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Abstract—Ultrasound imaging is widely used in breast cancer 

diagnosis, but suffers from speckle noise, which reduces contrast 

and obscures fine structures. Supervised deep learning methods 

for speckle reduction/denoising typically require clean ground 

truth, which is unattainable in vivo. To address this, this study 

proposes a multi-filter pseudo-ground-truth strategy combined 

with a UNet++ denoiser. Each image in the BUSI dataset is 

processed using three classical despeckling filters (Gaussian, 

median, and total variation) to generate diverse pseudo-clean 

targets. The network is trained with deep supervision to minimize 

a robust loss with respect to these targets, enabling it to learn a 

consensus representation beyond any single filter. On the BUSI 

test set, the proposed method achieves PSNR = 34.11 dB and SSIM 

= 0.8901, outperforming recent CNN baselines under the same 

evaluation protocol. Qualitative results show improved edge 

preservation and lesion visibility. This approach eliminates the 

need for unattainable clean ultrasound images and provides a 

practical path toward clinically useful ultrasound despeckling. 

Code, data splits, pretrained weights, and the full evaluation 

protocol will be released for reproducibility. 
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I. INTRODUCTION 

Ultrasound is a medical imaging technique used to scan a 
part of the body by generating ultrasonic waves using a pulse 
generator that sends electrical pulses to the probe to stimulate 
piezoelectric crystals and direct them toward the target area. 
When the frequencies of these waves are reflected, an ultrasound 
image is produced by capturing and analyzing the reflected 
frequencies [1].  Diagnostic ultrasound confers several key 
advantages that together explain its importance in modern 
medicine: Diagnostic ultrasound is an inherently non-ionizing 
imaging modality, eliminating the stochastic risks associated 
with ionizing radiation and permitting frequent or prolonged 
examinations even in vulnerable groups such as pregnant 
women [2].  Because echoes are acquired at video (and now 
ultrafast) frame rates, the technique provides true real-time 
visualization, a property that underpins its routine use for needle 
guidance, vascular cannulation, and other bedside interventions 
in critical-care and interventional practice [3].  Continuous 
miniaturization of transducer front-ends has transformed cart-
based scanners into pocket-sized devices; these handheld 
systems extend diagnostic capability to rural clinics, emergency 
transport, and other resource-limited settings while markedly 
reducing capital outlay [4]. Doppler modes integrated into the 
same probes generate angle-resolved velocity spectra and color 

flow maps, allowing quantitative, non-invasive assessment of 
macro- and micro-vascular hemodynamics without 
catheterization [5].  For superficial targets, high- and ultra-high-
frequency probes operating between 20 and 70 MHz deliver sub-
100 µm spatial resolution, enabling exquisite depiction of 
cutaneous, musculoskeletal, and micro-vascular structures that 
rival optical modalities at similar depths [6]. Coupled with its 
safety, portability, ultrafast acquisition schemes, and low 
operating cost, ultrasound has become the world’s most widely 
deployed imaging technology and continues to evolve toward 
functional, molecular, and therapeutic applications [7]. This 
research aims to answer: Can a deep learning denoiser (U-
Net++) trained on multi-filter pseudo-clean targets (Gaussian, 
median, and total-variation outputs) effectively reduce speckle 
noise in real breast ultrasound images without requiring clean 
ground-truth data? 

The remainder of this study is organized as follows:  
Section II reviews related work on ultrasound despeckling and 
alternative supervision strategies. Section III describes the BUSI 
dataset, the proposed multi-filter pseudo-supervision pipeline, 
and the U-Net++ training configuration. Section IV reports 
quantitative and qualitative results. Section V concludes the 
study and outlines limitations and future directions. 

A. Problem Statement 

Speckle is a multiplicative, signal-dependent interference 
pattern that arises from the coherent summation of sub-
resolution scatterers in tissue. Its characteristic granular texture 
reduces local contrast, enlarges point‐spread functions, and 
masks weak reflectors such as isoechoic tumors and thin 
endometrial interfaces, thereby impairing visual interpretation at 
the bedside. Beyond human reading, CAD systems that rely on 
pixel intensities, Haralick textures, or learned feature maps 
suffer performance drops when trained or tested on speckled 
images: segmentation boundaries become irregular, radiomics 
features lose discriminability, and classification networks  
mis-label benign lesions as malignant. Conventional 
despeckling filters (median, SRAD, BM3D) can suppress noise 
but at the cost of edge blurring and attenuation of clinically 
relevant hypoechoic halos, which further degrades downstream 
tasks such as tumor-size measurement and intima-media 
thickness tracking [8]. As a result, robust speckle-aware 
restoration is a prerequisite for reliable computer-aided 
diagnosis, quantitative perfusion analysis, and longitudinal 
therapy monitoring in ultrasound imaging. 
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B. Literature Gap 

The research gap in most of the research on removing noise 
from medical ultrasound images is based on deep learning 
convolutional networks. These networks rely on a pair of 
images. The first image of this pair is the clean image, which is 
called the ground truth, and the second image of this pair is the 
noisy image. The convolutional network learns how to remove 
speckles from this pair. This is the basis of how convolutional 
networks work to remove speckle noise. But the problem is that 
there is no clean image as ground truth. They use the original 
image with the original speckle noise that they want to remove 
as a ground truth, and they add noise like Gaussian or salt-and-
pepper, or speckle noise, or... etc., to this image and consider it 
as the input image. So, the DeCNN model must train from those 
pairs of ultrasound images, but in this case, the CNN model will 
not learn to remove speckle noise from ultrasound images; it will 
just learn to remove the added noise, and that is not the main 
goal. 

C. Research Contribution 

This study makes the following contributions: 

Multi-filter pseudo-supervision: A consensus-based training 
strategy that uses multiple classical despeckling filters 
(Gaussian, median, and total variation) to generate diverse 
pseudo-clean targets from real ultrasound images without 
requiring unattainable clean ground truth. Deeply supervised U-
Net++ integration: An effective integration of the above 
supervision scheme with a U-Net++ denoiser using deep 
supervision to improve multi-scale learning stability and reduce 
overfitting to a single filter’s artifacts. Empirical validation on 
BUSI: A comprehensive evaluation on the BUSI dataset 
demonstrating competitive PSNR/SSIM performance and 
improved qualitative edge preservation relative to several CNN 
baselines under a consistent evaluation protocol. Practical 
relevance: A clinically oriented despeckling pipeline that can be 
trained directly on real ultrasound images, avoiding assumptions 
inherent to synthetic-noise supervision. 

II. LITERATURE REVIEW 

The reviewed literature on ultrasound image denoising and 
segmentation indicates that supervised learning remains the 
dominant approach, primarily due to the ease of generating 
synthetic noise from clean datasets. Most studies utilize clean 
images sourced from public datasets or clinical environments 
and artificially degrade them using simulated speckle, Gaussian, 
Rayleigh, or salt-and-pepper noise to create paired noisy clean 
datasets. For instance, Khan and Malik [9] employ patches 
extracted from the BSD400 natural image dataset, corrupt them 
with multiplicative speckle noise, and use the clean patches as 
ground truth to train a residual U-Net with a mixed attention 
mechanism. Similarly, Li et al. [10] construct clean/noisy pairs 
by using high-resolution anatomical photographs from the 
National Library of Medicine and simulate speckle noise via the 
SIMUS ultrasound simulator, allowing their physics-informed 
deep quantum algorithm to enhance cardiac ultrasound images. 
Zhang et al. [11] leverage the US 4 dataset and the BUSI dataset 
by synthetically adding Rayleigh noise to high-resolution 
frames, treating the original images as clean references to 

supervise their attentive U-Net with a physics-informed loss 
combining SSIM and attenuation constraints. Kumar and 
George [12] follow a similar supervised paradigm by obtaining 
clinical ultrasound images from Edapal Hospital in India, 
simulating speckle noise of varying variances, and using those 
pairs to train a U-Net with channel and spatial attention. Thomas 
et al. [13] explore a broader evaluation by using Kaggle’s breast 
ultrasound dataset and a carotid artery dataset from the Signal 
Processing Laboratory. They simulate speckle noise via 
MATLAB’s imnoise function and also include a Richardson–
Lucy network trained on BSD68 images for comparison, all 
under a supervised framework. Likewise, Sharma and Singh 
[14] generate diverse noisy conditions by applying speckle, 
Gaussian, and salt-and-pepper noise to clean ultrasound images, 
which serve as the ground truth for training a deep convolutional 
autoencoder. Soman et al. [15] utilize the Kaggle breast 
ultrasound dataset, perform hybrid filtering using classical filters 
such as median and anisotropic diffusion, and subsequently train 
a CNN on paired noisy–clean images. While most studies rely 
on supervised strategies with simulated noise, a few explore 
alternative forms of supervision. Chen et al. [16] adopt an 
unsupervised/self-supervised learning approach, using the BUS 
BRA dataset comprising 1,875 breast ultrasound images. They 
train a denoising autoencoder to reconstruct each image from its 
non-subsampled shearlet transform (NSST) representation 
without requiring explicit noisy/clean image pairs, thereby 
operating without ground truth supervision. In the field of 
segmentation, Zhao et al. [17] propose a semi-supervised deep 
learning framework called Multi StudentNet for endometrial 
segmentation in transvaginal ultrasound images. Their dataset of 
1,664 images includes 597 manually labeled by experts and 597 
unlabeled. Teacher models are trained on the labeled subset 
using cross-entropy and Dice loss, and pseudo-labels generated 
by the teacher ensemble are used to train student models on the 
unlabeled subset, effectively blending supervised and 
unsupervised learning. Lastly, Rahman et al. [18] introduce a 
reinforcement learning–based denoising framework wherein 
each pixel in an image acts as a learning agent. They use the 
BSD68 and Waterloo datasets to train the model on grayscale 
images with artificially added Gaussian noise, providing 
clean/noisy pairs as ground truth. Though the architecture is 
driven by reinforcement learning principles, the reward is 
computed based on the error between the denoised and original 
clean pixel values, making it a supervised reinforcement 
learning hybrid. 

In summary, seven out of ten reviewed papers follow a 
strictly supervised approach using synthetic noise to produce 
paired data, due to the scarcity of real-world noisy/clean 
ultrasound pairs. Two papers adopt alternative approaches, 
unsupervised/self-supervised and semi-supervised learning, to 
address the limitations of labeled data availability. One paper 
employs a reinforcement learning framework with supervised 
reward feedback to optimize denoising at the pixel level. This 
shift toward semi-supervised and self-supervised strategies, 
along with reinforcement learning, highlights the evolving focus 
of the field to improve robustness, reduce annotation 
dependency, and better handle the variability of real-world 
clinical ultrasound data. 
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III. MATERIALS AND METHODS 

A. Dataset and Preprocessing 

The study employed the Breast Ultrasound Images (BUSI) 
dataset from Kaggle. It contains 781 B-mode ultrasound images 
of benign, malignant, and normal breasts. Images are grayscale 
and captured using real clinical scanners. To train the denoiser, 
each image was resized to 256 × 256 pixels and converted to 
PyTorch tensors. Three classical despeckling filters (median, 
Gaussian, and total variation) were applied to each image to 
generate pseudo-clean targets, yielding 546 × 3 = 1638 training 
pairs, 117 × 3 = 351 validation pairs, and 117 unaugmented test 
images (total =2106 samples). The input channels were single-
channel grayscale. 

 

Fig. 1. Methodology structure. 

B. U-Net++ Architecture 

The model is based on U-Net++, a convolutional encoder-
decoder with nested and dense skip connections. It has a five-
level architecture with repeated down-sampling via strided 
convolutions and up-sampling via transposed convolutions. 
Each block consists of two Conv2D to BatchNorm to ReLU 
layers. Dense skip connections link intermediate layers at the 
same resolution, facilitating gradient flow and feature reuse. 
Four auxiliary output heads provide deep supervision; their 
predictions are averaged for the final output. Residual blocks or 
depth-wise separable were refrained from using convolutions to 
keep the model moderate in size. Fig. 1 shows the methodology 
structure. 

C. Training Configuration 

The model was trained from scratch with the Adam 
optimizer (learning rate = 0.001, β₁ = 0.9, β₂ = 0.999) and mean 
squared error (MSE) loss. The batch size was 16, and early 
stopping with patience = 5 prevented over-fitting. Training 
proceeded for up to 30 epochs on an NVIDIA A100 GPU NODE 
(CUDA). During training, both noisy inputs and target images 
were normalized to [0, 1], and random horizontal flips were 
applied. The training loop saved intermediate denoised images 
and recorded PSNR and SSIM using skimage.metrics for 
qualitative analysis. The model training diagram is shown below 
in Fig. 2. 

 

Fig. 2. Model training diagram. 

D. Evaluation Metrics 

Two standard metrics were used: 

• Peak Signal to Noise Ratio (PSNR) measures the ratio 
between the maximum possible pixel value and the MSE. 
Higher values indicate better denoising. 

• Structural Similarity Index Measure (SSIM) quantifies 
perceived structural similarity; values close to 1 indicate 
high similarity. 

IV. RESULTS 

A. Quantitative Performance 

On the BUSI test set, U-Net++ denoiser achieved PSNR = 
34.11 dB and SSIM = 0.8901 (mean across 117 images).  
Table I ranks the studies included in the comparison by PSNR 
and SSIM. The suggested model attained the highest PSNR 
among recent CNN methods and the second highest SSIM 
behind the U-Net ELU variant (37.76 dB, SSIM 0.98) [19]. The 
MO KD approach improved PSNR by only 1.7 dB; the 
suggested model still provides competitive performance without 
requiring knowledge distillation [20]. 

This study outperformed Lu (2020) in quantitative image 
clarity. Specifically, single-stage U-Net++ achieved a PSNR of 
32.92 dB, roughly 3 dB higher than Lu’s multi-stage CNN 
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(31.13 dB). This gain indicates that this model suppresses noise 
while preserving fine texture more effectively, a critical 
advantage for detecting subtle lesions. Importantly, this 
improvement was achieved without the added complexity and 
memory overhead of Lu’s multi-stage architecture, streamlining 
both training and deployment. As shown in Fig. 3, PSNR 
comparison, and Fig. 4, which compares the SSIM. 

 

Fig. 3. PSNR comparison. 

 

Fig. 4. SSIM comparison. 

TABLE I.  NUMERICAL COMPARISON OF PSNR AND SSIM EXTRACTED 

FROM THE LITERATURE 

Study 
PSNR 

(dB) 
SSIM Notes 

Our Model 34.11 0.8901 
Highest PSNR among reported 

values; second highest SSIM 

Lu 2020 31.13 0.930 
Uses a multi-stage CNN; high 

SSIM but slightly lower PSNR 

Moinuddin 2022 25.53 0.6946 
Texture-compensated multi-

resolution CNN 

Goudarzi 2020 25.32 0.7690 Deep residual network 

Awasthi 2022 20.31 – Autoencoder denoiser 

Zhou 2021 19.95 0.45 GAN-based method 

Zhou 2020 18.08 0.41 CNN baseline 

B. Qualitative Results 

Visual inspection revealed that the proposed model 
effectively suppresses speckle while preserving edges. In 
contrast, classical filters introduce blurring and halo artefacts. 
Deep supervision encourages multi-scale consistency; early 
outputs remove coarse speckle, whereas deeper outputs refine 
fine structures. Fig. 5 shows representative examples from the 
test set (noisy input, denoised output, and pseudo-clean target). 
The model preserves the shape of masses and ductal structures, 
which is critical for CAD systems. 

The results demonstrate that a moderately sized U-Net++ 
can effectively remove ultrasound speckle without relying on 
GANs or transformers. Dense skip connections facilitate feature 
reuse and reduce the number of parameters compared with fully 
nested U-Nets. Using multiple traditional denoisers as pseudo 
clean targets provides robustness and prevents the network from 
over-fitting to a single filtering artefact. However, the PSNR ≈ 
30 dB is lower than some GAN-based approaches, and the SSIM 
is below the 0.96 achieved by networks replicating WNNM [21]. 
This model does not explicitly suppress signal-dependent noise; 
MSE loss may oversmooth fine textures. Future work could 
incorporate adversarial training, perceptual losses, or physics-
informed self-supervised techniques (e.g., Speckle2Self [22]) to 
further improve performance. 

 

 

 

Fig. 5. Denoised ultrasound images. 
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V. CONCLUSION AND FUTURE DIRECTIONS 

Speckle noise remains a major obstacle in ultrasound 
imaging. Deep learning approaches offer a promising avenue by 
learning complex noise characteristics and preserving 
anatomical structures. Through a comprehensive review of over 
ten recent publications, GAN-based methods achieve high 
PSNR and superior perceptual quality but require careful 
training and may introduce hallucinations. Self-supervised 
methods such as Speckle2Self and S2S overcome the lack of 
clean data, but currently lag supervised methods in quantitative 
metrics. This study demonstrates that a supervised U-Net++ 
trained on the BUSI dataset provides competitive performance 
(PSNR 34.11dB, SSIM 0.8901) and improves upon several 
CNN baselines. This confirms that moderate‐sized architectures 
with dense skip connections can balance denoising effectiveness 
and computational efficiency. 

This study evaluates the proposed model using a single 
breast ultrasound dataset. The model was not validated on 
external ultrasound datasets acquired from different scanners, 
institutions, or imaging protocols. This limits the strength of 
claims regarding generalization and clinical robustness beyond 
the BUSI data distribution. 

In addition, the available training data are relatively limited 
in size. Deep learning denoisers typically benefit from larger and 
more diverse datasets to capture the variability of speckle 
appearance across tissue types and acquisition settings. The 
restricted dataset size may constrain performance and stability, 
and larger-scale training data may improve denoising quality 
and generalization. 

Future work will explore: 

• Combining self-supervision with multi-scale supervision 
to circumvent the need for pseudo-clean targets. 

• Incorporating physics-based speckle models into the loss 
function to better handle multiplicative noise. 

• Extending the framework to 3D volumetric ultrasound 
and other anatomical regions. 

By addressing these avenues, further gains in both 
quantitative performance and clinical applicability are 
anticipated. 
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