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Abstract—Classifying signals or modulation classification is a 

crucial step in developing communication receivers. A common 

practice is to extract features before categorizing the signal, which 

requires implementing long preprocessing techniques. Due to 

breakthroughs in neural network topologies, machine learning 

(ML) algorithms, and optimization techniques, referred to as 

"deep learning" (DL), we have witnessed a vast degree of change 

over the previous five years. Advanced deep learning algorithms 

can be applied to the same automatic modulation classification 

problem and generate excellent outcomes without requiring time-

consuming, manual, and complex feature extraction methods. In 

recent years, various DL techniques have been explored for 

automatic modulation classification (AMC). However, it has been 

observed that these techniques are effective only for higher Signal-

to-Noise-Ratio (SNR) values. To overcome this challenge, we 

proposed a hybrid DL-based AMC technique by combining a 

customized EfficientNet with a customized Transformer Block. 

The transformer block is used to enhance the DL performance for 

the lower SNR values. The performance of the proposed hybrid 

model is tested on a benchmark dataset, RadioML2018.01A, and 

compared with the state-of-the-art existing DL method which 

shows the supremacy of the proposed hybrid model. 

Keywords—Automatic modulation classification; deep learning; 

machine learning; EfficientNet; Transformer Network 

I. INTRODUCTION 

Independent radio spectrum interpretation is becoming 
increasingly important in various applications due to the rapid 
development of different evolved standards and best practices 
for wireless communications. These applications include 
electronic warfare and vulnerability assessments in military 
scenarios, dynamic channel access, spectrum interference 
detection, and monitoring in civil proceedings [1]. Encoder, 
modulation, and multiplexing are all necessary components in a 
wireless transmission channel. First, the signal from the source 
is transformed into a format suitable for signal processing 
techniques such as noise reduction and interference reduction by 
a Source Encoder. Adding a bit of redundancy to the signal 
during this process might help it withstand noise. Once the 
signal has been modulated with an appropriate modulation 
technique, such as Phase Shift Keying (PSK), Frequency Shift 
Keying (FSK), or Quadrature Phase Shift Keying (QPSK), it is 
delivered into the channel as rapidly as possible using antennas. 
To retrieve the sent data, the receiver side employs the same 
techniques as the transmitter side, including de-multiplexing, 
demodulation, and decoding, among other techniques. However, 

there are several drawbacks, including co-channel interference 
and signal distortion over spectral channels due to aggressive 
spectrum usage in massive wireless communication systems. To 
deal with these issues, one effective solution is Adaptive 
Modulation (AM), whose aim is to encode radio signals utilizing 
a variety of modulation forms from a predetermined candidate 
pool depending on channel conditions and system 
specifications. Thus, the AM enables intelligent spectrum 
management in modern communication systems, as shown in 
Fig. 1 [2]. 

 
Fig. 1. Communication system with adaptive modulation [2]. 

However, a major challenge for implementing the AM in 
wireless communications is the dynamic estimation of channel 
conditions and data characteristics. Hence, automatic 
modulation classification (AMC) is introduced, which is a 
technique that improves spectrum utilization efficiency by 
applying it to a detected signal at the receiver's physical layer 
without knowing the data sent or channel characteristics. 

A. Task of AMC 

Consider a communication system sending a noise-free 
signal x(t) (whose sampled version is denoted as x[k]) through 
some channel (with discrete version denoted as h[k]), then the 
received signal for the nth symbol at time k can be expressed as 
Eq. (1) [2]: 

𝑦[𝑛] = 𝑥[𝑛, ℎ𝑘] + 𝑤[𝑛]        (1) 

where, 𝑥[𝑛, ℎ𝑘] is the modulated input data passed through 
the channel ℎ𝑘 and w[n] is the additive noise at the receiver with 
variance 𝜎𝑤

2. The task of an AMC in a communication system is 
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to predict the modulation type using only input-output data 
without estimating the channel impulse response. 

B. AMC Approaches 

Both probabilistic and conventional machine learning 
frameworks are used in the traditional AMC approaches. Based 
on the assumption that all signal and channel models are fully 
understood, likelihood-based systems have the best level of 
accuracy since they employ probability theory and hypothetical 
models to solve classification difficulties. Machine learning 
(ML) features are more likely to be adopted because of their 
simplicity. However, this comes at the expense of a few 
drawbacks, such as restricted learning capacity and a poor 
discriminative experience of handmade features. 

Likelihood-Based (LB) Approach: The optimum approach is 
to employ the LB approach, which minimizes the possibility of 
incorrect categorization. This assumption is correct if a 
waveform's density function (PDF) contains all relevant 
information. Using a decision threshold, the probability ratio 
from the PDF is used to categorize the modulation type [3]. The 
drawback of this approach is its computational complexity. 
Real-time classification requires a thorough inspection of 
multiple pulses and emitters. It is possible to separate a single 
emitter by using other ways of locating the Primary Rat Interface 
(PRI). Due to this, it is possible to forgive a few wrong 
classifications in modulation categorization if the majority of the 
categories are suitable. Algorithm strength must also be 
considered while extracting data. A lack of inherent robustness 
makes LB approaches susceptible to noise, timing issues, and 
phase offsets. Given this and the necessity of real-time 
operation, a more accessible, feature-based approach may be 
adopted. 

Feature-Based (FB) Approach: The FB approach employs 
representative features to identify and categorize the differences 
between signals. The typical characteristics are the time domain, 
signal changes, zero crossings, and statistics. In addition, the FB 
AMC technique often uses a hierarchical approach, first 
identifying modulation and defining its exact kind [3]. Then, 
PDF-based, Euclidean distance, and artificial intelligence 
classifiers are utilized to make decisions. FB algorithms are 
generally preferred because of their simple complexity and 
acceptable performance, even if their performance is poor. 

C. Related Works: Deep Learning in AMC 

In recent years, the DL techniques have been successfully 
applied in various fields such as computer vision [4], [5], 
wireless communications [6], [7], bioinformatics [8]-[13], and 
signal processing [14], [15], etc. Motivated by the power of DL, 
several state-of-the-art DL techniques have been employed in 
the field of AMC, which resulted in improved modulation 
classification performance of ACM. For example, convolutional 
neural networks (CNNs) based AMC [16], [17], [18], long short-
term memory networks (LSTMs) based AMC [19], [20], and 
recurrent neural networks (RNNs) based AMC [21]. One major 
advantage of DL-based AMC over conventional ML-based 
AMC is that DL provides automatic feature extraction with 
higher classification accuracy [22]. Another important fact 
about the DL-based AMC is that it can enhance the classification 
accuracy of higher-order modulation in the presence of a 
synthetic channel impairment [23]. Finally, it is found that the 

DL-based AMC has the capability to effectively process big 
data, and thus it is well-suited for deploying AMC in Internet-
of-Things (IoT) systems [24]. 

D. Challenges in AMC 

A major challenge in ML-based AMC is the requirement of 
designing efficient feature extraction methods for each dataset. 
On the other hand, although the DL-based AMC can provide 
automatic feature extraction, with improved modulation 
classification accuracy, there are still many open challenges in 
this field. One big challenge is that all the existing DL-based 
AMC methods proved to be better in terms of classification 
accuracy only for higher values of signal-to-noise ratio (SNR). 
Their performance degrades drastically at lower SNR values, 
which implies that if the noise level is higher, the model would 
most likely fail to categorize the signal. In the existing literature, 
there is no work addressing this issue. In this work, we mainly 
focus on this challenge. 

E. Our Contributions 

As outlined in the previous subsection, the DL-based AMC 
has one major challenge of poor performance at lower SNR 
values, we focused on solving this issue by designing a hybrid 
DL-based AMC solution. More specifically, the proposed 
method is capable of providing reasonably better modulation 
accuracy at lower SNR values. For this purpose, we developed 
a hybrid DL-based AMC solution in which we utilized the 
combination of the EfficientNet and the Transformer Block via 
a switching mechanism. The transformer block is used to 
enhance the DL performance for the lower SNR values. The 
performance of the proposed hybrid model is tested on a 
benchmark dataset, RadioML2018.01A [25]. 

The study is organized as follows: Following this 
introduction, the baseline methods are discussed in Section II. In 
Section III, the proposed hybrid CNN model is presented. An 
overview of the RadioML 2018 dataset is provided in 
Section IV. Next, the experiment on AMC using the proposed 
model is described in Section V. Results and discussion are 
provided in Section VI. Finally, the concluding remarks are 
given in Section VII. 

II. BASELINE METHODS 

In the context of AMC, various DL architectures have been 
explored in the past [25]. Among these methods, the best 
performance is achieved by the modified ResNet proposed in 
[25]. In this section, we provided an overview of both the 
standard and the modified ResNet architectures. 

A. Standard ResNet [26] 

ResNet is a deep residual network that has all the elementary 
parts in its structure as existed in any deep CNN architecture 
[26]. The only unique characteristic of the ResNet is the use of 
identity connection or mapping between the levels. In order to 
understand this Identity Mapping in a ResNet, see the block 
diagram presented in Fig. 2, where F(x) is a function called the 
Residual Function that operates between two convolutional 
weight layers. More precisely, it is the difference between the 
input x and the output H(x) of the residual block, as shown in 
Fig. 2. Thus, the F(x) can be formulated as Eq. (2): 

𝐹(𝑥) = 𝐻(𝑥)− 𝑥  (2) 
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Therefore, the major purpose of including this function in 
ResNet is to utilize the stacked layers to estimate the function  
F(x) instead of estimating the function H(x). Consequently, 
training the deep residual network tries to learn  F(x), which 
results in improving the overall accuracy. Moreover, it is 
straightforward to conclude that the network's accuracy will be 
improved by increasing the depth, provided that the issue of 
over-fitting is resolved. However, the difficulty with the increase 
in depth is that the signal necessary to modify the weights, which 
emanates from the end of the network by comparing ground 
truth and forecast, gets extremely little at the initial layers as 
depth increases. It indicates that the initial levels are learned to 
a minor extent. The term for this phenomenon is vanishing 
gradient. The second issue with training deeper networks is that 
optimization is performed on a large parameter space, resulting 
in naively adding layers, which increases training error. As 
illustrated in the figure, residual networks permit the training of 
deep networks by creating the network using modules termed 
residual models. 

 
Fig. 2. Residual learning: a building block. 

B. Modified ResNet [25] 

In [25], a modified ResNet was proposed for implementing 
the AMC. In this architecture, the residual unit and stack of 
residual units are used, as shown in Fig. 3, and its network layout 
is shown in Table I. In addition, self-normalizing neural 
networks, the activation function of scaled exponential linear 
unit (SELU), mean response scaled initialization (MRSA), and 
Alpha Dropout were used and resulted in a marginally better 
performance than standard ReLU. 

TABLE I.  MODIFIED RESNET NETWORK LAYOUT [25] 

Layer Output Dimension 

Input 2 x 1024 

Residual Stack 32 x 512 

Residual Stack 32 x 256 

Residual Stack 32 x 128 

Residual Stack 32 x 64 

Residual Stack 32 x 32 

Residual Stack 32 x 16 

FC/SeLU 128 

FC/SeLU 128 

FC/Softmax 24 

 
Fig. 3. Hierarchical layers used in modified ResNet 

III. PROPOSED HYBRID CNN MODEL 

In this work, we proposed a hybrid model of CNN which 
utilizes a combination of EfficientNet and Transformer 
Network. The architectures of both the networks and the 
proposed hybrid model are presented in the ensuing. 

A. EfficientNet Network 

Developing convolutional neural networks are done at a set 
cost. These networks may be expanded to achieve higher 
accuracy, when additional resources are available. For example, 
to increase the size of a ResNet 18 model to a ResNet 200 model, 
more layers can be added to the initial model. Mostly, this 
scaling strategy has improved the accuracy of many 
benchmarking datasets. However, the initial methods of model 
scaling are quite unpredictable. Some models are scaled 
horizontally, while others are scaled vertically. Some models 
simply capture a higher-resolution image to get better outcomes. 
Manual tweaking and numerous person-hours are required when 
using this strategy of randomly scaling models, and it frequently 
results in little or no improvement in performance. EfficientNet's 
authors suggested that CNN models be scaled up to improve 
accuracy and efficiency more ethically [27]. 

EfficientNet uses a method known as compound coefficients 
to scale up models in an easy yet effective manner. Compound 
scaling, instead of random scaling up of width, depth, or 
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resolution, uniformly scales each dimension with a 
predetermined set of scaling coefficients. The efficient 
developers used the scaling approach and AutoML to construct 
seven models of varied dimensions that outperformed the 
current state-of-the-art accuracy of most convolutional neural 
networks and were significantly more efficient. 

 
Fig. 4. Various types of scaling used: (a) is a  baseline network; (b) to (d) 

conventional scaling via width, or depth, or resolution dimension. (e) is 

compound scaling used in EfficientNet [27]. 

The authors evaluated the effects of each scaling 
methodology on the model's performance and efficiency to 
develop the compound scaling method. In their opinion, scaling 
single dimensions helps in enhancing model performance, 
balancing the scale in all three dimensions: width, depth, and 
picture resolution, considering the varied resources available, 
which best improves the overall model performance. The 
compound scaling method proposed for EfficientNet is shown 
in Fig. 4. The goal of the compound scaling method is to balance 
the width, depth, and resolution measurements achieved by 
scaling with a constant ratio. 

 
Stem 

 
Final Layers 

Fig. 5. Stem and final layers of EfficientNet. 

A neural architecture search utilizing the AutoML MNAS 
framework created the baseline network used in EfficientNet. 
For optimum accuracy, the network is fine-tuned and punished 
if it is computationally intensive. It is also punished for sluggish 
inference times when the network takes time to create 
predictions. The system employs a mobile inverted bottleneck 
convolution similar to MobileNet V2; however, it is 
substantially larger owing to the rise in FLOPS. This basic 
model is then built to provide the networks' EfficientNets 
family. The stem and final layers of EfficientNet are presented 
in Fig. 5. 

Further, each of the modules has seven blocks. These blocks 
are further subdivided into a different number of sub-blocks. 
These numbers increase when moving from EfficientNet-B0 to 
EfficientNet-B7. 

B. Transformer Network 

The encoder-decoder architecture has evolved into the 
"Transformer model" [28, 29]. Unlike the encoder-decoder 
design, the Transformer doesn't employ recurrent neural 

networks (RNNs) to acquire sequential data. Transformer-based 
models have replaced Long-Short Term Memory (LSTM) 
networks [30] in many sequence-to-sequence situations and are 
superior in quality. Conducting some diggings to discover the 
best time-series model that has just been released on the internet 
and in journals. 

Recently, a solution using the newest state-of-the-art time 
series model called Transformer is devised [29]. Compared to 
the prior models, this model has various advantages, such as 
parallelization processing, which allows it to use contemporary 
graphics processing units (GPUs), which were created 
specifically for parallel calculation. Moreover, the vanishing 
gradient problem can be solved in Transformer Network (TN) 
as the input size can be adjustable, and the network can execute 
simultaneously rather than sequentially. Furthermore, the TN is 
capable of capturing detailed data context due to its advantage 
of the network modules' positional encoding and self-attention 
mechanisms [31]. The main crucial network module within the 
TN is provided in [31].  

C.  Switching-Based Proposed Hybrid Model 

Our experimental analysis showed that the EfficientNet and 
Transformer Net are good in predicting signals with high SNR 
and low SNR, respectively. We proposed to combine the two 
network models of EfficientNet and Transformer Net 
effectively, such that the classification accuracy of the AMC 
should be enhanced for both low and high SNR values. For this 
purpose, an SNR threshold-based switching is proposed as 
shown in Fig. 6. This SNR threshold value is set according to 
experimental findings.  In our experiments, we have used a 0 dB 
SNR value as a switching threshold; that is, the proposed model 
will utilize EfficientNet if SNR is above 0 dB, and it will switch 
to TN otherwise. 

 
Fig. 6. SNR switch between EfficientNet and the transformer block. 

To implement the proposed SNR threshold-based switching, 
instantaneous SNR values are estimated using the received 
samples. Knowing the fact that there are well-established 
techniques for estimating noise variance estimation (𝑖. 𝑒. , 𝜎̂𝑤

2) 
[32, 33], the received SNR can be estimated using an average 
over window size N𝑤 as follows [see Eq. (3)]: 
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SNR̂[𝑛] =
1

𝜎̂𝑤
2 {(

1

N𝑤
∑ |𝑦[𝑘]|2𝑛
𝑘=𝑛−N𝑤+1

)− 𝜎̂𝑤
2} (3) 

Finally, switching is performed between EfficientNet and 
Transformer block by inspecting the estimated SNR against a 
defined threshold value () that can be set by the designer. 

IV.  OVERVIEW OF RADIOML 2018 DATASET 

The majority of existing AMC strategies have been assessed 
on the reenactment datasets produced by programming. 
According to the point of view of reasonableness, producing 
tweaked signs to benchmark the execution of profound models 
ought to consider two essential worries: modulation technique 
(such as modulation types and modulation count) and channel 
condition. For models, RadioML2018.01A, a presently 
accessible and broadly utilized dataset of regulation grouping, 
conceals 24 modulations (counting analogue and digital 
procedures and a few testing high-request designs), where the 
regulation transmissions are engendered in a multipath Rician 
blurring with carrier frequency offset, symbol rate offset, delay 
spread, and AWGN to almost acquire true peculiarities in 
remote correspondences. On the other hand, various AMC 
techniques have produced easy datasets with few basic digital 
modulations. Thus, the adequacy and effect of exploration 
commitment in view of execution assessment in reproductions 
can be unconvincing other than the unsubstantial dependability 
of grouping models to carry out in practical frameworks. For 
example, a plain-design profound organization [32] 
accomplished high exactness with three modulation candidates 
(BPSK, QPSK, and 8-PSK). In different works [33], the 
considered spread channel is less difficult with level blurring 
and time-invariant rather than recurrence, particularly multipath 
blurring and testing time float. The modulation classification 
task turns out to be easier with a few given classes, where the 
between-class and intra-class segregation issues are not thought 
rigorously. 

Even though DL-AMC can give huge execution, it requires 
a lot of training data. In reality, obtaining a sufficient number of 
valid training samples is typically expensive and challenging. 
Hence, the employed huge scope preparing dataset ought to be 
developed cautiously enough with more reasonable signs under 
a wide scope of SNR. Besides, data expansion techniques can 
arrange radio regulation plans more effectively by utilizing more 
limited radio examples [34], which will furnish an improved DL 
model with a more modest order reaction time. Nonetheless, the 
Signs dataset is especially needed for preparing, approving, and 
testing the networks in ML-AMC and DL-AMC models. A few 
analysts utilized their simulated datasets, and others like to 
utilize those presented in the journal. A portion of the datasets is 
introduced as follows. 

GNU Radio datasets are utilized in this research. The 
RML2018 dataset is one of the most complex modulation 
classification datasets published in [25]. Twenty-four digital and 
analog modulation schemes are measured over the air and 
distributed across a wide range of SNR values. In addition, it 
comprises almost 2.5 million signals with artificially created 
channel distortions. "Over-the-air deep learning-based radio 
signal categorization" was published in the IEEE Journal of 
Selected Topics in Signal Processing in 2017 and gives further 
information and explanation of the dataset. In hdf5 format, 

around 1.5 million instances are recorded as complex floating-
point values with a sample length of 1024 samples, respectively. 

The updated techniques [35] were used to create the new 
dataset (RadioRML 2018). 24 modulators, both analog and 
digital, are utilized to modulate a wide variety of single carriers. 
Fig. 7 demonstrates OTA transmission channels containing 
clean signals without any synthetic channel impairments. Digital 
signals are formed with a root-raised cosine beat modulating 
filter [36] with a scope of roll-off values. 

 
Fig. 7. Over-the-air test configuration [25]. 

V. EXPERIMENT ON AMC 

In this study, Python is used to perform the AMC task, which 
was done using Google Colaboratory (called Colab). Google 
Colab allows users to take advantage of backend hardware such 
as GPUs and TPUs to accelerate their computations. Thus, it 
facilitates performing all of the tasks in a Jupyter notebook 
hosted on your local system without installing or configuring 
any additional software. 

A. EfficientNet (for High SNR) 

First, we import the EfficientNet for Tenserflow-Keras 
Library, which is the Conventional EfficientNet. However, we 
chose the B0 Architecture, since it has the lowest processing 
complexity SNR switch. 

As part of our suggested strategy, we attempt to employ two 
network models, one effective for predicting signals with high 
SNR and the other effective at predicting signals with low SNR. 
The transformer neural network will be used for low SNR 
models because it is a time series neural network that may be 
used to forecast complicated data, such as signals with low SNR 
rates. Our improved EfficientNet, on the other hand, is 
employed for categorizing signals with greater signal-to-noise 
ratios. Following the input of our signal into two models, we will 
ensemble them to obtain the highest accuracy output from the 
two models. For this purpose, the SNR value of 0 dB is selected 
as the switching threshold among the eight possible types of 
EfficientNet. The original EfficientNet B0 has an input size of 
224x224x3; therefore, we must adapt the input size to match that 
of RML 2018, which is 1024x2, so we must alter the input layer 
appropriately. To accommodate the adaptation, the reshape layer 
has been introduced in the first layer before the modified 
EfficientNet, as shown in Fig. 8. 
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Fig. 8. Rescale layer and the customized EfficientNet. 

The training process for our network uses a batch size of 
1024 and a validation testing dataset comprised of 20% of the 
total training dataset. 

B. Transformer Block (for Low SNR) 

As shown in Fig. 9, the architecture being utilized is 
designed primarily to deal with noisy signal modulation / low 
SNR signal modulation. Two fully linked networks and Alpha 

Dropout are used in conjunction with batch normalization to 
minimize overfitting. After an Alpha dropout, the mean and 
variance of inputs retain their original values, ensuring that the 
self-normalizing characteristic continues to hold even after the 
dropout has occurred. In addition, we selected SeLU, which 
stands for Scaled Exponential Linear Unit, for the activation 
function to support the self-normalizing feature of the dropout 
layer, which is supported by the dropout layer itself. Lastly, we 
continue to use Lazy Adam as our model enhancer. The details 
of layer type, output type, and number of parameters are 
provided in Table II. 

TABLE II.  LAYERS OF THE TRANSFORMER BLOCK USED IN AMC 

Layer (type) Output Shape Param # 

input_1 (InputLayer) [(None, 1024, 2)] 0 

reshape (Reshape) (None, 2, 1024) 0 

transformer_block 

(TransformerBlock) 
(None, 2, 1024) 4728064 

Total params: 

Trainable params: 

Non-trainable params: 

 

4,882,968 

4,880,920 

2,048 

 
Fig. 9. Architecture of the transformer block used in AMC. 
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VI. RESULTS AND DISCUSSION 

This section will demonstrate the results of applying the 
proposed method to create the hybrid model. These results are 
reported in Table III in terms of overall Accuracy of the 
proposed model at different SNR values. Accuracy is calculated 
using the following relation, Eq. (4): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
         (4) 

where, TP, TN, P, and N represent True Positive, True 
Negative, Total Positive, and Total Negative, respectively. 

Our model consists of two parts; the first part deals with the 
clean signals that have bigger than 0 SNR values; our 
Customized EfficientNet shows outstanding performance in the 
modulation classification for such values, and the maximum 
accuracy of the modulation classification is 92% at 30 SNR 
average. However, the EfficientNet has the same characteristics 
as the other convolutional neural networks (CNNs), and the 
accuracy is degraded, especially for the signals under 0 SNR 
values. On the other hand, Transformer Block is working on 
modulation classification for the lower SNR range of the signals. 
The Transformer shows an average of 70% accuracy of the 
modulation classification in the signals with lower SNR values 
than zero. By applying the parts (Customized EfficientNet and 
Transformer Block), we have a wider modulation classification 
range that works from -20 SNR up to 30 SNR with average 
accuracy (80.74%) among all the SNR ranges. Compared to any 
solo system, our hybrid model has superior performance 
considering the full range of SNR. The following subsections in 
this section illustrate the accuracy results of each part 
individually; then, the final results will be shown for the 
combined parts of the hybrid system. 

Furthermore, both parts of the hybrid system (Customized 
EfficientNet and Transformer Block) are trained to utilize the 
raw data directly, without any feature extraction or 
preprocessing stage. However, the training stage took a long 
time for training of the two models, around one hour for each 
epoch, and it took 36 epochs to complete the training; this long 
time is due to the huge size of the used dataset. Noting that, 10% 
of the training data set was considered a validation split to 
determine the optimum point to stop the training process and 
have the best generalization characteristics for the system. 

A. Performance of the Customized EfficientNet 

By implementing the customized EfficientNet discussed in 
Section V(A), the overall accuracy of the model on the AMC 
task is reported in Table III and displayed graphically in Fig. 10. 
It can be observed that the customized EfficientNet alone 
performs very good for positive or higher values of SNR. 
However, it has a poor performance for negative and lower SNR 
values. 

TABLE III.  EFFICIENTNET ACCURACY 

SNR (dB) Overall Accuracy SNR (dB) 
Overall 

Accuracy 

-20 4.34% 2 68.73% 

-18 4.57% 4 79.58% 

-16 4.87% 6 86.08% 

-14 5.46% 8 89.15% 

-12 7.81% 10 90.30% 

-10 12.43% 12 91.49% 

-8 16.16% 14 91.12% 

-6 24.11% 16 91.80% 

-4 31.65% 18 92.22% 

-2 42.32% 20 92.01% 

0 57.06% 22 91.93% 

  24 92.32% 

  26 91.89% 

  28 92.05% 

  30 92.03% 

 
Fig. 10. AMC accuracy for customized EfficientNet alone. 

B. Performance of the CustomizedTransformer Block 

By implementing the customized Transformer block 
discussed in Section V(B), the overall accuracy of the model on 
the AMC task is reported in Table IV and displayed graphically 
in Fig. 11. It can be observed that the customized Transformer 
block alone performs very good for negative and lower values 
of SNR. However, it has a poor performance for positive or 
higher SNR values. 
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TABLE IV.  TRANSFORMERS’ ACCURACY 

SNR (dB) 
Overall 

Accuracy 

SNR 

(dB) 

Overall 

Accuracy 

-20 69.79% 2 52.34% 

-18 68.97% 4 45.72% 

-16 69.85% 6 44.84% 

-14 70.13% 8 41.26% 

-12 70.08% 10 40.88% 

-10 71.76% 12 41.95% 

-8 72.16% 14 42.25% 

-6 72.32% 16 42.36% 

-4 71.08% 18 42.27% 

-2 69.09% 20 41.96% 

0 61.18% 22 42.84% 

  24 42.46% 

  26 42.49% 

  28 42.29% 

  30 42.47% 

 
Fig. 11. AMC accuracy for the customized transformer block alone. 

C. Performance of the Proposed Hybrid Model 

By implementing the proposed hybrid model for the AMC 
task using the switching mechanism discussed in Section V, the 
overall accuracy of the proposed model on the AMC task is 
reported in Table V and displayed graphically in Fig. 12. 
Moreover, the performance of the proposed hybrid model is also 
compared to the one achieved by the modified ResNet of [25]. 
It can be observed that the proposed hybrid model initially 
performed bad at 0 dB SNR, and later it performed very well for 
the larger SNR values. The reason for this bad performance is 
due to abrupt switching via the imperfection in SNR estimation 
using Eq. (3). This is one of the limitations of the proposed 
method that needs to be improved in future research. Moreover, 
the proposed hybrid model outperformed the modified ResNet 

of [25] for lower SNR values (10 dB and below). For the case of 
higher SNR values (above 10 dB), its performance is almost 
identical to that of the modified ResNet of [25]. This is important 
to highlight that the AMC at lower SNR is more crucial and 
hence, our proposed model has attained this goal. 

 
Fig. 12. AMC accuracy comparison for the proposed model. 

TABLE V.  AMC ACCURACY COMPARISON FOR THE PROPOSED MODEL 

SNR(dB) 
Accuracy of Proposed 

Hybrid Model 

Accuracy of Modified 

ResNet Model [25] 

-20 69.79% 3.87% 

-18 68.97% 4.94% 

-16 69.85% 6.36% 

-14 70.13% 7.08% 

-12 70.08% 10.27% 

-10 71.76% 13.62% 

-8 72.16% 16.74% 

-6 72.32% 21.29% 

-4 71.08% 28.58% 

-2 69.09% 37.98% 

0 61.18% 48.43% 

2 68.73% 57.84% 

4 79.58% 66.72% 

6 86.08% 77.18% 

8 89.15% 86.93% 

10 90.30% 90.04% 

12 91.49% 91.53% 

14 91.12% 91.86% 

16 91.80% 92.12% 

18 92.22% 93.31% 

20 92.01% 92.87% 

Avg. 78.04% 49.50% 
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VII. CONCLUSION 

The capacity to categorize signals is a critical skill that may 
be used in various applications. In this work we have developed 
a hybrid CNN model by intelligently combining the EfficientNet 
and the Transformer Block for the AMC application. For this 
purpose, customized architectures of both the EfficientNet and 
the Transformer Block are developed. A switching mechanism 
is opted to develop the proposed hybrid model such that the 
EfficientNet is used for higher SNR values, while the 
transformer block is used to enhance the DL performance for the 
lower SNR values. The performance of the proposed hybrid 
model is examined on a benchmark dataset, RadioML2018.01A. 
The results show that the proposed hybrid model has an average 
classification accuracy of 78.04% in contrast to 49.5% achieved 
by its state-of-the-art counterpart. Thus, confirming the 
supremacy of the proposed model for the AMC application. In 
the future, more accurate methods of SNR switching can be 
explored. Moreover, the AMC task can be expanded to other 
types of modulation and channel models. 
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