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Abstract—The high dimensionality of modern datasets
presents significant challenges for machine learning, including
increased computational cost, model complexity, and risk of
overfitting. This study introduces a metaheuristic framework for
optimized dimensionality reduction to identify the highly
discriminative feature subsets. The proposed method (KDR-
PSO) combines a Particle Swarm Optimization (PSO) algorithm
with the K-Nearest Neighbors Distance Ratio (KDR) as a filter-
based objective function. This metric quantitatively assesses class
separability within a feature subspace by computing the ratio of
the average distance from a sample to neighbors in other classes
versus those in its own class. Maximizing this ratio with a penalty
for model size, KDR-PSO automates the discovery of
parsimonious feature sets that maximize inter-class
discrimination. The method is computationally -efficient,
naturally lending itself to multi-class classification and avoiding
the prohibitive cost associated with classifier-in-the-loop
wrappers. Experimental results on benchmark gene expression
and image datasets show that KDR-PSO can achieve better
dimensionality reduction compared to baselines and other
algorithms, such as winning a better or at least similar
performing models with decreased features. This approach is a
strong and pragmatic technique to improve the model

interpretability and generalizability for high-dimensional
regions.
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1.  INTRODUCTION

The curse of dimensionality is a well-known problem in
modem machine learning, especially in fields such as
bioinformatics, computer vision, and text mining, where
datasets often contain thousands of features with comparatively
few samples. The main objective of the Feature selection (FS)
is to select the most informative subset of features, which leads
to models that are simpler, faster to train, less prone to
overfitting, and more interpretable [1].

FS techniques are basically categorized into three types,
which are filter, wrapper, and embedded methods [2]. Filter
methods, such as correlation, mutual information, and
variance-based selection, are computationally active but ignore
feature interdependencies or classifier behavior [3]. Wrapper
methods—such as recursive feature elimination (RFE) or
evolutionary search guided by classifier accuracy— can
accomplish higher predictive performance, but with high cost
for training the repeated model, which becomes unreasonable

in high-dimensional datasets [4,5,6]. Embedded techniques,
such as Least Absolute Shrinkage and Selection Operator
(LASSO), integrate feature selection into model training but
depend basically on model choice [7].

In the last several years, metaheuristic optimization has
become important in feature selection for its ability to examine
large search spaces effectively [8, 9]. One of these
metaheuristic optimizations is a PSO, a population-based
metaheuristic, that has been successfully adapted for wrapper-
based feature selection [10] and its binary variants (BPSO) that
have been widely selected due to their simple execution and
powerful global search abilities [7,11]. The requirement for
classifier retraining via cross-validation for every fitness
evaluation, which results in a high computational cost, is a
significant drawback of conventional PSO-based wrappers [8].

New studies have tried to address this drawback by
hybridization and adaptive mechanisms [1], but getting an
optimal trade-off between search quality and computational
efficiency remains challenging. To control this limitation, we
suggest KDR-BPSO, a hybrid metaheuristic framework that
maintains the exploration power of BPSO while deleting the
classifier-in-the-loop dependency. The method introduces a
KDR as a filter-based, model-free objective function that
measures class separability directly inside a subspace of
features. Specifically, KDR calculates the ratio of the mean
distance between samples and their nearest neighbors of other
classes to the mean distance within their own class—
motivating subsets that maximize inter-class distance and
minimize intra-class variability. By optimizing this ratio by a
dimensionality penalty, KDR-BPSO automatically finds dense
and discriminative feature subsets without repeated classifier
training.

This approach extends across the gap between filter
efficiency and  wrapper accuracy, introducing a
computationally scalable, multi-class-capable, and interpretable
solution for high-dimensional feature selection. Empirical
studies on gene expression and image datasets demonstrate that
KDR-BPSO gains better and superior performance compared
to traditional filter, wrapper, and embedded methods while
basically reducing feature dimensionality and runtime [7, 11,
12]. The proposed framework gives a robust, efficient, and
generalizable tool for dimensionality reduction in modern data-
intensive applications. The KDR metric directly measures the
inherent separability of classes in the selected feature space. By
leading the PSO swarm to maximize KDR, the proposed
method efficiently gets the optimal feature subsets, that are
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optimal for distance-based classifiers (like KNN itself) and
useful for other classifiers, without the computational cost of
inner model training. This lines up with some of the recent
efforts in joining distance-based separability metrics with
metaheuristic feature selection techniques to enhance
performance on high-dimensional problems [1, 5, 10].

The proposed feature selection methodology combines
Binary Particle Swarm Optimization with a novel K-nearest
neighbor Distance Ratio fitness function. The framework is
designed to select the optimal feature subsets that maximize the
classification performance simultaneously, improve geometric
separability, and keep feature parsimony. The proposed
approach faces limitations of conventional filter and wrapper
methods by combining both statistical and geometric criteria
into a unified optimization framework.

The basic innovation reflected in the multi-objective fitness
function that balances three critical sides of feature quality:
predictive accuracy measured through cross-validation, class
separability measured via distance ratios, and subset
compactness enforced through regularization. This evaluation
confirms that the selected features obtain high classification
performance and show strong discriminative characteristics in
the reduced feature space.

The rest of this study proceeds as follows: Section II
reviews the related work. Section III describes the complete
PSO-KDR framework, including an overview of the Particle
Swarm Optimization (PSO) algorithm and the corresponding
implementation procedure, followed by Section IV that
presents a description of the datasets used and the experimental
results and analysis. Finally, Section V concludes the study.

II. RELATED WORK

Recent Dimensionality reduction and Metaheuristic-based
feature selection have been widely studied over the past years.
Particle Swarm Optimization (PSO) was one of the most
frequently used search strategies. Modem systematic reviews
emphasized both understanding of the field and its common
limitations. A review contained more than a hundred studies on
metaheuristic feature selection and showed that most studies
depended on wrapper or hybrid filter—wrapper strategies
connected to classifier performance, which can be
computationally expensive, as introduced by Al-Shalif et al.
[13]. By contrast, Akinola et al. [14] showed that filter-based
metaheuristic methods, while more efficient, have been
comparatively neglected, particularly in multiclass and high-
dimensional scenarios. Bassi et al. [15] noted that existing
filter-based approaches typically depend on traditional
relevance measures such as mutual information or chi-square
statistics rather than directly capturing class separability.

By PSO-driven feature selection, present methods mainly
optimize inexplicit distance heuristics or classifier-oriented
objectives. Shafipour et al. [16] presented a PSO-based feature
selection method that used a particle distance ranking in a
multi-objective framework to equate the classification
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performance and the subset size, but class separability in their
approach is addressed indirectly through classification
accuracy rather than through an explicit geometric measure.
Particle Swarm Optimization (PSO) was used to improve
distance metrics for KNN classification, where feature weights
were modified to reduce classification errors introduced by
Jurecek in [17]. Although effective, this strategy focuses on
metric learning instead of selecting a compact feature subset
and still relies on classifier evaluation. Recent work, such as
Boolean Operator-based Particle Swarm Optimization
(BOPSO) feature selection study for emotion analysis
introduced by Sharma et al. [18], displayed improvement in the
optimization performance, but it continued depending on
classifier-based objectives, which constrained computational
efficiency and scalability.

For all these studies, direct KNN-based inter-/intra-class
distance ratio objectives with integrated feature-count penalties
are extremely absent. The proposed KDR-PSO is located as a
filter-based, PSO-driven dimensionality reduction method that
immediately optimizes class separability through a K-Nearest
Neighbors Distance Ratio (KDR). Different from wrapper and
hybrid approaches, KDR-PSO rates the candidate subsets using
only distance statistics derived from the data, preventing
classifier-in-the-loop training. Additionally, it merges a direct
subset-size penalty into a single scalar objective, supporting the
most close-fisted feature sets without needing post hoc Pareto-
front selection.

The proposed work handles a lack of PSO-driven methods
that optimize a KNN-based distance—ratio separability measure
and feature-set compactness via a purely filter-based
framework, mainly for scalable multi-class and high-
dimensional problems.

III. PROPOSED PSO wITH KDR FOR FEATURE SELECTION

The proposed framework integrates the PSO algorithm with
KDR as a fitness function. The goal of the framework is to find
the best feature subsets that improve separability and maximize
classification performance. The fitness function proposed in
this work balances three key aspects of good feature selection:
keeping the feature set small, ensuring classes are well
separated based on distance ratios, and achieving high
prediction accuracy using cross-validation to achieve effective
classification and distinguish between different classes.

Fig. 1 illustrates the overall workflow of the proposed
KDR-PSO framework for feature selection. Starting from high-
dimensional input data, the dataset is first preprocessed and
then passed to a PSO mechanism that iteratively explores
candidate feature subsets. Each particle, representing a binary
feature selection vector, is evaluated using a hybrid fitness
function that integrates the KDR, classification accuracy, and a
penalty term to control subset size. Guided by personal and
global best solutions, the swarm progressively refines the
search until convergence, yielding a compact and highly
discriminative feature subset that is subsequently used for final
classification and performance evaluation.
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Fig. 1. Proposed KDR-PSO framework.

A. Particle Swarm Optimization

The PSO algorithm begins by giving each particle a
random starting point and some initial velocity. As the process
goes on, every particle learns from what it has tried before and
from the results of nearby particles. Step by step, they move
closer to a good solution. In PSO, each particle stands for one
possible set of features in the search space, and its position is
written as a binary vector x; = (x;1,X;3, ..., X;p), where D is
the total number of features in the dataset, and x; € {0,1}
indicates whether the j# feature is selected (1) or not selected
(0). The wvelocity of particle i is denoted as v; =
(Vi1, Viz, -, Vip ), which determines the probability of changing
the feature selection state.

A predefined maximum velocity (v,,,) restricts the
velocity of particles within a certain range v}, €
[—Vmaxr Vimasx] to maintain stability. Each particle memorizes
its best previous position as personal best (pbest), and the best
position found by the entire swarm is referred to as global best
(gbest). The velocity and position of each particle are updated
according to the following Eq. (1) and Eq. (2) [19]:

t+1
vi(d+ D= wx vl 4oy X1y X (P — x8) + €y X1y X
(Pga —xta) (1)
1
1, ifrand() < —7=
t+1 4 ( )
xi(d+ ) — Lre- i;+1 (2)

0, otherwise

where, t is the iteration number, w is the inertia weight
(decreasing linearly from 0.9 to 0.4), c, and ¢, are cognitive
and social acceleration constants, respectively, r;; and r,; are
random numbers uniformly distributed in [0, 1], p;; and pyq
represent the d” elements of pbest and gbest, respectively.
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In this study, each particle encodes a binary vector
representing feature inclusion or exclusion. If the dataset
contains N features, then the position vector length is N. Each
bit in the vector takes a value of 1 (feature selected) or O
(feature not selected). For instance, in a dataset with five
features, a possible particle representation could be: xi=[1, 0,
1, 0, 0]. This means that the first and third features are selected
while the others are excluded. The PSO algorithm continuously
updates these binary values to maximize the objective fitness
function. Algorithm 1 shows the pseudo-code for PSO
algorithm for feature selection.

Algorithm 1: Pseudo-code for PSO Algorithm for feature selection.
// Initialize swarm
For i=1 to swarm size:

xi =random binary vector with > 2 ones
vi =random velocity vector

pbesti =xi // personal best
pbest_fitnessi = -0

End For

// Evaluate fitness based on equation 4 and update the best
For iter = 1 to max _iter:

For each particle i:

fitness = evaluate fitness(xi)

If fitness > pbest_fitnessi:

’ pbesti = xi
pbest fitnessi = fitness
End If
If fitness > gbest fitness
gbest = xi
gbest fitness = fitness
End If

End For
For each particle i:
Update vi //Update velocity based on equation (1)
Update xi //Update position using sigmoid equation (2)
// Ensure the minimum number of selected features
While sum(xi) <2:

xi[random_index] =1

End While
End For

End For
output gbest

B. Proposed PSO with KNN Distance Ratio (PSO_KDR)

Using classification accuracy as the sole objective function
in feature selection often leads to overfitting and poor
generalization, as it does not explicitly account for the
structural separability of data classes. A feature subset may
achieve high accuracy on the training data, but fail to maintain
clear class boundaries in the feature space. To overcome this,
the proposed method uses the K-Nearest Neighbor Distance
Ratio as an additional discriminative criterion within PSO. By
comparing the average distances between neighbors of the
same class and neighbors of other classes, the KDR calculates
the relative distance between classes. The algorithm looks for
feature subsets that enhance class separability while achieving
good prediction performance by combining accuracy and KDR
in a hybrid fitness formulation.

The improved fitness design enables the PSO to find
compact yet discriminative feature subsets, avoid local optima,
and better explore the search space. The suggested method thus
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enhances the stability and robustness of the classification of
certain features across several datasets. For each sample i, let:

dgame (1) 1s the average distance to K-Nearest Neighbors
that belong to the same class.

dgi () is the average distance to K-Nearest Neighbors
from different classes.

The KDR is calculated as explained by Eq. (3):

_lyn _daipr@
KDR(S) = n&i=1 dsame (D+e€ 3)
where, n is the total number of samples and € = 107 8is a
small constant to prevent division by zero. The overall fitness
function is calculated as in Eq. (4):

F(S) = B x Accuracy (S) + @ X KDR,, 1 (S) — A X %(4)

where, Accuracy(S) is the classification accuracy evaluated
using 5-fold KNN, KDR,m (S) is the normalized KDR
value, |S| is the number of selected features, f = 0.95,a =
0.05 are weighting factors, and A=0.001 controls the penalty
for subset size.

IV. EXPERIMENTAL RESULTS

A. Datasets and Experimental Setup

Experiments were conducted on ten available datasets to
evaluate the proposed method, as summarized in Table 1. These
datasets are from different application domains, including
biomedical, financial, environmental, and computer vision, to
achieve an evaluation across different real-world applications.

TABLEI SUMMARY OF DATASETS USED
DATASET SAMPLE FEATURE CLASSE Referenc
NAME DOMAIN S S S e
Slmnatefm"d Climate 540 18 2 [20]
Credit Finance 690 14 2 [21]
Heart Medical 270 13 2 [22]
Tonosphere Physics 351 34 2 [23]
Leukemia Se“e . 72 7,129 2 [24]
Xpression

QSAR Chemistry 1,055 | 41 2 [25]
Satellite Remote 6435 | 36 6 [26]

Sensing

Computer
Segment viep 2310 | 19 7 27]
Splice CBS“’mf"““a“ 3,190 | 62 3 [28]
Vehicle Object g46 | 18 4 [29]

Recognition

The datasets used in this study vary widely in both size and
structure — from small medical datasets with only a few
samples to large, high-dimensional gene expression datasets
containing thousands of features. This diversity shows the
effectiveness of the proposed feature selection method. All
experiments were performed on a desktop computer equipped
with an Intel Core i7 processor, 16 GB of RAM, and a 64-bit
Windows operating system. The proposed KDR-PSO
algorithm, along with all comparative methods, was
implemented using the Python programming language.
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The KNN with k=5 was employed, and performance
assessed using 5-fold stratified cross-validation. The
parameters of the PSO-KDR algorithm were determined
through an iterative sensitivity analysis: initial parameter
ranges were adopted from the literature, then testing of
multiple values across preliminary runs to identify the optimal
configuration. The finalized parameters, fixed for all
experiments, are as follows:

e swarm size= 20
e maximum iterations = 40.

e w (inertia weight) from 09 to 0.4 decreased each
iteration.

e cl=c2=2 (acceleration coefficients)

e 0=0.05 and B=095 (The fitness function weighting
factors)

e 2=0.001 (small penalty factor).

B. Results and Analysis

The Results performed using 5-fold cross-validation on ten
publicly available datasets. The performance comparison
includes Balanced Accuracy (Bal. Acc), F1-Score, Precision,
and AUC (Area Under the Curve). Also, the number of
selected features (Features). For each metric, the mean =+
standard deviation is presented. The best results for each metric
are highlighted in bold. The comparison includes four methods:

1) Baseline: KNN using all features without selection.

2) Filter (IG): Features sclected based on Information
Gain ranking, independently of the classifier.

3) PSO: Particle Swarm Optimization for feature selection.

4) PSO-KDR: The proposed method combining PSO with
the KDR-based fitness function.

As shown in Table II, the PSO-KDR outperforms other
methods across most tested datasets in terms of classification
accuracy and feature selection, where PSO-KDR using
Leukemia dataset achieves Bal. Acc of 0.962 =+ 0.006,
overperforming PSO (0.920 £ 0.025) and the filter-based
approach (0.882 + 0.033), while maintaining a compact subset
of features. In addition, the Heart and Credit datasets, PSO-
KDR demonstrates superior F1-scores and AUC values.

In terms of feature selection, PSO-KDR identifies smaller
feature subsets compared to the baseline, where in the
Climate_model dataset, it reduces the feature count from 18 to
around 7 while improving the AUC from 0.797 to 0.881. PSO-
KDR maintains high performance stability across all datasets,
as indicated by its relatively low standard deviations.

A t-test conducted between PSO-KDR and the PSO across
all datasets, the results show a statistically significant
improvement in Bal. Accuracy with p < 0.05 for 8 out of 10
datasets. The results show that PSO-KDR achieves trade-off
between feature selection and classification performance,
indicating its adaptability to diverse datasets.

Fig. 2 illustrates the convergence behavior of PSO-KDR
compared to PSO method across three datasets (Leukemia,
Heart, and Climate _model).
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TABLE II COMPREHENSIVE PERFORMANCE COMPARISON OF FEATURE SELECTION METHODS
Dataset Method Bal. Accuracy F1-Score Precision AUC #Features
Baseline 0.538+0.011 0.545+0.018 0.700 £0.091 0.797+0.018 18+0
Filter (IG) 0.635+0.060 0.667 £0.067 0.778 £0.059 0.835+0.046 5+£2
Climate_model
PSO 0.680 +0.031 0.733 £0.030 0.902 +0.046 0.869 +£0.031 8+ 1
PSO-KDR 0.705 +0.017 0.767 £0.016 0.944 +£0.023 0.881 +£0.021 7+1
Baseline 0.672+0.012 0.673+0.012 0.685+0.013 0.728 £0.012 14+0
. Filter (IG) 0.777 £0.059 0.775+0.058 0.784 £0.059 0.845 +0.064 4+£2
Credt PSO 0.858+£0.010 0.857+0.010 0.859+£0.008 0.891 +0.009 4£0
PSO-KDR 0.864 +0.003 0.863 +£0.003 0.865 +0.004 0.892 +0.011 4+1
Baseline 0.646 +0.020 0.646 +0.021 0.650 +£0.020 0.691+£0.021 13£0
Filter (IG) 0.765 +£0.051 0.765+0.054 0.779 £0.048 0.833 £0.047 3+1
Heart PSO 0.823+0.013 0.825+0.013 0.834+0.011 0.865+0.017 5+1
PSO-KDR 0.842 +0.008 0.844 +£0.007 0.849 +0.007 0.875+0.016 5+2
Baseline 0.774+0.011 0.794 £0.011 0.869 £0.005 0.910+0.006 34+0
Filter (IG) 0.828 £0.025 0.847 +£0.023 0.896+£0.012 0.928 +£0.010 9+4
Ionosphere
PSO 0.854 +£0.012 0.872+0.010 0.911 £0.005 0.928 £0.007 10+£3
PSO-KDR 0.852+0.015 0.869+0.014 0.908 £0.008 0.926 +0.010 9+2
Baseline 0.840 +0.025 0.859 +£0.026 0.927+0.010 0.976+0.017 2938+0
Filter (IG) 0.882 +0.033 0.899 £0.031 0.941+£0.018 0.982+0.017 852 +350
Leukemia
PSO 0.920+0.025 0.934+0.022 0.960+0.014 0.985+0.013 1431+£20
PSO-KDR 0.962 +0.006 0.969 +0.005 0.981 +0.003 0.993 +£0.009 1455 +33
Baseline 0.797 £0.008 0.791 +£0.008 0.787 +0.008 0.865 +0.007 41+0
Filter (IG) 0.783 +£0.020 0.782 +0.020 0.784 £0.020 0.855+0.018 11+£5
QSAR PSO 0.836+0.011 0.835+0.009 0.836 £0.008 0.899 £0.008 18+3
PSO-KDR 0.846 +0.007 0.845 +£0.005 0.845 +0.006 0.900 +0.006 20+3
Baseline 0.886 +0.002 0.888 £0.002 0.890 £0.002 0.978 £0.001 36+0
. Filter (IG) 0.855+0.020 0.859+0.018 0.865+0.016 0.963 £0.008 10+4
Satellite PSO 0.887 +0.003 0.890 +£0.003 0.894£0.003 0.977 +£0.001 2242
PSO-KDR 0.889 +£0.002 0.893 +0.002 0.897 £0.002 0.977 £0.002 20+2
Baseline 0.933 £0.004 0.932 +0.004 0.933+£0.004 0.992 £0.001 19+0
Filter (IG) 0.870 +£0.032 0.869 +0.033 0.871+£0.032 0.972 +0.009 5+2
Segment
PSO 0.962 +0.002 0.961 +£0.002 0.962 +0.002 0.994 +£0.001 8+ 1
PSO-KDR 0.962 +0.002 0.962 +0.002 0.962 +0.002 0.993 +£0.001 7+1
Baseline 0.701 £0.007 0.679 +£0.008 0.753 £0.009 0.807 £0.006 60+0
. Filter (IG) 0.795 +£0.022 0.787 £0.025 0.819+£0.015 0.882+0.019 17+7
Splice PSO 0.797 £0.004 0.790 +£0.004 0.817+0.010 0.876+0.013 24+3
PSO-KDR 0.801 +0.009 0.794 +£0.010 0.823 +£0.011 0.882 +0.013 24 +4
Baseline 0.643+0.012 0.633+0.011 0.629+£0.012 0.857 £0.008 18+0
. Filter (IG) 0.555 +0.044 0.550 +0.042 0.549 £0.040 0.795+0.031 5+£2
Vehicle PSO 0.717+0.011 0.711+0.010 0.708 £0.010 0.898 £0.008 10+1
PSO-KDR 0.731 +£0.009 0.725 +£0.008 0.724 +£0.008 0.902 +0.005 10+1
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Fig.2. Convergence curves of standard PSO vs. PSO-KDR.

The convergence curves show that PSO-KDR achieves
faster and smoother fitness improvement over iterations that
due to the guidance provided by the KDR that effectively
balances global exploration and local refinement during the
optimization process.
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Fig.3. Comparison of improvement over baseline.

As illustrated in Fig. 3, the comprehensive performance
analysis across ten datasets shows the efficacy of various
feature selection methods. Across the most tested datasets, all
three evaluated feature selection techniques showed positive
performance gains, with the most pronounced improvements
observed in the Climate Model, Credit, and Heart datasets. The
maximum performance enhancement reached +31.0% by PSO-
KDR on the Climate_Model dataset.

PSO and its enhanced variant, PSO-KDR, show consistent
superiority compared to conventional filter methods that
achieved the maximum performance improvement across four
datasets (Climate model, Heart, Leukemia, and Vehicle), and
the IG filter method exhibited inconsistent behavior, with
performance degradation observed in certain datasets, such as
Vehicle and Segment.

Fig. 4 shows the analysis of selected feature subset sizes
across ten datasets. To handle high-dimensional datasets, the
logarithmic scale is used. The minimal subsets across most of
the datasets were selected by using the IG filter method, but its
independence from classifier behavior sometimes caused
performance unreliability, as shown in datasets such as
Segment and Vehicle, which feature elimination causes less
accuracy. The PSO and PSO-KDR wrapper methods gave
more balanced feature selection behavior, keeping slightly
larger but more discriminative subsets to maximize

classification accuracy. This drift is usually evident in QSAR
and Satellite, where keeping a moderate number of features
gave higher results. The average computation time of the
proposed KDR-PSO method ranged from approximately 3 to 8
seconds for low- and medium-dimensional datasets and from 2
to 6 minutes for high-dimensional gene expression datasets,
depending on the number of features and optimization
iterations.

Method

Baseline
mmm Filter (IG)
== PSO
s PSO-KDR

Number of Features (Log Scale, Mean + Std)
3

2
I|| m Ll III I
N ‘\B<
0

o

,,o‘ \\:.

Feature reduction comparison (Log scale).

S
0 Q¥ 06‘,9- \\\\

&a
o &
o

Dataset

Fig. 4.

PSO-KDR outperforms baseline, filter, and standard PSO
methods by selecting compact, relevant feature subsets while
improving classification performance. This shows that the
KDR-based fitness function effectively balances feature
relevance and predictive accuracy, especially on high-
dimensional datasets. However, although effective, the
proposed KDR-PSO method has some limitations. As a
population-based optimization approach, its computational cost
increases with data dimensionality and the number of PSO
iterations.

V. CONCLUSION

This study proposed KDR-PSO, a new hybrid feature
selection method that merges the global search capability of
Binary Particle Swarm Optimization (BPSO) with a filter-
based KNN Distance Ratio (KDR) objective function. The
obtained results showed reaching the optimal balance between
computational efficiency and feature selection performance in
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the proposed algorithm KDR-PSO, that keeping high accuracy
and clarity across various datasets.

In terms of classification accuracy and feature reduction,
the proposed KDR-PSO method showed excellent
performance, as shown by the values of the evaluation metrics
Fl-score, AUC, and precision. KDR-PSO joined filter-based
techniques with a wrapper framework so it can handle strongly
the computational limitations related to the wrapper techniques
and make it practical for high-dimensional data. Furthermore,
the proposed KDR-PSO got significant feature proximity while
maintaining or improving the classification performance and
selecting the minimum number of features. The logarithmic-
scale comparisons of feature counts over datasets revealed and
emphasized the wide variation in feature dimensions. The basic
contribution for this work is building KNN Distance Ratio
multi-Objective, that works as an effective mechanism for PSO
search phases, accelerating in superior and low-cost
computations for effective feature subset selection.

This study introduced successful implementation of KDR-
PSO, that will be strong basis for a lot of future work. The
expected research can include studying alternative distance
metrics, expanding adaptive penalty terms, and executing the
method to emerging domains that need efficient feature
selection for high-dimensional data. This work introduces
valuable advancement in terms of the feature selection
literature, covering the gap between the strengths of filter and
wrapper methods.
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