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Abstract—Classifying signals or modulation classification is a
crucial step in developing communication receivers. A common
practice is to extract features before categorizing the signal, which
requires implementing long preprocessing techniques. Due to
breakthroughs in neural network topologies, machine learning
(ML) algorithms, and optimization techniques, referred to as
"deep learning" (DL), we have witnessed a vast degree of change
over the previous five years. Advanced deep learning algorithms
can be applied to the same automatic modulation classification
problem and generate excellent outcomes without requiring time-
consuming, manual, and complex feature extraction methods. In
recent years, various DL techniques have been explored for
automatic modulation classification (AMC). However, it has been
observed that these techniques are effective only for higher Signal-
to-Noise-Ratio (SNR) values. To overcome this challenge, we
proposed a hybrid DL-based AMC technique by combining a
customized EfficientNet with a customized Transformer Block
The transformer block is used to enhance the DL performance for
the lower SNR values. The performance of the proposed hybrid
model is tested on a benchmark dataset, RadioML2018.01A, and
compared with the state-of-the-art existing DL method which
shows the supremacy of the proposed hybrid model.

Keywords—Automatic modulation classification; deep learning;
machine learning; EfficientNet; Transformer Network

I.  INTRODUCTION

Independent radio spectrum interpretation is becoming
increasingly important in various applications due to the rapid
development of different evolved standards and best practices
for wireless communications. These applications include
electronic warfare and vulnerability assessments in military
scenarios, dynamic channel access, spectrum interference
detection, and monitoring in civil proceedings [1]. Encoder,
modulation, and multiplexing are all necessary components in a
wireless transmission channel. First, the signal from the source
is transformed into a format suitable for signal processing
techniques suchas noise reductionandinterferencereduction by
a Source Encoder. Adding a bit of redundancy to the signal
during this process might help it withstand noise. Once the
signal has been modulated with an appropriate modulation
technique, such as Phase Shift Keying (PSK), Frequency Shift
Keying (FSK), or Quadrature Phase Shift Keying (QPSK), it is
delivered into the channel as rapidly as possible using antennas.
To retrieve the sent data, the receiver side employs the same
techniques as the transmitter side, including de-multiplexing,
demodulation, and decoding, amongothertechniques. However,
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there are several drawbacks, including co-channel interference
and signal distortion over spectral channels due to aggressive
spectrumusage in massive wireless communicationsystems. To
deal with these issues, one effective solution is Adaptive
Modulation (AM), whoseaimis to encode radio signals utilizing
a variety of modulation forms from a predetermined candidate
pool depending on channel conditions and system
specifications. Thus, the AM enables intelligent spectrum
management in modern communication systems, as shown in
Fig. 1 [2].
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Fig. 1. Communication system with adaptive modulation [2].

However, a major challenge for implementing the AM in
wireless communications is the dynamic estimation of channel
conditions and data characteristics. Hence, automatic
modulation classification (AMC) is introduced, which is a
technique that improves spectrum utilization efficiency by
applying it to a detected signal at the receiver's physical layer
without knowing the data sent or channel characteristics.

A. Task of AMC

Consider a communication system sending a noise-free
signal x(#) (whose sampled version is denoted as x/k/) through
some channel (with discrete version denoted as i/kJ), then the
received signal for the nth symbol at time & can be expressed as

Eq. (1) [2]:
y[nl = x[n, hy ] + win] (1)

where, x[n, h,] is the modulated input data passed through
the channel h; and w/n/isthe additive noise at thereceiver with
variance g2. The task ofan AMC in a communication system is
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to predict the modulation type using only input-output data
without estimating the channel impulse response.

B. AMC Approaches

Both probabilistic and conventional machine learming
frameworks are used in the traditional AMC approaches. Based
on the assumption that all signal and channel models are fully
understood, likelihood-based systems have the best level of
accuracy since they employ probability theory and hypothetical
models to solve classification difficulties. Machine learing
(ML) features are more likely to be adopted because of their
simplicity. However, this comes at the expense of a few
drawbacks, such as restricted learning capacity and a poor
discriminative experience of handmade features.

Likelihood-Based (LB) Approach: The optimum approachis
to employ the LB approach, which minimizes the possibility of
incorrect categorization. This assumption is correct if a
waveform's density function (PDF) contains all relevant
information. Using a decision threshold, the probability ratio
from the PDF is used to categorize the modulation type [3]. The
drawback of this approach is its computational complexity.
Real-time classification requires a thorough inspection of
multiple pulses and emitters. It is possible to separate a single
emitter byusingotherwaysoflocatingthe Primary Rat Interface
(PRI). Due to this, it is possible to forgive a few wrong
classificationsin modulation categorization ifthemajority of the
categories are suitable. Algorithm strength must also be
considered while extracting data. A lack of inherent robustness
makes LB approaches susceptible to noise, timing issues, and
phase offsets. Given this and the necessity of real-time
operation, a more accessible, feature-based approach may be
adopted.

Feature-Based (FB) Approach: The FB approach employs
representative features to identify and categorize the differences
betweensignals. The typical characteristics are the time domain,
signal changes, zero crossings, and statistics. In addition, the FB
AMC technique often uses a hierarchical approach, first
identifying modulation and defining its exact kind [3]. Then,
PDF-based, Euclidean distance, and artificial intelligence
classifiers are utilized to make decisions. FB algorithms are
generally preferred because of their simple complexity and
acceptable performance, even if their performance is poor.

C. Related Works: Deep Learning in AMC

In recent years, the DL techniques have been successfully
applied in various fields such as computer vision [4], [5],
wireless communications [6], [7], bioinformatics [8]-[13], and
signal processing [ 14], [15], etc. Motivated by the power of DL,
several state-of-the-art DL techniques have been employed in
the field of AMC, which resulted in improved modulation
classification performance of ACM. For example, convolutional
neuralnetworks (CNNs)based AMC[16],[17],[18],longshort-
term memory networks (LSTMs) based AMC [19], [20], and
recurrent neural networks (RNNs) based AMC[21]. One major
advantage of DL-based AMC over conventional ML-based
AMC is that DL provides automatic feature extraction with
higher classification accuracy [22]. Another important fact
aboutthe DL-based AMClis thatitcanenhancethe classification
accuracy of higher-order modulation in the presence of a
synthetic channel impairment [23]. Finally, it is found that the
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DL-based AMC has the capability to effectively process big
data, and thus it is well-suited for deploying AMC in Internet-
of-Things (IoT) systems [24].

D. Challenges in AMC

A major challenge in ML-based AMC is the requirement of
designing efficient feature extraction methods for each dataset.
On the other hand, although the DL-based AMC can provide
automatic feature extraction, with improved modulation
classification accuracy, there are still many open challenges in
this field. One big challenge is that all the existing DL-based
AMC methods proved to be better in terms of classification
accuracy only for higher values of signal-to-noise ratio (SNR).
Their performance degrades drastically at lower SNR values,
which implies that if the noise level is higher, the model would
mostlikely fail to categorize the signal. In the existing literature,
there is no work addressing this issue. In this work, we mainly
focus on this challenge.

E. Our Contributions

As outlined in the previous subsection, the DL-based AMC
has one major challenge of poor performance at lower SNR
values, we focused on solving this issue by designing a hybrid
DL-based AMC solution. More specifically, the proposed
method is capable of providing reasonably better modulation
accuracy at lower SNR values. For this purpose, we developed
a hybrid DL-based AMC solution in which we utilized the
combination of the EfficientNet and the Transformer Block via
a switching mechanism. The transformer block is used to
enhance the DL performance for the lower SNR values. The
performance of the proposed hybrid model is tested on a
benchmark dataset, RadioML2018.01A [25].

The study is organized as follows: Following this
introduction, the baseline methods are discussed in Sectionll. In
Section III, the proposed hybrid CNN model is presented. An
overview of the RadioML 2018 dataset is provided in
Section IV. Next, the experiment on AMC using the proposed
model is described in Section V. Results and discussion are
provided in Section VI. Finally, the concluding remarks are
given in Section VIL

II. BASELINE METHODS

In the context of AMC, various DL architectures have been
explored in the past [25]. Among these methods, the best
performance is achieved by the modified ResNet proposed in
[25]. In this section, we provided an overview of both the
standard and the modified ResNet architectures.

A. Standard ResNet [26]

ResNetisadeepresidual network thathas all the elementary
parts in its structure as existed in any deep CNN architecture
[26]. The only unique characteristic of the ResNet is the use of
identity connection or mapping between the levels. In order to
understand this Identity Mapping in a ResNet, see the block
diagram presented in Fig. 2, where F(x) is a function called the
Residual Function that operates between two convolutional
weight layers. More precisely, it is the difference between the
input x and the output H(x) of the residual block, as shown in
Fig. 2. Thus, the F(x) can be formulated as Eq. (2):

F(x) = H(x) —x (2)
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Therefore, the major purpose of including this function in
ResNet is to utilize the stacked layers to estimate the function
F(x) instead of estimating the function H(x). Consequently,
training the deep residual network tries to learn F(x), which
results in improving the overall accuracy. Moreover, it is
straightforward to conclude that the network's accuracy will be
improved by increasing the depth, provided that the issue of
over-fittingis resolved. However, the difficulty with theincrease
indepth is that the signal necessary tomodify the weights, which
emanates from the end of the network by comparing ground
truth and forecast, gets extremely little at the initial layers as
depth increases. It indicates that the initial levels are learned to
a minor extent. The term for this phenomenon is vanishing
gradient. The second issue with training deeper networks is that
optimization is performed on a large parameter space, resulting
in naively adding layers, which increases training error. As
illustrated in the figure, residual networks permit the training of
deep networks by creating the network using modules termed
residual models.

I
X

weight layer

[
F(x) relu

|

weight layer

X identity

FiX)+ x
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Fig.2. Residualleaming: a building block.

B. Modified ResNet [25]

In [25], a modified ResNet was proposed for implementing
the AMC. In this architecture, the residual unit and stack of
residualunitsare used, as shownin Fig. 3, and its network layout
is shown in Table I. In addition, self-normalizing neural
networks, the activation function of scaled exponential linear
unit (SELU), mean response scaled initialization (MRSA), and
Alpha Dropout were used and resulted in a marginally better
performance than standard ReLU.

Vol. 16, No. 12, 2025

TABLEI. MODIFIED RESNET NETWORK LAYOUT [25]
Layer Output Dimension
Input 2x 1024
Residual Stack 32x512
Residual Stack 32x256
Residual Stack 32x 128
Residual Stack 32x 64
Residual Stack 32x32
Residual Stack 32x 16
FC/SeLU 128
FC/SeLU 128
FC/Softmax 24

Residual Unit

1x1 Conv . . .
Linear H Res Unit H Res Unit }:D[Max Pocling

Residual Stack

Fig.3. Hierarchical layers used in modified ResNet

III. ProPOSED HYBRID CNN MODEL

In this work, we proposed a hybrid model of CNN which
utilizes a combination of EfficientNet and Transformer
Network. The architectures of both the networks and the
proposed hybrid model are presented in the ensuing.

A. EfficientNet Network

Developing convolutional neural networks are done at a set
cost. These networks may be expanded to achieve higher
accuracy, when additional resources are available. For example,
toincreasethesizeofaResNet 18 model to a ResNet 200model,
more layers can be added to the initial model. Mostly, this
scaling strategy has improved the accuracy of many
benchmarking datasets. However, the initial methods of model
scaling are quite unpredictable. Some models are scaled
horizontally, while others are scaled vertically. Some models
simply capture a higher-resolution image to get better outcomes.
Manual tweakingand numerous person-hours arerequired when
usingthis strategy of randomly scalingmodels, and it frequently
resultsin littleor noimprovementin performance. EfficientNet's
authors suggested that CNN models be scaled up to improve
accuracy and efficiency more ethically [27].

EfficientNetusesa method knownas compound coefficients
to scaleup modelsin an easy yet effective manner. Compound
scaling, instead of random scaling up of width, depth, or
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resolution, uniformly scales each dimension with a
predetermined set of scaling coefficients. The efficient
developers used the scaling approach and AutoML to construct
seven models of varied dimensions that outperformed the
current state-of-the-art accuracy of most convolutional neural
networks and were significantly more efficient.
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(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

Fig. 4. Various types of scalingused: (a) is a baseline network; (b) to (d)
conventional scaling via width, or depth, or resolution dimension. (e) is
compound scaling used in EfficientNet [27].

The authors evaluated the effects of each scaling
methodology on the model's performance and efficiency to
develop the compound scaling method. In their opinion, scaling
single dimensions helps in enhancing model performance,
balancing the scale in all three dimensions: width, depth, and
picture resolution, considering the varied resources available,
which best improves the overall model performance. The
compound scaling method proposed for EfficientNet is shown
inFig. 4. The goal ofthe compound scalingmethod is to balance
the width, depth, and resolution measurements achieved by
scaling with a constant ratio.

Input Rescalin, ‘Normalization eeg Conv2D
Layer B Padding

Stem

Batch

e Activati
Normalization -

Conv2D

Final Layers

Fig.5. Stem and final layers of EfficientNet.

A neural architecture search utilizing the AutoML MNAS
framework created the baseline network used in EfficientNet.
For optimum accuracy, the network is fine-tuned and punished
if it is computationally intensive. It is also punished for sluggish
inference times when the network takes time to create
predictions. The system employs a mobile inverted bottleneck
convolution similar to MobileNet V2; however, it is
substantially larger owing to the rise in FLOPS. This basic
model is then built to provide the networks' EfficientNets
family. The stem and final layers of EfficientNet are presented
in Fig. 5.

Further, each of the modules has seven blocks. These blocks
are further subdivided into a different number of sub-blocks.
These numbers increase when moving from EfficientNet-BO to
EfficientNet-B7.

B. Transformer Network

The encoder-decoder architecture has evolved into the
"Transformer model" [28, 29]. Unlike the encoder-decoder
design, the Transformer doesn't employ recurrent neural
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networks (RNNs) to acquire sequential data. Transformer-based
models have replaced Long-Short Term Memory (LSTM)
networks [30] in many sequence-to-sequence situations and are
superior in quality. Conducting some diggings to discover the
best time-series model that has just been released on the internet
and in journals.

Recently, a solution using the newest state-of-the-art time
series model called Transformer is devised [29]. Compared to
the prior models, this model has various advantages, such as
parallelization processing, which allows it to use contemporary
graphics processing units (GPUs), which were created
specifically for parallel calculation. Moreover, the vanishing
gradient problem can be solvedin Transformer Network (TN)
as the input size can be adjustable, and the network can execute
simultaneously rather than sequentially. Furthermore, the TN is
capable of capturing detailed data context due to its advantage
of the network modules' positional encoding and self-attention
mechanisms [31]. The main crucial network module within the
TN is provided in [31].

C. Switching-Based Proposed Hybrid Model

Our experimental analysis showed that the EfficientNet and
Transformer Net are good in predicting signals with high SNR
and low SNR, respectively. We proposed to combine the two
network models of EfficientNet and Transformer Net
effectively, such that the classification accuracy of the AMC
should be enhanced for both low and high SNR values. For this
purpose, an SNR threshold-based switching is proposed as
shown in Fig. 6. This SNR threshold value is set according to
experimental findings. In our experiments, we have used a 0 dB
SNR value as a switching threshold; that is, the proposed model
will utilize EfficientNet if SNR is above 0 dB, and it will switch
to TN otherwise.

Received
Signal

SNR
Estimator

Low SNR High SNR

v r

Transformer EfficientNet

[ Output Signal ]

Fig. 6. SNR switch between EfficientNet and the transformer block.

To implement the proposed SNR threshold-based switching,
instantaneous SNR values are estimated using the received
samples. Knowing the fact that there are well-established
techniques for estimating noise variance estimation (i. e., §2)
[32, 33], the received SNR can be estimated using an average
over window size N, as follows [see Eq. (3)]:
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SNRI) = 22 {(- Shenn, V) =62} )

Finally, switching is performed between EfficientNet and
Transformer block by inspecting the estimated SNR against a
defined threshold value (y) that can be set by the designer.

IV.  OVERVIEW OF RADIOML 2018 DATASET

The majority of existing AMC strategies have been assessed
on the reenactment datasets produced by programming.
According to the point of view of reasonableness, producing
tweaked signs to benchmark the execution of profound models
ought to consider two essential worries: modulation technique
(such as modulation types and modulation count) and channel
condition. For models, RadioML2018.01A, a presently
accessible and broadly utilized dataset of regulation grouping,
conceals 24 modulations (counting analogue and digital
procedures and a few testing high-request designs), where the
regulation transmissions are engendered in a multipath Rician
blurring with carrier frequency offset, symbol rate offset, delay
spread, and AWGN to almost acquire true peculiarities in
remote correspondences. On the other hand, various AMC
techniques have produced easy datasets with few basic digital
modulations. Thus, the adequacy and effect of exploration
commitment in view of execution assessment in reproductions
can be unconvincing other than the unsubstantial dependability
of grouping models to carry out in practical frameworks. For
example, a plain-design profound organization [32]
accomplished high exactness with three modulation candidates
(BPSK, QPSK, and 8-PSK). In different works [33], the
considered spread channel is less difficult with level blurring
and time-invariant rather than recurrence, particularly multipath
blurring and testing time float. The modulation classification
task turns out to be easier with a few given classes, where the
between-class and intra-class segregation issues are not thought
rigorously.

Even though DL-AMC can give huge execution, it requires
alot of training data. In reality, obtaining a sufficient number of
valid training samples is typically expensive and challenging.
Hence, the employed huge scope preparing dataset oughtto be
developed cautiously enough with more reasonable signs under
a wide scope of SNR. Besides, data expansion techniques can
arrange radio regulation plans more effectively byutilizing more
limited radio examples [34], which will furnishan improved DL
model with a more modest order reaction time. Nonetheless, the
Signs datasetis especially needed for preparing, approving, and
testing the networks in ML-AMC and DL-AMC models. A few
analysts utilized their simulated datasets, and others like to
utilize those presented in the journal. A portion of the datasets is
introduced as follows.

GNU Radio datasets are utilized in this research. The
RML2018 dataset is one of the most complex modulation
classification datasetspublished in [25]. Twenty-four digitaland
analog modulation schemes are measured over the air and
distributed across a wide range of SNR values. In addition, it
comprises almost 2.5 million signals with artificially created
channel distortions. "Over-the-air deep learning-based radio
signal categorization" was published in the IEEE Journal of
Selected Topics in Signal Processing in 2017 and gives further
information and explanation of the dataset. In hdf5 format,
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around 1.5 million instances are recorded as complex floating-
pointvalues with a sample lengthof 1024 samples, respectively.

The updated techniques [35] were used to create the new
dataset (RadioRML 2018). 24 modulators, both analog and
digital, are utilized to modulate a wide variety of single carriers.
Fig. 7 demonstrates OTA transmission channels containing
clean signals without any synthetic channel impairments. Digital
signals are formed with a root-raised cosine beat modulating
filter [36] with a scope of roll-off values.

Y T))}‘f’ hif

USRP USRP
B210 B210

> T
|  UHD TX/RxScheduler |
| Sig Gen ||

Host Computer

-

Storage |

Fig. 7. Over-the-air test configuration [25].

V. EXPERIMENT ON AMC

In this study, Python is used to perform the AMC task, which
was done using Google Colaboratory (called Colab). Google
Colab allows users to take advantage of backend hardware such
as GPUs and TPUs to accelerate their computations. Thus, it
facilitates performing all of the tasks in a Jupyter notebook
hosted on your local system without installing or configuring
any additional software.

A. EfficientNet (for High SNR)

First, we import the EfficientNet for Tenserflow-Keras
Library, which is the Conventional EfficientNet. However, we
chose the BO Architecture, since it has the lowest processing
complexity SNR switch.

As part of our suggested strategy, we attempt to employ two
network models, one effective for predicting signals with high
SNR and the other effective at predicting signals with low SNR.
The transformer neural network will be used for low SNR
models because it is a time series neural network that may be
used to forecast complicated data, such as signals with low SNR
rates. Our improved EfficientNet, on the other hand, is
employed for categorizing signals with greater signal-to-noise
ratios. Followingthe input of our signal into two models, we will
ensemble them to obtain the highest accuracy output from the
two models. For this purpose, the SNR value of 0 dB is selected
as the switching threshold among the eight possible types of
EfficientNet. The original EfficientNet BO has an input size of
224x224x%3; therefore, we must adapt the input size to match that
of RML 2018, whichis 1024x2, so we must alter the input layer
appropriately. To accommodate the adaptation, thereshape layer
has been introduced in the first layer before the modified
EfficientNet, as shown in Fig. 8.
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reshape_input | input: Dropout are used in conjunction with batch normalization to
o L_ —{ [(None, 1024, 2)] | [(None, 1024, 2)] minimize overfitting. After an Alpha dropout, the mean and
iputl.ayer | oufput: variance of inputs retain their original values, ensuring that the
self-normalizing characteristic continues to hold even after the
dropout has occurred. In addition, we selected SeLU, which
reshape | input: stands for Scaled Exponential Linear Unit, for the activation
Reshape | output: (None, 1024, 2) ( (None, 1, 1024, 2) function to support the self-normalizing feature of the dropout
layer, which is supported by the dropout layer itself. Lastly, we
continue to use Lazy Adam as our model enhancer. The details
of layer type, output type, and number of parameters are
EfficientNet | input: i i
: PUE | (None, 1, 1024, 2) | (None, 24) provided in Table II.
Functional | output:
TABLEII. LAYERS OF THE TRANSFORMER BLOCK USED IN AMC
Fig. 8. Rescale layer and the customized EfficientNet.
Layer (type) Output Shape Param #
The training process for our network uses a batch size of input_1 (InputLayer) [(None, 1024, 2)] 0
S| ) . 0
1024 anfi a validation testing dataset comprised of 20% of the reshape (Reshape) (None, 2. 1024) 0
total training dataset. - —
transtformer bloc
— one, 2, 1024 4728064
B. Transformer Block (for Low SNR) (TransformerBlock) N )
. . . . o . Total : 4,882,968
As shown in Fig. 9, the architecture being utilized is o params: e
. . . . . . S Trainable params: 4,880,920
demgn.ed primarily to deal with noisy signal modulation / low Non-trainable params: 2,048
SNR signal modulation. Two fully linked networks and Alpha
input: | [(None, 1024, 2)]
input_1 | InputLayer
output: | [(None, 1024, 2)]
input: | (None, 1024, 2)
reshape | Reshape
output: | (None, 2, 1024)
input: | (None, 2, 1024)
transformer_block | TransformerBlock
output: | (None, 2, 1024)
. . input: | (None, 2, 1024)
global _average poolingld | GlobalAveragePooling1D
output: (None, 1024)
o o input: | (None, 1024)
batch_normalization | BatchNormalization
output: | (None, 1024)
) input: | (None, 1024)
alpha_dropout | AlphaDropout ourput: | (None, 1024)
input: | (None, 1024)
dense_6 | Dense
output: | (None, 128)
ioha dn ¢ 1 | AlphaDe N input: | (None, 128)
aipha_diopout phatiopen output: | (None, 128)
input: | (None, 128)
dense_7 | Dense
output: | (None, 128)
aoha d 3 | Ahap input: | (None, 128)
pha_dropout_ phabropout output: | (None, 128)
dense_8 | Dense input: | (None, 128)
output: | (None, 24)
Fig.9. Architecture of the transformer block used in AMC.
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VI. RESULTS AND DISCUSSION

This section will demonstrate the results of applying the
proposed method to create the hybrid model. These results are
reported in Table III in terms of overall Accuracy of the
proposed model at different SNR values. Accuracy is calculated
using the following relation, Eq. (4):
TP+TN

P+N

Accuracy = “4)
where, TP, TN, P, and N represent True Positive, True
Negative, Total Positive, and Total Negative, respectively.

Our model consists of two parts; the first part deals with the
clean signals that have bigger than 0 SNR wvalues; our
Customized EfficientNet shows outstanding performance in the
modulation classification for such values, and the maximum
accuracy of the modulation classification is 92% at 30 SNR
average. However, the EfficientNet has the same characteristics
as the other convolutional neural networks (CNNs), and the
accuracy is degraded, especially for the signals under 0 SNR
values. On the other hand, Transformer Block is working on
modulationclassification forthe lower SNR range of the signals.
The Transformer shows an average of 70% accuracy of the
modulation classification in the signals with lower SNR values
than zero. By applying the parts (Customized EfficientNet and
Transformer Block), we have a wider modulation classification
range that works from -20 SNR up to 30 SNR with average
accuracy (80.74%)among all the SNR ranges. Compared to any
solo system, our hybrid model has superior performance
considering the full range of SNR. The following subsections in
this section illustrate the accuracy results of each part
individually; then, the final results will be shown for the
combined parts of the hybrid system.

Furthermore, both parts of the hybrid system (Customized
EfficientNet and Transformer Block) are trained to utilize the
raw data directly, without any feature extraction or
preprocessing stage. However, the training stage took a long
time for training of the two models, around one hour for each
epoch, and it took 36 epochs to complete the training; this long
time is due to the huge size of the used dataset. Notingthat, 10%
of the training data set was considered a validation split to
determine the optimum point to stop the training process and
have the best generalization characteristics for the system.

A. Performance of the Customized EfficientNet

By implementing the customized EfficientNet discussed in
Section V(A), the overall accuracy of the model on the AMC
task is reported in Table Il and displayed graphically in Fig. 10.
It can be observed that the customized EfficientNet alone
performs very good for positive or higher values of SNR.
However,ithas apoorperformance for negative and lower SNR
values.

Vol. 16, No. 12, 2025

TABLE III. EFFICIENTNET ACCURACY
Overall
SNR (dB) Overall Accuracy SNR (dB) Accuracy
-20 4.34% 2 68.73%
-18 4.57% 4 79.58%
-16 4.87% 6 86.08%
-14 5.46% 8 89.15%
-12 7.81% 10 90.30%
-10 12.43% 12 91.49%
-8 16.16% 14 91.12%
-6 24.11% 16 91.80%
-4 31.65% 18 92.22%
2 42.32% 20 92.01%
0 57.06% 22 91.93%
24 92.32%
26 91.89%
28 92.05%
30 92.03%
EfficientMet
10
¢ EfficientNet
0O OO0 0000
<
0a <
&
11
= o
g
g
04 4
<&
&
0z
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<&
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Fig. 10. AMC accuracy for customized EfficientNet alone.

B. Performance of the CustomizedTransformer Block

By implementing the customized Transformer block
discussed in Section V(B), the overall accuracy ofthe model on
the AMC task is reported in Table IV and displayed graphically
in Fig. 11.1t can be observed that the customized Transformer
block alone performs very good for negative and lower values
of SNR. However, it has a poor performance for positive or
higher SNR values.
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TABLEIV. TRANSFORMERS’ ACCURACY
s | ot T o [ S

-20 69.79% 2 52.34%
-18 68.97% 4 45.72%
-16 69.85% 6 44 .84%
-14 70.13% 8 41.26%
-12 70.08% 10 40.88%
-10 71.76% 12 41.95%
-8 72.16% 14 42.25%
-6 72.32% 16 42.36%
-4 71.08% 18 42.27%
2 69.09% 20 41.96%
0 61.18% 22 42.84%
24 42.46%

26 42.49%

28 42.29%

30 42.47%

10 Transformer Block
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Fig. 11. AMC accuracy for the customized transformer block alone.

C. Performance of the Proposed Hybrid Model

By implementing the proposed hybrid model for the AMC
task using the switching mechanism discussed in Section V, the
overall accuracy of the proposed model on the AMC task is
reported in Table V and displayed graphically in Fig. 12.
Moreover, the performance ofthe proposed hybrid model is also
compared to the one achieved by the modified ResNetof[25].
It can be observed that the proposed hybrid model initially
performed bad at 0 dB SNR, and later it performed very well for
the larger SNR values. The reason for this bad performance is
due to abrupt switching via the imperfection in SNR estimation
using Eq. (3). This is one of the limitations of the proposed
method thatneeds to be improved in future research. Moreover,
the proposed hybrid model outperformed the modified ResNet

Vol. 16, No. 12, 2025

of [25] for lower SNR values (10 dB and below). For the case of
higher SNR values (above 10 dB), its performance is almost
identical to thatofthemodified ResNet of[25]. Thisis important
to highlight that the AMC at lower SNR is more crucial and
hence, our proposed model has attained this goal.

100 T T T T T T T

90

80

704

60

50

40

Correct Classification Accuracy (%)

—¥— Proposed Hybrid Model
—=A— ResNet Model [13]

SNR (dB)

Fig. 12. AMC accuracy comparison for the proposed model.

TABLE V. AMC ACCURACY COMPARISON FOR THE PROPOSED MODEL
SR | e | e
-20 69.79% 3.87%
-18 68.97% 4.94%
-16 69.85% 6.36%
-14 70.13% 7.08%
-12 70.08% 10.27%
-10 71.76% 13.62%
-8 72.16% 16.74%
-6 72.32% 21.29%
-4 71.08% 28.58%
2 69.09% 37.98%
0 61.18% 48.43%
2 68.73% 57.84%
4 79.58% 66.72%
6 86.08% 77.18%
8 89.15% 86.93%
10 90.30% 90.04%
12 91.49% 91.53%
14 91.12% 91.86%
16 91.80% 92.12%
18 92.22% 93.31%
20 92.01% 92.87%
Avg. 78.04% 49.50%
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The capacity to categorize signals is a critical skill that may
be used in various applications. In this work we have developed
ahybrid CNNmodel by intelligently combining the EfficientNet
and the Transformer Block for the AMC application. For this
purpose, customized architectures of both the EfficientNet and
the Transformer Block are developed. A switching mechanism
is opted to develop the proposed hybrid model such that the
EfficientNet is used for higher SNR values, while the
transformer block is used to enhancethe DL performance for the
lower SNR values. The performance ofthe proposed hybrid
modelis examined on a benchmark dataset, RadioML2018.01A.
The results show that the proposed hybrid model has an average
classification accuracy of 78.04% in contrast to 49.5% achieved
by its state-of-the-art counterpart. Thus, confirming the
supremacy of the proposed model for the AMC application. In
the future, more accurate methods of SNR switching can be
explored. Moreover, the AMC task can be expanded to other
types of modulation and channel models.

CONCLUSION
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