(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 12, 2025

NeuroFusionNet Adaptive Deep Learning for
Intelligent Real-Time Industrial IoT Decisions

Ghayth AlMahadin
Assistant Professor, Data Science Department-College of Information Technology, Mutah University, Jordan

Abstract—The rapid development of Industrial IoT (I1oT) has
facilitated real-time observation and decision-making in smart
factories, even though current methods suffer from constraints
like processing noisy, high-dimensional sensor data and modeling
both spatial and temporal relationships well. Classical models like
CNN, LSTM, and GRU tend to fail in handling sequential patterns
and context-aware anomaly detection, which restricts predictive
maintenance and operational efficiency. To address these
limitations, this research introduces NeuroFusionNet, a CNN-—
BiGRU-Attention hybrid framework, developed using Python
and TensorFlow, to pull localized spatial features using CNN,
capture bidirectional temporal relationships using BiIGRU, and
highlight key time steps using Attention for improved anomaly
detection and predictive maintenance. The framework is tested on
the Environmental Sensor Telemetry dataset, with multivariate
industrial signals such as gas levels, temperature, and equipment
vibrations. Experimental results demonstrate that
NeuroFusionNet achieves 95.2% accuracy, 94.8% precision,
94.1% recall, and 94.4% F1-score, representing an improvement
of approximately 2 to 7% over baseline models (CNN, RNN,
LSTM) across multiple performance metrics. The method
provides faster convergence and robust real-time inference,
supporting scalable deployment for smart manufacturing
environments. These results highlight that NeuroFusionNet not
only outperforms conventional hybrid models such as CNN-
LSTM and CNN-GRU but also offers actionable insights for
predictive maintenance, safety, and efficiency, establishing a
foundation for adaptive Al-driven monitoring in Industry 4.0
applications.

Keywords—Deep learning; hybrid CNN-BiGRU; OptiSenseNet;
sensor data synthesis; smart manufacturing

I.  INTRODUCTION

Smart manufacturing incorporates technology and statistics
into the manufacturing with the conventional methods and
practices of manufacturing allowing the smooth data gathering,
sharing, and assessment throughout the manufacturing
ecosystem. Engaging in data-driven decision-making and
behaviormay improve by integrating and linking data in real-
time. Smart manufacturing is heavily reliant on automation and
robotics, autonomous vehicles and automated systems perform
repetitive work and optimize manufacturing processes [1].
Automation boosts manufacturing and efficiency of
manufacturing paradigms by minimizing reliance on human
intervention. Smart manufacturing employs sophisticated
analytic tools, such as data mining, machine learning, and
predictive analytics, in analyzing data of key performance
indicators. The insights that are data-rich can be used to make
proactive maintenance and optimization of manufacturing, The
main feature of smart manufacturing is the presence of digital

copies of physical objects, procedures, or systems-or so-called
digital twins, which allow monitoring, simulating, and
evaluating goals in real-time to improve performance, predict
results, and recognize optimization resources. The focus of
smart manufacturing is flexibility and agility in the market,
whereby the production systems are flexible and capable of
beingaltered as the market needs change. The reliance [2] on
the digital technologies and processes that are sensitive to data
makes cybersecurity and data privacy a necessary partof smart
manufacturing. The Deep Learning (DL) is a technology
currently discussed as a way of smart manufacturing, which
opens new opportunities in predictive maintenance, anomaly
detection, quality control, production processes, supply chain
management, and workforce safety [3]. Further applications
and research of DL algorithms to smart manufacturing
approach in predictive maintenance assist to model and predict
machine failure, classify or identify anomalies, evaluate sensor
data, and evaluate performance changeover. The drug learning
algorithms will improve productivity and safety of workers
because they will identify when production processes are not
within the performance standards or integrate DL with new
technologies like augmented realities or virtual webs to
minimize downtime and waste [4]. The radical force of DL
drives smart operations and development toward the goals of
the Industry 4.0, along with fostering viable innovation and
operational efficiencies. CNN-LSTM is a hybrid deep learning
algorithm that exploits the characteristics of the LSTM
networks and integrates CNN layers in LSTM networks. CNN
layers are incredibly suitable to other tasks like image
recognition because they are efficient in extracting spatial
features of the inputdata [5]. At the same time, long-term and
relations may be modeled and longer-term tendencies are able
to be modeled with LSTM grids, which is useful for obtaining
time dependence in sequential data, in direct convolution layers

[6].

In order to overcome these issues, this study introduces
NeuroFusionNet, a powerful and generalized neural network
that integrates spatial, temporal, and Attention-based structures
that are aimed at producing real-time smart factory analytics.
The architecture starts with convolutional neural network
(CNN) layers that take advantage of the local spatial
relationships of the multivariate sensor signals. The spatial
characteristics are then input into a Bidirectional GRU
(BiGRU), which allows the model to learn historical and future
dependencies, which is required by predictive maintenance.
Lastly, an Attention model enables the model to assign more
significance dynamically to sensor values that are more
significant. When put together, these elements offer an effective
answer to the challenge of false alerts being sent when the
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critical anomalies should be corrected in time. With a
compromise between accuracy and computational efficiency,
NeuroFusionNet can be considered a scalable solution to the
Industry 4.0 type environment, allowing factories to work more
reliably, productively, and proactively detect safety violations.

A. Research Motivation

The rapid industrialization of Industry 4.0 has led to the
creation of intelligent factories that generate vast quantities of
multivariate sensor data, and thus, it is difficult to make timely
and accurate decisions. The traditional machine leaming
models are incapable oflearning temporal structures and spatial
relationships in high-dimensional data. The existing single-
stream CNN or BiGRU technologies aremore likely to generate
lagged fault detection and lower predictive accuracy. This
motivates the development of a hybrid CNN-BiGRU network
with a temporal-bypass block to be efficient in extracting
discriminative features and making use of redundant patterns.
The proposed approach will support real-time, reliable, and
smart manufacturing systems in making decisions in smart
manufacturing systems with a better convergence rate and
accuracy of prediction.

B. Research Significance

The proposed hybrid CNN-BiGRU structure takes
necessary deficiencies of the conventional models in the ability
to capture both spatial and temporal correlation in sensor
observations simultaneously. It integrates a temporal-bypass
mechanism and thus is quicker to converge and more efficient
at detecting patterns over large distances, leading to a better
predictive accuracy. This makes it easier to detect faults earlier,
reduce false alarms, and make more precise decisions in
intelligent manufacturing environments. The methodology can
be applied to other sensor-based systems, which can provide a
good solution to multivariate time-series analysis. The study in
general adds to the continuity of smart predictive analytics and
operational effectiveness in the Industry 4.0 settings.

C. Key Contribution

e Presented NeuroFusionNet, a novel hybrid CNN-
BiGRU-Attention structure designed for real-time
anomaly identification in smart factory loT settings.

e Delivered better accuracy and robustness than baseline
models, while demonstrating robustness against noisy
signals and heterogeneous industrial measurement
devices.

e Achieved better explainability with an Attention
mechanism, highlighting important time steps for
confident reasoning and insights.

e Tested the flexibility of the model through multiple
experiments to indicate that it would scale well,
converge quickly, and perform well for Industry 4.0
predictive maintenance and monitoring applications.

D. Rest of the Section

The remaining sections of this study are arranged as
follows: The discussion about the previous studies is presented
in Section II. Problem statement is represented in Section IIL
The methodology is presentedin Section IV, and the results and
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its discussion is presented in Section V. The conclusion and
future works are included in Section VL

II. LITERATURE REVIEW

Coito et al. [7] studied the system of integrating smart
sensors with real-time decision-making systems in the
industrial context. The experiment involved the use of
Programmable Logic Controllers (PLCs) and personal
computers (PCs) in a three-level cloud, fog, and edge
architecture. This integration was done with the aim of
improving operational efficiency through timely and informed
decisions. Although the study shows that the effectiveness of
such integration is possible, the performance metrics and
performance-specific datasets are not provided, which makes it
difficult to assess its effectiveness. The originality is the fact
that the proposed architecture allows making decisions in real-
time as sensor data is integrated with business information.

X. Zhou et al. have a focus on creating a hybrid deep neural
network for detectingsmall objects within the digital twin (DT)
context of smart manufacturing environments [8]. The version
aims to merge physical manufacturing environments with
digital equivalents by implementing MobileNetv2, YOLOv4,
and Openpose to monitor and optimize the physical
manufacturing environment in real-time. However, one
drawback ofthe proposedtechnique may includeits complexity
and computational load, impacting scalability and real-time
performance in a large-scale production environment.
Furthermore, leveragingdeepleamingmodels may also present
a challenge regarding interpretability and generalizability to
different production contexts. Further research is warranted to
address these limitations and improve the use of the proposed
methodology in real-world smart manufacturing contexts.

Attaran et al. [9] explore the notion of Digital Twins (DTs)
and its place in the Industrial Internet of Things (IloT) as a part
of Industry 4.0. The study describes DTs, their development,
and an overview of important enabling technologies. It
underlines the role of lIoT as the foundation of DTs with the
focus on real-time data and connectivity. Although the study
has a definite theoretical framework, it lacks empirical data and
case studies to prove the advanced ideas. The innovation is also
based on the fact that the synergistic relationship between DTs
and IloT is explored in detail, giving an insight into the
synergistic potential of these two in regard to operational
intelligence.

Yun and Lee [10] have suggested an intelligent dynamic
real-time spectrum resource management system of Industrial
IoT (IIoT). The study has applied the data mining and case-
based reasoning approaches in order to optimize a spectrum
allocation. The KPI was assessed as spectrum handoff, handoff
latency, energy consumption, and link maintenance. Findings
showed that there were improvements in these measures, which
showed the effectiveness of the system. It is novel, that is, in
the use of advanced methods of computation to solve spectrum
management problems in [loT. Nevertheless, the limitations of
the study are the absence of data deployment and scalability
analysis in the real world.

Villegas-Ch etal. [11] examine how Artificial Intelligence
(AI) can be integrated into the Internet of Things (IoT) to
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perform real-time monitoring and predictive analytics. It
discusses different Al methods, such as machine learning and
deep learning, used to process IoT data to make better
decisions. The study talks about how Al can enhance the
efficiency, accuracy, and responsiveness of the system.
Although the research gives a broad picture, it does not have
any case studies and experimental findings on how the
proposed Al techniques can be implemented in real-life
situations. The uniqueness is the focus on Al to change [oT
systems to smart monitoring platforms.

Pandey et al. [12] proposed a model of the implementation
of sensor networks that can be integrated with IoT in real -time
in the process control systems. The work is aimed at improving
the data collection, processing, and decision-making processes
with the help of the developed communication protocols, such
as MQTT and CoAP. Although the study presents the structure
and possible advantages of the framework, it fails to deliver
empirical data as well as a performance assessment to justify
the suggested strategy. What is new is the extensive adoption
of IoT technologies to enhance the systems of process control.
Nonetheless, its effectiveness cannot be measured because of
the absence of practical implementation and performance
measures.

Lee and colleagues [13] used a systematic literature review
to study the impact of intelligent decision-support systems
(IDSSs) on ethical decision-making. Results indicated
individual-level results, including improved deliberation,
motivation, autonomy, and action/outcomes to societal
problems, including moral deskilling and responsibility lapses.
Two categories of operations, process-oriented and outcome-
oriented navigation, were suggested by them as drivers. The
strengths included the conceptual clarity and applicability.
Some of the limitations are the reliance on existing literature
and potential heterogeneity of the IDSS situation, forcing the
necessity of empirical validation of the situation in different
scenarios of ethics.

Anushree A. [14], in their study, a smart city air quality
monitoring in real-time was designed using an IoT with
inexpensive air pollution sensors (PMSA003, MICS6814, MQ-
131) and the ESP-WROOM-32 microcontroller, and combined
with AWS to store and analyze the data in Python. The system
gave an RMSE 0f 3.7656, which warmned the users in good time
when the pollutant concentrations exceeded their limits. The
low cost of deployment, massive connectivity, and real-time
monitoring are the strengths. The limitations, such as
dependence on sensor accuracy and potential coverage issues
in highly urbanized environments, are its weaknesses, which
require additional strict empirical validation.

III. PROBLEM STATEMENT

Modern smart factories produce massive amounts of data
from heterogeneous sensors, which are often noisy, non-
stationary,and interdependent [15]. Although machine learning
and conventional machine learning approaches perform well in
structured environments, they may be insufficient when faced
with multivariate time-series complexity captured from
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interconnected IoT devices. While conventional deep learning
architectures (LSTM and GRU networks in particular) can
provide improvements to the problem of processing sequential
data,[16] are still computationally prohibitive, and CNNs alone
are not able to capture long-term dependencies. Additionally,
many models treat every time step equally without
consideration of whether one sensor reading is more relevant to
the anomaly or failure than others [17]. Consequently, there is
an increase in false positives and false negatives, delayed fault
detection, and worse predictive maintenance outputs. Thus, a
hybrid framework is needed to integrate spatial, temporal, and
contextual clues from sensor data to achieve accurate,
computationally-efficient, real-time anomaly detection in
industrial IoT ecosystems that directly support the reliability
and safety of smart factory operations.

The literature reviewed is dedicated to the combination of
intelligent sensors, loT-based systems, and hybrid computation
systems aimed at improving real-time decision-making,
monitoring, and process control in the industrial and smart-city
settings. The study demonstrates the application of digital
twins, industrial cyber-physical systems, and Al-powered
analytics to optimize operational efficiency, detect anomalies,
manage spectrum resources, and support predictive
maintenance. Adaptive response through real-time data
acquisition and processing increases the reliability and
accuracy of the systems. However, some weaknesses can be
identified: the vast majority of works are based on simulated or
scaled-down datasets, and their generalizability is thus limited;
hybrid deep learning solutions to the problem of smart
manufacturing are not fully studied; the aspect of scalability
and latency ofreal-time IoT analytics is not well addressed; and
the consideration of sustainability, e.g., energy-efficient
computation or resource optimization, is mostly overlooked.
These loopholes indicate the importance of a multivariate
sensor-based framework that can process multivariate sensor
data, multivariate space-temporal relationships, and
multivariate context-sensitive Attention capabilities to aid
sound and real-time industrial decision-making processes.

IV. PROPOSED METHODOLOGY OF NEUROFUSIONNET: A
HyBRID CNN-BIGRU ATTENTION MODEL FOR SMART
MANUFACTURING

The study introduces NeuroFusionNet, an integrated deep
learning model, which will be used to enhance the correctness
of predictions in the intelligent manufacturing space.
NeuroFusionNet applies Convolutional Neural Networks
(CNNs) to extract spatial features, Bi-directional Gated
Recurrent Units (BiGRUs) to process the time order of sensor-
readings, and an Attention mechanism is used to provide
features with dynamic weights. The NeuroFusionNetmakesuse
of the complementary capabilities of CNNs and BiGRUs but
adoptsthe Attention mechanisms with regard to weighting the
relevant patterns. The architecture enables better detection and
prediction abnormalities, is immune to noise, works in a high-
dimensional space,andallows the industry dynamics to change.
The workflow of the proposed model is given in Fig. 1.
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Fig. 1.

A. Data Collection

The dataset utilized in this study is the Environmental
Sensor Data (132K) dataset of Kaggle [18], which consists of
about 132,000 time-stamped values of the readings of various
environmentalsensors. The measurements in the dataset consist
of barometric pressure, light intensity, humidity, temperature,
and CO2 concentration. Information was obtained through
continuous observation at brief intervals (e.g., seconds or
minutes) within a controlled setting (indoor environment) to
have realistic variation in the conditions of the environment. In
our usage case, we chose the appropriate multivariate signals
(vibration, humidity, temperature, and gas/CO2 measures) to
simulate the settings of industrial sensors. Subsequent to the
training, we performed cleaning up of missing or inconsistent
entries, normalized every feature, and split the time series into
sliding windows. This dataset, with its multivariate and time-
sensitive features, is an appropriate proxy of the actual IoT
sensor streams in a smart factory.

B. Data Pre-Processing

Pre-processing of the data is required in order to normalize
the values of the gathered characteristics for DoS detection.

1) Data normalization: The traffic data's attributes aren't
spread evenly when the learning process begins. For this
reason, the Min Max approach is applied, and the results that
fall between [0,1] are given in Eq. (1):

x—min (x)

(M

where, max(x) — min (x) is the minimum and maximum
values ofthe data. To scale sensorreadings to a consistent range
for comparison and analysis across several sensors or datasets,
min-max normalization is essential in sensor data synthesis.
Using a simple mathematical equation, this normalizing
procedure entails deducting the dataset's minimum value from
each observation and dividing the result by the range of values.

Xm = max(x)—min (x)

2) Noise reduction and feature engineering: Sensor
readings are usually noisy because of hardware faults,
communication delays, or interference from the environment.
Filtered out of these distortions, moving average filters and
wavelet denoising were used. These methods efficiently
remove short-term oscillations without losing significant signal
patterns. These cleaned signals improve predictability by

Workflow of the proposed NeuroFusionNet model.

removing spurious oscillations which would otherwise confuse
the model, as shown in Eq. (2) and Eq. (3):

~ 1 _
X = EZ?:olxt—i 2)
20 =%, 3)

C. CNN Feature Extraction

The initial step of the suggested NeuroFusionNet
architecture will utilize a CNN to generate local spatial features
of multivariate sensor streams. The smart manufacturing
environmentuses numerous sensors at the same time, and they
produce correlated signals. CNNs are efficient in computing
such correlations by searching the input space with kernels,
which are localized pattern detectors. Fig. 2 shows the proposed
CNN-BiGRU framework for predictive analysis of smart
manufacturing.

For a kernel w, bias b, and activation function o, the feature
map is calculated as shown in Eq. (4):

1 — M-1yN-1,.1-1 ! !
ﬁ,j - U(Zm=0 n=0 xi+m,j+n + Wm,n +b ) (4)
Here, xil;,lnﬁn is the input from the previous layer,
and w}, ,, is learnable convolutional weights. This operation
allows the network to recognize local dependencies like the co-
occurrence of abnormal gas concentration with increasing

temperature, which could be an indication of a potential system
fault.

CNN was used with the 64 filters, 3x3 kernel, ReLU
activation, and 2x2 max-pooling. These environments
maximized the extraction of spatial features, which minimized
noise and localized patterns of multivariate [oT sensor data,
which improved predictive performance and robustness.

For invariance and computational efficiency, poolinglayers
are used. Pooling diminishes the dimensionality for every
region by taking the maximum activation, as shownin Eq. (5):

pij = max(fix,js1) (5)
By integrating convolution and pooling, CNNs provide
compact yet discriminative spatial descriptions. The

heterogeneous sensor relations are encoded with reduced
redundancy and preserve important information. The output
feature maps are thenpassed on to the following BiGRU layers,
where temporal dependencies are captured.
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D. BiGRU for Temporal Dependencies

While Convolutional Neural Networks (CNNs) learn spatial
correlations between sensor variables, strong predictive
modeling in smart manufacturing also needs to understand
temporal relationships. Most manufacturing anomalies form
over time—e.g., an unusual abnormality in temperature levels
can lead to toxic gas emissions. To model such trends,
NeuroFusionNet integrates a Bidirectional Gated Recurrent
Unit (BiGRU) network.

Compared to Long Short-Term Memory (LSTM) units,
which make use of three gate mechanisms (input, forget, and
output), GRUs simplify the process by merging these into
update and reset gates. This conserves computational overhead
yetmaintains capacity for learning long-range dependencies, so
GRUs are especially useful for high-rate sensor data.

The GRU state changes are characterized as follows:

e Update Gate: regulates the amount of the previous state

to carry forward [see Eq. (6)]:
Zy = G(VVZ : [ht_p xt]) (6)

e Reset Gate: controls how much old information to erase
[see Eq. (7)]:
n= G(M/r : [ht—pxt]) (7)

e Hidden State: adds the reset gate to calculate a new
candidate activation [see Eq. (8)]:

flt = O'(VV; [ht—1:xt]) (8)

e Final Hidden State: combines the candidate state with
the old state, depending on the update gate [see Eq. (9)]:

he=(1-2z)0Oh,; + Zteﬁt €)
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Proposed CNN-BiGRU methodology for predictive analysis of smart manufacturing.

Here, (O denotes element-wise multiplication, ¢ is the
sigmoid function,and tanh adds nonlinearity. The BIGRU layer
had 128 hiddenunits, two layers,and 0.3 dropout. Bidirectional
processing learned sequential dependencies between past and
future time steps to enhance temporal learning, anomaly
detection, and stability of real-time industrial IoT decision-
making.

Unlike the unidirectional GRU, BiGRU improves
predictive power by processing sequences in two directions at
once. One GRU processes inputin the forwa@ direction in time
(ht)and, anotherin the backward direction (ht), and anotherin
the reverse direction 4t. The two outcomes are concatenated
into the overall BiGRU representation [see Eq. (10)]:

hEt = [hyhy (10)

This bi-directional structure will ensure that this model
would adoptboththe antecedent (e.g., pastelevating COlevels)
and consequent (e.g., future modifications in pressure
measurements) when decoding the presentreadings of sensors.
In NeuroFusionNet, the BiGRU is critical towards explaining
the time processes of various time levels. It allows one to
differentiate between quick processes and long-term drifts, and
such a judgment is critical to fault detection. Combining the
computational power and deep consideration of the context,
BiGRU provides the temporal skeleton, which could be
combined with the CNN-based spatial data to facilitate
trustworthy and real-time decision-making in smart factories.

E. Attention Mechanism Integration

Although CNNs and BiGRUs simultaneously learn spatial
and temporal dependencies, all time steps in the sequence are
not equally helpful in predictive decision-making. In industrial
IoT scenarios, anomalies could transiently arise, e.g., a brief
surge in CO concentration, while other time spans are stable

168 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

and less informative. Processing all the hidden states equally
might obscure such crucial cues. To overcome this
shortcoming, NeuroFusionNet incorporates an Attention
mechanism that actively weighs informative time steps more
heavily.

For every hidden state h, generated by the BiGRU, there is
a score function computed [see Eq. (11)]:

e, = v (tanh (W h,+ b,) (11)

Here, W, and b, are trainable parameters, and v7 is the
Attention vector. This score measures the degree of
significance of each hidden state to the ultimate prediction task.

The scores are normalized using the Softmax, yielding
Attention weights o, as in Eq. (12):

¢ =Xie1 X by (12)

These weights, whichactas a probability distribution across
the sequence, assure a higher ranking of weight for more salient
time steps, and a lower ranking for less salient. The Attention
mechanismweighted the significance of each time step by a 64-
dimensional context vector. This interest has facilitated the
model to emphasize the significant signals of time, which
increases interpretability and the level of anomaly detection in
multivariate industrial sensor-streams.

The vector serves to summarize the most relevant time
periods in response to the same types of predictive signals
pointingto the simplest diagnostic problems, which then serves
to provide more trust into the predictive decision-making. For
example, if an equipment increases in temperature, then it is
emitting gas which is outside of the expected states. The Time
Attentionmethod affords that informationmore weightin to the
contextual representation, taking into account relevant local
signals that inform across the time course. The introduction of
a dynamic weight to representation improves the
interpretability of the final outputs and provides users an
opportunity to back-track proactively and effectively to areas of
continuity within the sequence that play a role in the grading of
the anomaly, which is obviously a critical need in last true
application of the algorithm for fault diagnoses in application.
The final contextvector is simply the weighted average of the
hidden state.

F. Output and Prediction Layer

Finally, after feature extraction and temporal modeling, the
last step of NeuroFusionNet is the output and prediction layer,
which transforms the learned feature representations into useful
decisions. The context vector c¢,, produced by the Attention
mechanism, serves as an information-dense yet compact
representation of the whole sequence. This vector is first
processed through a fully connected (dense) layer, as shown in
Eq. (13):

2=Wepp, (13)

These weights and biases are shared with the decoder in the
end-to-end training and are parameters that can be leamed to
project the context vector into a classification-friendly space.
Nonlinear activation functions like ReLU may be used here to
gain expressive power.
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To get the final prediction, the projected vector is then run
through a Softmax function, as shown Eq. (14):

y = Softmax(W . + b.) (14)

The Softmax function transforms raw scores to probability
distribution across defined classes. In this research, the model
is predicting whether a sensor sequence belongs to a normal
state (normal operation) or an anomalous state (e.g., fault,
hazard). The predicted class is the one with the maximum
probability value, and the probability distribution gives a
measure of confidence.

This design not only ensures that the fault detection is
correct but also enables future expansion to multi-class
classification, such as distinguishing between some categories
ofanomalies. Output Layer bridgesthe knowledge gap between
the deep feature learning and decision making. When the
context-sensitive representations of Attention are fused with a
probabilistic prediction model, NeuroFusionNet will give
strong, explainable, and real-time results. In practice, these
results may be directly converted to provide automated control
systems or alert engineers and reduce downtimes, and increase
manufacturing safety and efficiency.

Algorithm 1: NeuroFusionNet Workflow for Predictive
Smart Manufacturing

Input: Multivariate sensor time-series data from IoT nodes (e.g.,
temperature, humidity, gas levels, motion).

Output: Predicted class label (normal or anomaly) with probability
distribution.

BEGIN

Load dataset D

Perform preprocessing:
Normalize data
Apply smoothing filter
Generate lag/rolling features

Initialize CNN-BiGRU-Attention model

FOR each epoch DO
Pass input through CNN — extract spatial features
Feed CNN output to BIGRU — capture temporal patterns
Apply Attention — compute weighted context vector
Pass context to fully connected layer
Compute prediction using Softmax
Calculate cross-entropy loss
Backpropagate error and update weights

ENDFOR

Save trained model

For new input:
Preprocess using same pipeline
Pass through trained NeuroFusionNet
Output final prediction

END

Algorithm 1 outlines the entire process of the suggested
NeuroFusionNet model for predictive analytics in intelligent
manufacturing. The dataset D is first loaded and preprocessed,
meaning values are normalized to a constant interval,
smoothing filters are applied to diminish noise, and lag or
rolling features are created to handle temporal dependencies.
The CNN-BiGRU-Attention model is then initialized.
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Throughout training, every epoch starts by passing the input
through the CNN blocks, which tap important spatial
correlations outof sensor data. The feature outputs are fed into
the BIGRU, which learnstemporal structures in bothdirections.
Then, the Attention mechanism assigns time-step weights
dynamically to important time steps, generating a context

|
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vector highlighting important signals. It is fed into a fully
connected layer and Softmax-classified to calculate prediction
probabilities. The model is cross-entropy loss-trained with
weightupdates performed through backpropagation. It can then
be used to run new input through the same pipeline to make
accurate predictions.

Input Data
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Fig. 3.

In Fig. 3, the CNN-BiGRU prediction process starts with
data input and then normalizes the data using z-score
standardization. The LSTM layer then computes the
convolution layer's output to produce the output value. The
fully connected layer receives this output value and uses it for
additional computation. The procedure entails figuring out the
fault and determining whether the end condition is satisfied. If
not, error back propagation continues to refine the model. Once
trained, the model is preserved, and input data for forecasting
undergo standardization before being fed into the trained CNN-
LSTM model for prediction. The standardized output is then
restored to its initial value, concluding the forecasting
procedure.

NeuroFusionNet presents a hybrid CNN-BiGRU-Attention
model that is designed with industrial loT-based decision-
making in mind and seeks to overcome the shortcomings of
other models, such as CNN-LSTM, CNN-GRU, and Attention-
based RNNs. CNN is effective in deriving localized spatial
representations of multivariate sensor data, BIGRU derives

l

CNN-BiGRU prediction process.

temporal relationships in both directions and in sequential
modes, and the Attention mechanism highlightsimportant time-
steps, which enhance anomaly detection and predictive
maintenance. This fusion allows better convergence, higher
precision, and robustness on real-time industrial data, which
proves to be better in practice than traditional hybrid
architectures.

V. RESULTS AND DISCUSSION

The experimental evaluation for the proposed
NeuroFusionNet framework was conducted using the
Environmental Sensor Telemetry Dataset. This section presents
the results for predictive analytics, fault detection, and anomaly
classificationrelative to baseline methods, CNN-LSTM, GRU,
and model MLPs. Results are shown for accuracy, precision,
recall, F1-Score, loss curves, confusion matrices, and ROC
performance. Tables indicate comparisons of metrics across
models, and graphs show convergence behavior, the
performance of classification, and robustness.
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A. Model Training Performance

This subsection reports on the experimental results of
NeuroFusionNet using multivariate loT datasets. Training and
validation metrics are presented, comparing against baseline
models, with enhancements to accuracy, speed of convergence,
and generalization. Results are presented both graphically and
in tables, which demonstrate that the developed framework is
effective at anomaly detection, predictive maintenance, and
smart factory decision-making in real-time.

Training vs Validation Accuracy

—— Training Accuracy
0.90 1 Validation Accuracy /
0.85 4
>
=
c
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o] 10 20 30 40 50
Epochs

Fig. 4. Trainingvs. Validation accuracy.

Fig. 4 shows the training and validation accuracy for
NeuroFusionNet over a span of 50 epochs. The model exhibits
smooth convergence among both accuracy measures, with
trainingaccuracy increasingand validationaccuracy plateauing
around 95.2%, which is higher than the baseline CNN-LSTM
(92.1%). This indicates that the model is able to learn spatial-
temporal patterns effectively while not overfitting, and
indicates the model's generalization ability on unseen sensor
data. The hybrid architecture with CNN, BiGRU, and Attention
performs quick feature extraction of information and modeling
of the sequence while providing accurate predictions under
noisy and heterogeneous conditions in the industrial sensor
setup.

Training vs Validation Loss
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Fig. 5. Trainingvs. Validation loss.

Vol. 16, No. 12, 2025

Fig. 5 shows the loss curves for training and validation
accuracy over the epochs. Both curves show a steady decline
with very little gap between training and validation loss,
confirming low overfitting. The use of dropout layers in the
architecture, along with Attention-based feature weighting,
prevents overfittingto the trainingdata. The decliningloss over
epochs indicates the effectiveness of backpropagation errors
and weight updates, and validates that NeuroFusionNet is
capable of maintainingknowledge of relevant patterns in sensor
readings while efficiently converging the model parameters
throughout the training procedure.

B. Comparative Evaluation with Benchmarks

Fig. 6 shows the performance metrics of Accuracy,
Precision, Recall, and F1-score for four models: CNN, RNN,
LSTM, and a proposed model (NeuroFusionNet CNN-
BiGRU). In general, we observe that the proposed model
outperforms the other models for every metric, achieving an
accuracy 0f95.2% and having balanced precision, recall, and
F1-score metrics above 94%. By contrast, RNN performs the
lowest across all metrics, especially precision and F1-score,
indicating it struggles to learn multivariate temporal data. The
performance of the CNN and LSTM models was at a moderate
effectiveness level. However, the hybrid, the proposed CNN-
BiGRU (NeuroFusionNet), proficiently exploits spatial-
temporal features that the data has available and is capable of
extracting more complicated correlations while still
generalizing. This visualization supports the reliability and
superior performance of the proposed model in predictive
analytics for smart manufactured data.

Performance Comparison of Different Models

100

Percentage (%)

NN RANN LSTM™
Methads

CNN-BIGRU (Proposed)
Fig. 6. Model comparison.

Tablel illustrates arelative performance analysis of various
deep learning structures. The performance of CNN, RNN, and
LSTM models is moderate, with one of the models having
either space or time dependencies but not both. CNN-LSTM
and CNN-GRUmodels are more accurate and have a higher F1-
score as they combine both spatial and temporal features, but
still, are worse than the proposed CNN-BiGRU. The suggested
framework successfully exploits CNN to extract spatial
features, BiGRU to capture the temporal dependencies of the
two directions and Attention to highlight the most important
time steps and thus, offersbetter accuracy, precision, recall,and
Fl-score. These findings demonstrate the strength of the
suggested model and its applicability to tasks of industrial loT
predictive maintenance and detection of anomalies.
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TABLEI. PERFORMANCE COMPARISON
Accuracy Precision Recall F1-Score
Methods %) (%) (%) %)
CNN [19] 92 89 90 90
RNN [20] 87 58 80 67
LSTM [21] 88 77 84 86
CNN-LSTM [22] | 94 93 92 92.5
CNN-GRU [23] 93 84 83 82.5
Proposed (CNN-
BIiGRU) 95.2 94.8 94.1 94.4
TABLEII. MODEL PERFORMANCE ACROSS MULTIPLE DATASETS
Proposed Accurac | Precisi | Recall F1-Score
Dataset
Method y (%) on (%) (%) (%)
Environme
CNN- ntal Sensor
BiGRU Telemetry 95.2 94.8 94.1 94.4
Data [18]
World  Air
CNN- Quality
BiGRU Data 2024 93.1 923 91.8 92.7
[24]
IndFD-
CNN- | pMDT 938 932|919 | 917
BiGRU 25]

Table Il presentsthe behavior of the proposed CNN-BiGRU
model on three datasets. The model demonstrates the best
performance in the primary data of the study, the
Environmental Sensor Telemetry Data, having an accuracy of
95.2 %, a precision 0f 94.8 %, a recall 0of 94.1 %, and an F1-
score of 94.4 %, which implies that it is a good predictor of
industrial IoT decision-making. In the other two datasets,
World Air Quality Data 2024 and IndFD-PM-DT, the
performancemetrics arerelatively low, which is a characteristic
of the dataset, as well as indicating the strength and
applicability of the model to the suggested industrial sensor
dataset. This analogy confirms the accuracy of the model in
industrial real-time conditions.

C. Confusion Matrix and Classification Analysis

Examining the confusion matrix provides important
information about the strengths and weaknesses of the proposed
NeuroFusionNet model at a class level. Beyond overall
accuracy, it can inform how well the model is classified for
normal operations and types of anomalies, which is important
for real-world smart manufacturing applications since the
model needs to detect common and rare events.

This confusion matrix, in Fig. 7, assesses the performance
of a 4-class classification model. The diagonal elements (480,
450,460,470) reflect correct predictions for 0-3, respectively.
The dark blue indicates a high count. The off-diagonal elements
reflect misclassifications between classes. When looking
mostly at the diagonal elements, we can conclude that the
model performs very well and produces most of its predictions
on the diagonal. Class 0 has the most success, with 480 correct
predictions and very few misclassifications (5, 3, 2). Classes 1-
3 have somewhat more confusion, with class 1, the most
confusing, classifying a total of 26 observations in the incorrect
class. Class 2 tailing with 20 observations. In general, we can
conclude that overall classification accuracy was high acrossall
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four classes. This is supported with darker diagonal elements,
indicating proper discrimination of the classes. The small off-
diagonal valuesalsosupport that themodel does notmisclassify
classes often.

Confusion Matrix

400

300

True

200

- 100

Predicted

Fig. 7. Confusion matrix.

TABLE III. PER-CLASS PRECISION/RECALL/F1
Class Precision (%) Recall (%) F1-Score (%)
Normal 96% 95.7 95.9
Anomaly (CO) 93% 942 93.8
Anomaly (Smoke) 94% 935 94.1
Anomaly (LPG) 95% 94.6 94.8

This performance in Table III of classification provides
results for a 4-class anomaly detection framework, which
would supporta gas/fire safety monitoring system. The model
classifies data between "Normal" and three classes of
anomalies, namely Carbon Monoxide (CO), Smoke, and
Liquefied Petroleum Gas (LPG). The overall performance of
the classification system was commendable, regardless of the
class achieving scores over 93%. The "Normal" class received
the highestscores (96% precision, 95.7%recall,and 95.9%F1),
indicating, as expected, that the detection capabilities for the
normal baseline were attestation warrantable or measurable in
the acceptable range. In the anomalies classification, the LPG
was the highest-scoringdetection (95% precision, 94.6%recall,
94.8% F1), and the CO detection was worse (93% precision)
but good in the recall (94.2% recall). Having well-balanced
scores on precision and recall in all the classes, this level of
precision and recall suggests that the software model can step
change between false negatives and false positives, hence the
justification of suggestive safety-critical applications.

D. Attention Insights and Feature Importance

Attention visualization aids interpretability by showing the
consideration of the various sensors by NeuroFusionNet in
coming up with its decision. The model is weighting more
Attention on the most significant sensors in case ofan anomaly
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in the situation that conveys the predictive value of the model
in addition to facilitating transparency in themodel outputs, that
brings a feeling of confidence in its use in smart manufacturing
and industrial safety fields.

Fig. 8 and Table IV clearly illustrate that the percentage of
influence distribution is dominated by CO, smoke, and LPG
sensors as they comprise more than 65% of the predictive
effect. This finding is in line with industrial safety issues,
whereby there are imminent hazardous gas threats. Humidity
and light factors were allocated comparatively low weights,
which proves that these factors do not have a significant direct
effect on anomalies. As indicated, motion sensors had the
lowest predictive weight as would be required with an
accessory sensor type. Patterns of weighing such as these are
evidence that the model favors the variables, to allow domain
relevance, and also offer explainability beyond accuracy. This
takes a strain on trust in the model, but more to the point,
depends on it as a decision-making tool for forecastive
maintenance and risk management purposes.

TABLEIV. SENSOR-WISE CONTRIBUTION (ATTENTION SCORES)
Sensor Average Weight (%)

CcO 2430.00%

Smoke 2150.00%

LPG 1970.00%

Temperature 1280.00%

Humidity 890.00%

Light 7.4

Motion 54

Sensor-Wise Contribution via Attention

Attention Weight (%)

co Smoke

LPG Temperaturdumidity Light  Motion
Sensors

Fig. 8. Attention weights.

E. Scalability and Industrial Impact

Assessing scalability and computational efficiency is
critical. Scalability and computational efficiency are important
to assess and implement in a real-time industrial context. The
following subsection discusses the ROC, execution times, and
scalability measures of NeuroFusionNet as the number of data
increasescompared to the baseline models, which indicates that
the framework achieves high accuracy rates and, at the same
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time, it has efficient execution and processing time, which is a
critical element of Industry 4.0 implementation. As can be seen
in Fig. 9 to Fig. 11, NeuroFusionNet is more efficient and
effective in varying situations. ROC curve (Fig. 6) shows the
AUC 0f0.982, as opposed to CNN-LSTM 0.954, and indicates
that NeuroFusionNet is very discriminative.

ROC Curve

1.0 4

0.8 1 ﬁ
2
&
5 0.6
=
.“ﬁ
2
E 0.41

0.2

=—— NeuroFusionNet (AUC=0.982)
Random
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig.9. ROC curve.

Fig. 9 ROC curve assesses the performance of the
NeuroFusionNet model in binary classification. The blue curve
demonstrates excellent discrimination, with an Area Under the
Curve (AUC) 0f0.982,showingthe model's near-perfect ability
to classify. The curve climbs steeply toward the top-left corner,
producing strong true positive rates at very low false positive
rates. The orange dashed line represents random chance
(AUC=0.5), and shows the model is better than random
classification.

Execution Time Comparison

Time per Epoch (s)

CNN-LSTM BiGRU
Models

NeuroFusionNet

Fig. 10. Execution time comparison.

Fig. 10 shows that it requires less per-epoch training time,
which we attributed to the lightweight BiGRU architecture in
NeuroFusionNet, which improves convergence speed. Fig. 8
shows that it is practically linear in scalability, with inference
latency remaining nearly unchanged as dataset size doubled.
This highlights its relevance for future large-scale industrial
use. These findings confirm how NeuroFusionNet can improve
operational efficiency in smart manufacturing contexts, while
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also improving predictive maintenance and threat detection
speed, as well as real-time monitoring speed, while also
providing improved accuracy.

Scalability of NeuroFusionNet
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Fig. 11. Scalability of NeuroFusionNet.

The scalability plot in Fig. 11 shows that the inference
latency of NeuroFusionNet increases as the dataset decides.
Starting at 0.12 seconds for the small dataset, the latency
increasesto 0.22 seconds at 400,000 samples. The plot indicates
that inference latency scales almost linearly, with a small
upward bend that suggests the model is able to achieve
reasonable inference performance, even as the data volume
increased dramatically indicating good scaling characteristics.

F. Discussion

The analysis of the NeuroFusionNet framework indicates
that the combination of CNN, BIGRU, and the Attention
system increases real-time industrial IoT decision making
significantly. The CNN element is able to efficiently draw
spatial patterns of the multivariate sensor readings, which
identify local anomalies and alleviate noise. Allowing both
forward and backward time dependencies, BIGRU models
allow determining trends in the sequence and time-related
errors correctly. The Attention mechanism identifies important
time steps, which enhance interpretability and prioritize the
model on the signals most important to operational risks. The
comparison with the baseline model proves that the hybrid
architecture is better than CNN-only, LSTM, or BIGRU-only
architecture, particularly in predictive maintenance and
anomaly detection. The poor results given to external datasets
like World Air Quality Data 2024 and IndFD-PM-DT indicate
the role of domain specific properties on performance and
emphasizes the role of domain adaptation. In general, the
findings indicate that the imperative of modeling of the spatio-
temporal and context-aware dependencies can be used to
achieve robustness, responsiveness, and practical viability in
industrial [oT settings.

VI. CONCLUSION AND FUTURE WORK

The NeuroFusionNet architecture based on CNN, BiGRU
and Attention mechanism trained on real-time industrial IoT
decision making had good performance of spatial, time and
context dependencies, while considering multivariate sensor
data. CNN learns localized patterns, BIGRU models two-way
temporal interaction, and Attention identifies important time
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steps, all of which are beneficial in predictive maintenance and
anomaly detection. Although the performance on the
environmental sensor telemetry datasets was ex cellent, the poor
results on the World Air Quality Data 2024 and IndFD-PM-DT
suggest that the data diversity and domain specificity may lead
to variations in generalization in various industrial settings.
Also, hybrid architecturesadd more computational expense and
this can affect real-time use in resource constrained
environments. Nevertheless, in view of these obstacles, this
framework offers a scalable approach to smart manufacturing,
which offers actionable insights and enhanced efficiency of the
working operation. Further efforts in this area are required for
cross-domain  validation, = computational efficiency
optimization, and experiments on a variety of industrial data
sets to guarantee the extensive applicability and dependability
in practical factory settings.

Next step for this effort include expanding the framework
with graph neural networks (GNN) added to capturing the
complex manufacturing layout relationships in inter-sensor
topologies, while utilizing online learning methods for
changing in sensor behavior, or degradation of equipment over
time. Extending NeuroFusionNet to a multi-factory federated
learning paradigm will allow for coordinated predictive
analytics prediction.
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