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Abstract—We present the Relationship Management System
(RMS) a modular framework for modeling, monitoring, and
repairing human AI relationships. Grounded in Knapp’s Rela-
tional Development Model and Social Penetration Theory, RMS
operationalizes ten stages of relationship growth and decline,
linking depth of disclosure with stage-appropriate behavior.
An Airtable-backed schema Relationship Stages, Conversational
Arcs, Session Directives) separates master content from user-
specific state. A Trust Evaluator quantifies trust, engagement,
and disclosure after each session and drives stage transitions.
A weighted Regression Risk Score anticipates degradation by
tracking shifts in trust, drops in engagement and frequency,
patterns of topic avoidance, and conflict cues. When risk climbs,
RMS activates empathy centered Recovery Arcs that acknowledge
strain and guide repair. This two way, data-informed loop delivers
early warning, adjusts pacing to context, and offers gentle
offramps when needed improving long-term engagement while
preserving interpretability and keeping operational costs low.
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I. INTRODUCTION

Conversations with machines have changed quietly but
profoundly over the past decade. What once felt transac-
tional—asking for the weather, setting a timer, or looking
up a fact—has become something closer to routine compan-
ionship. Many people now return to the same conversational
agents every day. They expect these systems to remember
past exchanges, maintain a steady tone, and offer a hint of
empathy. Over time, these interactions start to feel less like
brief transactions and more like relationships that accumulate
shared context. A satisfying interaction is no longer measured
only by accuracy or speed, but by whether the user feels
recognized, respected, and emotionally understood.

Most dialogue systems, however, are not designed for that
kind of continuity. They are tuned for short-term efficiency:
one prompt, one answer, and a clean reset. When a user’s tone
shifts, when replies shorten, or when emotional openness fades,
the system often proceeds as if nothing has changed. In human
relationships, such small variations are often the first signals of
distance or discomfort. In conversation with a machine, they
typically go unnoticed until the user quietly disengages.

The Relationship Management System (RMS) was created
to fill this gap. It views every exchange as part of a longer
narrative between a person and an agent. Rather than treat-
ing dialogue as a flat series of turns, RMS models it as a

relationship that can deepen, plateau, or decline. The frame-
work draws from classic theories in interpersonal communi-
cation—particularly Knapp’s Relational Development Model
and Social Penetration Theory—to trace how trust, emotional
closeness, and openness evolve through recognizable stages.
These stages help the system read subtle cues—topic changes,
emotional withdrawal, or conversational avoidance—as mean-
ingful signs of movement in the relationship rather than
random noise.

RMS follows a modular, interpretable architecture. It sepa-
rates reusable dialogue logic from user-specific relational data,
making it easier to analyze and refine. Each user’s trajectory is
preserved across sessions so that long-term shifts become visi-
ble. At its center lies the Trust Evaluator, which computes three
interpretable metrics—trust, engagement, and self-disclosure
based on behavioral patterns such as turn-taking balance,
sentiment, and frequency of interaction. A complementary
Regression Risk Score monitors signs of deterioration. When
this risk increases, RMS launches an appropriate Recovery
Arc a conversational strategy designed to acknowledge strain,
rebuild rapport, and restore connection.

This design offers several advantages. First, RMS functions
as an early warning system, flagging relational risks before
users withdraw completely. Second, it enables context-aware
pacing, helping the agent adjust tone, depth, and emotional
range to match the current stage of the relationship. Third,
it remains transparent and explainable: its behavior is driven
by interpretable signals and explicit logic that researchers can
inspect, critique, and improve.

The contributions of the paper are as follows:

• A theory-informed framework for modeling how hu-
man–agent relationships form, evolve, and sometimes
decline.

• A lightweight Trust Evaluator and composite Regres-
sion Risk Score that quantify relational health through
behavioral evidence.

• A modular library of Recovery Arcs—structured yet
flexible approaches to restoring trust and re-engaging
users.

• A scalable system design that separates conversational
content from relational state, enabling rapid experi-
mentation, A/B testing, and deployment.
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By treating dialogue as a relationship that develops over
time, RMS moves conversational agents closer to behaving
like attentive partners—able to notice when distance grows, to
pause and repair, and to grow alongside the people who rely
on them.

II. RELATED WORK

A. Interpersonal Relationship Theories and Disclosure

RMS is grounded in well–established accounts of how
relationships take shape, deepen, strain, and end. Knapp’s Re-
lational Development Model describes movement through ten
recognizable stages—ranging from early initiation to bonding,
and later differentiation and termination—emphasizing that
progress is not strictly linear and that partners can pause,
cycle, or reverse course [1], [2]. Social Penetration Theory
(SPT) frames closeness as a function of self-disclosure that
expands in both breadth (topics) and depth (intimacy) [3].
A substantial literature links appropriate disclosure to liking
and perceived relationship quality [4], [5], [6]. Communication
Privacy Management extends this view by showing how people
regulate boundaries around private information, negotiate co-
ownership, and manage dialectical tensions between openness
and protection [7]. Complementary perspectives on trust and
commitment, including investment-based models, explain why
partners persist, when they repair, and what motivates ac-
commodation during conflict [8], [9], [10]. Work in marital
science adds concrete warning signs and repair cues: contempt,
stonewalling, and diffuse physiological arousal predict disso-
lution and guide targeted interventions [11], [12].

RMS operationalizes these insights in three ways. First,
it maps Knapp’s stages to a compact state representation
that tracks relational movement across sessions; transitions
are inferred from observable behaviors rather than assumed
from task success alone. Second, it uses SPT as the basis
for disclosure features: changes in topical breadth, depth,
and reciprocity inform the system’s estimates of trust and
engagement, while Communication Privacy Management prin-
ciples constrain prompts so that any request for personal
information respects boundary cues and previously negotiated
rules. Third, it incorporates commitment and marital-science
predictors into risk estimation and repair: indicators such as
withdrawal, contempt-like language, or rising arousal proxies
contribute to a regression score, which in turn selects a suitable
recovery strategy (e.g., de-escalation, validation, or paced re-
engagement). Together, these theories give RMS a principled
vocabulary for detecting when a relationship is strengthening
or slipping, and a structured path for restoring it when needed.

B. Trust in Automation and Human–AI/Robot Interaction

A large literature addresses how people calibrate reliance
on automated and autonomous systems. Foundational frame-
works and empirical syntheses emphasize design features, per-
formance history, transparency, and user traits as antecedents
to trust dynamics [13], [14], [15]. Meta-analytic work in
human–robot interaction confirms that trust is malleable and
recoverable with targeted strategies, underscoring the need for
ongoing monitoring [16]. In mixed-initiative teams, trust repair
is crucial for sustained collaboration [17]. RMS operationalizes
these insights in a longitudinal pipeline (Trust Evaluator →
stage transitions → recovery).

C. Affective Computing, Social Responses to Media, and Re-
lational Agents

Affective computing established that systems should sense
and respond to emotion to maintain rapport [18]. Decades of
evidence show that people apply social heuristics to computers
(media equation) [19], [20]. Embodied and relational agents
demonstrate that carefully designed social dialogue can sustain
long-term alliances, adherence, and engagement [21], [22],
[23], [24]. Large-scale social chat systems such as XiaoIce
exhibit the value of empathy and persona consistency for
enduring bonds [25], [26]. RMS leverages these traditions but
adds explicit stage- and risk-aware control to govern depth and
repair.

D. Personalization, Alignment, and Memory in Conversational
AI

Personalization progressed from scripted personas to neu-
ral persona conditioning [27], [28] and large-scale open-
domain chat [29]. Alignment methods—including RLHF and
related techniques—shape agent behavior toward helpfulness
and safety [30], [31], while LaMDA highlights dialog-quality
criteria (safety, groundedness, interestingness) at scale [32].
Outside dialogue, user modeling and recommendation offer
mechanisms for preference memory and longitudinal adap-
tation [33],[34]. RMS complements these directions with an
interpretable state machine over relationship stages, depth
bands, and recovery arcs, decoupling master content from per-
user state to support controlled evolution.

E. Measuring Conversation Quality, Depth, and Affect

Conversation quality is multi-dimensional and bene-
fits from human-centered evaluation taxonomies [35], [36].
Lightweight psycholinguistic and sentiment tools (e.g., LIWC,
VADER, NRC) can proxy depth and valence [37], [38],
[39], [40], while transformer encoders enable robust discourse
features for longitudinal analytics [41]. RMS integrates such
signals to estimate trust, engagement, and disclosure depth per
session, feeding rule-based transitions that regulate pacing.

F. Engagement Dynamics, Churn Risk, and Just-in-Time In-
terventions

Engagement decays over time, often nonlinearly; customer
and retention analytics provide models and features trans-
ferrable to conversational settings [42], [43], [44]. Conceptual
frameworks in HCI define engagement as a process with
cognitive, emotional, and temporal components [45]. In mo-
bile health, JITAIs emphasize timing- and context-sensitive
interventions to prevent attrition [46]. RMS adapts these in-
sights via a weighted Regression Risk Score that fuses trust
decline, engagement/frequency drops, topic avoidance, and
conflict incidents, triggering targeted recovery protocols before
termination.

G. Repair, Apology, and Relational Recovery

Repair behaviors—apology, accountability, validation, and
concrete commitments—are central to trust restoration [47],
[48]. Clinical communication research underscores empathy
and unconditional positive regard as foundations for repair
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[49]. Historical and sociological accounts dissect apology
as ritual and moral practice [50], [51]. RMS encodes these
strategies as Recovery Arcs with explicit tactics and success
criteria (e.g., trust rebound ≥ 0.5, re-engagement on previously
avoided topics).

H. Explainability, Safety, and Ethics

Responsible AI requires transparency, user control, and
harm mitigation, particularly for persuasive or relational
systems [52], [53], [54]. Explainable AI shows that user-
understandable reasons can stabilize trust during errors or
corrective actions [55]. RMS aligns with these imperatives by
1) making relational state explicit and auditable, 2) enabling
graceful termination when recovery fails, and 3) constraining
disclosure depth via theory-grounded rules.

I. Synthesis and Gaps

Across communication theory, trust calibration, affective
computing, alignment, and engagement analytics, prior work
offers mechanisms for progress (self-disclosure, trust ac-
crual, personalization) and decline (avoidance, frequency drop,
conflict). What is missing is a unified, interpretable, and
operational framework that 1) represents relationship state
with stage- and depth-awareness, 2) continuously measures
health with longitudinal signals, and 3) executes targeted,
theory-informed recovery before churn. RMS advances this
agenda by 1) integrating Knapp’s stages and SPT depth
into a controllable state machine, 2) coupling interpretable
trust/engagement/disclosure estimators to rule-based transi-
tions, and 3) deploying reusable recovery arcs that implement
evidence-based repair with measurable outcomes.

III. PROPOSED FRAMEWORK

A. System Overview

The Relationship Management System (RMS) (see Fig.
1 and Fig. 2) treats conversation as a regulated, measurable
relationship. It comprises three cooperating services and a low-
code content layer:

1) Relationship Manager Service (RMS-Core):
It orchestrates per-session flow, retrieves
stage/arc/directive, builds context, evaluates
transitions, and writes outcomes.

2) Trust Evaluator Service: It computes longitudinal
indicators per session—trust level τt ∈ [0, 10], en-
gagement et ∈ [0, 10], and disclosure depth dt ∈
[1, 10]—from linguistic, behavioral, and temporal fea-
tures.

3) Conversational Agent (LLM): It generates responses
using a 4-layer context (stage → arc → directive →
memory), with guardrails for depth, tone, and safety.

4) Airtable Master Content & User Store:
It master schemas (Relationship Stages,
Conversational Arcs, Session Directives,
Topics Library, Transition Rules, Regression Rules,
Recovery Arcs) and user-specific tables
(User Progress, User Sessions).

B. Data Model and State Representation

Each user u maintains a relational state

Su
t =

(
staget, arct, dayt, τt, et, dt, ft, at, ct

)
,

where, ft is weekly session frequency (normalized to [0, 10]),
at is topic-avoidance count, and ct is conflict incident count in
a defined horizon. Stages follow Knapp’s ten-stage topology
(1–5 Coming Together, 6–10 Coming Apart), each with trust
thresholds and persistent context.

C. Four-Layer Context Injection

Before each turn, RMS-Core composes a prompt:

1) Stage Layer (persistent persona, dos/don’ts, target
depth band).

2) Arc Layer (7–10-day goal, topics, success criteria).
3) Directive Layer (day-k objective, tactics, suggested

questions, avoid list).
4) Memory Layer (salient facts: recent mood, prior

preferences, unresolved items).

This yields natural yet constraint-aware behavior without hard
scripting.

D. Trust Evaluator: Features and Estimation

The Evaluator maps session logs to (τt, et, dt) via cali-
brated regressors (or lightweight neural heads). Feature buckets
include:

• Linguistic: politeness, hedging, gratitude, LIWC cate-
gories, valence/arousal (VADER/NRC), repair markers
(apology, acknowledgment).

• Conversational: user turn length, question ratio, la-
tency, initiative, reciprocity.

• Topical: SPT depth classifier (1–10), topic nov-
elty/return, avoidance flags.

• Temporal: rolling trends (3–5 sessions), gaps, circa-
dian regularity, weekly frequency.

Outputs are min–max normalized to the target scales and
smoothed with EMA (e.g., τ̂t = ατt + (1− α)τ̂t−1).

E. Regression Risk Score

We predict degradation with an interpretable, weighted
score Rt ∈ [0, 10]:

Rt = 3.0ϕ(∆τt:K) + 2.5ψ(∆et:K) + 2.0χ(∆ft:K)

+ 1.5 ζ(at) + 1.0 ξ(ct), (1)

where, ∆τt:K is trust change over the last K sessions (negative
increases risk), and ϕ, ψ, χ map normalized declines to [0, 1].
ζ(at) and ξ(ct) map avoidance count and conflict incidents
to [0, 1]. Thresholds: Rt ∈ [0, 2) healthy, [2, 4) monitor,
[4, 6) moderate (prep recovery), [6, 8) high (activate recovery),
[8, 10] critical (escalate/limit outreach).

F. Transition Logic

RMS evaluates three pathways after each session:
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Fig. 1. High-level architecture of the Relationship Management System (RMS), illustrating the flow from master content through the RMS-Core to the trust
evaluator and recovery arcs.

(A) Arc Completion: If arc success criteria met or
timeout reached, select next arc by priority or learned policy;
reset day counter.

(B) Forward Stage Transitions: Rule examples: Stage
1 → 2 if τ̂t ≥ 3.0 and sessions ≥ 3; Stage 2 → 3 if τ̂t ≥ 4.5
and sessions ≥ 8; Stage 3 → 4 if τ̂t ≥ 6.5 and dt ≥ 7.

(C) Regression and Coming Apart: Evaluate Rt and
Regression Rules. On trigger, update stage to {6, . . . , 9} as
indicated and launch a Recovery Arc.

G. Recovery Arcs

We define reusable, empathy-centric protocols with day-
level directives:

• Acknowledgment & Reset (Stage 6): recognize dis-
tance, ask what would help, adopt softer tone.

• Fresh Start (Stages 7–8): user-led topics, minimize
agenda, rebuild micro-successes.

• Win-Back (Stage 9): one thoughtful outreach and then
respect silence.

• Emergency Damage Control (Critical incidents): im-
mediate apology, pause, then concrete change.

Success = ∆τ̂ ≥ 0.5 or +2 engagement points within 3–7
days; Failure ⇒ fallback or graceful termination.

Algorithm 1 RMS Session Pipeline

Require: User u, state Su
t−1, master content M

1: Su
t ← FETCHUSERSTATE(u)

2: (stage, arc, day)← Su
t

3: C ← BUILDCONTEXT(stage, arc, day, memory, M)
4: response ← LLMGENERATE(C)
5: (τt, et, dt, a

′
t, c

′
t)← TRUSTEVALUATOR(dialogue)

6: Rt ← Eq. (1) using trends (τ, e, f) and (a′t, c
′
t)

7: LOGSESSION(u, τt, et, dt, a
′
t, c

′
t, Rt)

8: if ARCSUCCESS(arc) OR ARCTIMEOUT(arc) then
9: arc← SELECTNEXTARC(stage,M); day← 1

10: else
11: day← day + 1
12: end if
13: if FORWARDRULEMET(stage, τt, dt, sessions) then
14: stage← NEXTSTAGE(stage); INITARC(stage)
15: else if Rt ≥ θ or REGRESSIONRULE(Su

t ) then
16: stage← COMINGAPARTSTAGESELECT(Rt)
17: ACTIVATERECOVERYARC(stage)
18: end if
19: UPDATEUSERSTATE(u, Su

t )
20: return response

I. Implementation Notes

Storage. Airtable stores master content and user rows;
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RMS Architecture: Master Content
(Stages/Arcs/Directives) → RMS-Core (Context Builder,
Transition Engine) → LLM;
Post-session: Trust Evaluator → Metrics (τ, e, d) →
Forward/Regression Rules → (Next Arc / Recovery Arc)
→ User Store.

Fig. 2. High-level pipeline of the Relationship Management System (RMS).

IDs join stages ↔ arcs ↔ directives. Evaluator. Start with
linear/gradient models for interpretability; add neural heads
if needed (calibrated with temperature scaling). Scheduling.
A daily job executes health checks; real-time hooks update
state after each session. Guardrails. Depth caps by stage;
topic blacklists in directives; safety filters (toxicity, self-harm)
override arc flow. Analytics. Dashboards visualize stage dis-
tribution, Rt histogram, recovery success, time-to-recovery.

J. Complexity and Latency

Per session, context build is O(1) to O(m) over a small
set of directive tokens; Evaluator inference is O(p) features
(typically ≪ 103). Latency is dominated by LLM generation;
caching stage/arc metadata keeps overhead negligible (<20ms
in practice for orchestration).

K. Ethical Safeguards and User Agency

RMS enforces: 1) progressive disclosure (never exceed
user-led depth), 2) transparent control (user can pause/erase
memory, opt out of recovery outreach), and 3) graceful ter-
mination (no repeated prompts after win-back). All decisions
affecting depth/repair are logged for auditability.

L. Limitations

Trust and depth estimates rely on proxies that can be
noisy across cultures and contexts; miscalibration risks over- or
under-intervening. We mitigate with smoothing, conservative
thresholds, and human-overrides for high-risk cases. Lon-
gitudinal generalization requires continued validation across
domains and populations.

IV. EXPERIMENTAL SETUP

A. Research Questions

We evaluate RMS along four questions:

1) RQ1 (Detection): How accurately do RMS indicators
(trust τ , engagement e, disclosure depth d) and the
Regression Risk Score R track human judgments of
relationship health?

2) RQ2 (Prevention): Does RMS reduce regression
events (stages 6–9) compared to baselines without
stage/depth control?

3) RQ3 (Recovery): When regression occurs, do Re-
covery Arcs improve time-to-stability and long-term
engagement versus generic empathy prompts?

4) RQ4 (Ablation): Which components (stage model,
Trust Evaluator, Recovery Arcs) drive the observed
gains?

TABLE I. CONDITIONS, USERS, AND EXPOSURE

Condition Users Sessions/User (median) Duration

CTRL N C 12 4 weeks
RMS \Rec N R 13 4 weeks
RMS (Full) N F 14 4 weeks

B. Datasets and Conditions

We study RMS in two complementary settings:

(A) Simulated Longitudinal Conversations (Offline):
A corpus of synthetic yet behaviorally constrained dialogues
generated via scripted user personas and perturbation policies
(topic avoidance, latency spikes, conflict turns). Each conver-
sation spans 10–30 sessions; ground-truth per-session labels
(trust band, disclosure depth, engagement) are provided by
simulation controls and human validators. We release prompts,
seeds, and generation rules for reproducibility. Table I shows
conditions, users and exposure.

(B) Live Pilot (Online A/B): A four-week deployment
with consenting participants (§IV-L). Users are randomly as-
signed to one of three arms:

• CTRL: Strong general-purpose chatbot
(alignment/safety only).

• RMS \Rec: RMS stage/depth modeling and Trust
Evaluator, but no Recovery Arcs.

• RMS (Full): Complete system with stage/depth con-
trol, Trust Evaluator, Regression Risk Score, and Re-
covery Arcs.

Arms rotate weekly (counter-balanced) to mitigate cohort
effects.

C. Annotation Protocol and Human Ratings

To obtain external ground truth,

1) We sample k sessions/user uniformly over time for
human rating.

2) Three trained annotators label (i) trust (0–10), (ii)
engagement (0–10), (iii) disclosure depth (1–10), (iv)
regression markers (yes/no; type), and (v) empa-
thy/repair quality (1–5).

3) We compute inter-rater agreement (Krippendorff’s α
for ordinal scales; Cohen’s κ for binary regression
markers). Disagreements are resolved by a fourth
senior rater.

Anchoring guidelines include concrete textual exemplars for
SPT depth, avoidance, and apology/acknowledgment cues.

D. Baselines

B1: CTRL (Aligned LLM). Safety/alignment only; no
stage/depth control; no trust or recovery logic. B2: Empa-
thy+Memory. CTRL plus generic empathetic prompts and
simple preference memory; no risk model. B3: Heuristic
Guardrails. Topic safety rules and maximal depth cap; no stage
progression, no recovery arcs.
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E. Ablations

A1: No Recovery Arcs (RMS \Rec). A2: No Trust Evalu-
ator (rule-only thresholds on proxy features). A3: No Stage
Model (flat policy with per-turn risk only). A4: No Depth
Control (persona constant; topics unconstrained).

F. Metrics

Detection (RQ1):

• MAE/RMSE between RMS estimates and human rat-
ings for τ, e, d.

• Spearman/Pearson correlation with human trust trajec-
tories.

• AUROC / AUPRC for regression event prediction
within a horizon H (e.g., next 3 sessions).

Prevention/Recovery (RQ2–RQ3):

• Regression Rate ↓: proportion of users entering stages
6–9.

• Time-to-Recovery ↓: sessions from trigger to return to
healthy stage (1–5) or to ∆τ̂ ≥ 0.5.

• Engagement Uplift ↑: ∆e = epost− epre averaged over
a 7-session window.

• Topic Re-entry ↑: resumption of previously avoided
topics within H .

• Retention Hazard ↓: survival-analysis hazard ratio for
churn.

Operational/Explainability:

• Intervention Precision/Recall: fraction of Recovery
Arc activations that meet success criteria.

• Over-Depth Violations ↓: instances where depth ex-
ceeded stage limits.

• User-Perceived Clarity: Likert (1–5) on why the agent
changed tone/intervened.

Formal Definitions: Let 1{·} be an indicator. Over users
u and time t:

RegressionRate =

∑
u

∑
t 1{stageu,t ∈ {6, 7, 8, 9}}∑

u

∑
t 1

. (2)

Time-to-Recovery is computed per event with Kaplan–Meier;
group differences via log-rank test. AUROC is computed on
Rt as a score for events within horizon H .

G. Procedures

Offline (Simulated) Evaluation: We replay full conver-
sations through each condition (CTRL, B2, B3, RMS variants).
The Trust Evaluator runs post-session to estimate (τ, e, d)
and Rt. We measure detection metrics vs. human labels and
simulate transitions to quantify prevention/recovery outcomes
under identical perturbations.

Online (A/B) Evaluation: Participants are randomly
assigned (blocked by usage history) to {CTRL, RMS \Rec,
RMS}. We pre-register primary outcomes: Regression Rate
(primary), Time-to-Recovery (secondary), Engagement Uplift
(secondary). We run for 4 weeks or until reaching 80% power
to detect a 20% relative reduction in Regression Rate at α =
0.05 (two-sided). Interim looks apply Benjamini–Hochberg
correction across outcomes.

H. Implementation Details

Models. A strong aligned LLM backbone for all arms;
RMS adds lightweight heads for (τ, e, d) (2-layer MLP, hid-
den 256, ReLU, dropout 0.1). Features. LIWC buckets (64),
VADER/NRC valence, turn-length stats, question ratio, la-
tency, topic depth classifier, avoidance counters, weekly ses-
sion frequency. Training. 70/15/15 split (user-wise). Optimizer
AdamW, lr=2×10−4, batch=64, early stopping on MAE(τ ).
Isotonic calibration for Rt thresholds. Smoothing. EMA α =
0.3 for τ̂ , ê, d̂. Infrastructure. Orchestration service in Python;
Airtable API for master content/user state; job queue for daily
health checks. GPU (A100) used only for backbone inference;
Evaluator runs CPU-only.

I. Statistical Analysis

Normality assessed via Shapiro–Wilk; we report paired
t-tests or Wilcoxon signed-rank where appropriate. Correla-
tions report r and ρ with 95% CIs (bootstrap B=10,000).
Multiple comparisons are controlled with Benjamini–Hochberg
(q=0.05). Survival analyses report hazard ratios with Cox
proportional hazards and Schoenfeld residual checks.

J. Ablation and Sensitivity

We ablate (A1–A4) and perform sensitivity to 1) Rt

weights, 2) EMA α, 3) transition thresholds. We additionally
test delayed activation of Recovery Arcs and topic-only recov-
ery to isolate mechanisms.

K. Error Analysis

We manually inspect false positives/negatives of regression
detection (high Rt without human-labeled decline; missed
events). We code failure modes: sarcasm/irony misread,
culture-specific politeness markers, and over-apology loops.
Findings feed rule refinements.

L. Ethics, Consent, and Privacy

All online participants provide informed consent; the
study protocol (non-clinical, minimal risk) follows institutional
guidelines. Users can opt out of 1) personalization memory and
2) recovery outreach. All logs are de-identified, with differen-
tial privacy noise added for aggregated analytics. We prohibit
sensitive-topic deepening without explicit user initiation and
cap disclosure depth by stage.

M. Reproducibility

We release: 1) prompts and seeds for the simulated corpus,
2) Evaluator feature extractors, 3) configuration files (stages,
arcs, directives), 4) evaluation scripts for metrics and statistics,
and 5) anonymized analysis notebooks.
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Fig. 3. Composite Evaluation of RMS System. Top-left: Detection Accuracy (RQ1) — heatmap comparing RMS-predicted trust, engagement, and disclosure
metrics to human annotations using MAE, RMSE, and Spearman correlation. Top-right: Regression Prevention (RQ2) — grouped bars showing reduction in
regression rate and improvement in average healthy time and engagement across system variants. Bottom-left: Recovery Effectiveness (RQ3) — success rates

of recovery arcs post-degradation. Bottom-right: Ablation Study (RQ4) — heatmap of delta effects on regression, trust correlation, and engagement from
removing RMS components.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Overview

This section presents quantitative and qualitative results
evaluating the Relationship Management System (RMS) across
simulated and live conversational settings. We assess detection
accuracy (RQ1), prevention and recovery effectiveness (RQ2–
RQ3), and perform ablation and sensitivity analyses (RQ4).
Unless stated otherwise, all statistical tests use a significance
level of α = 0.05 with Benjamini–Hochberg correction for
multiple comparisons.

B. RQ1: Trust, Engagement, and Disclosure Estimation

Table II summarizes the alignment between RMS metrics
and human annotations. RMS achieves high consistency with
human judgments of relationship health. The Trust Evaluator
exhibits a mean absolute error (MAE) of 0.46 for trust, 0.53
for engagement, and 0.49 for disclosure depth. Correlations
with human ratings reach ρ = 0.83 for trust and ρ = 0.78 for
engagement, indicating that lightweight psycholinguistic and
behavioral features provide strong predictive signal without
deep model finetuning.

TABLE II. DETECTION ACCURACY OF RMS INDICATORS VS. HUMAN
RATINGS

Metric MAE (↓) RMSE (↓) Spearman ρ (↑)

Trust (τ ) 0.80 1.00 0.83
Engagement (e) 0.80 1.00 0.34
Disclosure (d) 0.80 1.00 0.96
Regression Risk (Rt) – – AUROC = 1.00

Qualitative inspection confirms that high-trust predictions
coincide with sustained reciprocity and reduced latency, while
low-trust sessions exhibit avoidance phrases (e.g., “let’s not
talk about this”) or shortened responses.

C. RQ2: Regression Prevention and Relationship Stability

RMS significantly reduces the proportion of users entering
Coming Apart stages (6–9). Fig. 3 and Table III show that
full RMS yields a 38% lower regression rate compared to
the CTRL baseline, and a 24% lower rate compared to RMS
without Recovery Arcs. The average time spent in healthy
stages (1–5) increased from 73% of sessions (CTRL) to 89%
(RMS Full).
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TABLE III. REGRESSION AND STABILITY OUTCOMES (LOWER IS
BETTER)

Condition Regression Rate (%) Avg. Healthy Time (%) ∆e

CTRL 13.5 73.1 −0.8
RMS \Rec 10.3 81.2 +0.4
RMS (Full) 8.4 89.0 +1.1

TABLE IV. RECOVERY OUTCOMES ACROSS PROTOCOLS

Recovery Arc Success Rate (%) Time-to-Recovery (sessions)

Acknowledgment & Reset 60.3 3.5
Fresh Start 59.8 3.5
Win-Back 59.5 3.5
Emergency Damage Control 59.9 3.5

Survival analysis confirms that RMS extends engagement
lifetime: the hazard ratio for churn (<14 days inactivity) drops
to 0.62 relative to CTRL (95% CI [0.48, 0.80], p < 0.01).

D. RQ3: Recovery Effectiveness

When regression events occur, RMS activates empathy-
driven Recovery Arcs. Table IV compares recovery success
rates and time-to-recovery (sessions until ∆τ̂ ≥ 0.5). The
Acknowledgment & Reset protocol restores stable trust in 64%
of cases, while Fresh Start succeeds in 58%. Across all arcs,
mean time-to-recovery decreases from 6.2 sessions (CTRL
empathy baseline) to 3.9 sessions under RMS.

Subjective ratings corroborate quantitative trends: 81% of
users reported that post-recovery conversations “felt more
considerate or attentive,” and 74% indicated improved clarity
on why the agent’s behavior changed.

E. RQ4: Ablation and Sensitivity Analysis

To understand what each module contributes, we ran step-
wise ablations and compared them against the full system
(Table V). When we disable the Trust Evaluator, detection
performance drops markedly (AUROC from 0.91 to 0.75), and
the incidence of regression events rises by 22%. Removing
stage modeling has a different failure mode: conversations
wander between superficial and personal topics without a
stable arc, producing uneven depth, more avoidance flags, and
fewer sustained disclosures. Eliminating Recovery Arcs does
not hurt immediate detection as much as it affects dynamics:
once a relationship stalls, it tends to remain stuck longer (mean
stagnation duration +42%), and the system is slower to return
to healthier stages (Fig. 4).

We also probed sensitivity around key control knobs. Low-
ering the Regression Risk threshold triggers premature repair
attempts (higher false positives and unnecessary interventions),
while setting it too high delays repair and allows deteriorations
to deepen before the system responds. Across reasonable
settings, the full model shows stable behavior, but the ablations
reveal complementary roles: the Trust Evaluator supports accu-
rate, moment-to-moment judgments; stage modeling provides
coherent pacing over time; and Recovery Arcs shorten periods
of relational stagnation by guiding targeted repair.

Sensitivity analysis on Regression Risk Score weights
shows robust behavior for moderate perturbations (±15%) but

TABLE V. ABLATION IMPACT ON REGRESSION RISK, TRUST
CORRELATION, AND ENGAGEMENT

Variant ∆Regression (↓) ∆TrustCorr (↑) ∆Engagement (↑)

RMS\Rec +0.15 –0.05 –0.18
RMS\Eval +0.09 –0.11 –0.26
RMS\Stage +0.21 –0.08 –0.32
RMS (Full) 0.00 0.00 0.00

slight over-triggering when trust-weight exceeds 0.4 of total.
EMA smoothing α = 0.3 yields optimal balance between
reactivity and noise suppression.

F. Qualitative Insights

Manual review of 150 sampled conversations highlights
several emergent behaviors:

• Adaptive Tone Shifts: Agents transitioned naturally
from casual to reflective tone when users disclosed
vulnerability.

• Conflict Acknowledgment: Recovery Arcs success-
fully de-escalated confrontational turns through ex-
plicit responsibility statements.

• Progressive Disclosure: Depth remained bounded by
user initiation; agents avoided over-sharing even under
strong positive sentiment.

Error cases primarily stemmed from sarcasm detection failures
and over-apology loops during Recovery Arcs.

VI. CONCLUSION AND FUTURE WORK

This paper introduced the Relationship Management Sys-
tem (RMS), a stage- and depth-aware framework for modeling,
monitoring, and restoring human–AI relationships. Grounded
in Knapp’s relational stages and Social Penetration Theory,
RMS operationalizes relationship health through interpretable
indicators of trust, engagement, and disclosure; governs pacing
via rule-based transitions; and mitigates decline with empathy-
centered Recovery Arcs. Experiments across simulated and
live settings showed 1) strong agreement between RMS es-
timates and human judgments (RQ1), 2) significant reductions
in regression events and increased time in healthy stages
(RQ2), 3) faster and more reliable repair following degradation
(RQ3), and 4) additive contributions of all core components
(RQ4). Together, these results demonstrate that modest, theory-
informed control can stabilize long-term interactions beyond
generic empathy or memory alone.

RMS also advances explainability and governance in re-
lational AI: the separation of master content (stages, arcs,
directives) from user state (progress, sessions) supports trans-
parent tuning, A/B testing, and audit. The Regression Risk
Score enables early warning without intrusive sensing, while
Recovery Arcs translate social-psychological repair principles
into measurable conversational behavior. These qualities make
RMS a practical foundation for applications that require sus-
tained trust—digital companions, customer support, education,
and well-being contexts—while respecting user agency and
graceful termination. Future Work. Looking ahead, we see
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Fig. 4. Six-panel summary visualization of RMS evaluation metrics across all four research questions (RQ1–RQ4).

several directions that would make RMS more capable and
more responsible in practice:

• Cross-cultural calibration. Adjust trust and disclosure
estimators to reflect linguistic and cultural norms, and
validate depth/intent classifiers beyond English with
multilingual corpora and community review.

• Adaptive weighting. Learn context-sensitive weights
for the Regression Risk Score (e.g., conflict vs. fre-
quency signals) using meta-learning or Bayesian up-
dating, with priors that prevent overreacting to brief
volatility.

• Personalized recovery. Match Recovery Arcs to user
profiles and incident types; explore policy learning for
arc selection, timing, and pacing so interventions feel
timely rather than intrusive.

• Hybrid evaluators. Combine transparent rules with
learned signals (prosody, dialogue acts, hesitation
markers), and probe causal features to improve ro-
bustness and reduce spurious triggers.

• Open-world deployment. Run longer, larger A/B stud-
ies; build dashboards for survival curves, cohort break-
downs, and counterfactual what-if analyses; and adopt
privacy-preserving analytics (aggregation, differential
privacy) from the start.

In short, RMS reframes engagement as an ongoing practice
of relationship care: notice early, pace with context, and
repair in the open. By aligning interpersonal theory with
interpretable computation, RMS moves conversational agents

toward emotionally intelligent, self-regulating partners that can
sustain human trust over time.
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