «(p;) > TH, the transition is active, revealing a
procedural adherence, identified adequately in our manuscript’s
Section III-D, where we present a hierarchical structure of
the functionality of our system, emphasising the need for
maintaining temporal constraints to prevent both computational
and system-wide failures. FPN was selected because it com-
prises a rule-based component and readily supports simulation
of real-time system dynamics. The truth-degree tokens are
calibrated using data from a model’s fuzzification system, with
the twofold dependence on CF for concurrent FL. and PN
calculation for real-time prediction highlighted. This feature
of our system, further illustrated with a real-life example in
a conference publication [4], [8], demonstrates our approach’s
ability to forecast R, an important variable in renewable energy
applications. In the construction of our two-layer predictive CD
system, rigorous validation has been implemented to ensure
that the model is robust and effective. As is often the case with
machine learning model validation, 30% of the input is used to
validate that the system’s predictions and decisions stem from
a reliable empirical base. This phase of validation is conducted
on the remaining 70% of the initial dataset to ensure the dataset
is valid and deployable for the model. In a post-validation
version of the algorithm, based on the model’s successful
validation, specific data-collection and analysis intervals are
determined. We adopt a Markov Chain probability model to
predict new value-generating statistics to derive information for
hourly CD-making (see Fig. 1). This methodology maintains
a rigorous system to facilitate the execution of the entire

model, from initial data processing to final decision-making
and the visualisation of outputs in a structured manner. At this
stage, every hour, a system performs a detailed computational
analysis. The first step is to compute the average of each CD
fuzzy interval, since the goal is to find the interval with the
highest mean. The system’s method approaches its goal by
defining the interval’s mean, which is then selected as the end
case. For example, once the system has been running for a
specific period and has been assessing data, like 24 hours, it
makes one of its last adjustments to ensure that at least that
interval has the highest average. This approach is heavily con-
ditioned by predictive analytics. It means predicting forecasts
at a scheduled time frame - typically 24 to 48 hours ahead
to keep them in tip-top condition, such as maintaining mirrors
well-kept after cleaning jobs. So, the system aims to forecast
outcomes a day or two in advance, with a final decision within
two days. It will allow experts to make rational, timely, and
practical decisions based on this predictive process, leveraging
insights from the entire system and its comprehensive analyses
and forecasting. One of the aspects that sets our model apart
is its ability to automatically extract outputs and present them,
enabling real-time performance measurement with dynamic
feedback.

G. Algorithmic Workflow

Algorithm 1 summarises the real-time inference process
implemented by the FPN expert system. The system operates
continuously, starting with the provision of real-time mete-
orological data (DNI, T, H,W S, P), which is immediately
fuzzified to update the o degrees of truth at the FPN input
locations. This step directly connects the current environmental
conditions to the underlying fuzzy rule base. Central to this
is the FPN’s iterative firing cycle. The system scans for
transitions ¢; in every cycle and selects transitions whose input
places in question have fuzzy markings « at least as large
as their respective T'H. Transitions are designated as enabled
when they are executed. When an enabled switch fires, the
output truth degree (y,,:) is determined by applying the min
operator to the input truth degrees and multiplying by the rule’s
CF. The value achieved is then propagated to the output points
by the max operator to capture the contribution from multiple
rules, and the confidence of each conclusion is updated at each
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Fig. 3. A model of a solar collector’s cleaning system using FPN grids to provide real-time CDs.

moment. After that, no further transitions can be tried. At the
final steps of each cycle of this mechanism, the fuzzy marking
of the relevant output places is derived from this number to
obtain the C'D. In this way, when the crisp control signal is
needed to trigger or delay a cleaning action, the fuzzy output is
defuzzified to reflect the situation. The resulting decision can
be logged, and the process resumes with the next wave of real-
time data. The FPN expert system’s decision-making model is
dynamic and adaptive, responding to fluctuating environmental
conditions as they change.

IV. RESULTS

In this section, the experimental validation of our proposed
hybrid expert system is presented, along with an assessment of
the potential value of the ANFIS-based fuzzy rule generation
methodology compared with conventional probabilistic FL.. We
aim to demonstrate the superiority of the ANFIS-augmented
model in terms of prediction accuracy, rule generation ca-
pabilities, and real-time inference efficiency. All simulations
were performed with five years of real meteorological data
from a solar power plant in Morocco. The data was split into
70% for training and 30% for validation. To ensure system
responsiveness in real-time operation, the model was devel-
oped using a multithreaded architecture. Every fuzzy rule, such
as one formed by probabilistic estimation or ANFIS training,
is passed through an independent thread to the FPN engine.
This architecture allows rules to be executed concurrently and

also speeds up the inference phase, which is very important
when dealing with large rule sets, such as those generated by
ANFIS. Simulations were created to mimic natural operational
scenarios comprising severe weather variability (temperature,
wind speed, humidity), variable soiling conditions, and erratic
sensor noise. Two expert system configurations were tested
and benchmarked:

e  Probabilistic FPN (Baseline): A rule base consisting
of 43 FPR, derived from expert knowledge and con-
ditional probability. Rules are associated with (C'F' >
0.5) and (TH > 0.3).

e  ANFIS-Enhanced Fuzzy Expert System (Proposed):
A data-driven expert system based on the ANFIS.
ANFIS was trained on historical input-output data
pairs to automatically generate 125 rules. Each rule
is formulated in the Sugeno-style and converted into
an FPN-compatible FPR. CFs are calculated based on

RMSE: CF = —gss-

The comparison was made over two system layers: reflec-
tivity prediction and final CD generation.

A. Performance of Reflectivity Prediction Models

Table II compares three models: probabilistic FPN, classi-
cal FL, and ANFIS-based fuzzy inference, based on prediction
accuracy and RMSE for solar reflectivity.
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Algorithm 1 Real-Time Inference with FPN-based Expert System

1: Input: Real-time meteorological data (DNI, T, H,W S, P)

2: Initialize: Fuzzy rule base R, FPN structure (P,T,D, 1,0, f,«, 3)

3: while System active do

4: Acquire and preprocess data

5: Fuzzify inputs — update a(p;) for all input places

6: repeat

7: Identify enabled transitions {¢; | Vp; € I(t;), a(p;) > TH;}
8: for each enabled t; do

9: Compute yo,r = min(a(p;)) x CF;

10: Update output places: a(px) = max(a(pk), Yout)
11: end for

12: until No transition can fire

13: Aggregate outputs at Layer 2 — compute C'D

14: Defuzzify output if crisp value is required

15: Log and display results
16: end while

TABLE II. COMPARISON OF REFLECTIVITY PREDICTION MODELS

(LAYER 1)
Model Rule Count Validation Accuracy (%) RMSE
Probabilistic FPN 43 85 4.82
Classical FL 30 60 6.15
ANFIS-Based FL 125 93 2.57

The ANFIS-based model clearly outperformed the oth-
ers, achieving the highest accuracy and the lowest RMSE.
This result validates the effectiveness of ANFIS in learning
complex, nonlinear dependencies between environmental con-
ditions (temperature, wind speed, humidity, and DNI) and
reflectivity levels. The reduction in RMSE indicates a more
precise reflectivity estimate, which is critical for determining
the optimal timing for solar panel cleaning.

B. Cleaning Decision Validation (Layer 2)

The second layer of the system uses this to infer the best
cleaning solution based on real-time sensor output and the
predicted reflectivity of Layer 1. Evaluation results for the CD
layer are summarised in Table III, which include precision, re-
call, F1-score, and RMSE. The ANFIS-enhanced classification
model achieves significant gains across all metrics. Precision
and recall scores show that the model can distinguish between
fuzzy categories (Low, Moderate, High, Very High cleaning
priority). In addition, the lower RMSE indicates that ANFIS-
based decision-making yields results closer to the ground truth.

V. DISCUSSION

The results indicated that the ANFIS model can better
fit the nonlinear relationship between meteorological variables
and reflectivity, achieving higher accuracy and lower RMSE.
Improvements to the CDs made at Layer 1, based on reflec-
tivity predictions, enable cleaner cleaning at Layer 2 with
greater reliability and less uncertainty about when and how
the changes were applied. ANFIS has a cleaner, more adaptive
decision boundary, as it learned all membership functions
and Sugeno-type rules from the data, compared to manually
decided or probabilistic ones. While the system is data-driven,

it is interpretable: ANFIS produces well-defined IF-THEN
rules. In contrast, the rules of the FPN remain interpretable
by explicitly stating what information is accurate and which
firing transition instructions to execute. This enables real-time
responsiveness through concurrent execution and parallel rule
evaluation, but requires more computation for larger rule bases.

The main comparative observations are as follows:

e Rule Base Expansion: A larger ANFIS produced finer-
grained decision boundaries (125 rule-base vs. 43 rule-
base), allowing us to consider more context-sensitive
cleaning strategies.

e  Higher Prediction Accuracy: The RMSE for the re-
flectivity prediction was reduced by almost 50%, and
cleaner choices were more secure and resources allo-
cated effectively.

e  Scalability and Automation: In contrast to the static
and expert-centric probabilistic rule base, the ANFIS
model automatically learns new data through retrain-
ing to scale up effectively in evolving environments.

e Transparency and Interpretability: FPN architecture
enables traceability of reasoning paths, while AN-
FIS supports flexibility, representing a complementary
hybrid approach that provides a good balance of an
interpretable and learned model.

e Real-Time Efficiency: The implementation of a mul-
tithreaded approach to generate the rules will help us
optimise response times, even for a massive rule base,
as this is an absolute necessity for a deployed system.

Therefore, pruning, merging, or prioritising may be re-
quired to prevent latencies. A hybrid approach that finds
a balance between interpretability, scalability, and learning
ability. Such rules are transparent, and the ANFIS is agile,
providing better predictive capabilities. Such an approach
could be extended to other real-time expert solutions, where
transparency and adaptability are crucial, such as fault diag-
nosis or predictive maintenance. The need, however, arises
for more validation through various datasets and operating
conditions. Further work on explicit latency benchmarking,
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TABLE III. VALIDATION METRICS FOR CLEANING DECISION OUTPUT

Model Accuracy (%) Precision Avg. (%) Recall Avg. (%) F1 Score (%) RMSE
Probabilistic FPN 85 83 84 83 451
ANFIS-Fuzzy System 93 90 91 90 2.57
scalability testing under varied rule-base sizes, and long-term [5] J-S. R. Jang, “Anfis: Adaptive-network-based fuzzy inference

retraining analysis to tackle concept drift is needed.

VI. CONCLUSION

This work proposed a new methodology for modelling real-
time intelligent systems by integrating FPN with data-driven
rule learning via ANFIS. The primary methodological contri-
bution, apart from the reported performance improvements, is
a single model and execution scheme that integrates learned
Sugeno-type fuzzy rules with an interpretable FPN reasoning
engine, enabling concurrent, traceable inference across two
layers (prediction and decision). From a functional stand-
point, this paper illustrates how symbolic expert knowledge
(FPR with CF/TH semantics) and data-driven learning can
be combined into a single executable expert system that
remains transparent and suitable for real-time operation. For
this purpose, the proposed approach was tested in a real-time
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