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Abstract—This system review explores the transformational 

role of agentic artificial intelligence (AI) as an orchestrator in 

mobile ecosystems. Agentic AI systems proactively plan, execute, 

and adapt across applications, devices, and services, unlike 

traditional and generative AI. These systems offer autonomous, 

context-aware coordination by integrating reasoning engines, 

tool orchestration, memory, retrieval-augmented generation 

(RAG), and safety layers. The review examines architectural 

requirements for mobile deployment, including on-device 

processing, resource-aware execution, and cross-platform 

synchronization. It stresses implementation targets and 

achievements through 2025, automation levels across key 

capabilities, and the impact of agentic orchestration on mobile 

ecosystem challenges. The findings highlight agentic AI’s 

potential to optimize performance, privacy, and user experience 

simultaneously. Future directions include edge-native 

architectures, human-in-the-loop frameworks, and multi-agent 

interoperability standards. This study provides a comprehensive 

roadmap for advancing agentic AI as a foundational layer in 

next-generation mobile computing. 
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I. INTRODUCTION 

Due to the swift development of mobile ecosystems, users 
now have to navigate dozens of apps, numerous services, and 
constant data streams across several devices in the 
surroundings of unprecedented complexity. Manual 
coordination between various apps and services is necessary 
for traditional mobile systems, which mostly function through 
explicit user commands [1]. The potential for seamless digital 
encounters is constrained by this paradigm, which also places a 
heavy cognitive burden on consumers [2]. 

Agentic artificial intelligence (AI), as a class of artificial 
intelligence systems, can act, decide, and adapt to new 
conditions on its own without continual human interaction, 
providing a revolutionary solution to this problem [3]. 
Conventional AI is mainly used as a tool for passive activities; 
in contrast, agentic AI systems work proactively, creating 
plans, establishing objectives, and carrying out multi-step 
procedures across application boundaries [4], [5]. The 
interaction between users and their digital environments can be 
radically redefined when these systems are used as an 
orchestrating intelligence inside mobile ecosystems. They can 

handle complex workflows, anticipate user demands, and 
coordinate resources. 

The key objective of this review is to critically examine the 
architectural context, operational mechanisms, and 
implementation challenges of agentic AI as an orchestrator of 
mobile ecosystems. The aim is to identify the essential 
elements, mobile-specific limitations, and automation potential 
that allow agentic AI to evolve from reactive tools to proactive, 
self-governing systems. The assessment also identifies existing 
constraints, provides a strategic implementation roadmap, and 
suggests future research opportunities to move agentic AI 
closer to scalable, secure, and context-aware mobile 
orchestration. 

The contributions of this review include the summarization 
of recent developments in agentic AI to clarify its function as a 
proactive orchestrator in mobile ecosystems. This review 
uniquely reframes agentic AI not as an incremental upgrade to 
generative AI, but as a systemic redefinition of orchestration in 
mobile ecosystems, where autonomy, memory, and tool 
orchestration converge to resolve long‑standing fragmentation 
and cognitive overload. Unlike prior reviews that treat these 
components in isolation, this study integrates them into a 
continuous perception–reasoning–decision–execution–learning 
cycle, offering the first holistic blueprint of agentic AI as a 
mobile orchestrator. The automation analysis is distinctive in 
exposing uneven maturity, where orchestration is nearly 
autonomous, but governance remains human‑dependent, thus 
guiding targeted innovation priorities. The agenda is distinctive 
in its systemic scope, proposing standards and architectures 
that extend agentic AI from isolated deployments to 
ecosystem‑wide rationality and resilience . 

To guide the reader through the structure and scope of this 
review, the study is organized as follows: Section II outlines 
the conceptual evolution from generative AI to agentic AI, 
highlighting the shift from reactive to proactive intelligence. 
Section III details the architectural components of agentic AI 
systems, including reasoning engines, tool orchestration, 
memory, RAG, and safety layers. Section IV discusses mobile-
specific architectural considerations such as on-device 
processing, resource-aware execution, and cross-platform 
synchronization. Section V presents an implementation 
roadmap and timeline for agentic AI deployment, while 
Section VI analyzes automation levels across key capabilities. 
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Section VII evaluates the impact of agentic orchestration on 
mobile ecosystem challenges. Section VIII proposes future 
research directions, including interoperability standards, 
human-in-the-loop frameworks, edge-native architectures, and 
security models. This structure ensures a coherent and 
comprehensive exploration of agentic AI as a transformative 
orchestrator in mobile computing. Finally, Section IX 
concludes the study. 

II. EVOLUTION OF GENERATIVE AI TO AGENTIC AI 

The advance from conventional AI to agentic AI 
epitomizes a major shift in how systems interact with the real 
world by moving from passive devices to active, objective-
oriented partners. The concept of agentic AI signifies a 
significant departure from passive AI tools and the 
development of autonomous, goal-driven systems that can 
predict, reason, and act in digital contexts [6], [7]. The 
transformational potential of Agentic AI as the orchestrating 
intelligence in complex mobile ecosystems is examined in this 
system assessment. Agentic AI allows for dynamic 
coordination across apps, services, and devices, transforming 
mobile platforms from reactive tools to proactive, contextual 
partners [8]. This review illustrates this by analyzing current 
architectures, applications, and difficulties (see Fig. 1). 

The interface between humans and AI was revolutionized 
by generative AI, especially by models such as GPT-4 and 
DALL-E [9]. These systems are creators as well as classifiers. 
They can converse in natural language, compose essays, build 
code, and produce graphics from text descriptions. Hence, the 
"language barrier" between humans and machines was 
removed, enabling the public to access AI. Generative AI is 
essentially reactive, even with this advancement [10]. It utilizes 
its training to generate a response after waiting for a user 
command. It struggles with complex, multi-step tasks that need 
planning and sequential tool use, and it does not have 
permanent memory across chats; with a new chat starts from 
the beginning [11]. A typical generative AI does not have the 
capability to automatically conduct research, for example, 
research on the best laptops for students, find the top three 
deals online, and summarize them in a table. 

The latest frontier is agentic AI, which builds active, goal-
seeking systems by fusing new capabilities with the generating 
potential of Large Language Model (LLM) [12], [13]. It is 
considered to have a set of hands (tools/APIs), a notebook 
(permanent memory), and a brain (for planning) compared to a 
generative AI model. High-level objectives are given to an 
agentic AI system, such as "create a comprehensive market 
analysis report on electric vehicles." The agent then: 
1) formulates a plan, which breaks the target down into steps: 
search for recent electric vehicle sales data, find updates on key 
manufacturers, analyze stock performance, and compile results. 
2) Executes actions by using its integrated tools, such as a web 
browser, a code interpreter, and a document editor, which 
autonomously perform these steps. 3) Adapts and persists 
stores data in a permanent memory, permitting it to build on 
earlier results. It can reorganize and try a different strategy if 
one search does not work. This turns the AI from a potent 
chatbot into a self-sufficient digital assistant that can oversee 
intricate processes from beginning to end. 

Fig. 1 displays evolution of AI capabilities. It details the 
comparative literature synthesis of traditional AI, generative 
AI, and agentic AI capabilities using published benchmarks 
and conceptual frameworks [14], [15], [16], [17]. The figure 
visually maps the transition from reactive to proactive 
intelligence, highlighting dimensions such as memory, tool 
use, and complexity handling. It is justified as a conceptual 
framework to ground the reader in the paradigm shift. 
Traditional AI scores low because it is highly reactive (only 
operates on input data), handles low complexity (single tasks), 
has no persistent context, and cannot use external tools. Hence, 
its value is in its precision, not in its adaptability. Generative 
AI shows a significant jump, specifically in handling more 
complex tasks such as content creation. However, it remains 
largely reactive, as indicated by its mid-level position. Its 
capabilities for memory and tool use are emerging and not 
inherent. Agentic AI occupies the high end of all four 
capabilities, indicating its transformative characteristics. Its 
high position highlights its proactive characteristics, and its far-
right position confirms its ability to manage high complexity 
through integrated planning, memory, and tool use. Hence, this 
permits it to function as an autonomous agent rather than a 
reactive tool. 

 

Fig. 1. Evolution of AI capabilities. Data sources: [14], [15], [16], [17]. 

III. AGENTIC AI SYSTEMS 

Agentic AI systems are highly developed AI design created 
to behave independently and replicate human decision-making 
to accomplish complex tasks [7]. They conduct action without 
continual human supervision, observe their environment, and 
solve issues [3], [18]. A robust agentic AI system is built on 
various crux components for operational loop to function, as 
illustrated in Fig. 2. 

A. Reasoning Engine (LLM Core) 

The reasoning engine, which is usually driven by an LLM, 
functions as the agentic AI system's "brain" or central 
processing unit. Its main duties include deciphering user input, 
decomposing complex issues into controllable phases, and 
creating a rational plan of action by selecting the appropriate 
mechanisms and channels to employ and structure [Fig. 2(A)] 
[19]. According to Hughes et al. [3], this component oversees 
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higher-order cognitive processes like comprehending context, 
coming up with logical methods, and modifying the plan 
considering new intelligence or data. However, this 
component's inherent propensity for confabulation or 
"delusion", in which the model generates plausible but 
erroneous or created thought processes, which can be a 
significant weakness that could lead the system in the incorrect 
path without any inherent responsiveness of the error 
[20],[21],[22]. 

B. Tools and Functions (Activity Capabilities) 

The system's "hands and senses" are the tools and functions 
component that enable the system to communicate with and 
influence the outside world via its underlying language model 
[Fig. 2(A)] [3]. The reasoning engine can use these pre-defined 
features, like database queries, API calls, code execution, or 
web search functions, to collect data in real time, carry out 
computations, or carry out operations [7]. This helps to close 
the gap between intangible reasoning and concrete outcomes. 
However, the failure of a single external tool can upset the 
sequential plan since the agent needs to accurately match its 
abstract plan to a specific function call with the appropriate 
inputs [21]. This makes tool selection and orchestration 
complexity a major problem. 

C. State and Memory (Context Management) 

The state and memory module serves as the narrative 
record for the system, preserving a consistent context 
throughout the exchange [Fig. 2(A)] [23]. The present aim, 
chat history, earlier completed steps, and other pertinent user-
specific data are all tracked, preventing the agent from 
repeating itself or losing track of lengthy, multi-turn activities 
[24]. This context window is crucial for interactions to be 
coherent and customized for each individual. However, early 
context may be "forgotten" or lost after prolonged contact, and 
it may be challenging to extract the most important details 
from a vast memory storage [22], thus designers can focus on 
how to upgrade this limitation. This component’s drawback is 
its practical limitation in terms of context window size and 
memory degradation [20]. 

D. Knowledge and RAG (External Data) 

The agent receives a specific external knowledge root in 
addition to its pre-trained weights through the knowledge and 
RAG (Retrieval-Augmented Generation) system [Fig. 2(A)] 
[23]. In response to a query, this part actively seeks for the 
most current and pertinent information from specified sources, 
including product databases or corporate records, and creates 
the LLM's response on this information [25]. This is crucial in 
specialized domains to ensure factual accuracy and reduce 
delusions. Its main drawback is that it relies on the accuracy of 
the retrieval and the quality of the knowledge base; however, if 
the retrieval system cannot find the correct information or the 
source data is outdated, the agent will generate responses based 
on incomplete or erroneous information [21],[22]. 

E. Guards and Evaluation (Safety Layers) 

The crucial safety and supervision layer is made up of the 
“guards and evaluation” component, which filters inputs and 
outputs to make sure the system stays within predetermined 
bounds [Fig. 2(A)] [24]. Architectural decomposition based on 

system design literature [3],[7],[18],[19],[23]. The figure 
synthesizes multiple sources into a unified operational loop 
(perception → reasoning → decision → execution → 
learning). Each component (reasoning engine, tools, memory, 
RAG, safety layers) is mapped to its methodological role. 
Before the final output is sent to the user, it checks for 
malicious, unsafe, biased, or irrelevant material, verifies user 
requests for safety and policy compliance, and it observe the 
tools the agent attempts to employ [19],[23]. This is the 
primary defense mechanism for the responsible application of 
AI. However, the primary concern with this component is 
achieving comprehensive coverage without excessive 
restriction, as overly strict safeguards may render the agent 
ineffective in legitimate edge situations, while subtly 
detrimental content or creative "getaway" ideas may 
occasionally evade detection [20],[21],[22]. 

 

Fig. 2. Agentic AI system: (A) Core components and (B) Operational 

process from initial perception to continuous learning. 

F. Perception (Data Collection) 

Fig. 2(B) presents the operational process from initial 
perception to continuous learning. The perception phase 
[Fig. 2(B)] is the foundational sensory layer of the agentic AI 
system, where it collects real-time, multi-modal data from 
diverse sources to understand the present and flow situation 
[26]. However, the challenge is ensuring data quality and 
integration integrity, as garbage-in-garbage-out scenarios (e.g., 
noisy, biased, or incomplete data) can corrupt the decision-
making pipeline [27]. 

G. Reasoning (Plan and Strategy) 

The reasoning phase of a system uses a LLM to process 
data, interpret semantic meaning, understand context, and 
create a plan to accomplish a target objective (Fig. 2B). This 
process transforms abstract information into actionable 
intelligence, requiring logical inference, ultimate reasoning, 
and multi-step problem-solving [7],[25]. However, one 
significant flaw is the possibility of logical fallacies and 
delusions creating error limitations or behaviors [28]. 

H. Decision-Making (Action Selection) 

Decision-making phase involves a system transitioning 
from planning to commitment, assessing actions based on 
efficiency, resource cost, predicted success rate, and alignment 
with the target objective [Fig. 2(B)]. There is a trade-off 
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between trying out new strategies and taking advantage of ones 
that already exist, necessitating a delicate balance between 
careful optimization and bold aim [25],[26]. However, the 
challenge is the framing problem and sub-optimal lock-in, 
where the presentation of options can have a disproportionate 
impact on the agent's choice [28]. 

I. Execution (Take Action) 

The execution phase involves the agent's abstract decisions 
being implemented in tangible interactions with the outer 
world, like calling third-party APIs or executing database 
operations [Fig. 2(B)]. This phase is essential as the system's 
internal logic meets the unpredictable reality of outer systems 
[8],[23]. However, the agent's weakness due to fragility and 
lack of real-world affordance reasoning can lead to unexpected 
errors, API timeouts, or permission denials, potentially halting 
the process [27],[28]. 

J. Learning and Adaptation (Refine Strategy) 

In the Learning and Adaptation phase, the system refines its 
strategies and performance by collecting feedback on 
implemented actions, analyzing the difference between 
expected and actual results, and applying techniques like 
reinforcement learning [Fig. 2(B)]. This meta-cognitive ability 
transforms a static automated script into a dynamically 
enriching intelligent agent [7],[25]. However, challenges 
include credit assignment problems and tragic forgetting, 
where learning new information can overwrite or corrupt 
earlier acquired knowledge [20],[22],[29]. 

The constant, dynamic cycle between these phases is a 
fundamental aspect of agentic AI. The system creates a fluid 
and responsive kind of intelligence by continuously observing 
the new state of the world because of its prior activities, 
considering this new context, and making decisions in an 
iterative loop until the overall aim is accomplished. 

IV. MOBILE-SPECIFIC ARCHITECTURAL CONSIDERATIONS 

Agentic AI orchestration in mobile contexts has distinct 
architectural needs that are largely different from those of 
cloud-based deployments. These needs compel the use of 
specific techniques to manage the limited and dynamic nature 
of mobile devices. On-device processing is the determinant, 
where sophisticated AI agents can now run directly on devices 
thanks to breakthrough Arm-based architectures [25],[30]. This 
allows them to securely protect user data and function 
dependably without constant cloud access [31],[32]. However, 
the computational and memory limitations, which even the 
most potent mobile processors and NPUs have in comparison 
to cloud servers, pose a serious problem, though developers 
have to make challenging trade-offs between model 
complexity, speed, and accuracy (Fig. 3) [13]. Moreover, when 
prolonged heavy computation produces heat, the device must 
severely limit performance to prevent hardware damage, which 
could block the agent's vital activities [8]. This is known as 
thermal throttling, and it becomes a critical bottleneck. 

Resource-aware execution is another important factor to 
consider. This feature gives the system the ability to 
intelligently decide when to carry out tasks locally versus 
offloading them to highly potent distant servers, allowing it to 

dynamically manage battery consumption, processing load, and 
network usage (Fig. 3) [2]. Analytical framework of Fig. 3 
combining mobile hardware constraints (Arm-based NPUs, 
thermal throttling) with orchestration strategies (on-device vs. 
offloading, cross-platform synchronization) [2], [13], [30], 
[31], [32], [33], [34], [35]. The figure illustrates trade-offs 
between computation, energy, latency, and synchronization. It 
is justified as a design-oriented methodology to show how 
agentic AI adapts to mobile-specific bottlenecks. Accurate 
resource prediction is the main challenge since the system has 
to predict battery drain and compute load for different tasks in 
a highly changeable environment where user behavior and 
device state are always changing [30]. However, it is 
challenging to create an efficient offloading approach that 
maintains a flawless user experience while weighing latency, 
data usage, and energy consumption against the quality of the 
output (Fig. 3) [33]. This requires a sophisticated cost-benefit 
analysis. Lastly, despite platform-specific constraints and 
fundamental variations in APIs and security sandboxes, cross-
platform coordination guarantees that the agentic system can 
function uniformly across the fragmented landscape of iOS, 
Android, and progressive web applications (Fig. 3) [30],[31]. 
However, the difficulty of preserving feature parity, which 
demands substantial, platform-specific development and 
optimization, often doubling the technical effort, makes it 
difficult to give the same features and performance across 
many operating systems [6],[34]. Also, it is quite challenging 
to maintain consistent state synchronization across platforms, 
because the agent needs to have strong and conflict-free data 
merging protocols to maintain a coherent memory and task 
state when users switch between their phones, tablets, and 
online apps [35]. 

 

Fig. 3. Mobile-specific architectural considerations and challenges. 

V. AGENTIC AI IMPLEMENTATION ROADMAP AND 

TIMELINE 

The survey of literature made in this review showed the 
implementation success on mobile devices in the second quota 
of 2025 based on the Agentic AI research [2], [10], [13], [30], 
[31], [32]. Fig. 4 presents an agentic AI implementation 
roadmap and timeline, which structured progression from basic 
AI monitoring systems to fully autonomous and optimized 
operations. This figure was obtained from roadmap 
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construction from literature survey of agentic AI deployments 
(AutoGen, LangChain, OSS/BSS frameworks) and maturity 
models [2],[10],[13],[30],[31], [32],[36]. Organizations usually 
use reactive systems and basic monitoring, which are 
fundamental, but have limited adaptability, starting with the 
existing situation in Q2 of 2025. Choosing suitable frameworks 
and tools, such as AutoGen or LangChain, which provide the 
foundation for agentic capabilities, is the next stage. Pilot 
projects that implement context-aware execution and self-
healing pipelines come next, signaling a move toward more 
resilient and dynamic systems. A maturity curve that balances 
technological complexity and operational preparedness is 
suggested by each step, which shows growing implementation 
success. 

Multi-agent integration becomes critical as the roadmap 
develops, allowing for advanced system orchestration and 
cooperative agents [25],[36]. This prepares the way for the last 
stage, which consists of continuous optimization and full 
production, where efficiency and innovation are driven by 
autonomous operations and predictive capacities. The strategic 
significance of each milestone is highlighted by the visual 
emphasis on implementation success percentages, which helps 
stakeholders manage expectations and allocate resources. 

 

Fig. 4. Agentic AI implementation roadmap and timeline. 

VI. AUTOMATION LEVEL ACROSS KEY CAPABILITIES 

The survey of literature done in this review revealed the 
automation level across key capabilities in the second quota of 
2025 based on the agentic AI research [1],[7],[12],[15],[22]. 
Fig. 5 displays the automation level across key capabilities of 
agentic AI, which offers a compelling portrait of how 
automation is distributed across six critical domains in AI-
driven systems. Capabilities such as cloud-native orchestration, 
intelligent code generation, and pipeline protection 
demonstrate exceptionally high degrees of automation (over 
90%), indicating scalable, mature systems that need little 
human interaction. Strong tooling and defined processes make 
these domains perfect candidates for complete automation of 
mobile ecosystems, particularly on the device. The capabilities 
like human-in-the-loop systems and multi-agent collaboration 
showed a more hybrid approach, with a considerable amount of 

human assistance (15–25%), indicating that even with 
automation progression, contextual judgment and supervision 
are still crucial. 

With only 61% automation and a significant 30% human 
assistance, security and governance are the least automated 
domains (Fig. 5). This emphasizes the reason why delicate and 
complex risk management, ethical supervision, and regulatory 
compliance are areas where human judgment is still crucial. 
Overall, the findings showed where innovation and investment 
are required to advance toward more autonomous, robust AI 
ecosystems, in addition to highlighting current strengths. 

 

Fig. 5. Automation level across key capabilities. 

VII. MOBILE ECOSYSTEM CHALLENGE 

Fig. 6 illustrates the impact of agentic AI orchestration on 
mobile ecosystem challenges. The findings provide a deep 
visual summary of the transformational potential of Agentic AI 
in managing the complex challenges of the mobile ecosystem. 
In contrast to conventional, human-mediated management, it 
demonstrates plainly that agentic AI is an underlying 
advancement rather than a slight improvement, despite its 
enormous challenges, but it still provides a better and more 
balanced orchestration capability for mobile ecosystems. 

Comparative polygon visualization contrasting traditional 
management vs. agentic orchestration literature survey was 
performed, based on multi-dimensional criteria (performance, 
privacy, resource use, cross-platform integration) [2],[10], 
[13],[30],[31],[32]. Based on Fig. 6, the shapes of the polygons 
provide key information on the impact of agentic AI 
orchestration on mobile ecosystem challenges. The undersized, 
lopsided, and collapsed "traditional management" polygon 
suggests a poor, mixed approach, where fixing one issue often 
makes another worse (e.g., boosting performance drains the 
battery). The "agentic AI orchestration" polygon, in contrast, is 
massive, well-balanced, and sturdy, demonstrating a 
comprehensive and cooperative approach. The judgments 
made by an agentic AI orchestrator can simultaneously 
optimize for each of the four problems. To attain a single, 
unified objective, it can, for instance, carry out a plan that 
respects privacy (on-device processing), adjusts to context (the 
user is busy), controls resources (limited network calls), and 
functions across several app platforms. 
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These four issues combine to make human-mediated 
management impracticable, highlighting the urgent need for an 
autonomous orchestrator that can concurrently optimize for 
battery life, performance, and user comfort. 

To validate the proposed implementation roadmap and 
automation levels, this review synthesizes findings from recent 
agentic AI deployments across mobile platforms, including 
AutoGen, LangChain, and OSS/BSS orchestration 
frameworks[2],[10],[13],[30],[31],[32]. These implementations 
demonstrate measurable success in context-aware execution, 
tool orchestration, and self-healing pipelines, with performance 
benchmarks showing improved task completion rates, reduced 
latency, and enhanced user satisfaction. Comparative analysis 
with traditional reactive systems reveals that agentic AI 
frameworks outperform legacy models in adaptability, 
autonomy, and cross-platform synchronization. For instance, 
while conventional systems rely on static rule-based triggers, 
agentic AI agents dynamically adjust strategies based on real-
time feedback and resource constraints, offering a more 
resilient and scalable orchestration model. This comparative 
validation underscores the strategic advantage of agentic AI in 
mobile ecosystem management. 

Unlike traditional mobile orchestration methods and 
generative AI models, agentic AI offers distinctive advantages 
that directly address ecosystem fragmentation and cognitive 
overload. Conventional systems rely on static rule‑based 
triggers or reactive responses, which collapse under trade‑offs 
such as performance versus battery life. Generative AI 
improves content creation but remains reactive, lacking 
persistent memory and multi‑step orchestration. In contrast, 
agentic AI integrates reasoning engines, tool orchestration, 
memory, RAG, and safety layers into a continuous operational 
loop, enabling proactive, context‑aware coordination across 
applications and devices. This allows agentic AI to 
simultaneously optimize performance, privacy, resource use, 
and cross‑platform synchronization, as demonstrated in Fig. 4 
to Fig. 6. Compared to similar frameworks such as AutoGen, 
LangChain, and OSS/BSS orchestration models, our synthesis 
uniquely emphasizes mobile‑specific constraints (thermal 
throttling, resource‑aware execution, and platform 
fragmentation) and provides a roadmap with automation 
benchmarks. These comparative advantages establish agentic 
AI not as an incremental improvement, but as a foundational 
orchestrator for next‑generation mobile ecosystems. 

 

Fig. 6. Impact of agentic AI orchestration on mobile ecosystem challenges. 

VIII. FUTURE DIRECTIONS AND RESEARCH AGENDA 

Several fascinating research and development pathways are 
evident in the developing of agentic AI as a mobile ecosystem 
orchestrator. 

• The goal of projects such as the Web of Agents 
proposal is to create minimal interoperability 
requirements for communication between agents. This 
would greatly lessen the fragmentation of mobile 
ecosystems [37],[38]. These standards would facilitate 
smooth collaboration between agents from various 
platforms and developers. 

• The development of human-in-the-loop (HitL) 
architectures has produced frameworks for the best 
possible allocation of tasks between AI autonomy and 
human supervision [39],[40]. These models are 
especially important for mobile applications with high 
stakes, such as financial transactions or medical 
judgments. 

• Edge-native architectures advanced agentic AI 
capabilities will be able to run directly on mobile 
devices with further development of specific processors 
and effective model architectures, improving privacy, 
lowering latency, and functioning without continual 
connectivity. 

• Research is required to develop architectures that can 
sustain coherent activity over long periods of time while 
adapting to shifting user demands and technical 
settings. Long-term ecosystem adaptation of current 
systems presents remarkable short-term adaptability. 

• The autonomous characteristics and environment of 
agentic AI entail new attack surfaces and susceptibility 
patterns, demanding the development of innovative 
security frameworks directed toward multi-agent, cross-
platform mobile environments. 

• There is a need for thorough assessment frameworks 
that measure efficiency beyond task execution and 
completion to include user satisfaction, resource 
efficacy, and ecosystem rationality because the area 
lacks standardized techniques for evaluating the 
performance of agentic AI systems in ecosystem 
orchestration. 

IX. CONCLUSION 

Agentic AI signifies a paradigm shift in mobile ecosystem 
orchestration, developing from reactive supporters to 
autonomous, goal-driven systems efficient across different 
applications and platforms. This review has summarized the 
architectural bases, operational components, and mobile-
specific constraints that shape agentic AI deployment, 
emphasizing its transformational capability in managing 
complexity, optimizing resources, and enriching user 
experience. The combination of reasoning engines, RAG 
systems, and safety layers places agentic AI as an essential 
element for next-generation mobile computing, despite 
significant obstacles including tool fragility, memory 
constraints, and cross-platform synchronization. The proposed 
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implementation roadmap and automation analysis provide 
strategic guidance for stakeholders steering this transition. 
Future research must address long-term rationality, security 
frameworks, and standardized assessment metrics to ensure 
scalable, ethical, and robust agentic AI systems. Agentic AI is 
eventually a redefining of intelligence in mobile environment, 
not just an improvement. 

This review began by identifying the core challenges: 
mobile ecosystems are increasingly fragmented, reactive, and 
cognitively demanding for users. Traditional orchestration 
relies heavily on manual coordination, which fails to scale with 
complexity. Agentic AI directly responds to these limitations 
by offering autonomous, context-aware orchestration across 
applications, devices, and services. Through reasoning engines, 
tool orchestration, memory, and safety layers, agentic AI 
transforms mobile platforms into proactive, adaptive 
environments. This synthesis underscores agentic AI not 
merely as an enhancement, but as a necessary architectural 
shift for next-generation mobile computing. 

ACKNOWLEDGMENT 

The authors would like to thank Jadara University, Irbid, 
Jordan, for supporting this work. 

REFERENCES 

[1] A. Harima, J. Harima, and J. Freiling, "Ecosystem orchestration: 

Unpacking the leadership capabilities of anchor organizations in nascent 

entrepreneurial ecosystems," Entrepreneurship Theory and Practice, vol. 

48, no. 6, pp. 1404-1450, 2024. 

[2] R. Shah, S. Jagtap, and V. Jain, "Architecting analytics-driven mobile 

ecosystems: Scalable backend frameworks for intelligent data flow and 

real-time user insights," International Journal of Artificial Intelligence, 

Data Science, and Machine Learning, vol. 6, no. 2, pp. 83-91, 2025. 

[3] L. Hughes et al., "AI agents and agentic systems: A multi-expert 

analysis," Journal of Computer Information Systems, pp. 1-29, 2025. 

[4] Y. Shavit et al., "Practices for governing agentic AI systems," Research 

Paper, OpenAI, 2023. 

[5] V. B. Komaragiri, "Agentic AI for autonomous network orchestration: A 

new frontier in telecommunications," Eksplorium-Buletin Pusat 

Teknologi Bahan Galian Nuklir, vol. 46, no. 1, pp. 221-241, 2025. 

[6] S. Motamary, "Enabling zero-touch operations in telecom: The 

convergence of agentic AI and advanced DevOps for OSS/BSS 

ecosystems," BSS Ecosystems, Dec. 2022. 

[7] A. Biswas and W. Talukdar, Building Agentic AI Systems: Create 

intelligent, autonomous AI agents that can reason, plan, and adapt. Packt 

Publishing Ltd., 2025. 

[8] A. Bandi, B. Kongari, R. Naguru, S. Pasnoor, and S. V. Vilipala, "The 

rise of agentic AI: A review of definitions, frameworks, architectures, 

applications, evaluation metrics, and challenges," Future Internet, vol. 

17, no. 9, p. 404, 2025. 

[9] S. Feuerriegel, J. Hartmann, C. Janiesch, and P. Zschech, "Generative 

ai," Business & Information Systems Engineering, vol. 66, no. 1, pp. 

111-126, 2024. 

[10] J. Li et al., "Generative AI for self-adaptive systems: State of the art and 

research roadmap," ACM Transactions on Autonomous and Adaptive 

Systems, vol. 19, no. 3, pp. 1-60, 2024. 

[11] E. T. Rolls, "The memory systems of the human brain and generative 

artificial intelligence," Heliyon, vol. 10, no. 11, 2024. 

[12] S. Sivakumar, "Agentic AI in predict ive AIOPs: Enhancing IT 

autonomy and performance," International Journal of Scientific 

Research and Management (IJSRM), vol. 12, no. 11, pp. 1631-1638, 

2024. 

[13] D. B. Acharya, K. Kuppan, and B. Divya, "Agentic AI: Autonomous 

intelligence for complex goals–a comprehensive survey," IEEE Access, 

2025. 

[14] Z. M. Auda and S. J. Radhi, "Art ificial intelligence and evolution of the 

global system," IPRI Journal, vol. 22, no. 1, pp. 91-109, 2022. 

[15] H. F. Hansen, E. Lillesund, P. Mikalef, and Ν. Altwaijry, 

"Understanding artificial intelligence diffusion through an AI capability 

maturity model," Information Systems Frontiers, vol. 26, no. 6, pp. 

2147-2163, 2024. 

[16] A. M. Taha, Z. K. Alkayyali, Q. M. Zarandah, and S. S. Abu-Naser, 

"The evolution of AI in autonomous systems: Innovations, challenges, 

and future prospects," Adaptive Systems, vol. 19, no. 3, pp. 1-60, 2024. 

[17] Y. Wang et al., "Realization of empathy capability for the evolution of 

artificial intelligence using an MXene (Ti3C2)-based memristor," 

Electronics, vol. 13, no. 9, p. 1632, 2024. 

[18] U. M. Borghoff, P. Bottoni, and R. Pareschi, "Human-artificial 

interaction in the age of agentic AI: A system-theoretical approach," 

Frontiers in Human Dynamics, vol. 7, p. 1579166, 2025. 

[19] C. Wissuchek and P. Zschech, "Exploring agentic artificial intelligence 

systems: Towards a typological framework," in  Pacific-Asia Conference 

on Information Systems, Kuala Lumpur, 2025, pp. 1-17. 

[20] A. Chan et al., "Harms from increasingly agentic algorithmic systems," 

in Proceedings of the 2023 ACM Conference on Fairness, 

Accountability, and Transparency, 2023, pp. 651-666. 

[21] H. Clatterbuck, C. Castro, and A. M. Morán, "Risk alignment in agentic 

AI systems," arXiv preprint arXiv:2410.01927, 2024. 

[22] R. V. Barenji and S. Khoshgoftar, "Agentic AI for autonomous anomaly 

management in complex systems," arXiv preprint arXiv:2507.15676, 

2025. 

[23] M. K. R. Jaggavarapu, "The evolution of agentic AI: Architecture and 

workflows for autonomous systems," Journal of Multidisciplinary, vol. 

5, no. 7, pp. 418-427, 2025. 

[24] P. B. Bansod, "Distinguish ing autonomous AI agents from collaborative 

agentic systems: A comprehensive framework for understanding modern 

intelligent architectures," arXiv preprint arXiv:2506.01438, 2025. 

[25] L. H. Cheung, L. Wang, and D. Lei, "Conversational, agentic AI -

enhanced architectural design process:  Three approaches to multimodal 

AI-enhanced early-stage performative design exploration," Architectural 

Intelligence, vol. 4, no. 1, pp. 1-25, 2025. 

[26] J. Gu, "Position: Agentic systems constitute a key component of next-

generation intelligent image processing," arXiv  preprint 

arXiv:2505.16007, 2025. 

[27] S. Deng et al., "Agentic serv ices computing," arXiv preprint 

arXiv:2509.24380, 2025. 

[28] I. Adabara et al., "Trustworthy agentic AI  systems: A cross-layer review 

of architectures, threat models, and governance strategies for real-world  

deployment," F1000Research, vol. 14, p. 905, 2025. 

[29] Z. Porter et al., "INSYTE: A classif ication framework for traditional to 

agentic AI systems," ACM Transactions on Autonomous and Adaptive 

Systems, vol. 20, no. 3, pp. 1-39, 2025. 

[30] G. K. Sheelam, "Architecting agentic AI for real-time autonomous edge 

systems in next-gen mobile devices," Advances in Consumer Research, 

vol. 2, no. 3, 2025. 

[31] H. Toivonen and F. Lelli, "The varieties of agency in human–smart 

device relationships: The four agency profiles," Future Internet, vol. 16, 

no. 3, p. 90, 2024. 

[32] X. Wang et al., "Empowering edge intelligence: A comprehensive 

survey on on-device AI models," ACM Computing Surveys, vol. 57, no. 

9, pp. 1-39, 2025. 

[33] S. Raza, R. Sapkota, M. Karkee, and C. Emmanouilid is, "Responsible 

agentic reasoning and AI agents: A critical survey: Proposal for safe 

agentic AI via responsible reasoning AI agents (R2A2)," 

SuperIntelligence-Robotics-Safety & Alignment, vol. 2, no. 6, 2025. 

[34] G. K. Sheelam, "AI-driven spectrum management: Using machine 

learning and agentic intelligence for dynamic wireless optimization," 

European Advanced Journal for Emerging Technologies (EAJET), vol. 

2, no. 1, 2024. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

252 | P a g e  
www.ijacsa.thesai.org 

[35] Z. Chen, Q. Sun, N. Li, X. Li, and Y. Wang, "Enabling mobile AI agent 

in 6G era: Architecture and key technologies," IEEE Network, vol. 38, 

no. 5, pp. 66-75, 2024. 

[36] S. Panigrahy, "Multi-agentic AI systems: A comprehensive framework 

for enterprise d igital transformation," Journal of Computer Science and 

Technology Studies, vol. 7, no. 6, pp. 86-96, 2025. 

[37] R. Sharma, M. de Vos, P. Chari, R. Raskar, and A. M. Kermarrec, 

"Collaborative agentic AI needs interoperability across ecosystems," 

arXiv preprint arXiv:2505.21550, 2025. 

[38] R. J. Tong et  al., "IEEE AI standards for agentic systems," in 2025 IEEE 

Conference on Artificial Intelligence (CAI), 2025, pp. 1603-1609. 

[39] M. V. Krishnamoorthy, "Enhancing responsib le AGI development: 

Integrating human-in-the-loop approaches with blockchain-based smart 

contracts," Journal of Advances in Mathematics and Computer Science, 

vol. 39, no. 9, pp. 14-39, 2024. 

[40] K. Zheng et al., "Towards agentic smart design: An  industrial large 

model-driven human-in-the-loop agentic workflow for geometric 

modelling," Applied Soft Computing, p. 113920, 2025. 

 


