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Abstract—The rapid development of Industrial IoT (IIoT) has 

facilitated real-time observation and decision-making in smart 

factories, even though current methods suffer from constraints 

like processing noisy, high-dimensional sensor data and modeling 

both spatial and temporal relationships well. Classical models like 

CNN, LSTM, and GRU tend to fail in handling sequential patterns 

and context-aware anomaly detection, which restricts predictive 

maintenance and operational efficiency. To address these 

limitations, this research introduces NeuroFusionNet, a CNN–

BiGRU–Attention hybrid framework, developed using Python 

and TensorFlow, to pull localized spatial features using CNN, 

capture bidirectional temporal relationships using BiGRU, and 

highlight key time steps using Attention for improved anomaly 

detection and predictive maintenance. The framework is tested on 

the Environmental Sensor Telemetry dataset, with multivariate 

industrial signals such as gas levels, temperature, and equipment 

vibrations. Experimental results demonstrate that 

NeuroFusionNet achieves 95.2% accuracy, 94.8% precision, 

94.1% recall, and 94.4% F1-score, representing an improvement 

of approximately 2 to 7% over baseline models (CNN, RNN, 

LSTM) across multiple performance metrics. The method 

provides faster convergence and robust real-time inference, 

supporting scalable deployment for smart manufacturing 

environments. These results highlight that NeuroFusionNet not 

only outperforms conventional hybrid models such as CNN–

LSTM and CNN–GRU but also offers actionable insights for 

predictive maintenance, safety, and efficiency, establishing a 

foundation for adaptive AI-driven monitoring in Industry 4.0 

applications. 
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I. INTRODUCTION 

Smart manufacturing incorporates technology and statistics 
into the manufacturing with the conventional methods and 
practices of manufacturing allowing the smooth data gathering, 
sharing, and assessment throughout the manufacturing 
ecosystem. Engaging in data-driven decision-making and 
behavior may improve by integrating and linking data in real-
time. Smart manufacturing is heavily reliant on automation and 
robotics, autonomous vehicles and automated systems perform 
repetitive work and optimize manufacturing processes [1]. 
Automation boosts manufacturing and efficiency of 
manufacturing paradigms by minimizing reliance on human 
intervention. Smart manufacturing employs sophisticated 
analytic tools, such as data mining, machine learning, and 
predictive analytics, in analyzing data of key performance 
indicators. The insights that are data-rich can be used to make 
proactive maintenance and optimization of manufacturing. The 
main feature of smart manufacturing is the presence of digital 

copies of physical objects, procedures, or systems-or so-called 
digital twins, which allow monitoring, simulating, and 
evaluating goals in real-time to improve performance, predict 
results, and recognize optimization resources. The focus of 
smart manufacturing is flexibility and agility in the market, 
whereby the production systems are flexible and capable of 
being altered as the market needs change. The reliance [2] on 
the digital technologies and processes that are sensitive to data 
makes cybersecurity and data privacy a necessary part of smart 
manufacturing. The Deep Learning (DL) is a technology 
currently discussed as a way of smart manufacturing, which 
opens new opportunities in predictive maintenance, anomaly 
detection, quality control, production processes, supply chain 
management, and workforce safety [3]. Further applications 
and research of DL algorithms to smart manufacturing 
approach in predictive maintenance assist to model and predict 
machine failure, classify or identify anomalies, evaluate sensor 
data, and evaluate performance changeover. The drug learning 
algorithms will improve productivity and safety of workers 
because they will identify when production processes are not 
within the performance standards or integrate DL with new 
technologies like augmented realities or virtual webs to 
minimize downtime and waste [4]. The radical force of DL 
drives smart operations and development toward the goals of 
the Industry 4.0, along with fostering viable innovation and 
operational efficiencies. CNN-LSTM is a hybrid deep learning 
algorithm that exploits the characteristics of the LSTM 
networks and integrates CNN layers in LSTM networks. CNN 
layers are incredibly suitable to other tasks like image 
recognition because they are efficient in extracting spatial 
features of the input data [5]. At the same time, long-term and 
relations may be modeled and longer-term tendencies are able 
to be modeled with LSTM grids, which is useful for obtaining 
time dependence in sequential data, in direct convolution layers 
[6]. 

In order to overcome these issues, this study introduces 
NeuroFusionNet, a powerful and generalized neural network 
that integrates spatial, temporal, and Attention-based structures 
that are aimed at producing real-time smart factory analytics. 
The architecture starts with convolutional neural network 
(CNN) layers that take advantage of the local spatial 
relationships of the multivariate sensor signals. The spatial 
characteristics are then input into a Bidirectional GRU 
(BiGRU), which allows the model to learn historical and future 
dependencies, which is required by predictive maintenance. 
Lastly, an Attention model enables the model to assign more 
significance dynamically to sensor values that are more 
significant. When put together, these elements offer an effective 
answer to the challenge of false alerts being sent when the 
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critical anomalies should be corrected in time. With a 
compromise between accuracy and computational efficiency, 
NeuroFusionNet can be considered a scalable solution to the 
Industry 4.0 type environment, allowing factories to work more 
reliably, productively, and proactively detect safety violations. 

A. Research Motivation 

The rapid industrialization of Industry 4.0 has led to the 
creation of intelligent factories that generate vast quantities of 
multivariate sensor data, and thus, it is difficult to make timely 
and accurate decisions. The traditional machine learning 
models are incapable of learning temporal structures and spatial 
relationships in high-dimensional data. The existing single-
stream CNN or BiGRU technologies are more likely to generate 
lagged fault detection and lower predictive accuracy. This 
motivates the development of a hybrid CNN-BiGRU network 
with a temporal-bypass block to be efficient in extracting 
discriminative features and making use of redundant patterns. 
The proposed approach will support real-time, reliable, and 
smart manufacturing systems in making decisions in smart 
manufacturing systems with a better convergence rate and 
accuracy of prediction. 

B. Research Significance 

The proposed hybrid CNN-BiGRU structure takes 
necessary deficiencies of the conventional models in the ability 
to capture both spatial and temporal correlation in sensor 
observations simultaneously. It integrates a temporal-bypass 
mechanism and thus is quicker to converge and more efficient 
at detecting patterns over large distances, leading to a better 
predictive accuracy. This makes it easier to detect faults earlier, 
reduce false alarms, and make more precise decisions in 
intelligent manufacturing environments. The methodology can 
be applied to other sensor-based systems, which can provide a 
good solution to multivariate time-series analysis. The study in 
general adds to the continuity of smart predictive analytics and 
operational effectiveness in the Industry 4.0 settings. 

C. Key Contribution 

• Presented NeuroFusionNet, a novel hybrid CNN-
BiGRU-Attention structure designed for real-time 
anomaly identification in smart factory IoT settings. 

• Delivered better accuracy and robustness than baseline 
models, while demonstrating robustness against noisy 
signals and heterogeneous industrial measurement 
devices. 

• Achieved better explainability with an Attention 
mechanism, highlighting important time steps for 
confident reasoning and insights. 

• Tested the flexibility of the model through multiple 
experiments to indicate that it would scale well, 
converge quickly, and perform well for Industry 4.0 
predictive maintenance and monitoring applications. 

D. Rest of the Section 

The remaining sections of this study are arranged as 
follows: The discussion about the previous studies is presented 
in Section II. Problem statement is represented in Section III. 
The methodology is presented in Section IV, and the results and 

its discussion is presented in Section V. The conclusion and 
future works are included in Section VI. 

II. LITERATURE REVIEW 

Coito et al. [7] studied the system of integrating smart 
sensors with real-time decision-making systems in the 
industrial context. The experiment involved the use of 
Programmable Logic Controllers (PLCs) and personal 
computers (PCs) in a three-level cloud, fog, and edge 
architecture. This integration was done with the aim of 
improving operational efficiency through timely and informed 
decisions. Although the study shows that the effectiveness of 
such integration is possible, the performance metrics and 
performance-specific datasets are not provided, which makes it 
difficult to assess its effectiveness. The originality is the fact 
that the proposed architecture allows making decisions in real-
time as sensor data is integrated with business information. 

X. Zhou et al. have a focus on creating a hybrid deep neural 
network for detecting small objects within the digital twin (DT) 
context of smart manufacturing environments [8]. The version 
aims to merge physical manufacturing environments with 
digital equivalents by implementing MobileNetv2, YOLOv4, 
and Openpose to monitor and optimize the physical 
manufacturing environment in real-time. However, one 
drawback of the proposed technique may include its complexity 
and computational load, impacting scalability and real-time 
performance in a large-scale production environment. 
Furthermore, leveraging deep learning models may also present 
a challenge regarding interpretability and generalizability to 
different production contexts. Further research is warranted to 
address these limitations and improve the use of the proposed 
methodology in real-world smart manufacturing contexts. 

Attaran et al. [9] explore the notion of Digital Twins (DTs) 
and its place in the Industrial Internet of Things (IIoT) as a part 
of Industry 4.0. The study describes DTs, their development, 
and an overview of important enabling technologies. It 
underlines the role of IIoT as the foundation of DTs with the 
focus on real-time data and connectivity. Although the study 
has a definite theoretical framework, it lacks empirical data and 
case studies to prove the advanced ideas. The innovation is also 
based on the fact that the synergistic relationship between DTs 
and IIoT is explored in detail, giving an insight into the 
synergistic potential of these two in regard to operational 
intelligence. 

Yun and Lee [10] have suggested an intelligent dynamic 
real-time spectrum resource management system of Industrial 
IoT (IIoT). The study has applied the data mining and case-
based reasoning approaches in order to optimize a spectrum 
allocation. The KPI was assessed as spectrum handoff, handoff 
latency, energy consumption, and link maintenance. Findings 
showed that there were improvements in these measures, which 
showed the effectiveness of the system. It is novel, that is, in 
the use of advanced methods of computation to solve spectrum 
management problems in IIoT. Nevertheless, the limitations of 
the study are the absence of data deployment and scalability 
analysis in the real world. 

Villegas-Ch et al. [11] examine how Artificial Intelligence 
(AI) can be integrated into the Internet of Things (IoT) to 
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perform real-time monitoring and predictive analytics. It 
discusses different AI methods, such as machine learning and 
deep learning, used to process IoT data to make better 
decisions. The study talks about how AI can enhance the 
efficiency, accuracy, and responsiveness of the system. 
Although the research gives a broad picture, it does not have 
any case studies and experimental findings on how the 
proposed AI techniques can be implemented in real-life 
situations. The uniqueness is the focus on AI to change IoT 
systems to smart monitoring platforms. 

Pandey et al. [12] proposed a model of the implementation 
of sensor networks that can be integrated with IoT in real-time 
in the process control systems. The work is aimed at improving 
the data collection, processing, and decision-making processes 
with the help of the developed communication protocols, such 
as MQTT and CoAP. Although the study presents the structure 
and possible advantages of the framework, it fails to deliver 
empirical data as well as a performance assessment to justify 
the suggested strategy. What is new is the extensive adoption 
of IoT technologies to enhance the systems of process control. 
Nonetheless, its effectiveness cannot be measured because of 
the absence of practical implementation and performance 
measures. 

Lee and colleagues [13] used a systematic literature review 
to study the impact of intelligent decision-support systems 
(IDSSs) on ethical decision-making. Results indicated 
individual-level results, including improved deliberation, 
motivation, autonomy, and action/outcomes to societal 
problems, including moral deskilling and responsibility lapses. 
Two categories of operations, process-oriented and outcome-
oriented navigation, were suggested by them as drivers. The 
strengths included the conceptual clarity and applicability. 
Some of the limitations are the reliance on existing literature 
and potential heterogeneity of the IDSS situation, forcing the 
necessity of empirical validation of the situation in different 
scenarios of ethics. 

Anushree A. [14], in their study, a smart city air quality 
monitoring in real-time was designed using an IoT with 
inexpensive air pollution sensors (PMSA003, MICS6814, MQ-
131) and the ESP-WROOM-32 microcontroller, and combined 
with AWS to store and analyze the data in Python. The system 
gave an RMSE of 3.7656, which warned the users in good time 
when the pollutant concentrations exceeded their limits. The 
low cost of deployment, massive connectivity, and real-time 
monitoring are the strengths. The limitations, such as 
dependence on sensor accuracy and potential coverage issues 
in highly urbanized environments, are its weaknesses, which 
require additional strict empirical validation. 

III. PROBLEM STATEMENT 

Modern smart factories produce massive amounts of data 
from heterogeneous sensors, which are often noisy, non-
stationary, and interdependent [15]. Although machine learning 
and conventional machine learning approaches perform well in 
structured environments, they may be insufficient when faced 
with multivariate time-series complexity captured from 

interconnected IoT devices. While conventional deep learning 
architectures (LSTM and GRU networks in particular) can 
provide improvements to the problem of processing sequential 
data,[16] are still computationally prohibitive, and CNNs alone 
are not able to capture long-term dependencies. Additionally, 
many models treat every time step equally without 
consideration of whether one sensor reading is more relevant to 
the anomaly or failure than others [17]. Consequently, there is 
an increase in false positives and false negatives, delayed fault 
detection, and worse predictive maintenance outputs. Thus, a 
hybrid framework is needed to integrate spatial, temporal, and 
contextual clues from sensor data to achieve accurate, 
computationally-efficient, real-time anomaly detection in 
industrial IoT ecosystems that directly support the reliability 
and safety of smart factory operations. 

The literature reviewed is dedicated to the combination of 
intelligent sensors, IoT-based systems, and hybrid computation 
systems aimed at improving real-time decision-making, 
monitoring, and process control in the industrial and smart-city 
settings. The study demonstrates the application of digital 
twins, industrial cyber-physical systems, and AI-powered 
analytics to optimize operational efficiency, detect anomalies, 
manage spectrum resources, and support predictive 
maintenance. Adaptive response through real-time data 
acquisition and processing increases the reliability and 
accuracy of the systems. However, some weaknesses can be 
identified: the vast majority of works are based on simulated or 
scaled-down datasets, and their generalizability is thus limited; 
hybrid deep learning solutions to the problem of smart 
manufacturing are not fully studied; the aspect of scalability 
and latency of real-time IoT analytics is not well addressed; and 
the consideration of sustainability, e.g., energy-efficient 
computation or resource optimization, is mostly overlooked. 
These loopholes indicate the importance of a multivariate 
sensor-based framework that can process multivariate sensor 
data, multivariate space-temporal relationships, and 
multivariate context-sensitive Attention capabilities to aid 
sound and real-time industrial decision-making processes. 

IV. PROPOSED METHODOLOGY OF NEUROFUSIONNET: A 

HYBRID CNN-BIGRU ATTENTION MODEL FOR SMART 

MANUFACTURING 

The study introduces NeuroFusionNet, an integrated deep 
learning model, which will be used to enhance the correctness 
of predictions in the intelligent manufacturing space. 
NeuroFusionNet applies Convolutional Neural Networks 
(CNNs) to extract spatial features, Bi-directional Gated 
Recurrent Units (BiGRUs) to process the time order of sensor-
readings, and an Attention mechanism is used to provide 
features with dynamic weights. The NeuroFusionNet makes use 
of the complementary capabilities of CNNs and BiGRUs but 
adopts the Attention mechanisms with regard to weighting the 
relevant patterns. The architecture enables better detection and 
prediction abnormalities, is immune to noise, works in a high-
dimensional space, and allows the industry dynamics to change. 
The workflow of the proposed model is given in Fig. 1.
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Fig. 1. Workflow of the proposed NeuroFusionNet model. 

A. Data Collection 

The dataset utilized in this study is the Environmental 
Sensor Data (132K) dataset of Kaggle [18], which consists of 
about 132,000 time-stamped values of the readings of various 
environmental sensors. The measurements in the dataset consist 
of barometric pressure, light intensity, humidity, temperature, 
and CO2 concentration. Information was obtained through 
continuous observation at brief intervals (e.g., seconds or 
minutes) within a controlled setting (indoor environment) to 
have realistic variation in the conditions of the environment. In 
our usage case, we chose the appropriate multivariate signals 
(vibration, humidity, temperature, and gas/CO2 measures) to 
simulate the settings of industrial sensors. Subsequent to the 
training, we performed cleaning up of missing or inconsistent 
entries, normalized every feature, and split the time series into 
sliding windows. This dataset, with its multivariate and time-
sensitive features, is an appropriate proxy of the actual IoT 
sensor streams in a smart factory. 

B. Data Pre-Processing 

Pre-processing of the data is required in order to normalize 
the values of the gathered characteristics for DoS detection. 

1) Data normalization: The traffic data's attributes aren't 

spread evenly when the learning process begins. For this 

reason, the Min Max approach is applied, and the results that 

fall between [0,1] are given in Eq. (1): 

𝑥𝑚 =
𝑥−min⁡(𝑥)

max(𝑥)−min⁡(𝑥)
                               (1) 

where, max(𝑥)− min⁡(𝑥) is the minimum and maximum 
values of the data. To scale sensor readings to a consistent range 
for comparison and analysis across several sensors or datasets, 
min-max normalization is essential in sensor data synthesis. 
Using a simple mathematical equation, this normalizing 
procedure entails deducting the dataset's minimum value from 
each observation and dividing the result by the range of values. 

2) Noise reduction and feature engineering: Sensor 

readings are usually noisy because of hardware faults, 

communication delays, or interference from the environment. 

Filtered out of these distortions, moving average filters and 

wavelet denoising were used. These methods efficiently 

remove short-term oscillations without losing significant signal 

patterns. These cleaned signals improve predictability by 

removing spurious oscillations which would otherwise confuse 

the model, as shown in Eq. (2) and Eq. (3): 

𝑥𝑡 =
1

𝐾
∑ 𝑥𝑡−𝑖

𝑘−1
𝑖=0       (2) 

𝑥𝑡
𝑙𝑎𝑔(𝑚)

= 𝑥𝑡−𝑚   (3) 

C. CNN Feature Extraction 

The initial step of the suggested NeuroFusionNet 
architecture will utilize a CNN to generate local spatial features 
of multivariate sensor streams. The smart manufacturing 
environment uses numerous sensors at the same time, and they 
produce correlated signals. CNNs are efficient in computing 
such correlations by searching the input space with kernels, 
which are localized pattern detectors. Fig. 2 shows the proposed 
CNN-BiGRU framework for predictive analysis of smart 
manufacturing. 

For a kernel w, bias b, and activation function σ, the feature 
map is calculated as shown in Eq. (4): 

𝑓𝑖,𝑗
𝑙 = 𝜎(∑ ∑ 𝑥𝑖+𝑚,𝑗+𝑛

𝑙−1𝑁−1
𝑛=0 + 𝑤𝑚,𝑛

𝑙 + 𝑏𝑙𝑀−1
𝑚=0 )         (4) 

Here, 𝑥𝑖+𝑚,𝑗+𝑛
𝑙−1  is the input from the previous layer, 

and 𝑤𝑚,𝑛
𝑙 is learnable convolutional weights. This operation 

allows the network to recognize local dependencies like the co-
occurrence of abnormal gas concentration with increasing 
temperature, which could be an indication of a potential system 
fault. 

CNN was used with the 64 filters, 3x3 kernel, ReLU 
activation, and 2x2 max-pooling. These environments 
maximized the extraction of spatial features, which minimized 
noise and localized patterns of multivariate IoT sensor data, 
which improved predictive performance and robustness. 

For invariance and computational efficiency, pooling layers 
are used. Pooling diminishes the dimensionality for every 
region by taking the maximum activation, as shown in Eq. (5): 

𝑝𝑖,𝑗 = 𝑚𝑎𝑥(𝑓𝑖+𝑘,,𝑗+𝑙)   (5) 

By integrating convolution and pooling, CNNs provide 
compact yet discriminative spatial descriptions. The 
heterogeneous sensor relations are encoded with reduced 
redundancy and preserve important information. The output 
feature maps are then passed on to the following BiGRU layers, 
where temporal dependencies are captured. 
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Fig. 2. Proposed CNN-BiGRU methodology for predictive analysis of smart manufacturing. 

D. BiGRU for Temporal Dependencies 

While Convolutional Neural Networks (CNNs) learn spatial 
correlations between sensor variables, strong predictive 
modeling in smart manufacturing also needs to understand 
temporal relationships. Most manufacturing anomalies form 
over time—e.g., an unusual abnormality in temperature levels 
can lead to toxic gas emissions. To model such trends, 
NeuroFusionNet integrates a Bidirectional Gated Recurrent 
Unit (BiGRU) network. 

Compared to Long Short-Term Memory (LSTM) units, 
which make use of three gate mechanisms (input, forget, and 
output), GRUs simplify the process by merging these into 
update and reset gates. This conserves computational overhead 
yet maintains capacity for learning long-range dependencies, so 
GRUs are especially useful for high-rate sensor data. 

The GRU state changes are characterized as follows: 

• Update Gate: regulates the amount of the previous state 
to carry forward [see Eq. (6)]: 

𝑧𝑡 = σ(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡])    (6) 

• Reset Gate: controls how much old information to erase 
[see Eq. (7)]: 

𝑟𝑡 = σ(𝑊𝑟 ∙ [ℎ𝑡−1 ,𝑥𝑡])   (7) 

• Hidden State: adds the reset gate to calculate a new 
candidate activation [see Eq. (8)]: 

ℎ̃𝑡 = σ(𝑊𝑟. [ℎ𝑡−1 ,𝑥𝑡])       (8) 

• Final Hidden State: combines the candidate state with 
the old state, depending on the update gate [see Eq. (9)]: 

ℎ𝑡 = (1 − 𝑧𝑡)⨀ℎ𝑡−1 + 𝑧𝑡⨀ℎ̃𝑡             (9) 

Here, ⊙ denotes element-wise multiplication, σ is the 
sigmoid function, and tanh adds nonlinearity. The BiGRU layer 
had 128 hidden units, two layers, and 0.3 dropout. Bidirectional 
processing learned sequential dependencies between past and 
future time steps to enhance temporal learning, anomaly 
detection, and stability of real-time industrial IoT decision-
making. 

Unlike the unidirectional GRU, BiGRU improves 
predictive power by processing sequences in two directions at 
once. One GRU processes input in the forward direction in time 

(ℎ⃗ 𝑡)and, another in the backward direction (ℎ⃖⃗𝑡), and another in 

the reverse direction ℎ𝑡. The two outcomes are concatenated 
into the overall BiGRU representation [see Eq. (10)]: 

ℎ𝑡
𝐵𝑖 = [ℎ⃗ 𝑡; ℎ⃖⃗𝑡]             (10) 

This bi-directional structure will ensure that this model 
would adopt both the antecedent (e.g., past elevating CO levels) 
and consequent (e.g., future modifications in pressure 
measurements) when decoding the present readings of sensors. 
In NeuroFusionNet, the BiGRU is critical towards explaining 
the time processes of various time levels. It allows one to 
differentiate between quick processes and long-term drifts, and 
such a judgment is critical to fault detection. Combining the 
computational power and deep consideration of the context, 
BiGRU provides the temporal skeleton, which could be 
combined with the CNN-based spatial data to facilitate 
trustworthy and real-time decision-making in smart factories. 

E. Attention Mechanism Integration 

Although CNNs and BiGRUs simultaneously learn spatial 
and temporal dependencies, all time steps in the sequence are 
not equally helpful in predictive decision-making. In industrial 
IoT scenarios, anomalies could transiently arise, e.g., a brief 
surge in CO concentration, while other time spans are stable 
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and less informative. Processing all the hidden states equally 
might obscure such crucial cues. To overcome this 
shortcoming, NeuroFusionNet incorporates an Attention 
mechanism that actively weighs informative time steps more 
heavily. 

For every hidden state ℎ𝑡 generated by the BiGRU, there is 
a score function computed [see Eq. (11)]: 

𝑒𝑡 = 𝑣𝑇(tanh⁡(𝑊𝑎ℎ𝑡 + 𝑏𝑎)     (11) 

Here, 𝑊𝑎  and 𝑏𝑎 are trainable parameters, and 𝑣𝑇  is the 
Attention vector. This score measures the degree of 
significance of each hidden state to the ultimate prediction task. 

The scores are normalized using the Softmax, yielding 
Attention weights ∝𝑡, as in Eq. (12): 

𝑐 = ∑ ∝𝑡 ℎ𝑡
𝑇
𝑡=1           (12) 

These weights, which act as a probability distribution across 
the sequence, assure a higher ranking of weight for more salient 
time steps, and a lower ranking for less salient. The Attention 
mechanism weighted the significance of each time step by a 64-
dimensional context vector. This interest has facilitated the 
model to emphasize the significant signals of time, which 
increases interpretability and the level of anomaly detection in 
multivariate industrial sensor-streams. 

The vector serves to summarize the most relevant time 
periods in response to the same types of predictive signals 
pointing to the simplest diagnostic problems, which then serves 
to provide more trust into the predictive decision-making. For 
example, if an equipment increases in temperature, then it is 
emitting gas which is outside of the expected states. The Time 
Attention method affords that information more weight in to the 
contextual representation, taking into account relevant local 
signals that inform across the time course. The introduction of 
a dynamic weight to representation improves the 
interpretability of the final outputs and provides users an 
opportunity to back-track proactively and effectively to areas of 
continuity within the sequence that play a role in the grading of 
the anomaly, which is obviously a critical need in last true 
application of the algorithm for fault diagnoses in application. 
The final context vector is simply the weighted average of the 
hidden state. 

F. Output and Prediction Layer 

Finally, after feature extraction and temporal modeling, the 
last step of NeuroFusionNet is the output and prediction layer, 
which transforms the learned feature representations into useful 
decisions. The context vector 𝑐′, produced by the Attention 
mechanism, serves as an information-dense yet compact 
representation of the whole sequence. This vector is first 
processed through a fully connected (dense) layer, as shown in 
Eq. (13): 

𝑧 = 𝑊𝑐𝑐+𝑏𝑐
                     (13) 

These weights and biases are shared with the decoder in the 
end-to-end training and are parameters that can be learned to 
project the context vector into a classification-friendly space. 
Nonlinear activation functions like ReLU may be used here to 
gain expressive power. 

To get the final prediction, the projected vector is then run 
through a Softmax function, as shown Eq. (14): 

𝑦 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐𝐶 + 𝑏𝑐)        (14) 

The Softmax function transforms raw scores to probability 
distribution across defined classes. In this research, the model 
is predicting whether a sensor sequence belongs to a normal 
state (normal operation) or an anomalous state (e.g., fault, 
hazard). The predicted class is the one with the maximum 
probability value, and the probability distribution gives a 
measure of confidence. 

This design not only ensures that the fault detection is 
correct but also enables future expansion to multi-class 
classification, such as distinguishing between some categories 
of anomalies. Output Layer bridges the knowledge gap between 
the deep feature learning and decision making. When the 
context-sensitive representations of Attention are fused with a 
probabilistic prediction model, NeuroFusionNet will give 
strong, explainable, and real-time results. In practice, these 
results may be directly converted to provide automated control 
systems or alert engineers and reduce downtimes, and increase 
manufacturing safety and efficiency. 

Algorithm 1: NeuroFusionNet Workflow for Predictive 

Smart Manufacturing 

Input: Multivariate sensor time-series data from IoT nodes (e.g., 
temperature, humidity, gas levels, motion). 

Output: Predicted class label (normal or anomaly) with probability 
distribution. 

BEGIN 

  Load dataset D 

  Perform preprocessing: 

    Normalize data 

    Apply smoothing filter 

    Generate lag/rolling features 

  Initialize CNN-BiGRU-Attention model 

  FOR each epoch DO 

    Pass input through CNN → extract spatial features 

    Feed CNN output to BiGRU → capture temporal patterns 

    Apply Attention → compute weighted context vector 

    Pass context to fully connected layer 

    Compute prediction using Softmax 

    Calculate cross-entropy loss 

    Backpropagate error and update weights 

  ENDFOR 

  Save trained model 

  For new input: 

    Preprocess using same pipeline 

    Pass through trained NeuroFusionNet 

    Output final prediction 

END 

Algorithm 1 outlines the entire process of the suggested 
NeuroFusionNet model for predictive analytics in intelligent 
manufacturing. The dataset D is first loaded and preprocessed, 
meaning values are normalized to a constant interval, 
smoothing filters are applied to diminish noise, and lag or 
rolling features are created to handle temporal dependencies. 
The CNN-BiGRU-Attention model is then initialized. 
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Throughout training, every epoch starts by passing the input 
through the CNN blocks, which tap important spatial 
correlations out of sensor data. The feature outputs are fed into 
the BiGRU, which learns temporal structures in both directions. 
Then, the Attention mechanism assigns time-step weights 
dynamically to important time steps, generating a context 

vector highlighting important signals. It is fed into a fully 
connected layer and Softmax-classified to calculate prediction 
probabilities. The model is cross-entropy loss-trained with 
weight updates performed through backpropagation. It can then 
be used to run new input through the same pipeline to make 
accurate predictions. 

 
Fig. 3. CNN-BiGRU prediction process. 

In Fig. 3, the CNN-BiGRU prediction process starts with 
data input and then normalizes the data using z-score 
standardization. The LSTM layer then computes the 
convolution layer's output to produce the output value. The 
fully connected layer receives this output value and uses it for 
additional computation. The procedure entails figuring out the 
fault and determining whether the end condition is satisfied. If 
not, error back propagation continues to refine the model. Once 
trained, the model is preserved, and input data for forecasting 
undergo standardization before being fed into the trained CNN-
LSTM model for prediction. The standardized output is then 
restored to its initial value, concluding the forecasting 
procedure. 

NeuroFusionNet presents a hybrid CNN-BiGRU-Attention 
model that is designed with industrial IoT-based decision-
making in mind and seeks to overcome the shortcomings of 
other models, such as CNN-LSTM, CNN-GRU, and Attention-
based RNNs. CNN is effective in deriving localized spatial 
representations of multivariate sensor data, BiGRU derives 

temporal relationships in both directions and in sequential 
modes, and the Attention mechanism highlights important time-
steps, which enhance anomaly detection and predictive 
maintenance. This fusion allows better convergence, higher 
precision, and robustness on real-time industrial data, which 
proves to be better in practice than traditional hybrid 
architectures. 

V. RESULTS AND DISCUSSION 

The experimental evaluation for the proposed 
NeuroFusionNet framework was conducted using the 
Environmental Sensor Telemetry Dataset. This section presents 
the results for predictive analytics, fault detection, and anomaly 
classification relative to baseline methods, CNN-LSTM, GRU, 
and model MLPs. Results are shown for accuracy, precision, 
recall, F1-Score, loss curves, confusion matrices, and ROC 
performance. Tables indicate comparisons of metrics across 
models, and graphs show convergence behavior, the 
performance of classification, and robustness. 
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A. Model Training Performance 

This subsection reports on the experimental results of 
NeuroFusionNet using multivariate IoT datasets. Training and 
validation metrics are presented, comparing against baseline 
models, with enhancements to accuracy, speed of convergence, 
and generalization. Results are presented both graphically and 
in tables, which demonstrate that the developed framework is 
effective at anomaly detection, predictive maintenance, and 
smart factory decision-making in real-time. 

 
Fig. 4. Training vs. Validation accuracy. 

Fig. 4 shows the training and validation accuracy for 
NeuroFusionNet over a span of 50 epochs. The model exhibits 
smooth convergence among both accuracy measures, with 
training accuracy increasing and validation accuracy plateauing 
around 95.2%, which is higher than the baseline CNN-LSTM 
(92.1%). This indicates that the model is able to learn spatial-
temporal patterns effectively while not overfitting, and 
indicates the model's generalization ability on unseen sensor 
data. The hybrid architecture with CNN, BiGRU, and Attention 
performs quick feature extraction of information and modeling 
of the sequence while providing accurate predictions under 
noisy and heterogeneous conditions in the industrial sensor 
setup. 

 
Fig. 5. Training vs. Validation loss. 

Fig. 5 shows the loss curves for training and validation 
accuracy over the epochs. Both curves show a steady decline 
with very little gap between training and validation loss, 
confirming low overfitting. The use of dropout layers in the 
architecture, along with Attention-based feature weighting, 
prevents overfitting to the training data. The declining loss over 
epochs indicates the effectiveness of backpropagation errors 
and weight updates, and validates that NeuroFusionNet is 
capable of maintaining knowledge of relevant patterns in sensor 
readings while efficiently converging the model parameters 
throughout the training procedure. 

B. Comparative Evaluation with Benchmarks 

Fig. 6 shows the performance metrics of Accuracy, 
Precision, Recall, and F1-score for four models: CNN, RNN, 
LSTM, and a proposed model (NeuroFusionNet CNN-
BiGRU). In general, we observe that the proposed model 
outperforms the other models for every metric, achieving an 
accuracy of 95.2% and having balanced precision, recall, and 
F1-score metrics above 94%. By contrast, RNN performs the 
lowest across all metrics, especially precision and F1-score, 
indicating it struggles to learn multivariate temporal data. The 
performance of the CNN and LSTM models was at a moderate 
effectiveness level. However, the hybrid, the proposed CNN-
BiGRU (NeuroFusionNet), proficiently exploits spatial-
temporal features that the data has available and is capable of 
extracting more complicated correlations while still 
generalizing. This visualization supports the reliability and 
superior performance of the proposed model in predictive 
analytics for smart manufactured data. 

 
Fig. 6. Model comparison. 

Table I illustrates a relative performance analysis of various 
deep learning structures. The performance of CNN, RNN, and 
LSTM models is moderate, with one of the models having 
either space or time dependencies but not both. CNN-LSTM 
and CNN-GRU models are more accurate and have a higher F1-
score as they combine both spatial and temporal features, but 
still, are worse than the proposed CNN-BiGRU. The suggested 
framework successfully exploits CNN to extract spatial 
features, BiGRU to capture the temporal dependencies of the 
two directions and Attention to highlight the most important 
time steps and thus, offers better accuracy, precision, recall, and 
F1-score. These findings demonstrate the strength of the 
suggested model and its applicability to tasks of industrial IoT 
predictive maintenance and detection of anomalies. 
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TABLE I.  PERFORMANCE COMPARISON  

Methods 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

CNN [19] 92 89 90 90 

RNN [20] 87 58 80 67 

LSTM [21] 88 77 84 86 

CNN–LSTM [22] 94 93 92 92.5 

CNN–GRU [23] 93 84 83 82.5 

Proposed (CNN-

BiGRU) 
95.2 94.8 94.1 94.4 

TABLE II.  MODEL PERFORMANCE ACROSS MULTIPLE DATASETS 

Proposed 

Method 
Dataset 

Accurac

y (%) 

Precisi

on (%) 

Recall 

(%) 

F1-Score 

(%) 

CNN–

BiGRU 

Environme

ntal Sensor 

Telemetry 

Data [18] 

95.2 94.8 94.1 94.4 

CNN–

BiGRU 

World Air 

Quality 

Data 2024 

[24] 

93.1 92.3 91.8 92.7 

CNN–

BiGRU 

IndFD-

PM-DT 

[25] 

93.8 93.2 91.9 91.7 

Table II presents the behavior of the proposed CNN-BiGRU 
model on three datasets. The model demonstrates the best 
performance in the primary data of the study, the 
Environmental Sensor Telemetry Data, having an accuracy of 
95.2 %, a precision of 94.8 %, a recall of 94.1 %, and an F1-
score of 94.4 %, which implies that it is a good predictor of 
industrial IoT decision-making. In the other two datasets, 
World Air Quality Data 2024 and IndFD-PM-DT, the 
performance metrics are relatively low, which is a characteristic 
of the dataset, as well as indicating the strength and 
applicability of the model to the suggested industrial sensor 
dataset. This analogy confirms the accuracy of the model in 
industrial real-time conditions. 

C. Confusion Matrix and Classification Analysis 

Examining the confusion matrix provides important 
information about the strengths and weaknesses of the proposed 
NeuroFusionNet model at a class level. Beyond overall 
accuracy, it can inform how well the model is classified for 
normal operations and types of anomalies, which is important 
for real-world smart manufacturing applications since the 
model needs to detect common and rare events. 

This confusion matrix, in Fig. 7, assesses the performance 
of a 4-class classification model. The diagonal elements (480, 
450, 460, 470) reflect correct predictions for 0-3, respectively. 
The dark blue indicates a high count. The off-diagonal elements 
reflect misclassifications between classes. When looking 
mostly at the diagonal elements, we can conclude that the 
model performs very well and produces most of its predictions 
on the diagonal. Class 0 has the most success, with 480 correct 
predictions and very few misclassifications (5, 3, 2). Classes 1-
3 have somewhat more confusion, with class 1, the most 
confusing, classifying a total of 26 observations in the incorrect 
class. Class 2 tailing with 20 observations. In general, we can 
conclude that overall classification accuracy was high across all 

four classes. This is supported with darker diagonal elements, 
indicating proper discrimination of the classes. The small off-
diagonal values also support that the model does not misclassify 
classes often. 

 
Fig. 7. Confusion matrix. 

TABLE III.  PER-CLASS PRECISION/RECALL/F1 

Class Precision (%) Recall (%) F1-Score (%) 

Normal 96% 95.7 95.9 

Anomaly (CO) 93% 94.2 93.8 

Anomaly (Smoke) 94% 93.5 94.1 

Anomaly (LPG) 95% 94.6 94.8 

This performance in Table III of classification provides 
results for a 4-class anomaly detection framework, which 
would support a gas/fire safety monitoring system. The model 
classifies data between "Normal" and three classes of 
anomalies, namely Carbon Monoxide (CO), Smoke, and 
Liquefied Petroleum Gas (LPG). The overall performance of 
the classification system was commendable, regardless of the 
class achieving scores over 93%. The "Normal" class received 
the highest scores (96% precision, 95.7% recall, and 95.9% F1), 
indicating, as expected, that the detection capabilities for the 
normal baseline were attestation warrantable or measurable in 
the acceptable range. In the anomalies classification, the LPG 
was the highest-scoring detection (95% precision, 94.6% recall, 
94.8% F1), and the CO detection was worse (93% precision) 
but good in the recall (94.2% recall). Having well-balanced 
scores on precision and recall in all the classes, this level of 
precision and recall suggests that the software model can step 
change between false negatives and false positives, hence the 
justification of suggestive safety-critical applications. 

D. Attention Insights and Feature Importance 

Attention visualization aids interpretability by showing the 
consideration of the various sensors by NeuroFusionNet in 
coming up with its decision. The model is weighting more 
Attention on the most significant sensors in case of an anomaly 
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in the situation that conveys the predictive value of the model 
in addition to facilitating transparency in the model outputs, that 
brings a feeling of confidence in its use in smart manufacturing 
and industrial safety fields. 

Fig. 8 and Table IV clearly illustrate that the percentage of 
influence distribution is dominated by CO, smoke, and LPG 
sensors as they comprise more than 65% of the predictive 
effect. This finding is in line with industrial safety issues, 
whereby there are imminent hazardous gas threats. Humidity 
and light factors were allocated comparatively low weights, 
which proves that these factors do not have a significant direct 
effect on anomalies. As indicated, motion sensors had the 
lowest predictive weight as would be required with an 
accessory sensor type. Patterns of weighing such as these are 
evidence that the model favors the variables, to allow domain 
relevance, and also offer explainability beyond accuracy. This 
takes a strain on trust in the model, but more to the point, 
depends on it as a decision-making tool for forecastive 
maintenance and risk management purposes. 

TABLE IV.  SENSOR-WISE CONTRIBUTION (ATTENTION SCORES) 

Sensor Average Weight (%) 

CO 2430.00% 

Smoke 2150.00% 

LPG 1970.00% 

Temperature 1280.00% 

Humidity 890.00% 

Light 7.4 

Motion 5.4 

 
Fig. 8. Attention weights. 

E. Scalability and Industrial Impact 

Assessing scalability and computational efficiency is 
critical. Scalability and computational efficiency are important 
to assess and implement in a real-time industrial context. The 
following subsection discusses the ROC, execution times, and 
scalability measures of NeuroFusionNet as the number of data 
increases compared to the baseline models, which indicates that 
the framework achieves high accuracy rates and, at the same 

time, it has efficient execution and processing time, which is a 
critical element of Industry 4.0 implementation. As can be seen 
in Fig. 9 to Fig. 11, NeuroFusionNet is more efficient and 
effective in varying situations. ROC curve (Fig. 6) shows the 
AUC of 0.982, as opposed to CNN-LSTM 0.954, and indicates 
that NeuroFusionNet is very discriminative. 

 
Fig. 9. ROC curve. 

Fig. 9 ROC curve assesses the performance of the 
NeuroFusionNet model in binary classification. The blue curve 
demonstrates excellent discrimination, with an Area Under the 
Curve (AUC) of 0.982, showing the model's near-perfect ability 
to classify. The curve climbs steeply toward the top-left corner, 
producing strong true positive rates at very low false positive 
rates. The orange dashed line represents random chance 
(AUC=0.5), and shows the model is better than random 
classification. 

 

Fig. 10. Execution time comparison. 

Fig. 10 shows that it requires less per-epoch training time, 
which we attributed to the lightweight BiGRU architecture in 
NeuroFusionNet, which improves convergence speed. Fig. 8 
shows that it is practically linear in scalability, with inference 
latency remaining nearly unchanged as dataset size doubled. 
This highlights its relevance for future large-scale industrial 
use. These findings confirm how NeuroFusionNet can improve 
operational efficiency in smart manufacturing contexts, while 
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also improving predictive maintenance and threat detection 
speed, as well as real-time monitoring speed, while also 
providing improved accuracy. 

 
Fig. 11. Scalability of NeuroFusionNet. 

The scalability plot in Fig. 11 shows that the inference 
latency of NeuroFusionNet increases as the dataset decides. 
Starting at 0.12 seconds for the small dataset, the latency 
increases to 0.22 seconds at 400,000 samples. The plot indicates 
that inference latency scales almost linearly, with a small 
upward bend that suggests the model is able to achieve 
reasonable inference performance, even as the data volume 
increased dramatically indicating good scaling characteristics. 

F. Discussion 

The analysis of the NeuroFusionNet framework indicates 
that the combination of CNN, BIGRU, and the Attention 
system increases real-time industrial IoT decision making 
significantly. The CNN element is able to efficiently draw 
spatial patterns of the multivariate sensor readings, which 
identify local anomalies and alleviate noise. Allowing both 
forward and backward time dependencies, BiGRU models 
allow determining trends in the sequence and time-related 
errors correctly. The Attention mechanism identifies important 
time steps, which enhance interpretability and prioritize the 
model on the signals most important to operational risks. The 
comparison with the baseline model proves that the hybrid 
architecture is better than CNN-only, LSTM, or BIGRU-only 
architecture, particularly in predictive maintenance and 
anomaly detection. The poor results given to external datasets 
like World Air Quality Data 2024 and IndFD-PM-DT indicate 
the role of domain specific properties on performance and 
emphasizes the role of domain adaptation. In general, the 
findings indicate that the imperative of modeling of the spatio-
temporal and context-aware dependencies can be used to 
achieve robustness, responsiveness, and practical viability in 
industrial IoT settings. 

VI. CONCLUSION AND FUTURE WORK 

The NeuroFusionNet architecture based on CNN, BiGRU 
and Attention mechanism trained on real-time industrial IoT 
decision making had good performance of spatial, time and 
context dependencies, while considering multivariate sensor 
data. CNN learns localized patterns, BiGRU models two-way 
temporal interaction, and Attention identifies important time 

steps, all of which are beneficial in predictive maintenance and 
anomaly detection. Although the performance on the 
environmental sensor telemetry datasets was excellent, the poor 
results on the World Air Quality Data 2024 and IndFD-PM-DT 
suggest that the data diversity and domain specificity may lead 
to variations in generalization in various industrial settings. 
Also, hybrid architectures add more computational expense and 
this can affect real-time use in resource constrained 
environments. Nevertheless, in view of these obstacles, this 
framework offers a scalable approach to smart manufacturing, 
which offers actionable insights and enhanced efficiency of the 
working operation. Further efforts in this area are required for 
cross-domain validation, computational efficiency 
optimization, and experiments on a variety of industrial data 
sets to guarantee the extensive applicability and dependability 
in practical factory settings. 

Next step for this effort include expanding the framework 
with graph neural networks (GNN) added to capturing the 
complex manufacturing layout relationships in inter-sensor 
topologies, while utilizing online learning methods for 
changing in sensor behavior, or degradation of equipment over 
time. Extending NeuroFusionNet to a multi-factory federated 
learning paradigm will allow for coordinated predictive 
analytics prediction. 
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