

Human-Centered Behavioral Analysis of Window Operation Using AI-Based Skeletal Recognition

Jewon Oh¹, Daisuke Sumiyoshi², Takahiro Yamamoto³, Takahiro Ueno⁴, Tatsuto Kihara⁵

Dept. of Architecture-Faculty of Eng., Sojo University, Kumamoto City, Japan¹

Faculty of Human-Environment Studies, Kyushu University, Fukuoka City, Japan²

Faculty of Engineering and Design, Kagawa University, Takamatsu City, Japan³

Faculty of Environmental Engineering, University of Kitakyushu, Kitakyushu City, Japan⁴

Faculty of Science and Eng., Waseda University, Tokyo City, Japan⁵

Abstract—This study presents a quantitative approach to analyzing window opening and closing behaviors using skeletal recognition technology. Video data of five participants performing these actions were captured and processed using the Openpose model, which detects 25 human joints. Focusing on the shoulder, elbow, and wrist, the study analyzed time-series joint coordinates to identify motion patterns and behavioral characteristics. The results revealed consistent relationships among joint movements and enabled accurate distinction between left- and right-hand operations. In addition, behavioral distribution characteristics were examined by visualizing horizontal and vertical skeletal displacements. The results showed that stationary postures are concentrated near a reference origin, whereas window operation actions produce distinct spatial shifts in the coordinate space, indicating that occupant behavior can be interpreted as a sequence of state transitions composed of distinct behavioral phases. The findings confirm that skeletal data can effectively represent occupant behavior without intrusive sensors, providing a non-contact and privacy-preserving monitoring method. This approach contributes to the development of human-centered intelligent building systems that can adapt indoor environments in real time based on occupant actions, thereby improving both thermal comfort and energy efficiency. Future research will expand behavioral categories and explore real-time implementation in smart building applications.

Keywords—Image processing; skeletal recognition; behavioral analysis; Openpose

I. INTRODUCTION

In recent years, the rapid advancement of digital technologies such as the Internet of Things (IoT) and Artificial Intelligence (AI) has significantly influenced the architecture and construction industries. These emerging technologies have enabled the development of intelligent, responsive environments that can adapt to human behaviors and preferences in real time [1]. Buildings are no longer static structures; they are evolving into dynamic systems capable of sensing, interpreting, and responding to occupants' needs. Among the many applications of IoT and AI in architecture, the creation of human-centered thermal environments has become an area of growing research interest [2].

Traditional environmental control systems, such as heating, ventilation, and air conditioning (HVAC), rely primarily on temperature, humidity, and occupancy sensors to regulate indoor

conditions. However, such systems often neglect the diversity and variability of human behavior, which plays a critical role in determining comfort levels. For instance, an occupant's decision to open or close a window can significantly affect indoor temperature, air quality, and energy consumption. Understanding and predicting these behavioral patterns are essential for designing energy-efficient buildings that maintain comfort without excessive energy use [3, 4].

Recent studies have demonstrated that IoT-based monitoring systems can capture and analyze occupant behavior with high temporal and spatial resolution. By connecting sensors, cameras, and data analytics platforms, researchers can model the relationship between human actions and environmental parameters [5]. At the same time, AI technologies, including machine learning and computer vision, have made it possible to interpret complex human motions automatically. For example, deep learning-based image recognition models can detect gestures, postures, and movements that correspond to specific behaviors such as window operation, light switching, or adjusting clothing layers [6, 7].

Despite these advancements, challenges remain in achieving reliable and context-aware recognition of occupant behaviors. Many existing studies rely on wearable sensors or environmental data, which may not fully capture the physical actions associated with comfort regulation. Moreover, privacy concerns often limit the use of conventional video data in indoor monitoring applications [8]. To address these challenges, recent research has explored the use of skeletal recognition and pose estimation techniques, which analyze the positions of human joints rather than identifiable facial features. Such approaches provide a balance between behavioral accuracy and privacy protection [9, 10].

In this context, the present study investigates window-opening and closing as a form of architectural and environmental behavior using skeletal recognition technology. Rather than treating window operation as a simple motion detection task, this study interprets it as an occupant-driven behavioral process that influences indoor thermal conditions and energy performance. By capturing and modeling these behaviors, the research aims to support the development of intelligent, privacy-preserving, and human-centered building control strategies.

II. LITERATURE REVIEW

Many researchers have used the Internet of Things (IoT) and artificial intelligence (AI) technologies to study various issues in the architectural field. In recent years, research on human-centered thermal environments has attracted considerable attention [11, 12].

Henning Metzmacher et al. [13], Bin Yang et al. [14], and Yeyu Wu et al. [15] used thermal imaging camera images and skin sensors to analyze the thermal sensation of occupants in real-time and to control the indoor thermal environment according to the number of occupants. Mateus Vinícius Bavaresco et al. [16] and Muhammad Aftab et al. [17] monitored IoT-based buildings to provide an optimal thermal environment for behavioral changes of occupants. Miao Zang et al. [18] investigated human-centered indoor environment control methods based on image data collected using IoT technology.

Wenjun Duan et al. [19] investigated a method for detecting the behavior of changing the amount of clothing in real-time using video data. Kailai Sun et al. [20] used AI technology to classify the standing and sitting positions of occupants and attempted a human flow line analysis.

AI technology has also been used in many other fields to solve a variety of problems. Table I shows previous studies that used AI.

TABLE I SUMMARY OF PREVIOUS STUDIES

Field	Authors	Year	Main contributions
Behavior modification	Tomoya Tamei et al. [21]	2015	AI technology was used to analyze human movement behavior
	Teruhiro Mizumoto et al. [9]	2018	Behavioral pattern analysis of kitchen occupants
	Zhu Bin et al. [5]	2020	Detection and recognition of abnormal pedestrian behavior
Arts	Yan Wang et al. [22]	2023	Algorithm development to detect dance poses using AI technology
	Amir Irfan Mazian et al. [23]	2023	AI technology was used to detect the dance poses
Medical	Thanh-Hai Tran et al. [24]	2017	Development of a behavior detection system for inpatients falling out of bed
	Ramesh Balaji et al. [25]	2018	Development of a health management system for the elderly using AI remote control monitoring
	Nur Khalidah Zakaria et al. [26]	2021	Development of a method for detecting the behavior of people with disabilities
Safety	Manoj Kurien et al. [27]	2017	Development of a safety behavior detection system using 3D model simulation
	Paige Wenbin Tien et al. [4]	2020	Detection of work behavior of occupants in office buildings

	Chengle Fang et al. [28]	2022	Development of a safety action detection system for construction sites
	Zhe Sun et al. [29]	2023	Detection of clothing at construction sites using AI detection systems
	Xiangang Cao et al. [30]	2023	Investigation of a method for detecting safe behavior using skeletal recognition
Education	Guy Gaziv et al. [31]	2017	Development of a conversational behavior support system using 3D models and AI technology
	Soohyun Choi et al. [32]	2020	Development of a child behavior pattern analysis and facial expression recognition system using AI application technology

III. METHODOLOGY

A. Experiments Summary

Window opening and closing detection is made more efficient by directly analyzing the behavior of occupants. In addition, quantitative analysis methods must be considered to realize a human-centered built environment. In this study, cameras were installed in the room to collect video data of five occupants opening and closing windows. The camera was set to FPS 30, and the video data were saved on an SD card. The format of the data is *.mp4, 3840(px) × 2160(px) movie. Fig. 1 shows the details of the experimenter. The experimenters were men between 167 and 178 cm in height. All experimenters were right-handed.

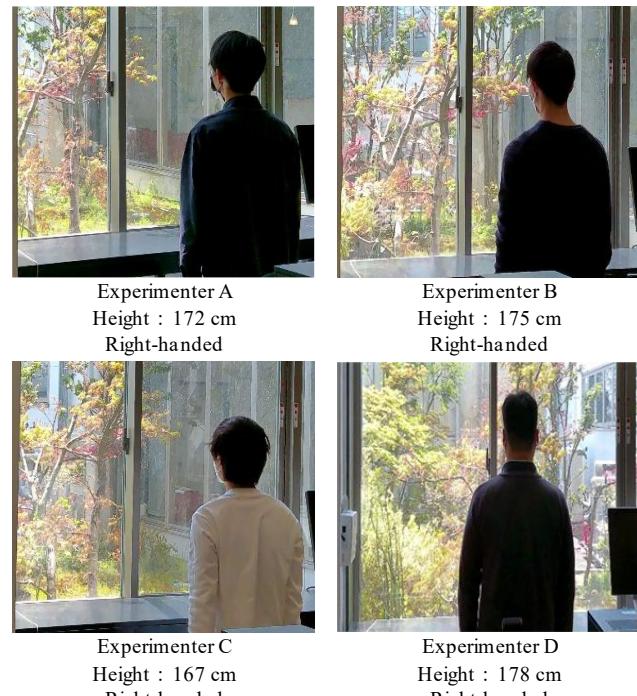


Fig. 1. Experimental information.

B. Window Opening and Closing Behavior

The following procedure was used to detect the window-opening and closing behavior of the experimenter. Fig. 2 shows the experimental setup:

- 1) Stands in front of a window.
- 2) The window was opened with the left hand.
- 3) The window was closed with the left hand.
- 4) The window was opened with the right hand.
- 5) The window was closed with the right hand.
- 6) Stand in front of the window when all the actions are completed.

C. Data Preprocessing

The video data accumulated in the experiment were preprocessed to analyze the window-opening and closing behavior. Data preprocessing was performed by extracting the video data into still images and organizing the window-opening and closing behavior from the position of standing in front of the window. Data preprocessing consisted of the following steps. Fig. 3 shows the data preprocessing flow.

- 1) The experimental video was edited to the necessary parts using a video-editing program.

- 2) Still images were extracted using OpenCV.
- 3) Delete personal information, such as faces.
- 4) Window opening and closing movements were classified through visual observation.
- 5) Organizing the data for each researcher.

D. Skeleton Recognition

In this study, skeletal recognition was used to analyze window opening and closing behaviors. Skeletal recognition uses the Openpose model, which detects 25 human joints. Fig. 4 shows the skeletal recognition items and an image diagram of the Openpose model. The results of detecting the experimenter's joints were stored in the JavaScript Object Notation (JSON) format with numerical coordinate data for each joint. Window opening and closing behavior was analyzed using joint coordinate data. In this report, we extracted data on joint numbers 2, 3, and 4 of the right arms, as shown in Fig. 4, and joint numbers 5, 6, and 7 of the left arms for behavioral analysis. Behavioral analysis analyzed window-opening and closing behavior based on the direction in which the left and right arms moved with respect to each joint data standing in front of the window (see Fig. 5).

Fig. 2. Window opening and closing actions.

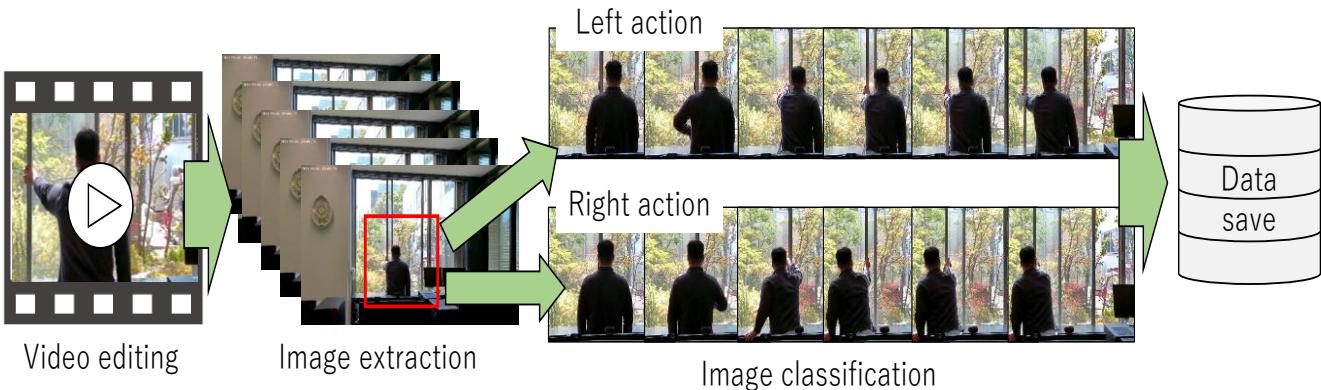


Fig. 3. Data preprocessing flow.

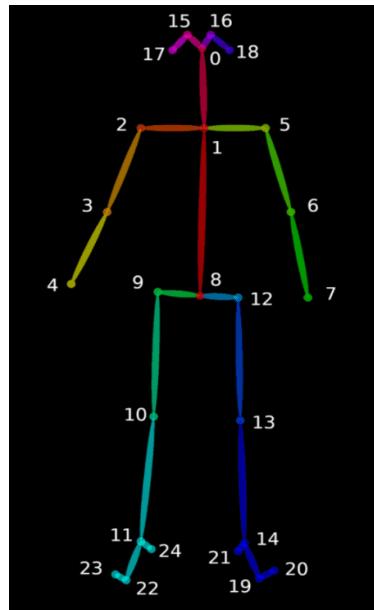


Fig. 4. Openpose model.

0	Nose	13	LKnee
1	Neck	14	LAngle
2	RShoulder	15	REye
3	RElbow	16	LEye
4	RWrist	17	REar
5	LShoulder	18	LEar
6	LElbow	19	LBIGToe
7	LWrist	20	LSMallToe
8	MidHip	21	LHeel
9	RHip	22	RBIGToe
10	RKnee	23	RSMallToe
11	RAngle	24	RHeel
12	LHip	25	Background

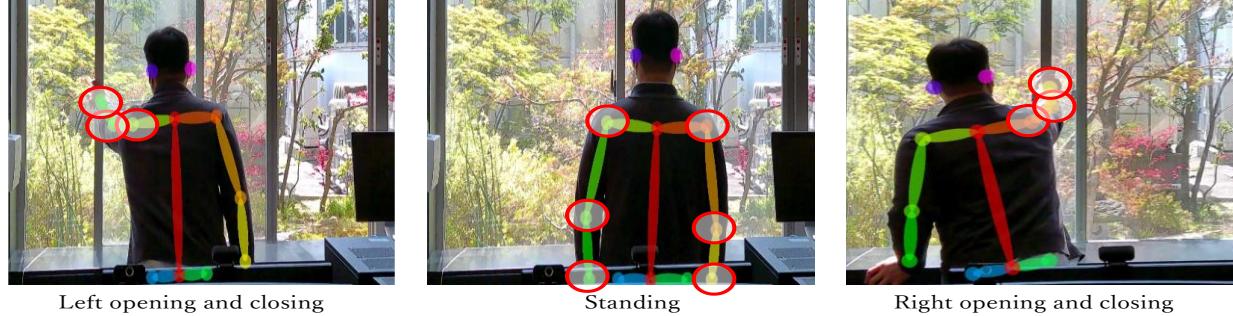


Fig. 5. Pattern setting of behavior and skeletal location of features.

IV. RESULTS

A. Behavioral Analysis of Window Opening and Closing Actions

The analysis of window opening and closing behavior was conducted based on skeletal coordinate data, using six predefined behavioral patterns (see Fig. 6). The analysis focused on the subject's posture when standing in front of the window, utilizing the coordinate data of the left and right shoulders, elbows, and wrists. Each set of skeletal coordinates was represented as a time series, and variations in these coordinates were analyzed. Fig. 6 illustrates the window opening and closing behavior. The figure shows the temporal changes in the joint positions of the subject's upper limbs for both the left and right arms. The left column visualizes the detected joint points (Shoulder, Elbow, Wrist) obtained from the pose estimation algorithm, while the right column plots the frame-by-frame changes of each joint point along the orthogonal (vertical) coordinate axis.

During the sequence of actions from preparatory motion to actual window operation, both the x- and y-coordinates changed over time. The magnitude of these variations also differed depending on the degree of window opening or closing. While

the y-coordinates tended to converge along a similar line during the motion, the x-coordinates of the shoulder, elbow, and wrist showed distinct changes.

From the graphs, it was observed that in all movements, the coordinate values followed the order Shoulder → Elbow → Wrist, decreasing as the joints moved downward. After the onset of movement, the coordinate values for each joint rapidly decreased between approximately frames 1 and 5, and then remained nearly constant. This indicates that during the arm-raising motion, the wrist and elbow descended and reached a stable posture.

A comparison between the left and right arm movements revealed similar coordinate change patterns, though the magnitude of change for the right arm was slightly smaller. This suggests that the right arm had a more limited range of motion, possibly due to the camera angle or the subject's dominant hand. Furthermore, a clear transition from "Left" to "Right" motion was observed around frame 7, accompanied by significant coordinate changes during the transition from the standard posture to each motion segment. This confirms that the system was able to accurately distinguish between left and right movements.

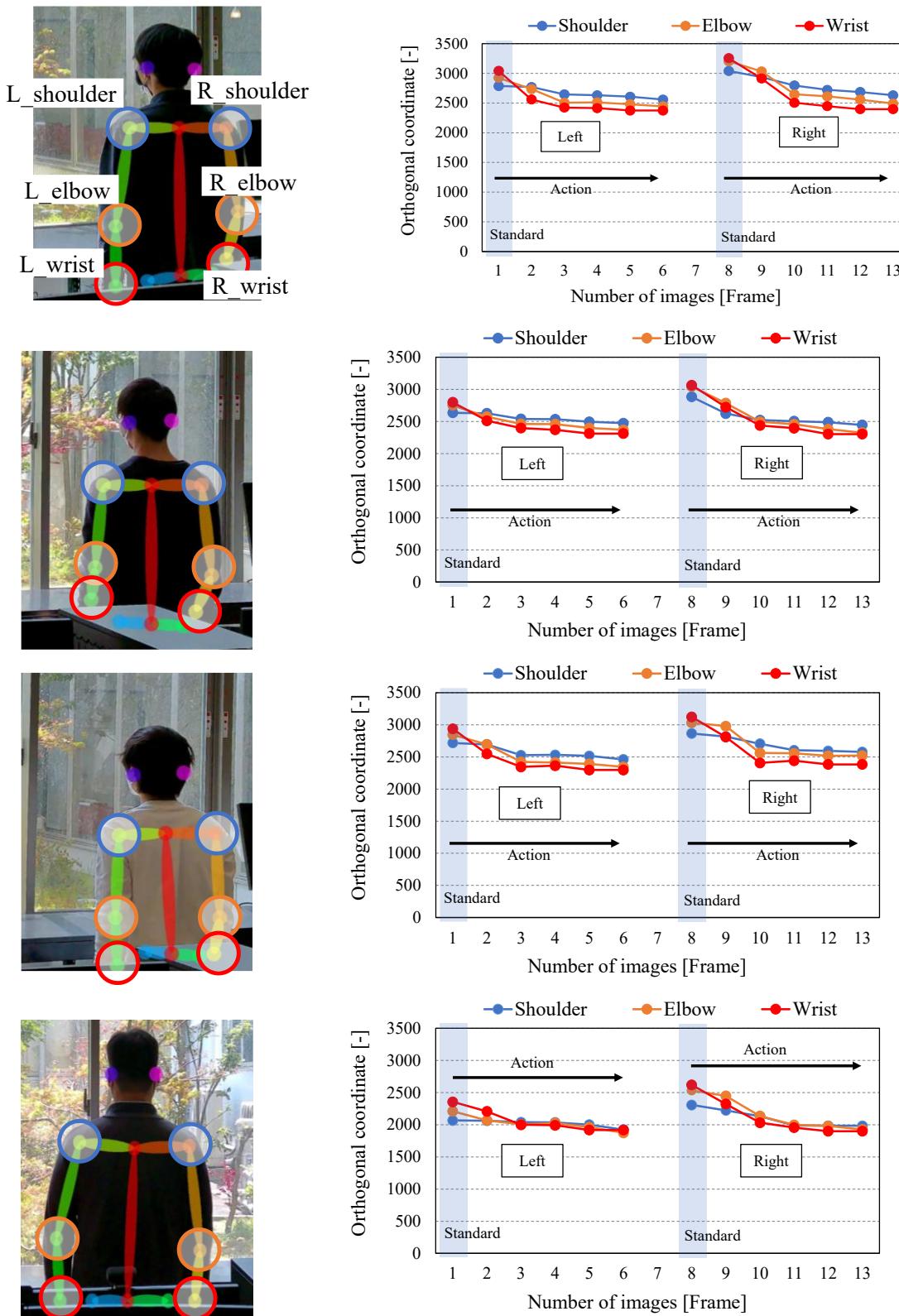


Fig. 6. Left and right coordinate analysis.

The results demonstrate that the proposed pose estimation model can reliably track changes in the positions of upper-limb joints (shoulder, elbow, wrist) across consecutive frames. Meanwhile, the relatively large variations observed in the elbow and wrist coordinates can be attributed to their roles as the primary movable joints of the upper limbs, which are strongly influenced by motion.

Additionally, since the coordinate variation patterns were similar between left and right movements, the model is considered to maintain consistent estimation performance for symmetrical actions.

B. Behavioral Distribution Characteristic

Fig. 7 presents a visualization of the horizontal and vertical behavioral displacements of five subjects standing in front of a window, expressed using skeletal coordinate data. A reference posture corresponding to a stationary standing position is defined near the origin, enabling variations in behavior and transition processes to be represented within a two-dimensional coordinate space.

The results show that when subjects remain stationary in front of the window, the skeletal coordinates are concentrated near the origin, generally within approximately 1000 units along the x-axis and 600 units along the y-axis. In contrast, during the action of fully opening the window, the skeletal coordinates exhibit a pronounced shift toward the right and upward directions. This pattern reflects the combined effects of lateral body movement and upward motion of the arms and upper body associated with window operation.

Although window opening and closing actions are continuous in nature, the corresponding skeletal coordinate distributions are separated into multiple regions within the feature space. This indicates that the behavior can be more appropriately interpreted as a sequence of state transitions comprising distinct behavioral phases, rather than as a single static state. Furthermore, the observed distributions suggest that occupant behavior does not evolve linearly along a single trajectory but transitions between different states through multiple pathways. The identification of several spatially distinct subregions provides additional insight into behavioral characteristics that are not fully captured by conventional simplified stage-based models.

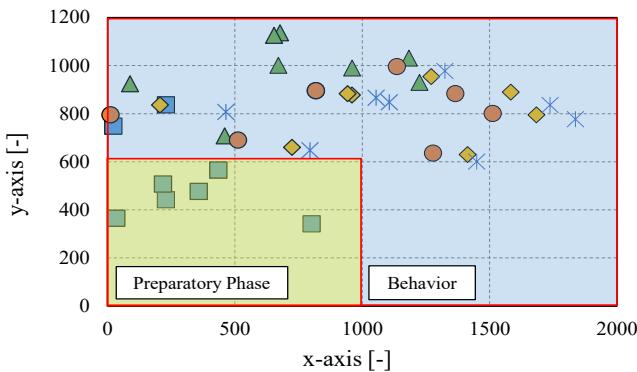


Fig. 7. Horizontal and vertical behavioral displacements in skeletal coordinate space.

V. CONCLUSION

This study proposed a quantitative approach for analyzing window-opening and closing behavior using skeletal recognition technology. By employing the Openpose model, the movements of upper-limb joints (shoulder, elbow, and wrist) were extracted and analyzed from video data captured during controlled experiments. The results demonstrated that skeletal coordinate data effectively represented the motion patterns of window operation, allowing the system to distinguish between left and right arm movements with high accuracy.

The analysis revealed that coordinate variations followed a consistent pattern across different participants, indicating that the pose estimation model maintained stable recognition performance even for symmetrical actions. Furthermore, the time-series data of joint positions successfully captured the transition of movements from preparation to completion, suggesting that this method can serve as a reliable basis for quantifying occupant behavior.

These findings contribute to the development of human-centered environmental control systems by providing a foundation for integrating behavioral analysis into building automation. The ability to automatically detect occupant actions such as window operation enables real-time adjustment of indoor thermal environments, which can enhance comfort and energy efficiency simultaneously.

Future research should focus on expanding the dataset to include diverse environmental conditions, body postures, and participant demographics. Integrating additional sensory inputs, such as thermal imaging and environmental sensors, may further improve the robustness of behavior recognition and contribute to the realization of adaptive, occupant-responsive smart buildings.

VI. FUTURE RESEARCH WORKS

While this study successfully demonstrated the feasibility of detecting window-opening and closing behaviors using skeletal recognition, several areas remain for further investigation and refinement.

Future studies should expand the experimental environment to include more diverse participants, varied body types, and different window designs or installation heights. Such expansion would enable more robust generalization of the proposed model across real-world conditions.

In addition, future work will focus on incorporating machine-learning classifiers to quantitatively evaluate behavior recognition performance, including accuracy, precision, and recall. Comparative analyses with existing methods will also be conducted to further clarify the effectiveness and limitations of the proposed approach.

ACKNOWLEDGMENT

This study is based on results obtained from a project, JPNP20004, subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

REFERENCES

[1] Haneul Choi, Chai Yoon Um, Kyungmo Kang, Hyungkeun Kim, Taeyeon Kim, Review of vision-based occupant information sensing systems for occupant-centric control, *Building and Environment* 203 (2021) 108064, <https://doi.org/10.1016/j.buildenv.2021.108064>.

[2] SungYong Chun, Chan-Su Lee, Ja-Soon Jang, Real-time smart lighting control using human motion tracking from depth camera, *J Real-Time Image Proc* (2015) 10:805–820, <https://doi.org/10.1007/s11554-014-0414-1>.

[3] M.C. Leung, Y.K. Mok, Norman Tse C.F., Alan Fong M.L., L.L. Lai, New MVAC control by making use of human behavioral based technique to achieve energy efficiency, 9th IET International Conference on Advances in Power System Control, Operation and Management (APSCOM 2012), <https://doi.org/10.1049/cp.2012.2135>

[4] Paige Wenbin Tien, Shuangyu Wei, John Kaiser Calautit, Jo Darkwa, Christopher Wood, Deep learning occupancy activity detection approach for optimising building energy loads, *International Conference on Applied Energy* 2020 1-6.

[5] Zhu Bin, Xie Ying, Luo Guohu, Chen Lei, An Abnormal Behavior Detection Method using Optical Flow Model and OpenPose, *(IJACSA) International Journal of Advanced Computer Science and Applications*, Vol. 11, No. 5, 2020, DOI: 10.14569/IJACSA.2020.0110505.

[6] Jianhua Liu, Algorithm for Skeleton Action Recognition by Integrating Attention Mechanism and Convolutional Neural Networks, *(IJACSA) International Journal of Advanced Computer Science and Applications*, Vol. 14, No. 8, 2023, DOI: 10.14569/IJACSA.2023.0140867.

[7] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, Bernt Schiele, 2D Human Pose Estimation: New Benchmark and State of the Art Analysis, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3686–3693, DOI: 10.1109/CVPR.2014.471.

[8] Mika Maaspuro, A Low-Resolution IR-Array as a Doorway Occupancy Counter in a Smart Building, *International Journal of Online and Biomedical Engineering (iJOE)*, 16(06), pp.4–18, <https://doi.org/10.3991/ijoe.v16i06.13915>

[9] Teruhiro Mizumoto, Alberto Formaser, Hirohiko Suwa, Keiichi Yasumoto, Mariolino De Cecco, Kinect-Based Micro-Behavior Sensing System for Learning the Smart Assistance with Human Subjects Inside Their Homes, 2018 Workshop on Metrology for Industry 4.0 and IoT, DOI: 10.1109/METROI4.2018.8428345.

[10] Annalisa Franco, Antonio Magnani, Dario Maio, Joint Orientations from Skeleton Data for Human Activity Recognition, *International Conference on Image Analysis and Processing*, 2017, pp.152–162, https://doi.org/10.1007/978-3-319-68560-1_14.

[11] Dixin Liu, Xiaohong Guan, Youtian Du, Qianchuan Zhao, Measuring indoor occupancy in intelligent buildings using the fusion of vision sensors, *Meas. Sci. Technol.* 24 (2013) 074023 (13pp), DOI 10.1088/0957-0233/24/7/074023.

[12] Jianhong Zou, Qianchuan Zhao, Wen Yang, Fulin Wang, Occupancy detection in the office by analyzing surveillance videos and its application to building energy conservation, *Energy and Buildings* 152 (2017) 385–398, <https://doi.org/10.1016/j.enbuild.2017.07.064>.

[13] Henning Metzmacher, Daniel Wölki, Carolin Schmidt, Jérôme Frisch, Christoph van Treeck, Real-time human skin temperature analysis using thermal image recognition for thermal comfort assessment, *Energy and Buildings* 158 (2018) 1063–1078, <https://doi.org/10.1016/j.enbuild.2017.09.032>.

[14] Bin Yang, Xiaojing Li, Yingzhen Hou, Alan Meier, Xiaogang Cheng, Joon-Ho Choi, Faming Wang, Huan Wang, Andreas Wagner, Da Yan, Angui Li, Thomas Olofsson, Haibo Li Non-invasive, (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses -A review, *Energy & Buildings* 224 (2020) 110261, <https://doi.org/10.1016/j.enbuild.2020.110261>

[15] Yeyu Wu, Jiaqi Zhao, Bin Cao, A systematic review of research on personal thermal comfort using infrared technology, *Energy & Buildings* 301 (2023) 113666, <https://doi.org/10.1016/j.enbuild.2023.113666>.

[16] Mateus Vinícius Bavaresco, Simona D’Oca, Enedir Ghisi, Roberto Lamberts, Technological innovations to assess and include the human dimension in the building-performance loop: A review, *Energy & Buildings* 202 (2019) 109365, <https://doi.org/10.1016/j.enbuild.2019.109365>.

[17] Muhammad Aftab, Chien Chen, Chi-Kin Chau, Tala Rahwan, Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system, *Energy and Buildings* 154 (2017) 141–156, <https://doi.org/10.1016/j.enbuild.2017.07.077>.

[18] Miao Zang, Zhiqiang Xing and Yingqi Tan, IoT-based personal thermal comfort control for livable environment, *International Journal of Distributed Sensor Networks* 2019, Vol. 15(7), DOI: 10.1177/1550147719865506.

[19] Wenjun Duan, Yu Wang, Junqing Li, Yuanjie Zheng, Chengguang Ning, Peiyong Duan, Real-time surveillance-video-based personalized thermal comfort recognition, *Energy & Buildings* 244 (2021) 110989, <https://doi.org/10.1016/j.enbuild.2021.110989>.

[20] Kailai Sun, Qianchuan Zhao, Ziyou Zhang, Xinyuan Hu, Indoor occupancy measurement by the fusion of motion detection and static estimation, *Energy & Buildings* 254 (2022) 111593, <https://doi.org/10.1016/j.enbuild.2021.111593>.

[21] Tomoya Tamei, Yasuyuki Orito, Tomohiro Shibata, Kazushi Ikeda, In-home measurement system of user’s motion and center of pressure, 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2015, 927-929, DOI: 10.1109/APSIPA.2015.7415407.

[22] Yan Wang, Zhiguo Wu, Dance Motion Detection Algorithm Based on Computer Vision, *(IJACSA) International Journal of Advanced Computer Science and Applications*, Vol. 14, No. 10, 2023, DOI: 10.14569/IJACSA.2023.0141030.

[23] Amir Irfan Mazian, Wan Rizhan, Normala Rahim, Azrul Amri Jamal, Ismahafezi Ismail, Syed Abdullah Fadzli, A Theoretical Framework for Creating Folk Dance Motion Templates using Motion Capture, *(IJACSA) International Journal of Advanced Computer Science and Applications*, Vol. 14, No. 5, 2023, DOI: 10.14569/IJACSA.2023.0140547.

[24] Thanh-Hai Tran, Thi-Lan Le, Van-Nam Hoang, Hai Vu, Continuous detection of human fall using multimodal features from Kinect sensors in scalable environment, *Computer Methods and Programs in Biomedicine* 146 (2017) 151–165, <https://doi.org/10.1016/j.cmpb.2017.05.007>.

[25] Ramesh Balaji, Karan Bhavsar, Brojeshwar Bhowmick, Mithun B. S., Kingshuk Chakravarty, Debatri Chatterjee, Avik Ghose, Puneet Gupta, Dibyanshu Jaiswal, Sanjay Kimbahune, Kartik Muralidharan, Arpan Pal, Aniruddha Sinha & Srinivasa Raghavan Venkatachari, A Framework for Pervasive and Ubiquitous Geriatric Monitoring, *Human Aspects of IT for the Aged Population. Applications in Health, Assistance, and Entertainment*, 2018, pp.205-230, https://doi.org/10.1007/978-3-319-92037-5_17.

[26] Nur Khalidah Zakaria, Nooritawati Md Tahir, Rozita Jailani, A Markerless-based Gait Analysis and Visualization Approach for ASD Children, *(IJACSA) International Journal of Advanced Computer Science and Applications*, Vol. 12, No. 5, 2021, DOI: 10.14569/IJACSA.2021.0120553.

[27] Manoj Kurien, Min-Koo Kim, Marianna Kopsida, Ioannis Brilakis, Real-time simulation of construction workers using combined human body and hand tracking for robotic construction worker system, *Automation in Construction* 86 (2018) 125–137, <https://doi.org/10.1016/j.autcon.2017.11.005>.

[28] Chengle Fang, Huiyu Xiang, Chongjie Leng, Jiayue Chen, Qian Yu, Research on Real-Time Detection of Safety Harness Wearing of Workshop Personnel Based on YOLOv5 and OpenPose, *Sustainability* 2022, 14, 5872, <https://doi.org/10.3390/su14105872>.

[29] Zhe Sun, Zhufu Zhu, Ruoxin Xiong, Pingbo Tang, Zhansheng Liu, Dynamic human systems risk prognosis and control of lifting operations during prefabricated building construction, *Developments in the Built Environment* 14 (2023) 100143, <https://doi.org/10.1016/j.dibe.2023.100143>.

[30] Xiangang Cao, Chiyu Zhang, Peng Wang, Hengyang Wei, Shikai Huang, Hu Li, Unsafe Mining Behavior Identification Method Based on an Improved ST-GCN, *Sustainability* 2023, 15, 1041, <https://doi.org/10.3390/su15021041>.

- [31] Guy Gaziv, Lior Noy, Yuval Liron, Uri Alon, A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations, *PLoS ONE* 12(1): e0170786, <https://doi.org/10.1371/journal.pone.0170786>.
- [32] Soohyun Choi, Songho Yun, Byeongtae Ahn, Implementation of Automated Baby Monitoring: CCBeBe, *Sustainability* 2020, 12, 2513, doi:10.3390/su12062513.

AUTHORS' PROFILE

JEWON OH. He received BE, ME and PhD degrees in 2012, 2015 and 2021, respectively. He was with the appointed assistant professor at AI Application Laboratory, Kurume Institute of Technology in 2021. Lecturer at AI Application Laboratory, Kurume Institute of Technology in 2022. He is now an appointed assistant professor at Department of Architecture Faculty of Sojo University in 2023. His research is focused on developing energy-saving technologies in the building using AI and image processing.

DAISUKE SUMIYOSHI. In 2006, Daisuke Sumiyoshi completed the doctoral studies in the Department of Architecture at the Graduate School of Human-Environment Studies, Kyushu University (obtaining a PhD in Engineering). After graduating, he worked as an academic researcher at Kyushu University, and in 2008 became a researcher at the Building Research Institute(BRI), a National Research and Development Agency. During his tenure, he worked on establishing energy calculation methods for energy-saving standards for buildings. In 2010, he joined the Graduate School of Human-Environment Studies, Kyushu University, as an assistant professor, and in 2014, he became an associate professor, and in 2021, he became a professor. His field of expertise is the built environment and facilities, and he is engaged in a wide range of research on building energy, from energy calculations at the city level to changes in human behavior.

TAKAHIRO YAMAMOTO, received the B.Eng., M.Eng., and Ph.D. degrees from Kyushu University, Fukuoka, Japan, in 2010, 2012, and 2018, respectively. He was previously an Assistant Professor with Kyushu University. He is currently a Lecturer with the Faculty of Engineering and Design, Kagawa

University. His research interests include optimization of energy supply demand structures in residential and commercial buildings using advanced technologies such as home fuel cells, battery storage systems, and Home Energy Management Systems (HEMS), as well as data analysis of Building Energy Management Systems (BEMS) to understand and improve energy consumption behavior. He is a member of the Architectural Institute of Japan (AIJ), the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan (SHASE), and the Institute of Electrical Installation Engineers of Japan (IEIEJ).

TAKAHIRO UENO. In 2020, Takahiro Ueno completed his doctoral studies in the Department of Architecture at the Graduate School of Human-Environment Studies, Kyushu University, earning a Ph.D. in Engineering. After graduation, he worked as a researcher at the Building Research Institute (BRI), a National Research and Development Agency, where he focused on improving energy calculation methods for energy-saving standards for buildings. In 2022, he joined the Department of Architecture at Waseda University as a lecturer, and in 2024, he became an associate professor in the Faculty of Environmental Engineering at the University of Kitakyushu. His field of expertise is the built environment and building facilities. His research aims to reduce energy consumption and CO₂ emissions from buildings and urban areas through measurement and simulation.

TATSUTO KIHARA. In 2017, Tatsuto Kihara completed all the coursework for the Doctoral Program at the Graduate School of Creative Science and Engineering, Waseda University, and holds a Master's degree in Environmental Science. From 2014 to 2017, he served as a Research Associate in the Department of Architecture, School of Creative Science and Engineering, Waseda University. Since 2017, he has been a Research Fellow at the Faculty of Science and Engineering, Waseda University, while also working as a Part-time Lecturer in the Department of Urban Life Studies at Tokyo City University. In 2022, he was appointed as Director and Head of the Environmental Division at Archtech Co., Ltd. His professional work focuses on building and urban environmental systems design, environmental planning, and environmental simulation, while he also engages in research and educational activities.