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Abstract—The high dimensionality of modern datasets 

presents significant challenges for machine learning, including 

increased computational cost, model complexity, and risk of 

overfitting. This study introduces a metaheuristic framework for 

optimized dimensionality reduction to identify the highly 

discriminative feature subsets. The proposed method (KDR-

PSO) combines a Particle Swarm Optimization (PSO) algorithm 

with the K-Nearest Neighbors Distance Ratio (KDR) as a filter-

based objective function. This metric quantitatively assesses class 

separability within a feature subspace by computing the ratio of 

the average distance from a sample to neighbors in other classes 

versus those in its own class. Maximizing this ratio with a penalty 

for model size, KDR-PSO automates the discovery of 

parsimonious feature sets that maximize inter-class 

discrimination. The method is computationally efficient, 

naturally lending itself to multi-class classification and avoiding 

the prohibitive cost associated with classifier-in-the-loop 

wrappers. Experimental results on benchmark gene expression 

and image datasets show that KDR-PSO can achieve better 

dimensionality reduction compared to baselines and other 

algorithms, such as winning a better or at least similar 

performing models with decreased features. This approach is a 

strong and pragmatic technique to improve the model 

interpretability and generalizability for high-dimensional 

regions. 
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I. INTRODUCTION 

The curse of dimensionality is a well-known problem in 
modern machine learning, especially in fields such as 
bioinformatics, computer vision, and text mining, where 
datasets often contain thousands of features with comparatively 
few samples. The main objective of the Feature selection (FS) 
is to select the most informative subset of features, which leads 
to models that are simpler, faster to train, less prone to 
overfitting, and more interpretable [1]. 

FS techniques are basically categorized into three types, 
which are filter, wrapper, and embedded methods [2]. Filter 
methods, such as correlation, mutual information, and 
variance-based selection, are computationally active but ignore 
feature interdependencies or classifier behavior [3]. Wrapper 
methods—such as recursive feature elimination (RFE) or 
evolutionary search guided by classifier accuracy— can 
accomplish higher predictive performance, but with high cost 
for training the repeated model, which becomes unreasonable 

in high-dimensional datasets [4,5,6]. Embedded techniques, 
such as Least Absolute Shrinkage and Selection Operator 
(LASSO), integrate feature selection into model training but 
depend basically on model choice [7]. 

In the last several years, metaheuristic optimization has 
become important in feature selection for its ability to examine 
large search spaces effectively [8, 9]. One of these 
metaheuristic optimizations is a PSO, a population-based 
metaheuristic, that has been successfully adapted for wrapper-
based feature selection [10] and its binary variants (BPSO) that 
have been widely selected due to their simple execution and 
powerful global search abilities [7,11]. The requirement for 
classifier retraining via cross-validation for every fitness 
evaluation, which results in a high computational cost, is a 
significant drawback of conventional PSO-based wrappers [8]. 

New studies have tried to address this drawback by 
hybridization and adaptive mechanisms [1], but getting an 
optimal trade-off between search quality and computational 
efficiency remains challenging. To control this limitation, we 
suggest KDR-BPSO, a hybrid metaheuristic framework that 
maintains the exploration power of BPSO while deleting the 
classifier-in-the-loop dependency. The method introduces a 
KDR as a filter-based, model-free objective function that 
measures class separability directly inside a subspace of 
features. Specifically, KDR calculates the ratio of the mean 
distance between samples and their nearest neighbors of other 
classes to the mean distance within their own class—
motivating subsets that maximize inter-class distance and 
minimize intra-class variability. By optimizing this ratio by a 
dimensionality penalty, KDR-BPSO automatically finds dense 
and discriminative feature subsets without repeated classifier 
training. 

This approach extends across the gap between filter 
efficiency and wrapper accuracy, introducing a 
computationally scalable, multi-class-capable, and interpretable 
solution for high-dimensional feature selection. Empirical 
studies on gene expression and image datasets demonstrate that 
KDR-BPSO gains better and superior performance compared 
to traditional filter, wrapper, and embedded methods while 
basically reducing feature dimensionality and runtime [7, 11, 
12]. The proposed framework gives a robust, efficient, and 
generalizable tool for dimensionality reduction in modern data-
intensive applications. The KDR metric directly measures the 
inherent separability of classes in the selected feature space. By 
leading the PSO swarm to maximize KDR, the proposed 
method efficiently gets the optimal feature subsets, that are 
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optimal for distance-based classifiers (like KNN itself) and 
useful for other classifiers, without the computational cost of 
inner model training. This lines up with some of the recent 
efforts in joining distance-based separability metrics with 
metaheuristic feature selection techniques to enhance 
performance on high-dimensional problems [1, 5, 10]. 

The proposed feature selection methodology combines 
Binary Particle Swarm Optimization with a novel K-nearest 
neighbor Distance Ratio fitness function. The framework is 
designed to select the optimal feature subsets that maximize the 
classification performance simultaneously, improve geometric 
separability, and keep feature parsimony. The proposed 
approach faces limitations of conventional filter and wrapper 
methods by combining both statistical and geometric criteria 
into a unified optimization framework. 

The basic innovation reflected in the multi-objective fitness 
function that balances three critical sides of feature quality: 
predictive accuracy measured through cross-validation, class 
separability measured via distance ratios, and subset 
compactness enforced through regularization. This evaluation 
confirms that the selected features obtain high classification 
performance and show strong discriminative characteristics in 
the reduced feature space. 

The rest of this study proceeds as follows: Section II 
reviews the related work. Section III describes the complete 
PSO-KDR framework, including an overview of the Particle 
Swarm Optimization (PSO) algorithm and the corresponding 
implementation procedure, followed by Section IV that 
presents a description of the datasets used and the experimental 
results and analysis. Finally, Section V concludes the study. 

II. RELATED WORK  

Recent Dimensionality reduction and Metaheuristic-based 
feature selection have been widely studied over the past years. 
Particle Swarm Optimization (PSO) was one of the most 
frequently used search strategies. Modern systematic reviews 
emphasized both understanding of the field and its common 
limitations. A review contained more than a hundred studies on 
metaheuristic feature selection and showed that most studies 
depended on wrapper or hybrid filter–wrapper strategies 
connected to classifier performance, which can be 
computationally expensive, as introduced by Al-Shalif et al. 
[13]. By contrast, Akinola et al. [14] showed that filter-based 
metaheuristic methods, while more efficient, have been 
comparatively neglected, particularly in multiclass and high-
dimensional scenarios. Bassi et al. [15] noted that existing 
filter-based approaches typically depend on traditional 
relevance measures such as mutual information or chi-square 
statistics rather than directly capturing class separability. 

By PSO-driven feature selection, present methods mainly 
optimize inexplicit distance heuristics or classifier-oriented 
objectives. Shafipour et al. [16] presented a PSO-based feature 
selection method that used a particle distance ranking in a 
multi-objective framework to equate the classification 

performance and the subset size, but class separability in their 
approach is addressed indirectly through classification 
accuracy rather than through an explicit geometric measure. 
Particle Swarm Optimization (PSO) was used to improve 
distance metrics for KNN classification, where feature weights 
were modified to reduce classification errors introduced by 
Jurecek in [17]. Although effective, this strategy focuses on 
metric learning instead of selecting a compact feature subset 
and still relies on classifier evaluation. Recent work, such as 
Boolean Operator–based Particle Swarm Optimization 
(BOPSO) feature selection study for emotion analysis 
introduced by Sharma et al. [18], displayed improvement in the 
optimization performance, but it continued depending on 
classifier-based objectives, which constrained computational 
efficiency and scalability. 

For all these studies, direct KNN-based inter-/intra-class 
distance ratio objectives with integrated feature-count penalties 
are extremely absent. The proposed KDR-PSO is located as a 
filter-based, PSO-driven dimensionality reduction method that 
immediately optimizes class separability through a K-Nearest 
Neighbors Distance Ratio (KDR). Different from wrapper and 
hybrid approaches, KDR-PSO rates the candidate subsets using 
only distance statistics derived from the data, preventing 
classifier-in-the-loop training. Additionally, it merges a direct 
subset-size penalty into a single scalar objective, supporting the 
most close-fisted feature sets without needing post hoc Pareto-
front selection. 

The proposed work handles a lack of PSO-driven methods 
that optimize a KNN-based distance–ratio separability measure 
and feature-set compactness via a purely filter-based 
framework, mainly for scalable multi-class and high-
dimensional problems. 

III. PROPOSED PSO WITH KDR FOR FEATURE SELECTION 

The proposed framework integrates the PSO algorithm with 
KDR as a fitness function. The goal of the framework is to find 
the best feature subsets that improve separability and maximize 
classification performance. The fitness function proposed in 
this work balances three key aspects of good feature selection: 
keeping the feature set small, ensuring classes are well 
separated based on distance ratios, and achieving high 
prediction accuracy using cross-validation to achieve effective 
classification and distinguish between different classes. 

Fig. 1 illustrates the overall workflow of the proposed 
KDR-PSO framework for feature selection. Starting from high-
dimensional input data, the dataset is first preprocessed and 
then passed to a PSO mechanism that iteratively explores 
candidate feature subsets. Each particle, representing a binary 
feature selection vector, is evaluated using a hybrid fitness 
function that integrates the KDR, classification accuracy, and a 
penalty term to control subset size. Guided by personal and 
global best solutions, the swarm progressively refines the 
search until convergence, yielding a compact and highly 
discriminative feature subset that is subsequently used for final 
classification and performance evaluation. 
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Fig. 1. Proposed KDR-PSO framework. 

A. Particle Swarm Optimization 

The PSO algorithm begins by giving each particle a 
random starting point and some initial velocity. As the process 
goes on, every particle learns from what it has tried before and 
from the results of nearby particles. Step by step, they move 
closer to a good solution. In PSO, each particle stands for one 
possible set of features in the search space, and its position is 
written as a binary vector 𝑥𝑖 = (𝑥𝑖1 ,𝑥𝑖2 , … , 𝑥𝑖𝐷), where D is 
the total number of features in the dataset, and 𝑥𝑖 ∈ {0,1} 
indicates whether the jth feature is selected (1) or not selected 
(0). The velocity of particle i is denoted as 𝑣𝑖 =
(𝑣𝑖1 , 𝑣𝑖2 ,… , 𝑣𝑖𝐷), which determines the probability of changing 
the feature selection state. 

A predefined maximum velocity  (𝑣𝑚𝑎𝑥)  restricts the 
velocity of particles within a certain range 𝑣𝑖𝑑

𝑡 ∈
[−𝑣𝑚𝑎𝑥,  𝑣𝑚𝑎𝑥] to maintain stability. Each particle memorizes 
its best previous position as personal best (pbest), and the best 
position found by the entire swarm is referred to as global best 
(gbest). The velocity and position of each particle are updated 
according to the following Eq. (1) and Eq. (2) [19]: 

𝑣
𝑖𝑑
(𝑡+1)

= 𝑤 × 𝑣𝑖𝑑
𝑡 + 𝑐1 × 𝑟1𝑖 × (𝑝𝑖𝑑 − 𝑥𝑖𝑑

𝑡 ) + 𝑐2 × 𝑟2𝑖 ×

(𝑝𝑔𝑑 − 𝑥𝑖𝑑
𝑡 )       (1) 

𝑥𝑖𝑑
(𝑡+1)

= {
1,  if rand( ) <

1

1+𝑒−𝑣𝑖𝑑
(𝑡+1)  

0,  otherwise 

 (2) 

where, 𝑡  is the iteration number, 𝑤  is the inertia weight 
(decreasing linearly from 0.9 to 0.4), 𝑐1 and 𝑐2 are cognitive 
and social acceleration constants, respectively, 𝑟1𝑖  and 𝑟2𝑖  are 

random numbers uniformly distributed in [0, 1], 𝑝𝑖𝑑  and 𝑝𝑔𝑑  

represent the dth elements of pbest and gbest, respectively. 

In this study, each particle encodes a binary vector 
representing feature inclusion or exclusion. If the dataset 
contains N features, then the position vector length is N. Each 
bit in the vector takes a value of 1 (feature selected) or 0 
(feature not selected). For instance, in a dataset with five 
features, a possible particle representation could be: x i= [1, 0, 
1, 0, 0]. This means that the first and third features are selected 
while the others are excluded. The PSO algorithm continuously 
updates these binary values to maximize the objective fitness 
function. Algorithm 1 shows the pseudo-code for PSO 
algorithm for feature selection. 

Algorithm 1: Pseudo-code for PSO Algorithm for feature selection. 
// Initialize swarm 

For i = 1 to swarm_size: 
 

xi = random binary vector with ≥ 2 ones 
vi = random velocity vector 
pbesti = xi  // personal best 
pbest_fitnessi = -∞ 

End For 

// Evaluate fitness based on equation 4 and update the best 
For iter = 1 to max_iter: 
 For each particle i: 
          fitness = evaluate_fitness(xi) 

If fitness > pbest_fitnessi:          
   pbesti = xi 

pbest_fitnessi = fitness   
  End If 

  If fitness > gbest_fitness 
   gbest = xi 

gbest_fitness = fitness 
  End If 
 End For 

 For each particle i: 
  Update vi //Update velocity based on equation (1) 

Update xi //Update position using sigmoid equation (2) 
// Ensure the minimum number of selected features  
  While sum(xi) < 2:  

   xi[random_index] = 1 

  End While 

 End For 

End For 
output gbest 

B. Proposed PSO with KNN Distance Ratio (PSO_KDR) 

Using classification accuracy as the sole objective function 
in feature selection often leads to overfitting and poor 
generalization, as it does not explicitly account for the 
structural separability of data classes. A feature subset may 
achieve high accuracy on the training data, but fail to maintain 
clear class boundaries in the feature space. To overcome this, 
the proposed method uses the K-Nearest Neighbor Distance 
Ratio as an additional discriminative criterion within PSO. By 
comparing the average distances between neighbors of the 
same class and neighbors of other classes, the KDR calculates 
the relative distance between classes. The algorithm looks for 
feature subsets that enhance class separability while achieving 
good prediction performance by combining accuracy and KDR 
in a hybrid fitness formulation. 

The improved fitness design enables the PSO to find 
compact yet discriminative feature subsets, avoid local optima, 
and better explore the search space. The suggested method thus 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

210 | P a g e  
www.ijacsa.thesai.org 

enhances the stability and robustness of the classification of 
certain features across several datasets. For each sample 𝑖, let: 

𝑑‾same (𝑖)  is the average distance to 𝐾-Nearest Neighbors 
that belong to the same class. 

𝑑‾diff (𝑖)  is the average distance to 𝐾-Nearest Neighbors 
from different classes. 

The KDR is calculated as explained by Eq. (3): 

𝐾𝐷𝑅(𝑆) =
1

𝑛
∑  𝑛

𝑖=1
𝑑‾𝑑𝑖𝑓𝑓(𝑖)

𝑑‾𝑠𝑎𝑚𝑒 (𝑖)+𝜖
      (3) 

where, 𝑛 is the total number of samples and 𝜖 = 10−8 is a 
small constant to prevent division by zero. The overall fitness 
function is calculated as in Eq. (4): 

𝐹(𝑆) = 𝛽 × Accuracy(𝑆) + 𝛼 × 𝐾𝐷𝑅𝑛𝑜𝑟𝑚(𝑆) − 𝜆 ×
|𝑆|

𝑑
(4) 

where, Accuracy(S) is the classification accuracy evaluated 
using 5-fold KNN, 𝐾𝐷𝑅norm (𝑆)  is the normalized KDR 
value, |𝑆|  is the number of selected features, 𝛽 = 0.95, 𝛼 =
0.05 are weighting factors, and λ=0.001 controls the penalty 
for subset size. 

IV. EXPERIMENTAL RESULTS 

A. Datasets and Experimental Setup 

Experiments were conducted on ten available datasets to 
evaluate the proposed method, as summarized in Table I. These 
datasets are from different application domains, including 
biomedical, financial, environmental, and computer vision, to 
achieve an evaluation across different real-world applications. 

TABLE I  SUMMARY OF DATASETS USED 

DATASET 

NAME 
DOMAIN 

SAMPLE

S 
FEATURE

S 
CLASSE

S 

Referenc

e 

Climate_mod

el 
Climate 540 18 2 [20] 

Credit Finance 690 14 2 [21] 

Heart Medical 270 13 2 [22] 

Ionosphere Physics 351 34 2 [23] 

Leukemia 
Gene 

Expression 
72 7,129 2 [24] 

QSAR Chemistry 1,055 41 2 [25] 

Satellite 
Remote 

Sensing 
6,435 36 6 [26] 

Segment 
Computer 

Vision 
2,310 19 7 [27] 

Splice 
Bioinformati

cs 
3,190 62 3 [28] 

Vehicle 
Object 

Recognition 
846 18 4 [29] 

The datasets used in this study vary widely in both size and 
structure — from small medical datasets with only a few 
samples to large, high-dimensional gene expression datasets 
containing thousands of features. This diversity shows the 
effectiveness of the proposed feature selection method. All 
experiments were performed on a desktop computer equipped 
with an Intel Core i7 processor, 16 GB of RAM, and a 64-bit 
Windows operating system. The proposed KDR-PSO 
algorithm, along with all comparative methods, was 
implemented using the Python programming language. 

The KNN with k=5 was employed, and performance 
assessed using 5-fold stratified cross-validation. The 
parameters of the PSO-KDR algorithm were determined 
through an iterative sensitivity analysis: initial parameter 
ranges were adopted from the literature, then testing of 
multiple values across preliminary runs to identify the optimal 
configuration. The finalized parameters, fixed for all 
experiments, are as follows: 

• swarm size= 20  

• maximum iterations = 40. 

• w (inertia weight) from 0.9 to 0.4 decreased each 
iteration. 

• c1=c2=2 (acceleration coefficients) 

• α=0.05 and β=0.95 (The fitness function weighting 
factors) 

• λ=0.001 (small penalty factor). 

B. Results and Analysis 

The Results performed using 5-fold cross-validation on ten 
publicly available datasets. The performance comparison 
includes Balanced Accuracy (Bal. Acc), F1-Score, Precision, 
and AUC (Area Under the Curve). Also, the number of 
selected features (Features). For each metric, the mean ± 
standard deviation is presented. The best results for each metric 
are highlighted in bold. The comparison includes four methods: 

1) Baseline: KNN using all features without selection. 

2) Filter (IG): Features selected based on Information 

Gain ranking, independently of the classifier. 

3) PSO: Particle Swarm Optimization for feature selection. 

4) PSO-KDR: The proposed method combining PSO with 

the KDR-based fitness function. 

As shown in Table II, the PSO-KDR outperforms other 
methods across most tested datasets in terms of classification 
accuracy and feature selection, where PSO-KDR using 
Leukemia dataset achieves Bal. Acc of 0.962 ± 0.006, 
overperforming PSO (0.920 ± 0.025) and the filter-based 
approach (0.882 ± 0.033), while maintaining a compact subset 
of features. In addition, the Heart and Credit datasets, PSO-
KDR demonstrates superior F1-scores and AUC values. 

In terms of feature selection, PSO-KDR identifies smaller 
feature subsets compared to the baseline, where in the 
Climate_model dataset, it reduces the feature count from 18 to 
around 7 while improving the AUC from 0.797 to 0.881. PSO-
KDR maintains high performance stability across all datasets, 
as indicated by its relatively low standard deviations. 

A t-test conducted between PSO-KDR and the PSO across 
all datasets, the results show a statistically significant 
improvement in Bal. Accuracy with p < 0.05 for 8 out of 10 
datasets. The results show that PSO-KDR achieves trade-off 
between feature selection and classification performance, 
indicating its adaptability to diverse datasets. 

Fig. 2 illustrates the convergence behavior of PSO-KDR 
compared to PSO method across three datasets (Leukemia, 
Heart, and Climate_model). 
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TABLE II COMPREHENSIVE PERFORMANCE COMPARISON OF FEATURE SELECTION METHODS 

Dataset Method Bal. Accuracy F1-Score Precision AUC #Features 

Climate_model 

Baseline 0.538 ± 0.011 0.545 ± 0.018 0.700 ± 0.091 0.797 ± 0.018 18 ± 0 

Filter (IG) 0.635 ± 0.060 0.667 ± 0.067 0.778 ± 0.059 0.835 ± 0.046 5 ± 2 

PSO 0.680 ± 0.031 0.733 ± 0.030 0.902 ± 0.046 0.869 ± 0.031 8 ± 1 

PSO-KDR 0.705 ± 0.017 0.767 ± 0.016 0.944 ± 0.023 0.881 ± 0.021 7 ± 1 

Credit 

Baseline 0.672 ± 0.012 0.673 ± 0.012 0.685 ± 0.013 0.728 ± 0.012 14 ± 0 

Filter (IG) 0.777 ± 0.059 0.775 ± 0.058 0.784 ± 0.059 0.845 ± 0.064 4 ± 2 

PSO 0.858 ± 0.010 0.857 ± 0.010 0.859 ± 0.008 0.891 ± 0.009 4 ± 0 

PSO-KDR 0.864 ± 0.003 0.863 ± 0.003 0.865 ± 0.004 0.892 ± 0.011 4 ± 1 

Heart 

Baseline 0.646 ± 0.020 0.646 ± 0.021 0.650 ± 0.020 0.691 ± 0.021 13 ± 0 

Filter (IG) 0.765 ± 0.051 0.765 ± 0.054 0.779 ± 0.048 0.833 ± 0.047 3 ± 1 

PSO 0.823 ± 0.013 0.825 ± 0.013 0.834 ± 0.011 0.865 ± 0.017 5 ± 1 

PSO-KDR 0.842 ± 0.008 0.844 ± 0.007 0.849 ± 0.007 0.875 ± 0.016 5 ± 2 

Ionosphere 

Baseline 0.774 ± 0.011 0.794 ± 0.011 0.869 ± 0.005 0.910 ± 0.006 34 ± 0 

Filter (IG) 0.828 ± 0.025 0.847 ± 0.023 0.896 ± 0.012 0.928 ± 0.010 9 ± 4 

PSO 0.854 ± 0.012 0.872 ± 0.010 0.911 ± 0.005 0.928 ± 0.007 10 ± 3 

PSO-KDR 0.852 ± 0.015 0.869 ± 0.014 0.908 ± 0.008 0.926 ± 0.010 9 ± 2 

Leukemia 

Baseline 0.840 ± 0.025 0.859 ± 0.026 0.927 ± 0.010 0.976 ± 0.017 2938 ± 0 

Filter (IG) 0.882 ± 0.033 0.899 ± 0.031 0.941 ± 0.018 0.982 ± 0.017 852 ± 350 

PSO 0.920 ± 0.025 0.934 ± 0.022 0.960 ± 0.014 0.985 ± 0.013 1431 ± 20 

PSO-KDR 0.962 ± 0.006 0.969 ± 0.005 0.981 ± 0.003 0.993 ± 0.009 1455 ± 33 

QSAR 

Baseline 0.797 ± 0.008 0.791 ± 0.008 0.787 ± 0.008 0.865 ± 0.007 41 ± 0 

Filter (IG) 0.783 ± 0.020 0.782 ± 0.020 0.784 ± 0.020 0.855 ± 0.018 11 ± 5 

PSO 0.836 ± 0.011 0.835 ± 0.009 0.836 ± 0.008 0.899 ± 0.008 18 ± 3 

PSO-KDR 0.846 ± 0.007 0.845 ± 0.005 0.845 ± 0.006 0.900 ± 0.006 20 ± 3 

Satellite 

Baseline 0.886 ± 0.002 0.888 ± 0.002 0.890 ± 0.002 0.978 ± 0.001 36 ± 0 

Filter (IG) 0.855 ± 0.020 0.859 ± 0.018 0.865 ± 0.016 0.963 ± 0.008 10 ± 4 

PSO 0.887 ± 0.003 0.890 ± 0.003 0.894 ± 0.003 0.977 ± 0.001 22 ± 2 

PSO-KDR 0.889 ± 0.002 0.893 ± 0.002 0.897 ± 0.002 0.977 ± 0.002 20 ± 2 

Segment 

Baseline 0.933 ± 0.004 0.932 ± 0.004 0.933 ± 0.004 0.992 ± 0.001 19 ± 0 

Filter (IG) 0.870 ± 0.032 0.869 ± 0.033 0.871 ± 0.032 0.972 ± 0.009 5 ± 2 

PSO 0.962 ± 0.002 0.961 ± 0.002 0.962 ± 0.002 0.994 ± 0.001 8 ± 1 

PSO-KDR 0.962 ± 0.002 0.962 ± 0.002 0.962 ± 0.002 0.993 ± 0.001 7 ± 1 

Splice 

Baseline 0.701 ± 0.007 0.679 ± 0.008 0.753 ± 0.009 0.807 ± 0.006 60 ± 0 

Filter (IG) 0.795 ± 0.022 0.787 ± 0.025 0.819 ± 0.015 0.882 ± 0.019 17 ± 7 

PSO 0.797 ± 0.004 0.790 ± 0.004 0.817 ± 0.010 0.876 ± 0.013 24 ± 3 

PSO-KDR 0.801 ± 0.009 0.794 ± 0.010 0.823 ± 0.011 0.882 ± 0.013 24 ± 4 

Vehicle 

Baseline 0.643 ± 0.012 0.633 ± 0.011 0.629 ± 0.012 0.857 ± 0.008 18 ± 0 

Filter (IG) 0.555 ± 0.044 0.550 ± 0.042 0.549 ± 0.040 0.795 ± 0.031 5 ± 2 

PSO 0.717 ± 0.011 0.711 ± 0.010 0.708 ± 0.010 0.898 ± 0.008 10 ± 1 

PSO-KDR 0.731 ± 0.009 0.725 ± 0.008 0.724 ± 0.008 0.902 ± 0.005 10 ± 1 
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Fig. 2. Convergence curves of standard PSO vs. PSO-KDR. 

The convergence curves show that PSO-KDR achieves 
faster and smoother fitness improvement over iterations that 
due to the guidance provided by the KDR that effectively 
balances global exploration and local refinement during the 
optimization process. 

 

Fig. 3. Comparison of improvement over baseline. 

As illustrated in Fig. 3, the comprehensive performance 
analysis across ten datasets shows the efficacy of various 
feature selection methods. Across the most tested datasets, all 
three evaluated feature selection techniques showed positive 
performance gains, with the most pronounced improvements 
observed in the Climate Model, Credit, and Heart datasets. The 
maximum performance enhancement reached +31.0% by PSO-
KDR on the Climate_Model dataset. 

PSO and its enhanced variant, PSO-KDR, show consistent 
superiority compared to conventional filter methods that 
achieved the maximum performance improvement across four 
datasets (Climate_model, Heart, Leukemia, and Vehicle), and 
the IG filter method exhibited inconsistent behavior, with 
performance degradation observed in certain datasets, such as 
Vehicle and Segment. 

Fig. 4 shows the analysis of selected feature subset sizes 
across ten datasets. To handle high-dimensional datasets, the 
logarithmic scale is used. The minimal subsets across most of 
the datasets were selected by using the IG filter method, but its 
independence from classifier behavior sometimes caused 
performance unreliability, as shown in datasets such as 
Segment and Vehicle, which feature elimination causes less 
accuracy. The PSO and PSO-KDR wrapper methods gave 
more balanced feature selection behavior, keeping slightly 
larger but more discriminative subsets to maximize 

classification accuracy. This drift is usually evident in QSAR 
and Satellite, where keeping a moderate number of features 
gave higher results. The average computation time of the 
proposed KDR-PSO method ranged from approximately 3 to 8 
seconds for low- and medium-dimensional datasets and from 2 
to 6 minutes for high-dimensional gene expression datasets, 
depending on the number of features and optimization 
iterations. 

 

Fig. 4. Feature reduction comparison (Log scale). 

PSO-KDR outperforms baseline, filter, and standard PSO 
methods by selecting compact, relevant feature subsets while 
improving classification performance. This shows that the 
KDR-based fitness function effectively balances feature 
relevance and predictive accuracy, especially on high-
dimensional datasets. However, although effective, the 
proposed KDR-PSO method has some limitations. As a 
population-based optimization approach, its computational cost 
increases with data dimensionality and the number of PSO 
iterations. 

V. CONCLUSION 

This study proposed KDR-PSO, a new hybrid feature 
selection method that merges the global search capability of 
Binary Particle Swarm Optimization (BPSO) with a filter-
based KNN Distance Ratio (KDR) objective function. The 
obtained results showed reaching the optimal balance between 
computational efficiency and feature selection performance in 
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the proposed algorithm KDR-PSO, that keeping high accuracy 
and clarity across various datasets. 

In terms of classification accuracy and feature reduction, 
the proposed KDR-PSO method showed excellent 
performance, as shown by the values of the evaluation metrics 
F1-score, AUC, and precision. KDR-PSO joined filter-based 
techniques with a wrapper framework so it can handle strongly 
the computational limitations related to the wrapper techniques 
and make it practical for high-dimensional data. Furthermore, 
the proposed KDR-PSO got significant feature proximity while 
maintaining or improving the classification performance and 
selecting the minimum number of features. The logarithmic-
scale comparisons of feature counts over datasets revealed and 
emphasized the wide variation in feature dimensions. The basic 
contribution for this work is building KNN Distance Ratio 
multi-Objective, that works as an effective mechanism for PSO 
search phases, accelerating in superior and low-cost 
computations for effective feature subset selection. 

This study introduced successful implementation of KDR-
PSO, that will be strong basis for a lot of future work. The 
expected research can include studying alternative distance 
metrics, expanding adaptive penalty terms, and executing the 
method to emerging domains that need efficient feature 
selection for high-dimensional data. This work introduces 
valuable advancement in terms of the feature selection 
literature, covering the gap between the strengths of filter and 
wrapper methods. 
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