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Abstract—Time-optimal trajectory planning for shipboard
welding robotic arms is a challenging problem due to strong
kinematic constraints and the nonlinear coupling between trajec-
tory parameters and execution time. Although various intelligent
optimization algorithms have been combined with robotic arm
trajectory planning in existing studies, most approaches primarily
focus on algorithmic performance improvement and lack a clear
formulation of time optimization within polynomial trajectory
planning.To address this gap, this study proposes an Improved
Whale Optimization Algorithm (IWOA) based on the traditional
quintic polynomial trajectory planning method. In the proposed
method, the trajectory execution time is explicitly formulated
as the optimization objective under kinematic constraints, and
the IWOA is designed to stably and efficiently search the time
parameter space of the quintic polynomial trajectory. Specifically,
chaotic sequence initialization is employed to enhance population
distribution, an adaptive weight mechanism is introduced to
balance global exploration and local exploitation, and a hybrid co-
optimization strategy combining differential evolution and genetic
operators is integrated to improve robustness and convergence
stability. Simulation experiments are conducted to evaluate the ef-
fectiveness of the proposed algorithms. The results demonstrated
that, while satisfying robotic arms kinematic constraints, the
proposed method achieves an 18.3% reduction in operating time
compared with the unoptimized trajectory. These results indicate
that the proposed approach provides a systematic and effective
solution for time-efficient trajectory planning of shipboard weld-
ing robotic arms.

Keywords—Shipboard welding robotic arm; quintic polynomial;
Improved Whale Optimization Algorithm; time-optimal trajectory
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I. INTRODUCTION

In recent years, with the rapid development of China ship-
building industry and the increasing complexity of ship hull
structures, higher requirements have been imposed on welding
quality, efficiency, and consistency during ship construction
[1]. Ship welding tasks are typically characterized by large-
scale structures, complex curved surfaces, harsh working envi-
ronments, and long continuous weld seams, which pose signifi-
cant challenges to traditional manual and semi-automatic weld-
ing methods [2]. These conventional approaches are increas-
ingly unable to satisfy the demands for high efficiency, pre-
cision, and repeatability required in modern shipbuilding. The
application of robotic arm welding technology has emerged as
an effective solution to these challenges. Robotic welding sys-
tems can significantly improve welding stability, reduce labor

intensity, and ensure consistent weld quality, particularly in
complex and hazardous environments [3]. With advancements
in sensing, control, and intelligent planning technologies,
robotic arms have been widely adopted in various industrial
manufacturing fields due to their flexibility, efficiency, and
high positioning accuracy [4], [5]. Consequently, shipboard
welding robotic arms have attracted extensive attention from
researchers and industrial practitioners worldwide, leading to
notable progress in both system design and motion planning
methods [6]. In terms of system development and application,
Zhang et al. [7] proposed a magnetic tracked mobile robot for
welding vertical steel ship hulls, enabling stable adhesion and
motion on large steel surfaces. Liu et al. [8] developed a trajec-
tory and velocity planning method for complex curved-surface
welding tasks involving spherical–pipe intersection structures,
achieving smooth path transitions and adaptive speed control
to improve weld formation quality. Liang et al. [9] designed an
autonomous mobile welding robot capable of identifying dis-
continuous weld seams caused by drainage holes in ship cabins
and performing autonomous welding operations. These studies
demonstrate the feasibility and effectiveness of robotic welding
systems in shipbuilding environments. However, during ship
construction, welding tasks often involve plates, pipes, and
complex spatial weld seams, which require not only accurate
path planning but also high operational efficiency [10]. To
further enhance productivity, time-optimal trajectory planning
for welding robotic arms has become a critical research topic
[11].

Current studies on robotic arm trajectory planning pri-
marily focus on optimizing performance indices such as op-
erating time, energy consumption, smoothness, and dynamic
impact [12]. Among these objectives, minimizing execution
time while satisfying kinematic and dynamic constraints is
of particular importance for improving industrial production
efficiency.Traditional trajectory planning methods based on
polynomial interpolation typically rely on predefined segment
times and path nodes [13]. Although these methods can
guarantee trajectory continuity and smoothness, they often lack
flexibility and are difficult to achieve true time-optimal perfor-
mance under complex constraints. In recent years, intelligent
optimization algorithms have been increasingly introduced into
robotic arm trajectory time optimization, forming an important
research direction in motion planning [14]. Commonly used
intelligent optimization methods include ant colony optimiza-
tion [15], sparrow search algorithm [16], particle swarm opti-
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mization [17], and whale optimization algorithm [18]. These
algorithms have demonstrated certain advantages in improving
robotic arm operating efficiency; however, they still suffer from
inherent limitations such as premature convergence, suscepti-
bility to local optima, and insufficient global search capability,
which ultimately restrict their optimization performance [19].

Inspired by the foraging behavior of humpback whales
in bubble webs, the Whale Optimization Algorithm (WOA)
has been widely applied to various engineering optimization
problems due to its advantages such as simple structure, few
control parameters, and fast convergence speed [20]. However,
similar to other swarm intelligence algorithms, the standard
Whale Optimization Algorithm has inherent defects, including
rapid loss of population diversity and easy premature con-
vergence to local optima [21]. These defects are particularly
prominent when dealing with high-dimensional, nonlinear,
and constrained optimization problems [22]. Although existing
research has attempted to alleviate the above problems through
isolated strategies such as parameter tuning and fusion with
other metaheuristic operators, such improvements are mostly
designed for general test functions. For scenarios with strict
kinematic constraints and industrial efficiency requirements,
such as time-optimal trajectory planning for welding robotic
arms, its direct applicability is still very limited [23].

To address these challenges, this study proposes an Im-
proved Whale Optimization Algorithm (IWOA) specifically
tailored for the time-optimal trajectory planning problem of
welding robotic arms. Unlike existing studies that apply
generic hybrid optimization strategies, the proposed IWOA
introduces a problem-oriented improvement framework that
integrates chaotic initialization, adaptive parameter adjustment,
and a coordinated hybrid mechanism combining differential
evolution and genetic operators. These strategies are not simply
combined, but are systematically designed to address distinct
deficiencies of the standard WOA at different stages of the
optimization process: chaotic initialization enhances early-
stage population diversity, adaptive parameter adjustment dy-
namically balances global exploration and local exploitation,
and the hybrid evolutionary operators improve convergence
robustness in the later optimization phase. Comparative simu-
lations conducted in MATLAB demonstrate that, under iden-
tical constraints, the proposed IWOA achieves superior time-
optimal performance compared to the standard WOA, effec-
tively reducing the execution time of robotic arm trajectories
and validating its applicability to industrial welding scenarios.

II. JOINT TRAJECTORY PLANNING

A. Trajectory Interpolation Based on 5th-order Polynomials

The trajectory planning of robotic arms is generally divided
into two categories: joint space method and Cartesian space
method [24].The joint space method directly interpolates the
angles of each joint, which is simple to calculate and easily
satisfies joint constraints. The Cartesian space method first
plans the pose path of the end effector and then solves the
inverse kinematics to obtain the joint motion, resulting in high
path accuracy. Ship welding tasks require high precision in
motion paths; therefore, this study employs the Cartesian space
trajectory planning method. This method can control the mo-
tion trajectory of the robotic arm’s end effector, achieving the

operational objective along a specified path—a method that is
difficult to replace using joint space planning [25].Furthermore,
this study introduces a fifth-order polynomial interpolation
function. By performing fifth-order polynomial fitting on the
position, velocity, and acceleration of the starting and ending
points, the continuity and smoothness of the joint motion
process are ensured, effectively avoiding abrupt changes in
velocity and acceleration. The constraints of the fifth-order
polynomial interpolation include the starting and ending an-
gles, angular velocities, and angular accelerations, requiring
the determination of six coefficients. The joint variables are
assumed to satisfy Eq. (1):

θi(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

θ̇i(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4

θ̈i(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3

(1)

In Eq. (1), i = 1, 2, 3, . . . , n represents the n joints of
the robotic arm; t is the running time of each joint; aj
are the interpolation coefficients of each joint; θi(t), θ̇i(t),
and θ̈i(t) denote the angular position, angular velocity, and
angular acceleration of the robotic arm joint, respectively. The
constraints for the fifth-degree polynomial are:

{
θ(t0) = θ0
θ(tf ) = θf{
θ̇(t0) = 0

θ̇(tf ) = 0{
θ̈(t0) = 0

θ̈(tf ) = 0

(2)

In Eq. (2), t0 and tf represent the start time and end time of
the robotic arm operation, respectively, and θ0 and θf represent
the start angle and end angle, respectively. From Eq. (1) and
Eq. (2), the corresponding kinematic equations for each joint
can be derived:

θ0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 + a4t

4
0 + a5t

5
0

v0 = a1 + 2a2t0 + 3a3t
2
0 + 4a4t

3
0 + 5a5t

4
0

α0 = 2a2 + 6a3t0 + 12a4t
2
0 + 20a5t

3
0

θf = a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f

vf = a1 + 2a2tf + 3a3t
2
f + 4a4t

3
f + 5a5t

4
f

αf = 2a2 + 6a3tf + 12a4t
2
f + 20a5t

3
f

(3)

Then, substitute the known θ0, θf , v0, vf , α0, and αf

into Eq. (3) to obtain the parameter matrix of the kinematic
equation for each joint:

a0
a1
a2
a3
a4
a5

 =


1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f



−1 
θ0
v0
α0

θf
vf
αf

 (4)

By substituting the solved coefficient matrix from Eq. (4)
into Eq. (1), the spatial trajectory function of the robotic arm
joint is obtained.
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B. Objective Function and Constraint Conditions

To meet the requirement of improving the operation effi-
ciency of the welding robotic arm in the ship welding process,
this study takes the motion cycle of the robotic arm reaching
each target point as the optimization objective. Then, the
objective function can be expressed as Eq. (5):

T =

n−1∑
i=1

Ti =

n−1∑
i=1

(ti+1 − ti) (5)

In Eq. (5), i = 1, 2, . . . , n represents n path points, and
T represents the running time of the robotic arm end on each
segment of the path.

Since the motion constraints in the joint space of the robotic
arm are strictly satisfied during its movement, the problem
of optimizing the running time of the robotic arm can be
formulated as Eq. (6):

minT = T1 + T2 + · · ·+ Tn−1 (6)

Since the position, velocity, and acceleration of each joint
of the robotic arm cannot exceed the rated limits of the
motor and reducer during movement, it is necessary to impose
physical limit constraints on the robotic arm. The constraint
conditions are shown in Eq. (7):

|θi| ≤ qimax

|θ̇i| ≤ vimax

|θ̈i| ≤ aimax

(i = 1, 2, . . . , n) (7)

θi, θ̇i, and θ̈i represent the angular position, angular ve-
locity, and angular acceleration of the i-th joint, respectively;
qimax, vimax, and aimax represent the rated upper limits of the
angular position, angular velocity, and angular acceleration of
the corresponding joint, respectively; n is the total number of
joints of the robotic arm.

III. ALGORITHM PRINCIPLE

A. Original Whale Optimization Algorithm

The core of the Whale Optimization Algorithm is to imitate
three behaviors of whales during predation.

Encircling prey:

D⃗ =
∣∣∣C⃗ · X⃗∗(t)− X⃗(t)

∣∣∣ (8)

X⃗(t+ 1) = X⃗∗(t)− A⃗ · D⃗ (9)

In Eq. (8) and Eq. (9), X⃗∗(t) represents the current optimal
position, X⃗(t) is the current position of the whale, D⃗ is the
distance between the current position and the optimal position,
and A⃗ and C⃗ are system vectors that control the convergence
and search range.

Bubble-net attack:

X⃗(t+ 1) = D⃗′ · ebl · cos(2πl) + X⃗∗(t) (10)

In Eq. (10), X⃗(t+ 1) represents the position vector of the
individual at generation t + 1; X⃗∗(t) represents the position

vector of the optimal individual at generation t; D⃗′ = |X⃗∗(t)−
X⃗(t)| represents the distance between the current individual
and the optimal individual; b is a constant that controls the
shape of the logarithmic spiral; l is a random number within
the interval [−1, 1].

Searching for prey:

D⃗ =
∣∣∣C⃗ · X⃗rand − X⃗(t)

∣∣∣ (11)

X⃗(t+ 1) = X⃗rand − A⃗ · D⃗ (12)

As shown in Eq. (11) and Eq. (12), X⃗rand is the position of
a randomly selected individual in the population. A⃗ = 2a·r−a,
where a decreases linearly from 2 to 0 during the iteration
process. C⃗ = 2 ·r, where r is a random number in the interval
[0, 1]. When |A⃗| < 1: the whale tends to the current optimal
solution; when |A⃗| ≥ 1: the whale randomly searches for other
prey.

B. Improvement Mechanism

Due to the shortcomings of the WOA, such as being prone
to premature convergence and falling into local optima, as well
as strong randomness leading to unstable results, this study
proposes the following improvement strategies to enhance the
performance of the original Whale Optimization Algorithm in
robotic arm trajectory planning:

1) Chaotic initialization: First, the Tent chaotic map is
used to replace random initialization to avoid the problem of
uneven initial distribution of the population.

xk+1 =


xk

0.5
, 0 ≤ xk < 0.5

1− xk

0.5
, 0.5 ≤ xk ≤ 1

(13)

As shown in Eq. (13), the Tent chaotic map has ergodicity
and pseudo-randomness, which can ensure that individuals are
evenly distributed in the search space, thereby improving the
diversity of the initial population. In addition, to enhance the
local exploitation ability, a small chaotic disturbance is applied
to the current global optimal solution during the iteration, and
the disturbance amplitude is gradually reduced to prevent the
algorithm from stagnating at a local optimum.

2) Adaptive parameter adjustment: To address the limi-
tation of linear decrement of parameters in the Whale Op-
timization Algorithm, this study designs an adaptive control
mechanism based on nonlinear functions and cosine functions:

at = 2

(
1−

(
t

T

)2
)

(14)

at is the control parameter at the t-th iteration, where t is
the current number of iterations and T is the maximum number
of iterations. Eq. (14) allows the algorithm to maintain stronger
exploration ability in the early stage and gradually enhance
exploitation in the later stage.
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The spiral control factor bt is defined as Eq. (15):

bt = 1 + 1.5

(
1− t

T

)
(15)

which dynamically adjusts the spiral search behavior during
the optimization process. In addition, the concept probability
parameter pt, which controls the selection between encircling
search and spiral search, is defined as Eq. (16):

pt = 0.5 + 0.5 cos

(
π
t

T

)
(16)

Eq. (16) controls the selection probability of encircling
search and spiral search, achieving a dynamic balance between
exploration and exploitation.

3) Integration of differential evolution and genetic oper-
ators: To enhance the ability to jump out of local optima,
this study introduces the crossover operators of differential
evolution and genetic algorithm into the Whale Optimization
Algorithm after its iterative update.

Differential evolution and genetic operator fusion:

The rand/1/bin strategy is adopted to generate candidate
individuals, improving the directionality of the search. The
mathematical model is as follows:

Vi = Xr1 + F · (Xr2 −Xr3) (17)

Ui,j =

{
Vi,j , rand ≤ CR

Xi,j , otherwise
(18)

Eq. (17) and Eq. (18) enhance the directional search ability
of the population. Among them, Vi represents the mutation
vector of the i-th candidate individual, i.e., the newly generated
candidate solution. Xr1, Xr2, Xr3: three different individuals
randomly selected from the population, and different from the
current individual Xi. F is the scaling factor, usually ranging
from 0.4 to 0.90, and CR is the crossover probability, usually
ranging from 0.6 to 0.95.

In addition to DE operators, arithmetic crossover and
Gaussian mutation from genetic algorithms are introduced to
improve local search capability. The arithmetic crossover is
defined as Eq. (19):

X ′ = αXi + (1− α)Xj , α ∈ [0, 1] (19)

X ′ is a new candidate solution generated by arithmetic
crossover, and α, as a crossover coefficient, is used to control
the contribution proportion of the two parent individuals Xi

and Xj to the new individual X ′. Xi and Xj are the two
original candidate solutions involved in the crossover. Eq. (19)
enables the fusion of two parent individuals to generate a
new candidate solution through linear interpolation, thereby
increasing the diversity of the population and providing a
foundation for subsequent improvement of local search ability.

C. Steps of the Improved Whale Optimization Algorithm

1) Initialize the number of whales and define relevant
parameters.

2) Use the Tent chaotic map to generate the initial popula-
tion, replacing the traditional random initialization to improve
population diversity and global coverage capability.

3) During the iteration process, adaptively and nonlinearly
adjust parameters a, b, and p to ensure exploration capability
in the early stage and enhance convergence in the later stage.

4) Update the position: update the whale position according
to Eq. (9) and Eq. (10) to approach the optimal solution.
Perform spiral update according to Eq. (11), and then conduct
global random search according to Eq. (12) and Eq. (13).

5) After the update, apply evolutionary operators to some
individuals: use the rand/1/bin strategy for mutation and
crossover to generate candidate solutions.

6) Perform arithmetic crossover and Gaussian perturbation
on some individuals to enhance local exploitation capability.

7) Update the global optimal solution and fitness. If the
maximum number of iterations T is reached, terminate the
loop and output the optimal solution; otherwise, return to step
3 to continue the search.

The algorithm flowchart is shown in Fig. 1.

Start

Initialize the number of whales

Use Tent chaos to generate the 
initial solutions of the population

Update the position according to Equations 
(8)-(12) to approach the optimal solution

Perform adaptive nonlinear 
adjustment of parameters

Use the rand/1/bin strategy for differential 
evolution to generate candidate individuals

Randomly select individuals for arithmetic 
crossover to generate new candidate 

solutions

Update the global optimal solution 
and fitness

Is the maximum number of 
iterations reached?

Output the optimal solution

Yes

No

Start

Initialize the number of whales

Use Tent chaos to generate the 
initial solutions of the population

Update the position according to Equations 
(8)-(12) to approach the optimal solution

Perform adaptive nonlinear 
adjustment of parameters

Use the rand/1/bin strategy for differential 
evolution to generate candidate individuals

Randomly select individuals for arithmetic 
crossover to generate new candidate 

solutions

Update the global optimal solution 
and fitness

Is the maximum number of 
iterations reached?

Output the optimal solution

Yes

No

Fig. 1. Algorithm flowchart.

D. Validation of Algorithm Effectiveness

In this study, four classic CEC test functions are selected to
verify the effectiveness of the Improved Whale Optimization
Algorithm [26]: Sphere (F1), Rosenbrock (F5), Ackley (F10),
and Generalized (F12) functions are used for test evaluation.
These functions cover both unimodal and multimodal cases,
and can evaluate the basic convergence performance, local
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(a) Sphere function test chart. (b) Rosenbrock function test chart.

(c) Ackley function test chart. (d) Generalized function test chart.

Fig. 2. Comparison chart of different benchmark function algorithm tests.

search ability and global search ability of the algorithm. The
formulas of the selected test functions are shown in Table I.

In this algorithm validation, the IWOA is compared with
the WOA, Dung Beetle Optimization algorithm (DBO), Par-
ticle Swarm Optimization algorithm (PSO), and Grey Wolf
Optimization algorithm (GWO). The experimental parameters
are set as follows: the population size is 50, the maximum
number of iterations is 500, and the optimization dimension is
40. Each algorithm is run 30 times and the average results are
taken to reduce the impact of randomness on the experimental
results. The test results of each test function are shown in
Table II.

It can be seen from Table II that IWOA exhibits excellent
global optimization and convergence performance on all test
functions. The best value is close to or reaches 0, the mean
value is stable and the lowest, the standard deviation is the
smallest, the result fluctuation is the least, and the conver-
gence stability is the best. Fig. 2 shows the fitness iteration
convergence diagram of each function.

The Sphere function is used to test the basic convergence
performance of the algorithm. As can be seen from Fig. 2a,
IWOA converges faster in the early stage and finally reaches
the optimal value of 0, indicating that it has good global con-
vergence ability. The Rosenbrock function is used to evaluate
the local search performance. Fig. 2b shows that the algorithm
decreases rapidly in the early stage, which benefits from the
combination of Kent chaotic mapping and adaptive parameters.
In contrast, the remaining algorithms converge slowly and are
prone to falling into local optima. The Ackley function is used
to verify the ability to escape from local optima. Fig. 2c shows
that IWOA can quickly get rid of local traps and converge
stably, while other algorithms are prone to stagnation. The
Generalized function is used to measure the balance between
global and local search. Fig. 2d shows that IWOA converges

Fig. 3. Robotic arm model.

smoothly without premature convergence, showing stronger
stability and global optimization performance.

IV. SIMULATION AND ANALYSIS

A. Robotic Arm Model

To verify the effectiveness of the algorithm, this study takes
the R-2000iC/165F robotic arm of the industrial robot FANUC
as the research object. First, the D-H modeling method is used
to construct the robotic arm model, as shown in Fig. 3. The
model includes a base and six robotic arm joints. The relevant
parameters of the robotic arm model are shown in Table III,
where i represents the link sequence number; ai−1 represents
the link length, which is the length of the common normal
between two rotational joint axes; the link twist αi−1 is the
offset angle of the two joint axes; the link offset di is the
vertical offset between two adjacent joints, that is, the offset
distance along the z-axis; the joint angle θi is the rotation
amount of the i-th joint relative to the initial position. The
schematic diagram of the robotic arm joint coordinate system
is shown in Fig. 4.

After establishing the coordinate system of the 6-degree-
of-freedom robotic arm using D-H parameters, the obtained
D-H transformation matrix needs to satisfy Eq. (20).

i+1
i A =

 cos θi+1 − sin θi+1 0 ai
sin θi+1 cosαi cos θi+1 cosαi − sinαi − sinαidi+1

sin θi+1 sinαi cos θi+1 sinαi cosαi cosαidi+1

0 0 0 0


(20)

i+1
i A represents the homogeneous transformation ma-

trix from di to di+1. By substituting the correspond-
ing parameters in the D-H parameters into Eq. (20), the
corresponding transformation matrix is obtained, and then
{10A, 21A, 32A, 43A, 54A, 65A} is calculated, as shown in Eq. 21.
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TABLE I. TEST FUNCTIONS

Function no. Function name Function formula Search space Optimal value

F1 (Unimodal) Sphere f(x) =
∑n

i=1 x2
i [−100, 100] 0

F5 (Unimodal) Rosenbrock f5(x) =
∑n−1

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
[−30, 30] 0

F10(Multimodal) Ackley

f10(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i


− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e

[−32, 32] 0

F12(Multimodal) Generalized

f12(x) =
π

n

[
10 sin

2

(
π
x1 + 1

4

)
+

n−1∑
i=1

(
xi + 1

4

)2
]

(
1 + 10 sin

2

(
π
xn + 1

4

))
+

(
xn + 1

4

)2

+

n∑
i=1

U(xi, 10, 100, 4)

[−50, 50] 0

TABLE II. COMPARISON OF TEST FUNCTION RESULTS OF DIFFERENT ALGORITHMS

No. Index IWOA WOA GWO PSO DBO

F1

Best 0 0 0 3.472 × 10−57 2.98 × 10−14

Worst 7.294 × 10−287 7.294 × 10−287 0 9.676 × 10−26 9.931 × 103

Mean 0 1.495 × 10−289 9.676 × 10−26 2.460 × 10−28 3.187 × 103

Std 0 0 0 4.465 × 10−27 2.854 × 103

F5

Best 1.755 × 10−4 2.53 2.721 × 101 9.003 × 104 2.196 × 108

Worst 5.596 × 10−4 2.66 2.721 × 101 9.003 × 104 7.573 × 108

Mean 2.459 × 10−4 2.536 2.721 × 101 9.003 × 104 4.754 × 108

Std 8.641 × 10−5 2.172 × 10−2 7.178 × 10−15 3.325 × 10−1 1.244 × 108

F10

Best 4.441 × 10−16 4.441 × 10−16 4.441 × 10−16 3.856 1.474 × 10

Worst 4.441 × 10−16 4.441 × 10−16 4.441 × 10−16 2.050 × 10 2.213 × 10

Mean 4.441 × 10−16 4.441 × 10−16 4.441 × 10−16 1.445 × 10 2.088 × 10

Std 0 0 0 3.242 8.693 × 10−1

F12

Best 2.564 × 10−7 1.003 × 10−3 1.969 × 10−2 8.325 × 10−1 3.615 × 108

Worst 2.834 × 10−7 1.009 × 10−3 1.969 × 10−2 8.347 × 10−1 2.389 × 109

Mean 2.714 × 10−7 1.003 × 10−3 1.969 × 10−2 8.326 × 10−1 1.146 × 109

Std 4.241 × 10−9 1.135 × 10−6 3.494 × 10−18 2.626 × 10−4 4.120 × 108
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Fig. 4. Robotic arm joint coordinate system.

TABLE III. D-H PARAMETERS OF THE ROBOTIC ARM

Joint No. (i) ai−1 αi−1 di θi

1 175 −π/2 490 θ1

2 1500 0 0 θ2

3 1350 −π/2 0 θ3

4 0 π/2 162 θ4

5 0 −π/2 0 θ5

6 0 0 220 θ6
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0
1A =



C1

−S1 0 175
0 0 1 490

−S1 −C1 0 0
0 0 0 0

 2
1; A =



C2 −S2 0 1500
S2 C2 0 0
0 0 1 0
0 0 0 1

 3
2; A =



C3

−S3 0 1350
0 0 1 0

−S3 −C3 0 0
0 0 0 1


4
3A =



C4 −S4 0 0
0 0 −1 −162
S4 C4 0 0
0 0 0 1

 5
4; A =



C5 −S5 0 0
0 0 1 0

−S5 −C5 0 0
0 0 0 1

 6
5; A =



C6 −S6 0 0
S6 C6 0 0
0 0 1 220
0 0 0 1


(21)
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In Eq. 22, C1 represents cos θ1, and S1 represents sin θ1.
6
0A denotes the total transformation matrix from the robot base
to the end-effector, that is, the position of the end of the link
in coordinate system O0 relative to the base, which is obtained
in matrix form through Eq. 22.

6
0A = 1

0A
2
1A

3
2A

4
3A

5
4A

6
5A (22)

By establishing the link structure model of the robotic arm
using the D-H parameter method, the position and posture of
the robotic arm’s end-effector in the coordinate system can be
obtained through the forward kinematics equations under the
premise that each joint angle is known.

B. Robotic arm Trajectory Planning

To verify the effectiveness of the Improved Whale Opti-
mization Algorithm in robotic arm trajectory planning, three
waypoints are specified within the kinematic constraint space
of the FANUC R-2000iC/165F robotic arm. Fifth-order poly-
nomial interpolation is adopted for trajectory planning to
ensure continuous velocity and acceleration of the robotic arm.
On this basis, the Improved Whale Optimization Algorithm is
used to optimize the trajectory time of the robotic arm, and
a comparison is made with the original whale optimization
algorithm. Table IV shows the Cartesian space information of
the end-effector of the FANUC R-2000iC/165F robotic arm
passing through the three specified waypoints. Then, the joint
position information of the waypoints in the robotic arm is
obtained through inverse kinematics analysis, and Table V
presents the corresponding joint position information of these
three waypoints.

During the process of passing through two path segments,
the operation time of each joint in each path segment is set to
5 seconds. Meanwhile, to meet the constraint conditions of the
robotic arm, the maximum angular velocity of the robotic arm
joints is set to θ̇j max = 3 rad/s, and the maximum angular
acceleration is set to θ̈j max = 3.5 rad/s2. According to the
requirements of the ship spot welding process, the velocity of
the robotic arm must be 0 when passing through each welding
waypoint. By substituting the above three interpolation points
into the fifth-order polynomial interpolation function and using
MATLAB R2024a for trajectory planning of the robotic arm,
the trajectory of the end-effector of the robotic arm in the
workspace is obtained, as shown in Fig. 5. The position,
velocity, and acceleration curves of the six joints after fifth-
order polynomial trajectory planning are shown in Fig. 6.

It can be observed from Fig. 6 that the interpolation time
combination of the fifth-order polynomial is (5, 5), so the total
time is 10 s. Among them, the maximum angular velocity
is 1.53 rad/s, and the maximum angular acceleration is 0.94
rad/s², which meet the constraint conditions of the robotic
arm. However, to further improve the operating efficiency of
the system, it is still necessary to optimize the trajectory to
shorten the operating time on the basis of ensuring trajectory
smoothness.

C. Optimal Time Planning of Robotic Arm

This study adopts the IWOA for time optimization of the
robotic arm trajectory. In the experiment, the population size

is set to 30, and the maximum number of iterations is 300.
Due to the randomness of trajectory planning results, each
algorithm is run 50 times, and the average value is taken
as the performance evaluation index. To verify the algorithm
performance, the motion time curves of joint angle, angular
velocity, and angular acceleration between IWOA and the
original WOA are compared and analyzed, as shown in Fig. 7.

It can be seen from Fig. 7 that the displacement, velocity,
and acceleration curves of the robotic arm optimized by the
WOA and the IWOA all show smooth and continuous changes
without obvious mutations, indicating that the robotic arm can
pass through each waypoint stably. Meanwhile, by sorting out
the optimized data of each joint in Fig. 6 and Fig. 7, the
optimization times of the fifth-order polynomial, WOA, and
IWOA when passing through each waypoint are obtained, as
shown in Table VI.

It can be seen from Table VI that the time combination of
the fifth-order polynomial is (5, 5) with a total time of 10 s.
The optimal time combination of WOA is (3.26, 2.48) and the
total time is 5.74 s. The optimal time combination of IWOA
is (2.76, 1.93) with a total time of 4.69 s. Both the WOA
and IWOA algorithms can achieve the effect of optimizing the
operation time, but the IWOA is more effective in optimization
performance, which greatly improves the working efficiency of
the robotic arm.

V. EXPERIMENTS

A. Experimental Purpose

To further verify the feasibility and effectiveness of the
robotic arm trajectory planning based on the Improved Whale
Optimization Algorithm (IWOA) in actual industrial environ-
ments, this chapter designs a comparative experiment based on
the RoboGuide simulation platform and the FANUC physical
robotic arm system. By executing the same path task in both
virtual and real environments, the performance of the trajectory
generated by the algorithm in terms of path accuracy and
time optimization effect is evaluated, thereby verifying the
algorithm’s implementability and robustness.

The simulation completed in the MATLAB environment
is mainly used to verify the performance of IWOA-DEGA at
the mathematical model level, including the time optimality
and path smoothness of trajectory planning. At this stage,
the focus is on evaluating the algorithm’s global optimization
capability and optimization effect. However, simulations only
in MATLAB cannot fully reflect the execution feasibility of
the algorithm in real robotic arm systems.

For this reason, this study further conducts engineering-
level simulation in the FANUC RoboGuide platform. RoboGu-
ide can realistically simulate the geometric structure, joint
motion constraints, and dynamic characteristics of the robotic
arm, and supports the modeling of external workpieces, fix-
tures, sensors, and other elements. By importing the optimal
trajectory generated by IWOA into RoboGuide and setting
a cuboid workpiece model consistent with the laboratory
environment, the executability, safety, and spatial rationality
of the planned trajectory in the actual space can be effectively
verified.
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TABLE IV. CARTESIAN SPACE INFORMATION CORRESPONDING TO THREE SPECIFIED WAYPOINTS

Waypoint x y z

X1 0.1 0.1 0.5

X2 -1.5 0.75 2.344

X3 0.5 0.5 2.0

TABLE V. JOINT INFORMATION CORRESPONDING TO EACH WAYPOINT (RAD)

Joint X1 X2 X3

1 -1.0228 2.6619 0.5174

2 -2.8352 -1.5037 -2.1353

3 -3.0950 0.9949 1.7531

4 1.2294 -0.4553 1.3274

5 2.4167 -0.2435 1.0696

6 0 0 0

TABLE VI. OPTIMIZATION RESULTS OF JOINT MOTION TIME

Method t1(s) t2(s) Total Time t(s)

Fifth-order polynomial 5 5 10

WOA 3.26 2.48 5.74

IWOA 2.76 1.93 4.69
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Fig. 5. Robot arm motion trajectory.

B. Experimental Platform and Equipment

1) Simulation experiment platform: The simulation experi-
ment is carried out based on the FANUC RoboGuide software.
This platform can realize 3D modeling, path planning, collision
detection, and offline programming of the robotic arm. The
robotic arm model used in the experiment is FANUC R-
2000iC/165F, and its virtual model is established in RoboGu-
ide. A cuboid workpiece with dimensions of L×W×H = 300
mm × 200 mm × 150 mm is placed as the operation object.
Four fixed waypoints (P1, P2, P3, P4) are selected on the
surface of the workpiece, and the robotic arm needs to pass
through these four waypoints in sequence to complete the
trajectory movement.

2) Laboratory physical platform: The physical experiment
constructs a test environment consistent with the simulation
in the laboratory. The same FANUC R-2000iC/165F robotic
arm is adopted, driven and controlled by the R-30iB control
system. A cuboid workpiece with the same dimensions and
position as in the simulation is placed on the test bench to
ensure the consistency of experimental conditions. The robotic
arm control program is generated through offline programming
in RoboGuide and imported into the physical control system

via the teach pendant for execution.

C. Experimental Results and Analysis

1) Simulation results: Fig. 8 shows the changes in the
motion posture of the robotic arm when it passes through
waypoints P1–P4 in sequence during the RoboGuide simu-
lation. It can be seen from the figure that the end effector
of the robotic arm moves smoothly and continuously without
oscillation or sudden changes, indicating that the trajectory
generated by IWOA has good dynamic smoothness and control
stability. Consistent with the results obtained in the MATLAB
simulation, the RoboGuide simulation further verifies the ef-
fectiveness of IWOA in terms of time optimization. According
to the operation time statistics output by RoboGuide, the
average operation time of the trajectory planned by IWOA
is 18% less than that of the unoptimized trajectory, and the
acceleration and deceleration transitions between each path
segment are smoother, which effectively reduces the idle travel
time of the robotic arm and unnecessary speed fluctuations.

2) Physical experiment results: Fig. 9 shows the motion
states of the FANUC R-2000iC/165F robotic arm in the
laboratory as it passes through waypoints P1–P4 in sequence.
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(a) Angular displacement variation curves of each joint.

(b) Velocity variation curves of each joint.

(c) Acceleration variation curves of each joint.

Fig. 6. Motion curve of six-degree-of-freedom robotic arm trajectory
planning based on quintic polynomial interpolation.

(a) Comparison diagram of angular displacement curves of each joint.

(b) Comparison diagram of angular velocity curves of each joint.

(c) Comparison diagram of angular acceleration curves of each joint.

Fig. 7. Comparison diagram of joint motion curves before and after the
improved algorithm.

In the experiment, the robotic arm control program is generated
by offline programming in RoboGuide, ensuring that the
experimental path is completely consistent with the simulation
path. It can be seen from the experimental results that the
robotic arm moves smoothly and maintains consistent postures
between each waypoint, with the end position error controlled
within ±2 mm. More importantly, the operation time trend of
the physical test is consistent with the simulation results. The
trajectory optimized by IWOA reduces the average operation
time by 16.4% compared with the original trajectory for
the same task, verifying the time optimization effect of the
algorithm in actual industrial control systems.
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(a) The robotic arm reaches waypoint P1 in RoboGuide. (b) The robotic arm reaches waypoint P2 in RoboGuide.

(c) The robotic arm reaches waypoint P3 in RoboGuide. (d) The robotic arm reaches waypoint P4 in RoboGuide.

Fig. 8. Trajectory diagram of the robotic arm in RoboGuide simulation.

(a) The laboratory robotic arm reaches waypoint P1. (b) The laboratory robotic arm reaches waypoint P2.

(c) The laboratory robotic arm reaches waypoint P3. (d) The laboratory robotic arm reaches waypoint P4.

Fig. 9. Trajectory diagram of the laboratory robotic arm.
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Through comparison, it is found that the physical ex-
periment results are highly consistent with the RoboGuide
simulation results in terms of path shape, attitude change, and
operation time. This indicates that the IWOA can effectively
generate time-optimal and executable robotic arm trajectories
in real-world environments, demonstrating excellent engineer-
ing feasibility and application potential.

VI. CONCLUSION

This study proposes a trajectory planning for the FANUC
R-2000iC/165F welding robotic arm based on an Improved
Whale Optimization Algorithm (IWOA). The main theoretical
contribution of this work lies in integrating quintic polynomial
trajectory planning with the IWOA for time-optimal trajectory
generation, thereby enhancing both the convergence speed
and global optimization capability of traditional metaheuristic
algorithms in robotic arm applications. Simulation and ex-
perimental results demonstrate that the IWOA significantly
outperforms the original WOA in terms of trajectory opti-
mization. Under identical kinematic constraints, the IWOA
reduces the total operation time from 10 s to 4.69 s, compared
with 5.74 s achieved by WOA. In RoboGuide simulation, the
IWOA-optimized trajectory reduces average operation time by
18%, while physical experiments confirm a 16.4% reduction,
with end-effector positioning errors controlled within ±2 mm.
The results highlight the algorithm’s effectiveness in gener-
ating smooth, continuous, and executable trajectories while
maintaining operational safety. This also demonstrates that
the metaheuristic algorithm employing chaotic mapping and
adaptive parameter enhancement can effectively address the
trade-off between global search and local optimization in high-
dimensional trajectory optimization problems.

Despite these contributions, several limitations exist. The
current study considers only a single robotic arm model and
a limited number of waypoints, and does not account for
dynamic external disturbances or varying payloads, which
may affect real-world performance. Future research will ex-
tend the method to multi-arm coordinated welding tasks,
incorporate dynamic obstacle avoidance, and explore real-
time adaptive trajectory optimization under uncertain industrial
environments.
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