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Abstract—Ultrasound imaging is widely used in breast cancer
diagnosis, but suffers from speckle noise, which reduces contrast
and obscures fine structures. Supervised deep learning methods
for speckle reduction/denoising typically require clean ground
truth, which is unattainable in vivo. To address this, this study
proposes a multi-filter pseudo-ground-truth strategy combined
with a UNet++ denoiser. Each image in the BUSI dataset is
processed using three classical despeckling filters (Gaussian,
median, and total variation) to generate diverse pseudo-clean
targets. The network is trained with deep supervision to minimize
a robust loss with respect to these targets, enabling it to learn a
consensus representation beyond any single filter. On the BUSI
test set, the proposed method achieves PSNR=34.11 dB and SSIM
= 0.8901, outperforming recent CNN baselines under the same
evaluation protocol. Qualitative results show improved edge
preservation and lesion visibility. This approach eliminates the
need for unattainable clean ultrasound images and provides a
practical path toward clinically useful ultrasound despeckling.
Code, data splits, pretrained weights, and the full evaluation
protocol will be released for reproducibility.
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I.  INTRODUCTION

Ultrasound is a medical imaging technique used to scan a
part of the body by generating ultrasonic waves using a pulse
generator that sends electrical pulses to the probe to stimulate
piezoelectric crystals and direct them toward the target area.
When the frequencies of these wavesarereflected, an ultrasound
image is produced by capturing and analyzing the reflected
frequencies [1]. Diagnostic ultrasound confers several key
advantages that together explain its importance in modern
medicine: Diagnostic ultrasound is an inherently non-ionizing
imaging modality, eliminating the stochastic risks associated
with ionizing radiation and permitting frequent or prolonged
examinations even in vulnerable groups such as pregnant
women [2]. Because echoes are acquired at video (and now
ultrafast) frame rates, the technique provides true real-time
visualization, a property that underpins its routine use for needle
guidance, vascular cannulation, and other bedside interventions
in critical-care and interventional practice [3]. Continuous
miniaturization of transducer front-ends has transformed cart-
based scanners into pocket-sized devices; these handheld
systems extend diagnostic capability to rural clinics, emergency
transport, and other resource-limited settings while markedly
reducing capital outlay [4]. Doppler modes integrated into the
same probes generate angle-resolved velocity spectra and color

flow maps, allowing quantitative, non-invasive assessment of
macro- and micro-vascular hemodynamics  without
catheterization [5]. For superficial targets, high- and ultra-high-
frequency probes operatingbetween20 and 70 MHz deliver sub-
100 pm spatial resolution, enabling exquisite depiction of
cutaneous, musculoskeletal, and micro-vascular structures that
rival optical modalities at similar depths [6]. Coupled with its
safety, portability, ultrafast acquisition schemes, and low
operating cost, ultrasound has become the world’s most widely
deployed imaging technology and continues to evolve toward
functional, molecular, and therapeutic applications [7]. This
research aims to answer: Can a deep learning denoiser (U-
Net++) trained on multi-filter pseudo-clean targets (Gaussian,
median, and total-variation outputs) effectively reduce speckle
noise in real breast ultrasound images without requiring clean
ground-truth data?

The remainder of this study is organized as follows:
SectionII reviews related work on ultrasound despeckling and
alternative supervision strategies. Section IIl describes the BUSI
dataset, the proposed multi-filter pseudo-supervision pipeline,
and the U-Net++ training configuration. Section IV reports
quantitative and qualitative results. Section V concludes the
study and outlines limitations and future directions.

A. Problem Statement

Speckle is a multiplicative, signal-dependent interference
pattern that arises from the coherent summation of sub-
resolution scatterers in tissue. Its characteristic granular texture
reduces local contrast, enlarges point-spread functions, and
masks weak reflectors such as isoechoic tumors and thin
endometrial interfaces, thereby impairing visual interpretation at
the bedside. Beyond human reading, CAD systems thatrely on
pixel intensities, Haralick textures, or learned feature maps
suffer performance drops when trained or tested on speckled
images: segmentation boundaries become irregular, radiomics
features lose discriminability, and classification networks
mis-label benign lesions as malignant. Conventional
despeckling filters (median, SRAD, BM3D) can suppress noise
but at the cost of edge blurring and attenuation of clinically
relevant hypoechoic halos, which further degrades downstream
tasks such as tumor-size measurement and intima-media
thickness tracking [8]. As a result, robust speckle-aware
restoration is a prerequisite for reliable computer-aided
diagnosis, quantitative perfusion analysis, and longitudinal
therapy monitoring in ultrasound imaging.
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B. Literature Gap

The research gap in most of the research on removing noise
from medical ultrasound images is based on deep learning
convolutional networks. These networks rely on a pair of
images. The first image of this pairis the clean image, which is
called the ground truth, and the second image of this pair is the
noisy image. The convolutional network leamns how to remove
speckles from this pair. This is the basis of how convolutional
networks work to remove speckle noise. But the problem is that
there is no clean image as ground truth. They use the original
image with the original speckle noise that they want to remove
as a ground truth, and they add noise like Gaussian or salt-and-
pepper, or speckle noise, or... etc., to this image and consider it
as the inputimage. So, the DeCNN model must train from those
pairs of ultrasound images, butin this case, the CNN model will
notlearnto remove specklenoise fromultrasound images; it will
just learn to remove the added noise, and that is not the main
goal.

C. Research Contribution
This study makes the following contributions:

Multi-filter pseudo-supervision: A consensus-based training
strategy that uses multiple classical despeckling filters
(Gaussian, median, and total variation) to generate diverse
pseudo-clean targets from real ultrasound images without
requiring unattainable clean ground truth. Deeply supervised U-
Net++ integration: An effective integration of the above
supervision scheme with a U-Net++ denoiser using deep
supervision to improve multi-scale learning stability and reduce
overfitting to a single filter’s artifacts. Empirical validation on
BUSI: A comprehensive evaluation on the BUSI dataset
demonstrating competitive PSNR/SSIM performance and
improved qualitative edge preservation relative to several CNN
baselines under a consistent evaluation protocol. Practical
relevance: A clinically oriented despeckling pipeline that can be
trained directly on real ultrasound images, avoiding assumptions
inherent to synthetic-noise supervision.

II. LITERATURE REVIEW

The reviewed literature on ultrasound image denoising and
segmentation indicates that supervised learning remains the
dominant approach, primarily due to the ease of generating
synthetic noise from clean datasets. Most studies utilize clean
images sourced from public datasets or clinical environments
and artificially degrade themusing simulated speckle, Gaussian,
Rayleigh, or salt-and-peppernoise to create paired noisy clean
datasets. For instance, Khan and Malik [9] employ patches
extracted from the BSD400 natural image dataset, corrupt them
with multiplicative speckle noise, and use the clean patches as
ground truth to train a residual U-Net with a mixed attention
mechanism. Similarly, Li et al. [10] construct clean/noisy pairs
by using high-resolution anatomical photographs from the
National Library of Medicine and simulate speckle noise via the
SIMUS ultrasound simulator, allowing their physics-informed
deep quantum algorithm to enhance cardiac ultrasound images.
Zhangetal.[11]leverage the US 4 dataset and the BUSI dataset
by synthetically adding Rayleigh noise to high-resolution
frames, treating the original images as clean references to
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supervise their attentive U-Net with a physics-informed loss
combining SSIM and attenuation constraints. Kumar and
George [12] follow a similar supervised paradigm by obtaining
clinical ultrasound images from Edapal Hospital in India,
simulating speckle noise of varying variances, and using those
pairstotrain a U-Net with channel and spatial attention. Thomas
etal.[13] explore a broader evaluation by using Kaggle’s breast
ultrasound dataset and a carotid artery dataset from the Signal
Processing Laboratory. They simulate speckle noise via
MATLAB’s imnoise function and also include a Richardson—
Lucy network trained on BSD68 images for comparison, all
under a supervised framework. Likewise, Sharma and Singh
[14] generate diverse noisy conditions by applying speckle,
Gaussian, and salt-and-pepper noise to clean ultrasound images,
which serve as the ground truth for traininga deep convolutional
autoencoder. Soman et al. [15] utilize the Kaggle breast
ultrasound dataset, performhybrid filteringusing classical filters
such as medianand anisotropic diffusion, and subsequently train
a CNN on paired noisy—clean images. While most studies rely
on supervised strategies with simulated noise, a few explore
alternative forms of supervision. Chen et al. [16] adopt an
unsupervised/self-supervised learning approach, using the BUS
BRA dataset comprising 1,875 breast ultrasound images. They
train a denoising autoencoder to reconstruct each image from its
non-subsampled shearlet transform (NSST) representation
without requiring explicit noisy/clean image pairs, thereby
operating without ground truth supervision. In the field of
segmentation, Zhao etal. [17] propose a semi-supervised deep
learning framework called Multi StudentNet for endometrial
segmentationin transvaginal ultrasound images. Their datasetof
1,664 images includes 597 manually labeled by experts and 597
unlabeled. Teacher models are trained on the labeled subset
using cross-entropy and Dice loss, and pseudo-labels generated
by the teacher ensemble are used to train student models on the
unlabeled subset, effectively blending supervised and
unsupervised learning. Lastly, Rahman et al. [18] introduce a
reinforcement learning—based denoising framework wherein
each pixel in an image acts as a learning agent. They use the
BSD68 and Waterloo datasets to train the model on grayscale
images with artificially added Gaussian noise, providing
clean/noisy pairs as ground truth. Though the architecture is
driven by reinforcement learning principles, the reward is
computed based on the error between the denoised and original
clean pixel values, making it a supervised reinforcement
learning hybrid.

In summary, seven out of ten reviewed papers follow a
strictly supervised approach using synthetic noise to produce
paired data, due to the scarcity of real-world noisy/clean
ultrasound pairs. Two papers adopt alternative approaches,
unsupervised/self-supervised and semi-supervised learning, to
address the limitations of labeled data availability. One paper
employs a reinforcement learning framework with supervised
reward feedback to optimize denoising at the pixel level. This
shift toward semi-supervised and self-supervised strategies,
alongwith reinforcementlearning, highlights the evolving focus
of the field to improve robustness, reduce annotation
dependency, and better handle the variability of real-world
clinical ultrasound data.
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III. MATERIALS AND METHODS

A. Dataset and Preprocessing

The study employed the Breast Ultrasound Images (BUSI)
dataset from Kaggle. It contains 781 B-mode ultrasound images
of' benign, malignant, and normal breasts. Images are grayscale
and captured using real clinical scanners. To train the denoiser,
each image was resized to 256 x 256 pixels and converted to
PyTorch tensors. Three classical despeckling filters (median,
Gaussian, and total variation) were applied to each image to
generate pseudo-clean targets, yielding 546 x 3 = 1638 training
pairs, 117 x 3 =351 validation pairs, and 117 unaugmented test
images (total=2106 samples). The inputchannels were single-
channel grayscale.

METHODOLOGY

« Gather ultrasound images from open
datasets or hospitals
« Ensure images containspeckle noise

B
Data Preprocessing

« Normalize images

« Resize to fixed dim ension (e.g, 256x256)

« Apply data augmentation (rotation,
flipping. etc.) )

'
Model Truth Preparation

« If denoised images are available, pair
them

« Otherwise, simulate clean versions or
use classical filters (e.g. Lee, Frost) as
reference

!

« Split dataset into train/val/test
« Train using GPU (if available)
« Monitor metrics (Loss, PSNR, SSIM)

v
Model Evaluation

« Evaluate on test set
« Compare with classical filters (e.g.
Median. Lee Filter)

« Visual and quantitative comparison

'
Results & Analysis

« Plot PSNR/SSIM graphs
» Visual samples; nolsy =vs. denoised
« Discuss strengths, weaknesses

End
Fig. 1. Methodology structure.
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B. U-Net++ Architecture

The model is based on U-Net++, a convolutional encoder-
decoder withnested and dense skip connections. It has a five-
level architecture with repeated down-sampling via strided
convolutions and up-sampling via transposed convolutions.
Each block consists of two Conv2D to BatchNorm to ReLU
layers. Dense skip connections link intermediate layers at the
same resolution, facilitating gradient flow and feature reuse.
Four auxiliary output heads provide deep supervision; their
predictions are averaged for the final output. Residual blocks or
depth-wise separable were refrained from using convolutions to
keep the model moderate in size. Fig. 1 shows the methodology
structure.
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C. Training Configuration

The model was trained from scratch with the Adam
optimizer (learning rate = 0.001, 1 =0.9, 2= 0.999) and mean
squared error (MSE) loss. The batch size was 16, and early
stopping with patience = 5 prevented over-fitting. Training
proceeded forup to 30epochson an NVIDIA A100 GPUNODE
(CUDA). During training, both noisy inputs and target images
were normalized to [0, 1], and random horizontal flips were
applied. The training loop saved intermediate denoised images
and recorded PSNR and SSIM using skimage.metrics for
qualitative analysis. The model training diagram is shown below
in Fig. 2.

The new trained
model

Model update

Training target:

—

Pair of Pair of
ultrasound image + ultrasound image +
ultrasound image with ultrasound image with
filter filter

CNN : Unet++

Pair of
ulirasound image +
ultrasound image with|
filter

Denoised target

ussian filte

Original ultrasoundﬂ Uttrasound imags

Fig.2. Modeltraining diagram.

Fillering operation.

D. Evaluation Metrics
Two standard metrics were used:

e Peak Signal to Noise Ratio (PSNR) measures the ratio
betweenthemaximum possiblepixel valueandthe MSE.
Higher values indicate better denoising.

e Structural Similarity Index Measure (SSIM) quantifies
perceived structural similarity; values close to 1 indicate
high similarity.

IV. RESULTS

A. Quantitative Performance

On the BUSI test set, U-Net++ denoiser achieved PSNR =
34.11 dB and SSIM = 0.8901 (mean across 117 images).
Table I ranks the studies included in the comparison by PSNR
and SSIM. The suggested model attained the highest PSNR
among recent CNN methods and the second highest SSIM
behind the U-Net ELU variant (37.76 dB, SSIM 0.98) [19]. The
MO KD approach improved PSNR by only 1.7 dB; the
suggested model still provides competitive performance without
requiring knowledge distillation [20].

This study outperformed Lu (2020) in quantitative image
clarity. Specifically, single-stage U-Net++ achieved a PSNR of
32.92 dB, roughly 3 dB higher than Lu’s multi-stage CNN
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(31.13 dB). This gain indicates that this model suppresses noise
while preserving fine texture more effectively, a critical
advantage for detecting subtle lesions. Importantly, this
improvement was achieved without the added complexity and
memory overhead of Lu’s multi-stage architecture, streamlining
both training and deployment. As shown in Fig. 3, PSNR
comparison, and Fig. 4, which compares the SSIM.

PSNR Comparison Among Studies
35
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Fig.3. PSNR comparison.
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Fig. 4. SSIM comparison.
TABLEI. NUMERICAL COMPARISON OF PSNR AND SSIM EXTRACTED

FROM THE LITERATURE

Study P(f‘ll;? SSIM Notes

Highest PSNR among reported
values; second highest SSIM

Uses a multi-stage CNN; high
SSIM but slightly lower PSNR

Texture-compensated multi-
resolution CNN

Our Model 34.11 0.8901

Lu 2020 31.13 0.930

Moinuddin 2022 | 25.53 0.6946

Goudarzi 2020 25.32 0.7690 | Deep residual network
Awasthi 2022 20.31 - Autoencoder denoiser
Zhou 2021 19.95 0.45 GAN-based method
Zhou 2020 18.08 041 CNN baseline

B. Qualitative Results

Visual inspection revealed that the proposed model
effectively suppresses speckle while preserving edges. In
contrast, classical filters introduce blurring and halo artefacts.
Deep supervision encourages multi-scale consistency; early
outputs remove coarse speckle, whereas deeper outputs refine
fine structures. Fig. 5 shows representative examples from the
test set (noisy input, denoised output, and pseudo-clean target).
The model preserves the shape of masses and ductal structures,
which is critical for CAD systems.

Vol. 16, No. 12, 2025

The results demonstrate that a moderately sized U-Net++
can effectively remove ultrasound speckle without relying on
GANSs or transformers. Dense skip connections facilitate feature
reuse and reduce the number of parameters compared with fully
nested U-Nets. Using multiple traditional denoisers as pseudo
clean targets provides robustness and prevents the network from
over-fitting to a single filtering artefact. However, the PSNR =
30dBis lower than some GAN-based approaches, andthe SSIM
isbelowthe 0.96 achieved by networksreplicating WNNM [21].
This model does not explicitly suppress signal-dependent noise;
MSE loss may oversmooth fine textures. Future work could
incorporate adversarial training, perceptual losses, or physics-
informed self-supervised techniques (e.g., Speckle2Self[22]) to
further improve performance.

before after

Fig.5. Denoised ultrasound images.

179 |Page

www.ljacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

V. CONCLUSION AND FUTURE DIRECTIONS

Speckle noise remains a major obstacle in ultrasound
imaging. Deep learning approaches offer a promising avenue by
learning complex noise characteristics and preserving
anatomical structures. Through a comprehensive review of over
ten recent publications, GAN-based methods achieve high
PSNR and superior perceptual quality but require careful
training and may introduce hallucinations. Self-supervised
methods such as Speckle2Self and S2S overcome the lack of
clean data, but currently lag supervised methods in quantitative
metrics. This study demonstrates that a supervised U-Net++
trained on the BUSI dataset provides competitive performance
(PSNR 34.11dB, SSIM 0.8901) and improves upon several
CNN baselines. This confirms that moderate-sized architectures
with denseskip connectionscanbalance denoising effectiveness
and computational efficiency.

This study evaluates the proposed model using a single
breast ultrasound dataset. The model was not validated on
external ultrasound datasets acquired from different scanners,
institutions, or imaging protocols. This limits the strength of
claims regarding generalization and clinical robustness beyond
the BUSI data distribution.

In addition, the available training data are relatively limited
insize. Deep learning denoiserstypically benefit from largerand
more diverse datasets to capture the variability of speckle
appearance across tissue types and acquisition settings. The
restricted dataset size may constrain performance and stability,
and larger-scale training data may improve denoising quality
and generalization.

Future work will explore:

e Combining self-supervision with multi-scale supervision
to circumvent the need for pseudo-clean targets.

o Incorporating physics-based speckle models into the loss
function to better handle multiplicative noise.

o Extending the framework to 3D volumetric ultrasound
and other anatomical regions.

By addressing these avenues, further gains in both
quantitative performance and clinical applicability are
anticipated.
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