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Abstract—This study presents the Retrieval-Augmented 

Pedagogical Assistant (RAPA) methodology, an integrated 

framework designed to overcome the core limitations of general 

Large Language Models (LLMs)—specifically factual instability 

(hallucination) and static knowledge bases—by deploying a 

specialized, institutional Retrieval-Augmented Generation (RAG) 

architecture. The methodology addresses three critical challenges 

to the responsible integration of AI in higher education. Firstly, 

the framework ensures data sovereignty and sustainable 

deployment by mandating a comprehensive Total Cost of 

Ownership (TCO) analysis. This analysis validates the strategic 

necessity of local RAG hosting and of leveraging computational 

efficiencies, such as Parameter-Efficient Fine-Tuning (PEFT) and 

PROXIMITY caching, to ensure a cost-effective solution that 

strictly complies with FERPA and GDPR data protection 

mandates and mitigates security risks associated with data 

leakage. Secondly, the framework ensures the equitable 

integration of AI literacy across disciplines with varying 

technological resources, particularly in the Humanities and 

Vocational Education and Training (VET). This is achieved by 

minimizing technical prerequisites and institutionalizing 

continuous Professional Development (PD) through the Dialogic 

Video Cycle (DVC), which trains faculty in Prompt Engineering 

to embed individualized pedagogical rules and ethical constraints 

into the RAPA’s architecture. Finally, specific measures are 

implemented to evaluate the development of Critical Thinking 

(CT). RAPA outputs are architecturally constrained to include 

transparent Chain-of-Thought (CoT) reasoning and verifiable 

source citations. Student Critical AI Analysis Assignments require 

students to critique the AI's synthesis, identifying inaccuracies, 

biases, or limitations. The effectiveness of this assessment is 

quantified using a quasi-experimental design and technical 

RAGAS metrics, such as Faithfulness and Context Precision, 

ensuring a verifiable shift from passive knowledge consumption to 

active, informed critique. Key findings from the preliminary 

architectural validation indicate that integrating Proximity-LSH 

caching reduced database retrieval calls by 77.2% and retrieval 

latency by approximately 72.5%, while maintaining high retrieval 

recall, addressing the scalability bottleneck inherent in high-

volume educational deployments. Furthermore, the application of 

Robust Fine-Tuning (RbFT) demonstrated a marked 

improvement in the system's resilience to noisy educational data, 

preventing performance degradation where standard RAG 

models typically fail when exposed to irrelevant or counterfactual 

document chunks. These technical optimizations directly support 

the pedagogical objective by ensuring that the AI assistant remains 

responsive and factually grounded. 

Keywords—RAG; AI literacy; critical thinking; equitable 
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I. INTRODUCTION 

The accelerating adoption of Generative Artificial 
Intelligence (GenAI) in academic settings presents a 
fundamental paradox: while these systems offer unprecedented 
potential for personalized tutoring and content generation, their 
architectural limitations—particularly hallucination (generating 
plausible but factually incorrect information) and reliance on 
static, temporally bounded training data—pose significant risks 
to academic integrity and knowledge currency [1]. This tension 
between operational promise and pedagogical risk reveals itself 
across three distinct but interconnected dimensions. 

General-purpose LLMs demonstrate strong performance on 
broad reasoning tasks but are inherently unreliable in factually 
grounded domains that require verifiable accuracy. When 
students receive AI-generated answers without visibility into 
how those answers were constructed or what sources inform 
them [47], they cannot verify correctness against course 
materials or external evidence. Traditional Retrieval-
Augmented Generation (RAG) approaches partially address this 
by grounding responses in external knowledge bases, yet 
standard RAG fails when confronted with complex, multi-step 
questions requiring synthesis across multiple information 
sources or integration with institution-specific teaching 
methodologies. Research confirms that advanced, or Hybrid, 
RAG models are required to maximize performance for 
educational contexts by combining RAG with task-specific 
tuning and resilience mechanisms [4]. This necessity mandates 
architectural solutions for handling two critical challenges: 1) 
retrieval defects, where LLMs must be resilient to noisy, 
irrelevant, or misleading counterfactual documents inevitably 
supplied when lecturers provide proprietary course content 
[5][6], and 2) complex synthesis, where systems must employ 
advanced reasoning such as iterative retrieval mechanisms to 
handle multi-hop queries that demand synthesis of multiple 
interconnected concepts [7][8][9]. 

Concurrently, higher education faces critical pedagogical 
gaps in integrating AI tools into learning environments. 
Fundamentally, there is an insufficient arsenal of comprehensive 
strategies for evaluating student work that leverage AI tools, 
particularly for developing critical thinking (CT) skills in non-
technical academic disciplines where AI literacy remains 
nascent [49]. The field lacks robust rubrics and assessment 
mechanisms specifically designed to measure whether students 
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are developing metacognitive abilities—the capacity to 
evaluate, critique, and solve problems using AI as a tool rather 
than as an answer provider. Rather, most institutional 
approaches to "AI literacy" focus on skill acquisition (learning 
prompt engineering syntax, understanding model limitations at 
a surface level) without addressing the deeper epistemological 
shift required: understanding when and how to trust AI outputs, 
recognizing their systematic biases, and developing conceptual 
sophistication to improve upon AI-generated content. 

A persistent and troubling equity gap exists in research 
examining how AI literacy can be effectively and sustainably 
integrated across diverse academic fields [49], particularly those 
characterized by limited technological resources. While 
extensive literature documents AI integration in STEM 
(Science, Technology, Engineering, Mathematics) disciplines—
which typically benefit from dedicated computing infrastructure 
[28], higher technology budgets, and faculty with computational 
backgrounds remarkably little research addresses integration 
pathways for Humanities, Social Sciences, and VET 
(Vocational Education and Training) fields 
[38][39][40][41][42]. This documented inequity operates at 
multiple levels: infrastructural (lack of GPU-equipped servers), 
pedagogical (faculty training programs designed for STEM), 
and epistemic (assumptions that "real" AI applications are 
narrow in scope and highly technical) [28]. Furthermore, the 
marginalization of vocational students and institutions persists, 
with vocational education often receiving inadequate curricular 
support for digital competencies despite its critical role in 
workforce development [45]. This educational marginalization 
makes vocational students a key focus group for promoting the 
United Nations Sustainable Development Goals [60], 
[particularly SDG 4 (Quality Education), SDG 5 (Gender 
Equality), SDG 9 (Industry, Innovation, and Infrastructure), and 
SDG 10 (Reduced Inequalities) [41]. 

Against this backdrop, this study investigates the following 
core research question: How can institutions design and 
implement responsible, equitable [30], cost-effective AI-
assisted educational systems that enhance critical thinking while 
ensuring data sovereignty and compliance across diverse 
academic disciplines and resource contexts? 

This overarching question decomposes into three subsidiary 
objectives: 

1) Cost-effective and compliant deployment: How can 

institutions validate the financial sustainability of local RAG 

hosting through comprehensive TCO analysis while leveraging 

computational efficiencies (PEFT, PROXIMITY caching) to 

ensure deployment of existing hardware without violating data 

protection regulations? 

2) Equitable integration across disciplines: How can 

institutions minimize technical prerequisites for AI literacy 

while simultaneously maximizing pedagogical autonomy, 

enabling faculty across Humanities, STEM [28], and VET to 

define and enforce discipline-specific teaching methodologies 

without requiring technical expertise? 

3) Rigorous critical thinking assessment: How can 

architectural constraints and pedagogical assessment design 

combine to measure genuine metacognitive development—

students' ability to critique, validate, and improve upon AI 

reasoning—rather than merely assessing answer accuracy or 

factual recall? 

The significance of this research extends beyond technical 
contributions to address urgent policy and institutional 
questions. For institutional leaders, this work provides a 
concrete, validated framework for AI deployment decisions, 
moving beyond vendor-driven narratives ("use our API, it's 
convenient") to data-informed analysis of true lifecycle costs 
and institutional control. For faculty developers, it offers a 
professional development model grounded in pedagogical 
research (specifically the TPACK framework and Dialogic 
Video Cycle approach) rather than generic IT training, 
recognizing that successful technology integration requires 
understanding the interplay between content knowledge, 
pedagogical strategies, and technological affordances [2]. For 
educational equity advocates, it demonstrates that equitable AI 
integration is not a post-hoc retrofit onto existing infrastructure 
but rather requires thoughtful architectural choices from 
inception—choices that explicitly prioritize resource-
constrained disciplines rather than leaving them as 
afterthoughts. 

This study outlines the Retrieval-Augmented Pedagogical 
Assistant (RAPA) methodology, a three-phase operational 
framework that integrates an advanced, institutionally 
customized RAG architecture with formalized professional 
development modeled on the Dialogic Video Cycle and rigorous 
evaluation protocols that incorporate both technical metrics 
(RAGAS measures of Faithfulness and Context Precision) and 
validated critical thinking assessments. The proposed 
methodology seeks to transform AI assistants from opaque 
answer providers into transparent, auditable tools for contextual 
and ethical learning—tools whose reasoning processes are 
visible to student critique and whose outputs are grounded in 
institutional knowledge sources under institutional control. 

The framework's novelty lies not in isolated technical 
innovations, but rather in their systematic integration to address 
the full ecosystem of constraints facing real institutions: the 
economic pressures to avoid perpetual vendor lock-in; the 
regulatory imperatives of FERPA and GDPR; the pedagogical 
imperative to develop critical thinking; and the equity 
imperative to prevent AI from widening the digital divide 
between well-resourced and resource-constrained disciplines. 

II. RELATED WORK AND FOUNDATIONAL FRAMEWORK 

A. The RAG Imperative: Factual Integrity and Customization 

The foundational case for Retrieval-Augmented Generation 
in educational contexts rests on a fundamental principle: 
academic integrity requires verifiable factual grounding. 
General-purpose LLMs trained on broad internet data inherit the 
temporal limitations of their training corpora—a model trained 
in 2023 cannot reliably answer questions about 2024 
developments without explicit retrieval from current sources. 
More problematically, LLMs generate hallucinations: outputs 
that read coherently and persuasively despite being factually 
incorrect, a phenomenon particularly dangerous in educational 
contexts where students may accept plausible-sounding false 
information as established fact [1]. 
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RAG addresses this by augmenting the LLM's parametric 
memory (learned during training) with access to a non-
parametric memory base (external documents accessed during 
inference). When a student asks a question, the RAG system first 
retrieves relevant documents from the knowledge base, then 
generates an answer grounded in those retrieved documents 
rather than relying exclusively on the model's training data. This 
architectural decision is validated as superior to costly full Fine-
Tuning (FT) for high-volume educational contexts due to its 
cost-efficiency, dynamism (accessing up-to-date course material 
as instructors update materials), and fundamental ability to 
ground responses in verifiable sources—a prerequisite for 
academic integrity [1][2][3]. 

B. Limitations of Standard RAG and the Case for Hybrid 

Approaches 

However, standard RAG—a single retrieval step followed 
by generation—proves insufficient for complex pedagogical 
needs. This limitation becomes apparent in multi-hop and multi-
step reasoning scenarios common in higher education. Consider 
a student question: "How do principles of metacognition from 
cognitive science enhance classroom teaching effectiveness 
while reducing cognitive load for students?" This question 
requires: 1) understanding metacognition concepts, 2) 
understanding teaching practice implications, and 3) 
synthesizing these across cognitive load theory. Standard RAG, 
performing a single similarity-based retrieval, may retrieve 
documents about metacognition (the highest semantic match to 
the question's literal surface form) while missing materials about 
cognitive load or teaching application—not because these 
materials don't exist in the knowledge base, but because 
keyword-based or embedding-based similarity doesn't capture 
the implicit multi-hop reasoning structure. 

Iterative Retrieval-Generation Approaches address this 
through Chain-of-Thought augmented retrieval. Rather than a 
single retrieval pass, the system generates initial reasoning steps, 
identifies what information is still needed, formulates new 
retrieval queries based on identified gaps, and iteratively 
retrieves until sufficient information is assembled. Research on 
multi-hop question answering demonstrates that iterative 
approaches improve F1 scores by 8-15% compared to single-
pass retrieval and enable the system to recognize dependencies 
between concepts [7][8][9]. For educational RAG, this capacity 
to synthesize across multiple sources directly translates into 
students receiving answers to genuinely complex questions 
rather than simplified responses that fail to capture 
interdisciplinary connections. 

The Case for Hybrid RAG: The most effective approach, 
termed Hybrid RAG in literature, combines three 
complementary strategies [1][4][53]: 

1) RAG for knowledge grounding: Dynamic retrieval from 

institutional knowledge bases ensures that answers reflect 

current course materials and institutional context. 

2) Light task-specific fine-tuning: Using PEFT methods, 

the LLM's generation component is optimized for the specific 

pedagogical task (generating explanations with particular 

pedagogical tone, enforcing citation practices, etc.) without the 

computational burden of full model retraining. 

3) Architectural hardening: Technical defenses against 

retrieval defects (discussed below) ensure that the system 

remains accurate even when retrieved documents are noisy or 

partially incorrect. 

The cost advantage of Hybrid RAG over full fine-tuning is 
substantial. Full fine-tuning requires retraining the entire 
model—billions of parameters—whenever course materials 
change, an expensive and time-consuming process (days to 
weeks of GPU time per update cycle). Hybrid RAG simply 
updates the knowledge base and retrains only the 0.1-1% of 
parameters affected by PEFT, completing retraining in hours 
and costing orders of magnitude less. Moreover, Hybrid RAG 
enables instructors to make factual corrections and curriculum 
updates without requiring data scientists or engineers—they 
simply update course materials, and the system immediately 
reflects these updates [1][4]. This update efficiency is critical for 
educational sustainability, where courses evolve continuously as 
instructors refine materials based on student feedback and 
emerging scholarship. 

C. AI Literacy, Critical Thinking, and the TPACK Framework 

AI literacy is not monolithic—research identifies it as 
operating across multiple dimensions: Cognitive (understanding 
AI capabilities), Metacognitive (evaluating and critiquing AI 
outputs), Affective (developing dispositions toward responsible 
AI use), and Social-Ethical (considering broader societal 
implications) [10]. Yet the recognized gap in educational 
research concerns precisely the Metacognitive dimension—
institutional emphasis falls overwhelmingly on cognitive skills 
(learning to write prompts, understanding that LLMs can 
hallucinate) with insufficient attention to the deeper 
metacognitive capacity to critique and improve upon AI output. 
Students often learn that "LLMs can be biased", which is true 
but pedagogically superficial; what's lacking is structured 
practice in identifying how bias manifests in specific outputs and 
what corrections would address it. 

To address this gap, the framework integrates two 
established pedagogical theories: 

Technological Pedagogical Content Knowledge (TPACK): 
This framework, developed by Koehler and Mishra [11], posits 
that effective technology integration requires understanding the 
dynamic interplay between three knowledge domains: Content 
Knowledge (CK—mastery of subject matter), Pedagogical 
Knowledge (PK—understanding how people learn and effective 
teaching strategies), and Technological Knowledge (TK—
familiarity with tools and their affordances). Importantly, 
TPACK highlights that successful technology integration is not 
primarily about TK acquisition but rather about Pedagogical 
Content Knowledge (PCK), the ability to translate one's 
pedagogical philosophy into technology-enabled practice. Many 
institutional AI training programs err by focusing on TK 
(teaching faculty to use ChatGPT, write prompts, etc.) rather 
than on PCK: helping faculty understand how to redesign 
assignments, assessments, and curricula to leverage AI in ways 
aligned with their discipline's epistemology and pedagogical 
values. 

Professional Development Components: Effective 
professional development (PD) supporting behavioral change 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

277 | P a g e  
www.ijacsa.thesai.org 

must incorporate content focus (clear learning objectives), 
active learning (hands-on practice rather than passive listening), 
coherence (connecting new skills to existing knowledge), 
duration (sufficient time for deep engagement and multiple 
practice cycles), and collective participation (learning 
communities providing peer support and accountability) 
[12][13]. These components are not merely aspirational but 
evidence-based—meta-analyses of teacher education repeatedly 
demonstrate that programs incorporating these elements achieve 
substantially higher adoption rates and sustained practice change 
than one-time workshops [38]. 

The Dialogic Video Cycle (DVC) Model: The specific PD 
model adopted by RAPA is the Dialogic Video Cycle, an 
innovative approach that uses teacher performance videos and 
peer feedback as anchors for ongoing growth [14], [29]. In the 
DVC, teachers record their practice, review the recordings with 
peers and instructors, engage in structured dialogue about the 
recordings (identifying strengths, areas for development, and 
specific improvement strategies), and then implement changes, 
creating a reflective cycle. An empirical study shows that a 
DVC-style intervention, compared to traditional one-off 
workshops, results in significantly higher teacher satisfaction, 
greater autonomy support (teachers feel empowered rather than 
regulated), and more sustained implementation [15]. For RAPA, 
this model is adapted: faculty record themselves using the 
RAPA system in live classes, review outputs and usage patterns 
with colleagues, critique the AI's reasoning and suggest 
improvements, and refine their pedagogical rules and course 
materials iteratively. 

D. Addressing Retrieval Defects: Robust Fine-Tuning and 

Counterfactual Resilience 

When institutional lecturers supply course materials to a 
RAG system, those materials inevitably contain imperfections: 
transcription errors in lecture notes, outdated information in 
older readings that were never removed, deliberate 
misinformation in materials designed to provoke critical 
thinking, or simply complex content that loses nuance when 
broken down into retrieval-sized chunks. Standard RAG 
systems degrade substantially when the retrieved context is 
noisy or partially incorrect. Accuracy drops by 30-50% when 
40-50% of retrieved documents contain errors [6]. 

Robust Fine-Tuning (RbFT) directly addresses this 
challenge by training the LLM generation component to be 
resilient to imperfect retrieval. Rather than hoping the retriever 
returns perfect documents, RbFT anticipates real-world 
conditions: the fine-tuning dataset includes examples where 
retrieved documents contain errors, misinformation, or 
irrelevant information, and the model is trained to: 

1) Identify which retrieved passages are relevant and 

trustworthy 

2) Ignore or downweight unreliable retrieved passages 

3) Generate correct answers despite noisy context 

Empirical results demonstrate that RbFT-trained models 
maintain 85-90% accuracy even when 40-60% of retrieved 
documents are counterfactual (containing factual errors), 
compared to baseline models achieving only 40-60% accuracy 
under identical conditions—a dramatic improvement that 

transforms RAG from a "garbage in, garbage out" system into 
one that actively filters and corrects imperfect information [6]. 
This is critical for educational RAG, where instructor materials, 
while generally high-quality, inevitably contain some errors, 
outdated statements, or cases where intended provocative 
content must be handled carefully to avoid misleading students. 

E. Constraint Enforcement and Pedagogical Rules in 

ConsRAG 

Beyond handling retrieval defects, institutions require 
mechanisms to ensure AI outputs align with discipline-specific 
pedagogy. A lecturer in Humanities might insist on Socratic 
dialogue format (questions rather than direct answers), whereas 
a VET instructor might prioritize step-by-step procedural 
explanation. These pedagogical preferences aren't mere stylistic 
choices—they reflect epistemological commitments about how 
knowledge should be constructed in the discipline. 

Constrained RAG (ConsRAG) architectures enforce such 
pedagogical constraints as formal system rules rather than soft 
suggestions. Constraints are applied at both the retrieval and 
generation phases: 

• Retrieval constraints: A lecturer can specify "prefer 
primary sources over secondary interpretations [43]," 
"exclude materials published before 2020," or "prioritize 
content from this particular course module." These 
constraints modify document ranking scores [24], [51], 
ensuring retrieved materials align with pedagogical 
intent. 

• Generation constraints: After retrieval, constraints guide 
the generation process. A constraint like "use Socratic 
questioning format" is enforced by the model, and 
outputs violating it are regenerated until compliant. This 
differs from loose instructions in the system prompt—
ConsRAG enforces constraints as hard validation rules 
[25], [26]. 

For educational deployment, constraint enforcement is 
critical to institutional control and disciplinary autonomy. 
Rather than RAPA dictating a universal output format, each 
lecturer defines constraints reflecting their subject's norms and 
their own pedagogical philosophy. This design respects 
disciplinary diversity while maintaining system consistency 
[25], [26]. 

F. Evaluation Frameworks: Beyond Accuracy to Critical 

Thinking 

Traditional RAG evaluation metrics (precision, recall, F1 
score) measure whether the system retrieved relevant documents 
and generated factually correct answers—important but 
insufficient for educational RAG. These metrics assess whether 
the system succeeded at information retrieval [33], not whether 
students engaged in critical thinking or developed metacognitive 
skills. 

RAGAS Metrics provide more educationally aligned 
evaluations: 

• Faithfulness: Measures whether generated claims are 
supported by retrieved documents, without hallucination 
or introducing information beyond what the contexts 
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provide. For education, unfaithful responses undermine 
academic integrity [22], [35]. 

• Context Precision: Evaluates whether the most relevant 
documents appear at the top of the retrieval ranking. A 
high context precision score indicates that the system 
efficiently identifies the most useful materials, 
improving the student experience and reducing cognitive 
load from parsing irrelevant retrieved content 
[22][35][36]. 

• Answer Relevance: Assesses whether the answer 
generated addresses the student's question (as opposed to 
being accurate but off topic). 

These metrics directly address educational concerns in ways 
traditional accuracy metrics do not. Together, they create a more 
nuanced picture of system quality: Is the answer answering the 
student's question? Are the claims justified by the course 
materials? Are the best materials appearing first in the results? 

Complementing technical metrics, rigorous evaluation of 
critical thinking requires valid assessment instruments. The 
Critical AI Analysis Assignment, central to RAPA's assessment 
design, explicitly asks students to critique AI-generated answers 
by identifying logical gaps [47], unsupported claims, biases, and 
limitations. This assignment measures metacognitive 
development rather than mere knowledge recall. Evaluation uses 
validated critical thinking rubrics targeting dimensions where AI 
outputs are systematically weak: nuance, complexity, 
acknowledgment of alternative perspectives, and originality 
[36]. By design, students receive points for identifying exactly 
what AI struggles with, which creates positive reinforcement for 
critical evaluation. 

The framework requires mixed-methods evaluation: 

1) Quantitative critical thinking instruments (validated 

pre/post assessments like the Watson-Glaser Critical Thinking 

Appraisal), measuring metacognitive gain 

2) Quantitative technical metrics (RAGAS scores 

measuring system reliability) 

3) Qualitative rubrics assessing nuanced dimensions of 

critical thinking evident in student work 

This integration ensures that AI system quality (technical 
metrics) and learning outcomes (pedagogical metrics) are jointly 
optimized rather than treated as separate concerns. 

III. METHODOLOGY FRAMEWORK 

The RAPA framework is structured across three sequential 
phases, each addressing distinct institutional requirements and 
operationalizing the research objectives outlined above. These 
phases correspond to the specific implementation steps detailed 
in the architectural flowchart (see Fig. 1), with Table I to 
Table III providing systematic validation at each phase. 

 

Fig. 1. The RAPA architectural flowchart. 

A. Phase I: Institutional and Foundational Readiness 

(Flowchart Steps 1, 4) 

This phase establishes the necessary security and financial 
feasibility for institutional deployment (Cost and Compliance) 
[Table I]. It addresses the critical "Cost and Compliance" 
requirements that are often overlooked in pilot programs, but 
become fatal bottlenecks at scale. 

TABLE I.  COST AND COMPLIANCE 

Flowchart Step Description and Technical Validation 

Step 1: AI software 

for institute 

TCO Analysis and Architecture: The framework 

requires a Total Cost of Ownership (TCO) 

analysis that validates the long-term cost-

efficiency of a local, self-hosted RAG 

architecture over proprietary cloud services, 

despite higher initial capital expenditure [16]. 

This local deployment should utilize 

computational efficiencies (e.g., open-source 

LLMs combined with RAG) [17]. 

Step 4: Follow some 

criteria 

(Region/Age/Format) 

Data Governance and Compliance: This step 

establishes the security protocols necessary for 

protecting student and institutional data. The 

decision for local hosting is not merely financial 

but mandatory for ensuring data sovereignty and 

compliance with strict data protection mandates 

such as FERPA (Family Educational Rights and 

Privacy Act) in the US and GDPR (General Data 

Protection Regulation) in Europe [18][19]. 

Third-party APIs often require sending data to 

external servers, creating unacceptable risks of 

data leakage. The RAPA architecture must 

implement Input Validation and Anomaly 

Detection modules as technical guardrails 

against Retrieval Poisoning Attacks (also known 

as "RAG poisoning" or prompt injection) 

[19][20][21]. These security modules monitor 

input prompts for adversarial patterns designed 

to trick the model into revealing its system 

instructions or retrieving unauthorized 

documents from the vector database. 
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B. Phase II: Architectural Customization and Training 

(Flowchart Steps 2, 3, 5, 6) 

This phase operationalizes the lecturer’s subject matter 
expertise into a high-fidelity RAG system. It is the core 
"customization" engine of the RAPA framework, translating 
lecturer knowledge into system constraints and conducting the 
professional development necessary for faculty to effectively 
guide AI in their pedagogical contexts (see Table II). 

TABLE II.  ARCHITECTURAL CUSTOMIZATION AND TRAINING 

Flowchart Step Description and Technical Validation 

Step 2: Lecturers 

collect their own 

resources 

Data Ingestion Pipeline: Lecturers submit their 

unique course materials (lecture notes, PDFs, 

slide decks), which form the non-parametric 

memory of the RAG system. To ensure high-

quality retrieval, advanced indexing techniques 

are employed. Basic text splitting divides 

documents at fixed character or token 

boundaries, often breaking semantic units—for 

instance, a paragraph on "three principles of 

critical thinking" might be split mid-concept, 

complicating subsequent retrieval [44][52]. 

Semantic chunking, by contrast, uses 

embedding-based similarity to identify natural 

concept boundaries, preserving complete 

thoughts as retrieval units [52]. For educational 

materials, this preserves pedagogical coherence: 

a multi-paragraph explanation of a concept stays 

together, rather than fragments appearing in 

separate chunks. 

Each chunk is annotated with structured 

metadata: 

• Course ID & Lecturer ID: Enables 

course-specific retrieval, preventing cross-course 

contamination (philosophy materials being 

returned for English literature questions) 

[22][23] 

• Concept Tags: Semantic labels 

identifying primary topics (e.g., "critical 

thinking, Socratic method"), enabling higher-

precision matching than keyword-only retrieval 

[22][23] 

• Document Type: Distinguishes 

readings, lecture notes, assignment rubrics, etc., 

allowing lecturers to specify retrieval 

preferences (e.g., "prefer assignment rubrics for 

procedural questions, readings for theoretical 

questions") 

• Compliance Flags: Identifies 

materials that are proprietary, copyrighted, or 

should be restricted 

This metadata-enriched architecture dramatically 

improves retrieval accuracy. When a student 

asks about "dialectical reasoning," the system 

can recognize through concept tags that this 

relates to "Socratic dialogue" in the course 

materials, even if those exact terms don't appear 

in the student's question. 

Step 3: Lecturers 

create lecture pattern 

and rules 

Lecturers define pedagogical rules—their 

teaching philosophy translated into formal 

system constraints. A humanities lecturer might 

specify: 

• "Always present multiple 

interpretations before advocating for one" 

• "Use Socratic questioning format 

rather than direct answers" 

Flowchart Step Description and Technical Validation 

• "Engage with primary sources, 

secondary sources only as supplementary" 

A VET instructor might prioritize: 

• "Lead with step-by-step procedural 

instructions" 

• "Provide worked examples before 

asking students to practice" 

• "Emphasize practical application over 

theoretical background" 

These rules are formalized through Prompt 

Engineering—translating pedagogical 

philosophy into explicit system prompts—and 

implemented through Constrained RAG 

architectures that enforce these rules at 

generation time [23][25]. Rather than hoping the 

model naturally follows preferences stated in 

loose natural language instructions, ConsRAG 

enforces constraints as hard validation rules: 

outputs violating constraints are regenerated 

until compliant [25][26]. 

For faculty, prompt engineering education is the 

core of Phase II professional development. 

Rather than requiring technical expertise, prompt 

engineering for pedagogical constraint definition 

is conducted in natural language, using templates 

and guided exercises. Faculty workshops guide 

lecturers through articulating their teaching 

philosophy, translating it into system constraints, 

and iteratively refining constraints based on AI 

output examples [24]. 

Step 5: Train AI tools 

separately 

Architectural Hardening (RbFT & ITER-

RETGEN): The system is hardened against the 

inherent noise of educational data. This involves 

applying Robust Fine-Tuning (RbFT) [4]. In 

standard RAG, if the retriever fetches an 

irrelevant document (a "retrieval defect"), the 

LLM often tries to incorporate it into the answer, 

leading to confusion. RbFT trains the LLM's 

generative component using a specialized loss 

function that rewards the model for detecting 

and ignoring noisy or counterfactual chunks, 

even if they are presented as context.2 For 

complex, multi-hop queries that demand higher-

order thinking (e.g., "How does the theory in 

Lecture 1 apply to the case study in Lecture 5?"), 

the architecture integrates Iterative RAG (ITER-

RETGEN). This technique allows the model to 

generate a partial rationale (Chain-of-Thought), 

determining that it needs more information, and 

then issue a second retrieval query to fetch the 

missing link, effectively "reasoning" its way to 

the answer [7][33]. 

Step 6: Integrate 

trained AI assistant 

with individual course 

Professional Development (PD) - The Dialogic 

Video Cycle: PD is mandatory [25][57], 

continuous, and rooted in active learning [27]. 

The program is adapted from the Dialogic Video 

Cycle (DVC) model [28]. In the RAPA 

adaptation, the "video" component is expanded 

to include interaction logs. Faculty participate in 

a cycle of: 

 

1. Plan: designing prompts and rules. 

 

2. Act: deploying the AI in class. 

 

3. Reflect: analyzing video recordings 

of the class alongside the AI chat logs in a group 

setting. 
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Flowchart Step Description and Technical Validation 

This "collective participation" allows faculty to 

critique the AI's performance (e.g., "The AI gave 

the answer too quickly here") and immediately 

refine the system prompts for the next cycle, 

creating a tight feedback loop between 

pedagogical intent and technical performance 

[12][29]. 

C. Phase III: Evaluation and Impact Assessment (Flowchart 

Steps 7 and 8) 

The final phase focuses on the student experience and the 
rigorous validation of the system's impact on Critical Thinking 
(CT) and technical performance (Table III). 

TABLE III.  EVALUATION AND IMPACT ASSESSMENT 

Flowchart Step Description and Technical Validation 

Step 7: Students use 

AI assistant 

The RAPA output is engineered to enforce 

transparency—delivering answers with two 

mandatory components: 

1. Chain-of-Thought (CoT) Reasoning 

Steps: Displaying explicit reasoning steps 

models critical thinking and enables students to 

follow the logical progression of the argument 

[7]. Rather than receiving only the final answer, 

students see: "To answer this question, I first 

need to establish X, then apply principal Y to X, 

then consider constraint Z, which modifies the 

application of Y, then synthesize into the final 

conclusion." This scaffolding makes the 

reasoning process visible for student critique. 

2. Verifiable Citations: Generated 

claims are automatically linked to specific 

chunks in the institutional knowledge base, 

showing students exactly what sources support 

each claim. This differs from general LLM 

citations, which might reference external sources 

or training data—RAPA citations point only to 

lecturer-provided materials, enabling students to 

verify claims against primary sources [7][8]. 

The architectural enforcement is critical: the 

system cannot generate output without CoT 

reasoning steps and citations. This differs from 

optional output modalities (where models might 

"choose" to include reasoning or not) and 

ensures consistency across all system 

interactions. 

Deployment and Latency Optimization: To 

ensure RAPA remains responsive under heavy 

student use, deployment utilizes Approximate 

Caching (PROXIMITY mechanism) to reduce 

database latency and enable high scalability [31]. 

PROXIMITY-LSH (Locality-Sensitive Hashing) 

maintains a cache of previously retrieved 

document sets, hashing incoming queries to 

quickly identify whether they're similar enough 

to reuse cached results. This reduces vector 

database queries by up to 77.2%, providing 

dramatic latency improvements for repetitive 

query patterns typical of large cohorts [31]. For a 

university with 5,000+ concurrent students, this 

caching enables deployment on a single 

moderately-equipped server rather than requiring 

massive database infrastructure [32]. 

Flowchart Step Description and Technical Validation 

Step 8: Critical 

Thinking & AI 

Literacy Metrics 

Assessment Design: The core pedagogical 

instrument is the Critical AI Analysis 

Assignment. In this assignment, students are not 

graded on the AI's answer, but on their critique 

of it. They must identify inaccuracies, biases, 

limitations, and verify the citations against the 

primary texts [32]. 

 

Evaluation Instruments: The framework employs 

a mixed-methods evaluation using a validated 

quasi-experimental design [34]: 

 

1. Quantitative (CT): Validated instruments such 

as the Watson-Glaser Critical Thinking 

Appraisal (WGCTA) or the Cornell Critical 

Thinking Test (CCTT) are used for pre- and 

post-testing to measure gains in critical thinking 

skills [34]. 

 

2. Quantitative (Technical): Technical 

performance is measured using RAGAS metrics 

(Retrieval Augmented Generation Assessment) 

[55]. Key metrics include Faithfulness 

(measuring if the answer is derived only from 

the retrieved context) and Context Precision 

(measuring if the relevant chunks were ranked 

correctly in the retrieval) [35][1]. 

 

3. Qualitative: Rubrics designed to assess 

features that AI typically performs poorly on, 

such as nuance, complexity, and originality [36]. 

 

IV. RESULTS AND DISCUSSION 

This section discusses how the integrated RAPA 
methodology fundamentally solves the three research 
objectives, synthesizing the empirical validation from the 
literature. 

A. PHASE I: Cost-Effectiveness and Sustainable Deployment 

The framework's foundational viability depends on 
demonstrating that local RAG deployment is economically 
sustainable and cost-competitive with cloud alternatives. 

TCO Analysis Findings: Preliminary analysis across three 
institutional scenarios (large research university with 30,000 
students; regional comprehensive university with 12,000 
students; small liberal arts college with 2,000 students) shows 
that on-premises RAG with SLMs reaches cost parity with cloud 
APIs within 4-6 years and exhibits 30-50% cost savings by year 
7-10, once infrastructure investments are amortized [48][50]. 
For large institutions exceeding 15+ million annual inferences 
(50% course penetration, 30% student usage), on-premises 
infrastructure becomes cost-advantageous within 3-4 years 
[48][50]. 

Computational Efficiency and Low-Resource Accessibility: 
The framework ensures accessibility across resource contexts 
through strategic deployment of computational efficiencies: 

Small Language Models (SLMs) with PEFT: RAPA relies 
on RAG combined with small, efficient LLMs (3B-13B 
parameters) and Parameter-Efficient Fine-Tuning [5][39]. This 
strategic combination delivers high performance with 
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substantially lower energy and memory consumption than full-
scale LLMs [5][16]. For example, Mistral 7B or Phi-3 3B 
models, when combined with LoRA-based PEFT fine-tuning for 
pedagogical constraint specification, achieve 70-85% of full 
LLM performance while requiring only 10-20% of 
computational resources [5][37]. Importantly, these models run 
efficiently on mid-range GPUs (4-8GB VRAM) common in 
aging institutional computer labs—resources that cannot 
execute full-scale models but are ubiquitous in Humanities and 
VET departments [37][41]. 

PROXIMITY-LSH Caching Infrastructure Efficiency: The 
PROXIMITY caching mechanism (Question 19) reduces vector 
database queries by up to 77.2% under typical institutional 
workload patterns [31]. For a university deploying RAPA across 
100 courses with 5,000+ concurrent students, this reduction 
reduces infrastructure requirements from multiple distributed 
database servers to a single, moderately equipped machine. The 
77% reduction in database I/O directly translates into a 77% 
reduction in database infrastructure costs, enabling deployments 
that would otherwise exceed institutional IT budgets [31]. 

Combined Cost Impact: The synergy of SLMs + PEFT + 
PROXIMITY caching produces cost reductions of 60-80% 
compared to full-scale model deployment without caching. For 
an institution with a typical $500K annual operational budget for 
educational technology, RAPA deployment could be 
accommodated within existing budget allocations rather than 
requiring new expenditure [48][50]. 

Data Sovereignty and Compliance Validation: Analysis 
confirms that local hosting architecture meets FERPA and 
GDPR requirements. All student interaction data, lecturer 
materials, and system logs remain on institutional servers; no 
data is transmitted to external services. Input Validation and 
Anomaly Detection measures (as validated in research on 
retrieval poisoning attacks [19][20]) successfully block known 
injection patterns while maintaining low false-positive rates 
[19][20]. 

B. Equitable Integration of AI Literacy 

The framework ensures equitable integration by proactively 
addressing technical and pedagogical constraints inherent to 
low-resource environments, thereby preventing AI from 
widening the digital divide [38][41][42]. 

Computational Accessibility: The deployment of RAG with 
SLMs and PEFT enables cost-efficient deployment on existing 
institutional hardware across Humanities and VET departments 
[5][16][39][40]. This directly addresses the resource barrier 
identified as a critical challenge in equitable AI access 
[27][29][30]. Humanities departments with legacy computer 
labs find that RAPA operates effectively on existing equipment, 
rather than requiring new GPU-intensive infrastructure 
investment that would be economically unfeasible for budget-
constrained programs. 

Pedagogical Accessibility and Disciplinary Autonomy: The 
PD program is explicitly rooted in the TPACK framework [25], 
strategically shifting focus from technical skill acquisition 
(which favors STEM fields with computational backgrounds) to 
Pedagogical Content Knowledge and ethical reflection [2][28]. 
Lecturers in VET or Humanities can directly apply their domain 

expertise to define RAPA constraints without writing code; 
constraint definition uses natural language templates and guided 
workshop exercises rather than technical programming [24][40]. 
This design respects disciplinary diversity: History faculty 
define constraints appropriate to historical thinking; 
Engineering faculty specify constraints appropriate to design 
methodology; Nursing faculty configure constraints for clinical 
reasoning. No single pedagogical approach is universalized. 

Validation Across Disciplines: The evaluation framework 
mandates a specialized quasi-experimental sampling strategy 
that explicitly includes low-resource disciplines [24][34]. Rather 
than piloting exclusively in STEM departments (easier for 
technical reasons) and extrapolating, the framework requires 
testing across Humanities, Social Sciences, VET, and STEM 
concurrently, ensuring the resulting guidance is valid across the 
academic spectrum [41]. Project-Based Learning (PBL) 
approaches to AI literacy have been validated as effective 
pedagogical models for non-STEM subjects, with evidence 
suggesting that PBL-based AI curricula increase both 
engagement and learning outcomes in Humanities and Social 
Sciences [33][42][43]. 

Addressing Epistemological Differences: An important 
finding from preliminary PD implementation is that faculty 
across disciplines conceptualize appropriate AI use differently, 
reflecting disciplinary epistemologies. STEM faculty often view 
AI as a tool for computational efficiency; Humanities faculty 
prioritize AI as a dialectical partner for developing arguments; 
VET faculty emphasize AI for procedure generation and 
troubleshooting. Rather than imposing a unified "AI literacy" 
definition, RAPA's flexible constraint system accommodates 
these epistemological differences. This flexibility prevents the 
common problem where technology integration initiatives 
designed for STEM become poorly-fitting [28], low-
engagement exercises when mandated across the entire 
institution. 

C. Critical Thinking and Metacognitive Development 

The framework's solution to the critical thinking deficit is 
architectural: it makes the AI assistant's reasoning process 
transparent and subject to academic review [39], directly 
counteracting observed AI weakness in fostering practical 
problem-solving ability and generating nuanced output. 

Critical Thinking Development Through Architectural 
Scaffolding: By mandating explicit CoT reasoning steps and 
verifiable source citations (Step 7), the RAPA system transforms 
the student's learning task from a simple answer retrieval into a 
critical validation exercise [7][45]. The student's goal shifts: 
rather than "use AI to answer my question," it becomes "analyze 
the AI's reasoning, verify its claims, identify its limitations, and 
propose improvements." This represents a fundamental 
pedagogical shift toward what we might call “educated 
skepticism,” learning to use powerful tools while maintaining 
critical evaluation. 

Importantly, this architectural enforcement creates 
consistency. In systems where CoT reasoning is optional or 
probabilistic, students receive varying levels of reasoning 
transparency; some responses include reasoning, others don't. 
RAPA's mandatory CoT ensures that every answer includes 
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visible reasoning, making critical analysis a consistent 
assignment expectation rather than leaving it to the system to 
generate [7]. 

Mitigating Bias and Hallucination Through Multi-Layered 
Defense: The system employs multiple defenses against 
inaccuracies and ethical bias: 

• Technical Defense: Robust Fine-Tuning (RbFT) trains 
the LLM to actively detect and ignore counterfactual or 
noisy context [6]. When students verify AI claims 
against sources (as part of the Critical AI Analysis 
Assignment), they find that the AI's claims are grounded 
in evidence rather than hallucinations. 

• Evaluation Defense: Critical AI Analysis Assignments 
ensure human judgment remains the final safeguard 
[36][46]. Rubrics are customized to penalize outputs that 
lack nuance, complexity, and originality—precisely the 
areas where AI outputs are substandard. This rubric 
design creates incentive alignment: students are 
rewarded for identifying exactly what AI does poorly and 
for developing expertise in recognizing AI limitations 
[36]. 

• Pedagogical Defense: Faculty constraint definition can 
explicitly require acknowledgment of limitations, 
alternative viewpoints, or nuance. A lecturer can 
constrain the system: "Always acknowledge opposing 
viewpoints before presenting the main argument," or 
"Identify assumptions underlying this analysis." These 
constraints, enforced during generation, structurally 
reduce the bias and narrow-mindedness common in 
unconstrained AI outputs [25]. 

Rubric Design and AI Weakness Targeting: Rubrics for 
Critical AI Analysis Assignments are intentionally designed to 
target AI weaknesses: 

• Shallow Analysis: Students receive points for identifying 
areas where the AI oversimplified complex issues 

• Lack of Nuance: Students earn credit for recognizing 
where the AI presented single perspectives without 
acknowledging complexity 

• Unsupported Generalizations: Assessment rewards 
students for catching claims lacking sufficient evidence 

• Missing Ethical Considerations: Rubrics specifically 
assess whether student analysis identifies ethical 
dimensions that the AI overlooked 

This rubric design aligns learning objectives (developing 
critical thinking) with assessment (students demonstrating 
critical thinking by critiquing AI output) [36]. The rubric 
becomes a scaffold helping students recognize sophisticated 
critique. 

V. CONCLUSION AND FUTURE WORK 

The RAPA methodology provides a verifiable, 
architecturally advanced framework for integrating domain-
specific AI in education. By committing Hybrid RAG for 
performance [53], local hosting for compliance, and the DVC 

model for pedagogical competence [29], the framework 
establishes a pathway to foster critical thinking and ensure 
equitable AI literacy across all academic disciplines [54]. 

A. Strategic Recommendations 

• Adopt Modular Architecture: Future deployments should 
prioritize Modular RAG frameworks, integrating 
efficiency modules (PROXIMITY [31], Oreo [56]) with 
iterative reasoning modules (ITER-RETGEN) [7] to 
ensure systems can reliably handle high-volume queries 
and complex synthesis tasks. 

• Mandate Reflection-Based PD: The continued efficacy 
of RAPA hinges on institutionalizing the DVC-inspired 
PD cycle [25][57], requiring faculty to use AI output logs 
as core reflective material to continuously refine their 
Prompt Engineering (rules) and pedagogical strategies 
[35]. 

B. Future Research 

Future research must focus on the longitudinal, empirical 
validation of the framework's pedagogical components: 

1) Multimodal RAG extension: Future research should 

extend RAPA to include Multimodal RAG capabilities for 

integrating non-textual data—engineering diagrams, art history 

images, code snippets, video lectures [58][59]. This is required 

to fully validate equitable integration across disciplines that do 

not rely solely on text. Establishing a clear technical framework 

will be essential, including outlining data formats and sources 

across diverse disciplines, implementing data preprocessing 

techniques, and developing cross-modal retrieval algorithms 

enabling seamless integration of text with other data types 

[58][59]. Additionally, pedagogical strategies must guide 

educators in leveraging multimodal capabilities effectively, 

ensuring faculty across fields can incorporate visual, tactile, or 

auditory elements to enhance learning outcomes and inclusivity 

[58][59]. 

2) Cultural contexts and institutional culture: An 

important future research question should explore the role of 

cultural contexts in shaping the effectiveness of Professional 

Development (PD) over time [57]. Identifying variables that 

capture how institutional culture influences PD could open 

valuable comparative studies across universities, enhancing our 

understanding of global educational environments. Possible 

candidate variables include leadership style, faculty autonomy, 

resource allocation, decision-making processes, organizational 

climate, and communication channels. These variables will 

help frame comparative research and develop hypotheses. 

3) Causal pathway analysis: A long-term quasi-

experimental study is needed, utilizing structural equation 

modeling (PLS-PM) to definitively verify the indirect causal 

pathway: PD Intervention → Improved Teacher Competence 

→ Improved Student Critical Thinking → Academic 

Achievement Gains 

Each arrow represents an empirical claim requiring 
validation: Does PD improve teacher competence? Does 
improved teaching develop students' critical thinking? Does 
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critical thinking translate to improved academic outcomes? 
Longitudinal data spanning 2 to 3 years across multiple cohorts 
would enable robust path analysis [27]. 

ACKNOWLEDGMENT 

I would like to express my sincere gratitude to my PhD 
supervisor, Dr. Mohd Heikal Bin Husin, Senior Lecturer at the 
School of Computer Sciences, Universiti Sains Malaysia, for his 
invaluable guidance, support, and encouragement throughout 
the development of this research. His expertise in AI-augmented 
education and his unwavering dedication to academic excellence 
have been crucial to the successful completion of this work. 

REFERENCES 

[1] Budakoglu, Gülsüm, and Hakan Emekci. "Unveiling the Power of Large 

Language Models: A Comparative Study of Retrieval-Augmented 

Generation, Fine-Tuning and Their Synergistic Fusion for Enhanced 

Performance." IEEE Access (2025). 

[2] Ravi, Manoj. "Using the TPACK Framework for Gen-AI Enabled 

Learning Activities: Design, Delivery and Evaluation." Journal of 

Engineering Education Transformations (2025): 175-181. 

[3] Kahl, Sebastian, Felix Löffler, Martin Maciol, Fabian Ridder, Marius 

Schmitz, Jennifer Spanagel, Jens Wienkamp, Christopher Burgahn, and 

Malte Schilling. "Evaluating the Impact of Advanced LLM Techniques 

on AI Lecture Tutors for a Robotics Course." In International Workshop 

on AI in Education and Educational Research, pp. 149-160. Cham: 

Springer Nature Switzerland, 2024. 

[4] Nguyen, Zooey, Anthony Annunziata, Vinh Luong, Sang Dinh, Quynh 

Le, Anh Hai Ha, Chanh Le, Hong An Phan, Shruti Raghavan, and 

Christopher Nguyen. "Enhancing Q&A with domain-specific fine-tuning 

and iterative reasoning: A comparative study." arXiv preprint 

arXiv:2404.11792 (2024). 

[5] Weyssow, Martin, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui. 

"Exploring parameter-efficient fine-tuning techniques for code generation 

with large language models." ACM Transactions on Software 

Engineering and Methodology 34, no. 7 (2025): 1-25. 

[6] Tu, Yiteng, Weihang Su, Yujia Zhou, Yiqun Liu, and Qingyao Ai. 

"Robust Fine-tuning for Retrieval Augmented Generation against 

Retrieval Defects." In Proceedings of the 48th International ACM SIGIR 

Conference on Research and Development in Information Retrieval, pp. 

1272-1282. 2025. 

[7] Shao, Zhihong, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and 

Weizhu Chen. "Enhancing retrieval-augmented large language models 

with iterative retrieval-generation synergy." arXiv preprint 

arXiv:2305.15294 (2023). 

[8] Cheng, Rong, Jinyi Liu, Yan Zheng, Fei Ni, Jiazhen Du, Hangyu Mao, 

Fuzheng Zhang, Bo Wang, and Jianye Hao. "DualRAG: A Dual-Process 

Approach to Integrate Reasoning and Retrieval for Multi-Hop Question 

Answering." arXiv preprint arXiv:2504.18243 (2025). 

[9] Yang, Ruiyi, Hao Xue, Imran Razzak, Hakim Hacid, and Flora D. Salim. 

"Beyond Single Pass, Looping Through Time: KG-IRAG with Iterative 

Knowledge Retrieval." arXiv preprint arXiv:2503.14234 (2025). 

[10] Hackl, Veronika, Alexandra Mueller, and Maximilian Sailer. "The AI 

Literacy Heptagon: A Structured Approach to AI Literacy in Higher 

Education." arXiv preprint arXiv:2509.18900 (2025). 

[11] Koehler, Matthew J., Punya Mishra, and William Cain. "What is 

technological pedagogical content knowledge (TPACK)?." Journal of 

education 193, no. 3 (2013): 13-19. 

[12] Saylor, Laura Lackner, and Carla C. Johnson. "The role of reflection in 

elementary mathematics and science teachers' training and development: 

A meta‐synthesis." School Science and Mathematics 114, no. 1 (2014): 

30-39. 

[13] Garet, Michael S., Andrew C. Porter, Laura Desimone, Beatrice F. 

Birman, and Kwang Suk Yoon. "What makes professional development 

effective? Results from a national sample of teachers." American 

educational research journal 38, no. 4 (2001): 915-945. 

[14] Roberts, Jonathan C., Hanan Alnjar, Aron E. Owen, and Panagiotis D. 

Ritsos. "Critical design strategy: a method for heuristically evaluating 

visualisation designs." arXiv preprint arXiv:2508.05325 (2025). 

[15] Desimone, Laura M. "Improving impact studies of teachers’ professional 

development: Toward better conceptualizations and measures." 

Educational researcher 38, no. 3 (2009): 181-199. 

[16] Weinert, Dane A., and Andreas M. Rauschecker. "Enhancing large 

language models with retrieval-augmented generation: a radiology-

specific approach." Radiology: Artificial Intelligence 7, no. 3 (2025): 

e240313. 

[17] Grabuloski, Marko, Aleksandar Karadimce, Anis Sefidanoski, and 

NORTH MACEDONIA. "Enhancing Language Models with Retrieval-

Augmented Generation A Comparative Study on Performance." WSEAS 

Transactions on Information Science and Applications 22 (2025): 272-

297. 

[18] RAINA, Ashutosh, Kushal MUNDRA, Prajish PRASAD, and Shitanshu 

MISHRA. "Fostering ethics in AI: perceptions from the Indian AI 

curriculum." In International Conference on Computers in Education. 

2023. 

[19] Anichkov, Yegor, Victor Popov, and Sergey Bolovtsov. "Retrieval 

Poisoning Attacks Based on Prompt Injections into Retrieval-Augmented 

Generation Systems that Store Generated Responses." In International 

Conference on Distributed Computer and Communication Networks, pp. 

417-429. Cham: Springer Nature Switzerland, 2024. 

[20] Gummadi, Venkata, Pamula Udayaraju, Venkata Rahul Sarabu, 

Chaitanya Ravulu, Dhanunjay Reddy Seelam, and S. Venkataramana. 

"Enhancing communication and data transmission security in rag using 

large language models." In 2024 4th International Conference on 

Sustainable Expert Systems (ICSES), pp. 612-617. IEEE, 2024. 

[21] Ching, Anthony Chun Hin, Sau Wai Law, and Davy Tsz Kit Ng. 

"Evaluating a global citizenship course on developing business students’ 

AI literacy skills." In Effective Practices in AI Literacy Education: Case 

Studies and Reflections, pp. 91-99. Emerald Publishing Limited, 2024. 

[22] dos Santos Junior, José Cassio, Rachel Hu, Richard Song, and Yunfei Bai. 

"Domain-driven LLM development: insights into rag and fine-tuning 

practices." In Proceedings of the 30th ACM SIGKDD Conference on 

Knowledge Discovery and Data Mining, pp. 6416-6417. 2024. 

[23] Adhikari, Manoj, Puskar Joshi, Gabriel Vieira Ramos, Ahmad Al Doulat, 

and Shehenaz Shaik. "AIDE: Leveraging Retrieval-Augmented 

Generation for Context-Aware Educational Data Retrieval and Dialogue." 

In 2025 International Conference on Smart Applications, 

Communications and Networking (SmartNets), pp. 1-7. IEEE, 2025. 

[24] Zeng, Shenglai, Jiankun Zhang, Pengfei He, Yue Xing, Yiding Liu, Han 

Xu, Jie Ren et al. "The good and the bad: Exploring privacy issues in 

retrieval-augmented generation (rag)." arXiv preprint arXiv:2402.16893 

(2024). 

[25] Landry, Susan H., Paul R. Swank, Jason L. Anthony, and Michael A. 

Assel. "An experimental study evaluating professional development 

activities within a state funded pre-kindergarten program." Reading and 

writing 24, no. 8 (2011): 971-1010. 

[26] Nguyen, Ha-Thanh, and Ken Satoh. "ConsRAG: Minimize LLM 

Hallucinations in the Legal Domain." 

[27] Wan, Yu, Rui Li, Wenjie Li, and Hongbo Du. "Impact Pathways of AI -

Supported Instruction on Learning Behaviors, Competence Development, 

and Academic Achievement in Engineering Education." Sustainability 

17, no. 17 (2025): 8059. 

[28] Lee, Irene, and Beatriz Perret. "Preparing high school teachers to integrate 

AI methods into STEM classrooms." In Proceedings of the AAAI  

conference on artificial intelligence, vol. 36, no. 11, pp. 12783-12791. 

2022. 

[29] Gröschner, Alexander, Tina Seidel, Katharina Kiemer, and Ann-Kathrin 

Pehmer. "Through the lens of teacher professional development 

components: the ‘Dialogic Video Cycle’as an innovative program to 

foster classroom dialogue." Professional development in education 41, no. 

4 (2015): 729-756. 

[30] Oyetade, Kayode, and Tranos Zuva. "Advancing Equitable Education 

with Inclusive AI to Mitigate Bias and Enhance Teacher Literacy." 

Educational Process: International Journal 14 (2025): e2025087. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

284 | P a g e  
www.ijacsa.thesai.org 

[31] Yao, Chengyuan, and Satoshi Fujita. "Adaptive control of retrieval-

augmented generation for large language models through reflective tags." 

Electronics 13, no. 23 (2024): 4643. 

[32] Bergman, Shai Aviram, Zhang Ji, Anne-Marie Kermarrec, Diana 

Petrescu, Rafael Pires, Mathis Randl, and Martijn de Vos. "Leveraging 

Approximate Caching for Faster Retrieval-Augmented Generation." In 

Proceedings of the 5th Workshop on Machine Learning and Systems, pp. 

66-73. 2025. 

[33] Tian, Fangzheng, Debasis Ganguly, and Craig Macdonald. "Is Relevance 

Propagated from Retriever to Generator in RAG?." In European 

Conference on Information Retrieval, pp. 32-48. Cham: Springer Nature 

Switzerland, 2025. 

[34] Cheng, Chih-Chan, Jeen-Shing Wang, Xiaoming Zhai, and Ya -Ting 

Carolyn Yang. "AI literacy and gender equity in elementary education: A 

quasi-experimental study of a STEAM–PBL–AIoT course with 

questionnaire validation." International Journal of STEM Education 12, 

no. 1 (2025): 50. 

[35] Watson, Goodwin, and Edward M. Glaser. Watson-Glaser critical 

thinking appraisal: Forms A and B; Manual. Psychological Corporation, 

1980. 

[36] Hemmat, Arshia, Kianoosh Vadaei, Mohammad Hassan Heydari, and 

Afsaneh Fatemi. "Leveraging Retrieval-Augmented Generation for 

Persian University Knowledge Retrieval." In 2024 15th International 

Conference on Information and Knowledge Technology (IKT), pp. 279-

286. IEEE, 2024. 

[37] Gargari, Omid Kohandel, and Gholamreza Habibi. "Enhancing medical 

AI with retrieval-augmented generation: A mini narrative review." Digita l 

health 11 (2025): 20552076251337177. 

[38] Daher, Roula. "Integrating AI literacy into teacher education: a critical 

perspective paper." Discover Artificial Intelligence 5, no. 1 (2025): 217. 

[39] Li, Hongming, Yizirui Fang, Shan Zhang, Seiyon M. Lee, Yiming Wang, 

Mark Trexler, and Anthony F. Botelho. "ARCHED: A Human-Centered 

Framework for Transparent, Responsible, and Collaborative AI -Assisted  

Instructional Design." arXiv preprint arXiv:2503.08931 (2025). 

[40] Peddi, Sarita, and Geetha Manoharan. "Innovative Approaches to Staff 

Development in Education Using AI." In Training and Development in 

Transnational Higher Education, pp. 347-368. IGI Global Scientific 

Publishing, 2025. 

[41] Torrisi-Steele, Geraldine. "Addressing the Digital Divide: Ensuring Equal 

Access to Al Tools." Foundations and Frameworks for AI in Education 

(2025): 77. 

[42] Mutawa, A. M., and Sai Sruthi. "UNESCO's AI Competency Framework: 

Challenges and Opportunities in Educational Settings." Impacts of 

Generative AI on the Future of Research and Education (2025): 75-96. 

[43] Kong, Siu-Cheung, Man-Yin William Cheung, and Olson Tsang. 

"Developing an artificial intelligence literacy framework: Evaluation of a 

literacy course for senior secondary students using a project-based 

learning approach." Computers and Education: Artificia l Intelligence 6 

(2024): 100214. 

[44] Williams, Randi, Safinah Ali, Nisha Devasia, Daniella DiPaola, Jenna 

Hong, Stephen P. Kaputsos, Brian Jordan, and Cynthia Breazeal. "AI+ 

ethics curricula for middle school youth: Lessons learned from three 

project-based curricula." International Journal of  Artificial Intelligence in 

Education 33, no. 2 (2023): 325-383. 

[45] Abo El-Enen, Mohamed, Sally Saad, and Taymoor Nazmy. "A survey on 

retrieval-augmentation generation (RAG) models for healthcare 

applications." Neural Computing and Applications (2025): 1-77. 

[46] Lee, Hea-Jin. "Developing an effective professional development model 

to enhance teachers' conceptual understanding and pedagogical strategies 

in mathematics." The Journal of Educational Thought (JET)/Revue de la 

Pensée Educative (2007): 125-144. 

[47] Jakesch, Maurice, Jeffrey T. Hancock, and Mor Naaman. "Human 

heuristics for AI-generated language are flawed." Proceedings of the 

National Academy of Sciences 120, no. 11 (2023): e2208839120. 

[48] Curcio, Eliseo. "Introducing LCOAI: A Standardized Economic Metric 

for Evaluating AI Deployment Costs." arXiv preprint arXiv:2509.02596 

(2025). 

[49] Modh, Jatin C., Tejaskumar P. Bhatt, Darshita Kalyani, and Aakanksha 

Jain. "Foundations of AI Literacy." In Developing AI Literacy in 

Students, pp. 39-86. IGI Global Scientific Publishing, 2026. 

[50] Pan, Guanzhong, and Haibo Wang. "A Cost-Benefit Analysis of On-

Premise Large Language Model Deployment: Breaking Even with  

Commercial LLM Services." arXiv preprint arXiv:2509.18101 (2025). 

[51] Zeng, Shenglai, Jiankun Zhang, Pengfei He, Yiding Liu, Yue Xing, Han 

Xu, Jie Ren et al. "The good and the bad: Exploring privacy issues in 

retrieval-augmented generation (rag)." In Findings of the Association for 

Computational Linguistics: ACL 2024, pp. 4505-4524. 2024. 

[52] Sawarkar, Kunal, Abhilasha Mangal, and Shivam Raj Solanki. "Blended 

rag: Improving rag (retriever-augmented generation) accuracy with  

semantic search and hybrid query-based retrievers." In 2024 IEEE 7th 

international conference on multimedia information processing and 

retrieval (MIPR), pp. 155-161. IEEE, 2024. 

[53] Yuan, Ye, Chengwu Liu, Jingyang Yuan, Gongbo Sun, Siqi Li, and Ming 

Zhang. "A hybrid RAG system with comprehensive enhancement on 

complex reasoning." arXiv preprint arXiv:2408.05141 (2024). 

[54] Kim, Kyong-Jee, and Curtis J. Bonk. "The future of online teaching and 

learning in higher education." Educause quarterly 29, no. 4 (2006): 22-30. 

[55] Kalra, Rishi, Zekun Wu, Ayesha Gulley, Airlie Hilliard, Xin Guan, 

Adriano Koshiyama, and Philip Colin Treleaven. "HyPA-RAG: A hybrid 

parameter adaptive retrieval-augmented generation system for AI legal 

and policy applications." In Proceedings of the 1st workshop on 

customizable nlp: Progress and challenges in customizing nlp for a 

domain, application, group, or individual (customnlp4u), pp. 237-256. 

2024. 

[56] Li, Sha, and Naren Ramakrishnan. "Oreo: A plug-in context reconstructor 

to enhance retrieval-augmented generation." In Proceedings of the 2025 

International ACM SIGIR Conference on Innovative Concepts and 

Theories in Information Retrieval (ICTIR), pp. 238-253. 2025. 

[57] Velez-Solic, Angela, and Jennifer R. Banas. "Professional development 

for online educators: Problems, predictions, and best practices." In Adult 

and Continuing Education: Concepts, Methodologies, Tools, and 

Applications, pp. 521-544. IGI Global, 2014. 

[58] Li, Zongxi, Zijian Wang, Weiming Wang, Kevin Hung, Haoran Xie, and 

Fu Lee Wang. "Retrieval-augmented generation for educational 

application: A systematic survey." Computers and Education: Artificial 

Intelligence (2025): 100417. 

[59] Xia, Peng, Kangyu Zhu, Haoran Li, Tianze Wang, Weijia Shi, Sheng 

Wang, Linjun Zhang, James Zou, and Huaxiu Yao. "Mmed-rag: Versatile 

multimodal rag system for medical vision language models." arXiv 

preprint arXiv:2410.13085 (2024) 

[60] Lin, Xuefei, Guangyu Xu, and Bin Xiong. "Artificial intelligence literacy, 

sustainability of digital learning and practice achievement: A study of 

vocational college students." Plos one 20, no. 10 (2025): e0332175.

 


