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Abstract—Assessing the quality of panoramic dental
radiographs is essential to ensure diagnostic accuracy and patient
safety. However, existing CNN-based approaches for radiograph
quality assessment often emphasize architectural comparisons,
while providing limited discussion on training stability and
generalization, particularly when applied to relatively small and
heterogeneous datasets. To address this gap, this study proposes
a transfer learning-based framework that integrates Global
Average Pooling (GAP) and Batch Normalization (BN) to
enhance feature robustness and reduce overfitting in panoramic
dental radiograph quality classification. Three pretrained CNN
architectures: ResNet50, VGG16, and VGG19 were evaluated
using panoramic radiographs collected from two tertiary
hospitals in Indonesia. Experimental results using k-fold cross-
validation indicate that the proposed GAP+BN refinement
improves classification consistency across models, with VGG16
demonstrating the most stable and reliable performance. These
findings suggest that domain-adapted transfer learning with
appropriate feature aggregation and normalization can support
the development of automated and clinically reliable quality
assurance systems for panoramic dental imaging.

Keywords—Batch Normalization; image quality; panoramic
radiograph; transfer learning

I.  INTRODUCTION

Panoramic radiography is one of the most widely used
imaging modalities in dentistry because it provides
comprehensive visualization of maxillary and mandibular
structures with relatively low radiation exposure. However,
the diagnostic reliability of panoramic radiographs is strongly
dependent on image quality, which can be adversely affected
by patient positioning errors, improper exposure parameters,
and technical disturbances. Poor-quality radiographs reduce
diagnostic accuracy and increase the likelihood of retakes,
thereby exposing patients to unnecessary additional radiation.
Consequently, systematic quality assessment of panoramic
radiographs is a critical aspect of dental radiology practice.

Previous studies have evaluated panoramic radiograph
quality from both technical and diagnostic perspectives.
Comparative analysis of different imaging devices has shown
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relatively small variations in image quality, indicating that
multiple systems may be clinically acceptable [1],[2]. Other
investigations reported that positioning errors, including head
tilt and patient movement, occur in up to 95% of panoramic
radiographs and represent the primary contributors to reduced
diagnostic quality [3]. Although these studies provide valuable
insights into common sources of image degradation, quality
assessment in routine clinical practice still relies heavily on
manual evaluation by operators and radiologists, which is
inherently subjective and time-consuming.

Several studies have emphasized the role of operator
training and quality control in improving panoramic
radiograph quality. Investigations conducted in South Wales
and other dental institutions revealed that a large proportion of
panoramic radiographs failed to meet national quality
standards, primarily due to patient positioning errors and
insufficient operator instructions [4],[5],[6]. In addition,
improper tongue positioning against the palate has been
identified as one of the most frequent errors, leading to
radiolucent artifacts in the maxillary region and compromising
diagnostic interpretation [7], [8]. These findings consistently
highlight that human-related factors remain the dominant
cause of poor panoramic radiograph quality.

With the advancement of artificial intelligence, deep
learning, particularly Convolutional Neural Networks (CNNs),
has shown promising performance in automating image
quality assessment across various radiographic modalities.
CNN-based approaches have achieved high accuracy in
evaluating diagnostic quality in ankle radiographs [9], and
have been successfully applied to automated quality control in
chest and elbow radiography [10], [11]. In the context of
dental imaging, recent studies utilizing YOLOvVS and
Generative Adversarial Networks have primarily focused on
image enhancement or anatomical anomaly detection rather
than explicitly addressing acquisition-related errors as
indicators of panoramic radiograph quality [12], [13]. Despite
these advances, several challenges remain unresolved.
Reviews have reported inconsistencies in labeling strategies
and dataset utilization for machine learning-based panoramic
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radiograph  quality assessment, which limits model
generalization and reproducibility [14]. Moreover, most deep
learning applications in panoramic radiography continue to
prioritize anomaly detection or disease diagnosis, such as
osteoporosis assessment, rather than systematic quality
evaluation based on acquisition technique and patient
positioning errors [15], [16], [17]. This indicates that research
specifically targeting automated panoramic radiograph quality
evaluation remains limited, particularly in terms of
methodological robustness and clinical applicability.

To address these limitations, this study proposes a transfer
learning-based CNN framework for panoramic radiograph
quality classification by systematically comparing three
widely used architectures: ResNet50, VGG16, and VGG19.
These models were selected due to their proven effectiveness
in medical image classification tasks and their distinct feature
representation  capabilities.  Previous  studies  have
demonstrated the strong performance of VGGI6 in binary
medical image classification tasks, achieving high accuracy
and F1-scores [18], while ResNet50 is known for its ability to
mitigate the vanishing gradient problem through residual
connections. Building upon these findings, the present study
integrates Global Average Pooling (GAP) and Batch
Normalization (BN) to enhance training stability and
generalization, particularly when dealing with limited datasets.

Unlike previous research that focused on dental anomaly
detection or disease diagnosis using CNN-based models with
Batch Normalization [16], This study emphasizes the
evaluation of panoramic radiograph quality based on
acquisition-related errors. The main contributions of this
research are threefold: 1) providing a comparative analysis of
popular pretrained CNN architectures for panoramic
radiograph quality assessment, 2) demonstrating the
effectiveness of GAP and BN in improving training stability
and classification performance on limited datasets, and
3) presenting empirical evidence from multi-institutional
panoramic radiographs collected from Universitas Gadjah
Mada and Universitas Airlangga hospitals in Indonesia to
support the development of Al-based automatic quality
assurance systems in dental radiology.

This study is organized as follows: Section II presents a
review of related literature. Section III describes the dataset
used in this research and explains the proposed method in
detail. Section IV discusses the experimental results and
findings. Finally, Section V concludes the study and outlines
directions for future research.

II. LITERATURE REVIEW

The quality of panoramic radiographs determines the
diagnostic value and reliability of image interpretation.
Several research have evaluated the consistency and quality of
images obtained from different radiographic machines and the
factors influencing them. An early research [1] compared two
panoramic units and found that both produced equivalent
diagnostic results for anatomical evaluation, with negligible
differences in image quality, indicating that both devices were
clinically acceptable. This suggests that technical acquisition
parameters and patient positioning have a greater impact on
diagnostic quality than differences between imaging devices.
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Automated approaches have also been introduced to assess
radiographic acceptability. In [2], the authors developed an
automated CNN-based framework to determine whether
panoramic radiographs were suitable for further analysis. The
system demonstrated high accuracy and showed potential to
support diagnostic workflows, particularly in regions with
limited access to orthodontic radiologists.

Further applications of deep leaming have extended to
non-panoramic radiographs. For example, research [9]
evaluated the diagnostic quality of ankle radiographs based on
anatomical features, achieving 94.1% accuracy, surpassing
average radiologist performance. Similarly, research [19]
proposed a CNN with multi-scale feature extraction to
automatically assess panoramic radiograph  quality,
outperforming conventional methods. Several studies have
also focused on improving image quality. Research [20]
introduced a Multi-Scale Top-Hat with  Geodesic
Reconstruction (MSTHGR) method to enhance image contrast
and detail, while research [13] used a Generative Adversarial
Network (Pix2Pix) to correct blurred and noisy images,
significantly improving PSNR and SSIM metrics. Another
research [21] employed a deep learning-based super-resolution
technique (LTE) to enhance image resolution with visually
and quantitatively superior results.

Panoramic radiography plays an essential role in dental
diagnosis; however, patient positioning errors frequently occur
due to equipment complexity and anatomical variations,
leading to reduced image quality and diagnostic accuracy.
Research developed a deep leaming model to detect six
common positioning errors: slumped posture, low chin, open
lips, head rotation, head tilt, and tongue not against the palate,
using 552 panoramic radiographs. Six CNN architectures were
employed for feature extraction, and the extracted features
were fused and classified using a Support Vector Machine
(SVM). The model achieved an accuracy of 0.832 with high
precision and recall, proving effective for automatic
identification of patient positioning errors and improving
diagnostic reliability.

Positioning errors are among the main causes of reduced
diagnostic quality in panoramic imaging. Research [3]
reported that 95% of 500 radiographs contained one or more
positioning errors, particularly head tilt. Similarly, research [4]
found that 54.6% of radiographs in South Wales exhibited
positioning errors and 47.9% were affected by poor patient
preparation or instruction. Research [5], which analyzed 1,000
panoramic radiographs, found that the most common error
was the tongue not being pressed against the palate (69.5%),
followed by patient motion (0.4%). Research [6] involving
2,629 patients revealed that only 32.8% of radiographs were
error-free, with tongue positioning errors being the most
prevalent. Research [7] compared image quality across three
radiographic technicians and found significant inter-operator
variation, with the “gazebo effect” and condyle positioning
errors being the most frequent findings.

In Indonesia, research [8] reported that 98.78% of
panoramic radiographs exhibited patient positioning errors,
most commonly due to the tongue not adhering to the palate
(49.68%)), although the overall diagnostic quality remained
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acceptable. Similar errors have been reported in other research
[22], [23], [24], [25], where head alignment, lateral rotation,
and palatoglossal air space were identified as the primary
factors reducing image quality [26].

Several studies have highlighted the impact of imaging
technique and operator skill on radiographic quality. In [27],
the authors emphasized the importance of head positioning,
occlusal plane orientation, mandibular condyle alignment, and
metal artifact control in producing symmetric and
diagnostically acceptable panoramic images. Research [28]
added that horizontal spatial distortion up to <20% remains
clinically acceptable, while a minimum spatial resolution of
1.88 Ip/mm is necessary to maintain anatomical readability.

In [9], the authors showed that while radiographic quality
did not vary significantly among technicians, the types of
errors did, indicating that operator training and experience
play a major role. This finding was supported by research
[23], which concluded that radiographic errors are not directly
correlated with professional experience but are influenced by
patient cooperation and attentiveness during image
acquisition. In addition to operator-related issues, technical
parameters such as exposure settings and image processing
also affect diagnostic quality. In [24], [25], the authors found
that post-trauma radiographs frequently suffered from
exposure errors, out-of-focus positioning, and metal artifacts,
which limited diagnostic interpretation.

Efforts to improve radiographic quality control have
increasingly employed deep learning methods. In [12], the
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authors developed a YOLOv8-based model to assess
panoramic radiograph quality using five clinical visual
criteria, achieving an overall accuracy of 81.4%. Similar
approaches have been applied to chest [10] and elbow [11]
radiographs, demonstrating strong potential for automated
medical image quality assessment.

Moreover, research [14] conducted a systematic review of
41 research on panoramic radiograph image quality for
machine learning model training. The review found that most
research lacked standardized image quality criteria, and
defective images were often excluded from datasets without
detailed analysis. This practice introduces bias and reduces
model generalizability, emphasizing the need for automated
methods to assess and manage radiograph quality consistently.

The quality of panoramic radiographs is predominantly
affected by acquisition technique and patient positioning, with
the latter being the leading cause of diagnostically
unacceptable images. Although deep leaming systems have
been widely used for image enhancement and quality
evaluation, research that integrates expert clinical annotations
with CNN models for objective assessment of panoramic
radiograph quality remains limited.

This highlights an existing research gap that needs to be
addressed through the development of CNN-based automated
systems capable of accurately identifying technical and
positioning errors while providing feedback to improve image
acquisition quality. Table I summarizes the key differences
between the present research and the work of [12].

TABLEI. COMPARISON BETWEEN THE PROPOSED MODEL AND PREVIOUS RESEARCHES
Aspect Research [12] Proposed Contribution/Difference
Automated assessment of panoramic
radiograph quality based on four Development of a CNN-based Both assess image quality; however, the
criteria (artifacts, coverage area, panoramic radiograph quality proposed research focuses on optimizing a
Objective patient positioning, and evaluation model usinga domain- domain-adapted CNN and evaluating inter-

contrast/density) and clinical
acceptability (acceptable vs. not
acceptable).

adapted ResNet50 to classify image
quality into good and poor categories.

architecture performance rather than single-
model classification using YOLO.

Model

YOLOVS (single-stage real-time
classifier with 141 layers, Adam-W
optimizer, learning rate=0.0001).

Domain-adapted ResNet50 architecture
with additional Global Average Pooling
(GAP) and Batch Normalization (BN)
layers for improved stability and
generalization.

The proposed research presents a transfer
learning-based modification of a classical CNN
architecture, which is referred to as a domain-
adapted transfer learning to emphasize its
adaptation to the specific characteristics of
panoramic dental radiographs. This adaptation
was achieved through architectural modification
(GAP and BN layers) and fine-tuning on
domain-specific data.

Evaluation Criteria

Four aspects (artifacts, coverage,
positioning, contrast/density) plus
overall image quality.

Focuses on overall radiograph quality
(good or poor) based on coverage,
vertical and horizontal distortion, detail
and sharpness, artifacts and ghost
images, and radiolucent areas in the
anterior maxillary apical region.

The proposed method performs holistic
radiograph quality assessment rather than per-
aspect evaluation, providing faster and more
efficient results for clinical application.

74.1-97.9% per criterion, with an

Domain-adapted ResNet50 achieved
82-85% accuracy and the highest F1-

The proposed model delivers comparable or

N O . . .
Accuracy average of 81.4% for clinical score compared to baseline CNNs slightly hlgher performance with lower model
classification. (VGG architectures). complexity than YOLOvS.
Ontiminati Strgtegy Data augmenta-tlon., Adam-W Transfer learning, Batch Normalization, Thf-} Proposed approa.ch emphas.l.zes tr.amlng
ptimization optimizer, and automatic mixed efficiency and domain adaptability without

precision.

and adaptive leamning rate scheduler.

requiring high-end GPU resources.

Clinical Contribution

Provides a real-time radiograph quality
control system and an educational tool
for dental students.

Offers a lightweight CNN model for
automated radiograph quality
evaluation in resource-limited
institutions.

The proposed method is easier to implement in
local dental clinics without the need for high
computational infrastructure.
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A. Conventional Approaches and Their Limitations

Early research relied on manual visual inspection by
radiologists, which is subjective and time-consuming. Later,
rule-based metrics such as contrast, entropy, or edge sharpness
were used to quantify quality, but these fail to capture
anatomical distortion or exposure errors. Classical machine-
learning models (e.g., SVM, £-NN) using handcrafted texture
or wavelet features improved objectivity but depended heavily
on feature design and were sensitive to acquisition variability.
Recent deep-learning approaches applied CNNs for anomaly
detection or anatomy segmentation rather than direct
good/poor quality classification, and often used single-center
data without cross-institution validation. This research differs
by applying a transfer-learning CNN (ResNet50, VGGI16,
VGG19) directly to the binary quality classification task of
panoramic radiographs, reducing the need for handcrafted
features and improving robustness for small, domain-specific
datasets.

III. METHODS

A. Dataset

The dataset used in this research was obtained from the
Dental and Oral Hospital (RSGM) of Universitas Airlangga,
Surabaya, and the Dental and Oral Hospital of Universitas
Gadjah Mada, Yogyakarta. Ethical approval for the use of
radiographic data was granted by both institutions under
approval numbers 0910/HRECC.FODM/VIIl/2025 and
158/UNI/KEP/FKG-RSGM/EC/2025, respectively. In total,
1,285 panoramic radiographic images were collected,
consisting of 820 images from Universitas Airlangga and 465
images from Universitas Gadjah Mada.

Each radiograph was independently evaluated by four
dental radiology experts based on five key diagnostic quality
aspects (see Table II), with a maximum total score of five.
Radiographs with a total score of five were categorized as
good quality, indicating no retake was required, while
radiographs with a score below five were categorized as poor
quality, indicating a retake was recommended. To ensure
annotation reliability and reduce label ambiguity, only
radiographs with full consensus among all four experts were
included in the final dataset used for model training and
evaluation.

Based on this strict selection criterion, 442 panoramic
radiographs were retained, including 221 good-quality and
221 poor-quality images (see Table III). Specifically, 105
good-quality and 105 poor-quality radiographs were obtained
from Universitas Airlangga, while 116 good-quality and 116
poor-quality radiographs were obtained from Universitas
Gadjah Mada. This balanced class distribution was
intentionally maintained to prevent model bias towards a
dominant class.

Examples of panoramic radiographs used in this study are
shown in Fig. 1. Good-quality radiographs exhibit complete
anatomical  coverage, clear visualization of the
maxillomandibular structures, sharp anatomical details, and
the absence of distortion or artifacts that may interfere with
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diagnosis. In contrast, poor-quality radiographs are
characterized by positioning-related distortions, asymmetry,
reduced sharpness due to patient movement, and the presence
of artifacts such as ghost images or extensive radiolucent
regions that compromise diagnostic reliability.

TABLEII. IMAGE QUAL]TY ASSESSMENT CRITERIA
No. Aspect 1 0
The image includes
E}ﬁ: Li:srii]i)?;d}:e);?lf One or more of these
. ’ anatomical areas are
1 Coverage right and left not included in the
condyles, and the ima e
lower border of the ge.
orbits.
Distortion interferes
Vertical and No vertical or with interpretation
. . X . (e.g., inverted or V-
2 Horizontal horizontal distortion shaned dental arch
Distortion is observed. p . ’
asymmetrical
mandibular shape).
Image detail is
. unclear or
Detail and The image sh9ws overlapping due to
3 clear anatomical .
Sharpness . patient head
detail and sharpness. .
movement during
exposure.
Ghost images from
No artifacts or ghost 1fore1gn ((;jbjlects (ir
Artifacts and Ghost | images interfere with arge radiolucen
4 I di i areas (air spaces)
mages inl?egn(r):t:iction obscure dental or
P ’ maxillofacial
structures.
Radiolucent Area in A radiolucent area is
the Anterior No radiolucent area present in the anterior
5 . . interferes with maxillary apical
Maxillary Apical . . . duci
Region mterpretation. region, reducing
diagnostic clarity.
TABLE III. DATASET DISTRIBUTION
Class Training Testing Total
Good 170 51 221
Poor 170 51 221
Total 340 102 442

Although the final dataset used in this study consists of
442 curated panoramic radiographs, which may be considered
relatively small for deep learning applications, this reflects
realistic clinical constraints where high-quality, expert-labeled
radiographic data are limited. The reduced dataset size
increases the risk of overfitting; therefore, several mitigation
strategies were employed. First, transfer learning from
pretrained CNN models was used to leverage previously
learned generic visual features. Second, Global Average
Pooling (GAP) was applied to reduce the number of trainable
parameters, while Batch Normalization (BN) was incorporated
to stabilize training and improve generalization. In addition, -
fold cross-validation was adopted to maximize data utilization
and provide a more robust estimate of model performance
across different data partitions.
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Fig. 1. Examples of panoramic radiographs.

Although the final dataset size is relatively limited, this
scenario reflects realistic clinical conditions where curated,
high-quality labeled radiographic data are often scarce. To
mitigate the risk of overfitting associated with limited data,
this study employed a transfer leaming strategy using
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pretrained CNN models, combined with Global Average
Pooling and Batch Normalization to enhance feature
robustness and training stability. Furthermore, k-fold cross-
validation was applied to maximize data utilization and
provide a more reliable estimation of model generalization
performance across different data splits.

B. Proposed Method

This research proposes a transfer learning-based approach
using three CNN architectures: ResNet50, VGG16, and
VGG19 to classify the quality of panoramic dental
radiographs into two classes: good and poor (Fig. 2). All
pretrained models were initialized with ImageNet weights and
modified by adding Global Average Pooling (GAP) and Batch
Normalization (BN) layers to improve adaptability to the
specific characteristics of dental radiographs. In this context,
the term domain-adapted refers to the adaptation of a
pretrained network through transfer leaming and fine-tuning
using dental imaging data, rather than an explicit domain
adaptation mechanism such as adversarial alignment or feature
distribution matching. The proposed method aims to automate
the panoramic radiograph quality assessment process and
empirically verify the reliability of ResNet50 compared to the
other architectures. Model performance was evaluated using -
fold cross-validation to ensure robustness and reduce sampling
bias. The main stages of the proposed method include the
following steps (as illustrated in Fig. 2):

a) Preprocessing data: All panoramic radiograph
images were converted into RGB format with a resolution of
512x512 pixels and normalized to a range of [0,1].

b) Feature extraction (transfer learning): Three
pretrained CNN models were employed as feature extractors:
ResNet50, which utilizes residual connections to preserve
gradient flow and is well-suited for detecting complex
radiographic textures; VGG16 and VGGI19, which employ
simple stacked convolutional layers effective for capturing
edge and shape representations.

c) Architecture  modification: To enhance model
performance, several layers were added: Global Average
Pooling (GAP) to reduce feature dimensions while retaining
essential spatial information; Batch Normalization (BN) to
stabilize inter-layer activation distributions and accelerate
convergence; and Dense Layers (128-256 units) with ReLU
activation as the classifier head. The models were optimized
using the Adam or AdamW optimizer with a learning rate of
0.0001, batch size of 2, and 30 training epochs.

d) Training and evaluation: The models were trained on
a labeled dataset of 442 panoramic radiographs (340 for
training and 102 for testing). Evaluation metrics included
accuracy [Eq. (1)], precision [Eq. (2)], recall (sensitivity)
[Eq. (3)], specificity [Eq. (4)], and F1-Score [Eq. (5)] analysis
[18]. These metrics were selected to provide a comprehensive
understanding of diagnostic reliability, particularly regarding
false negatives, which may correspond to clinically
unacceptable images being classified as acceptable. This
evaluation framework supports the model’s applicability for
clinical quality assurance and radiation dose reduction in
dental radiology workflows.
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Pretrained CNN Add Layer Gl(?bal Classification
Average Pooling
ResNet50
>
VGGLo6 Evaluation
Add Layer Global
VGG19 — A'Vf:rage I Classification
Pooling+Batch
Normalization
Fig.2. Proposed method framework.
TP+TN
Accuracy = —— (1) TABLEIV. RESNETS0 (GAP) EVALUATION RESULTS FOR EACH CLASS
TP+TN+FP+FN
Precision = P 2) k-fold=1 Recall Precision Fl-score Specificity
TPHEP Good 5556 80.00 65.57 8438
__ TP+TN
Recall = ——— (3) | poor 84.38 62.79 72.00 55.56
pe mean 69.97 71.40 68.79 69.97
Specificity = 4)
TP+FP std 20.38 12.17 4.54 20.38
2.TP
F1—Score = ——— ®)) k-fold=2 Recall Precision Fl-score Specificity
2TP+FP+FN
Good 28.57 58.82 38.46 78.79
IV. RESULTS AND DISCUSSION
Poor 78.79 50.98 50.98 28.57
Tables IV to XII summarize the class-wise evaluation
: . T 53.68 54.90 4472 53.68
metrics obtained from £-fold cross-validation for all evaluated mean
models. Rather than focusing solely on absolute metric values, std 35.51 5.55 8.85 35.51
the results reveal clear performance trends across architectures k-fold=3 Recall Precision Fl-score Specificity
n nfigurations. 11 16- model
and ~ configurations Overall, VGGl 6-based odels Good 188 216 607 P
consistently demonstrated more stable and balanced
performance compared to ResNet50 and VGG19, particularly Poor 61.11 70.97 65.67 71.88
when combined with Global Average Pooling (GAP) and mean 66.49 66.56 66.17 66.49
Batch Normalization (BN). wd ol 623 0.70 ol
ResNet5 0. achieved re.lati\./el.y hi.gh AUC Yalues in sever.al k-fold=4 Recall Precision Fl-score Specificity
folds, indicating strong dlscnmmatlve p.ote;n.tlal.. However, its Good 100,00 2 on 6023 0.00
performance exhibited substantial variability in recall and
specificity across folds (Tables IV to VI and Tables XIII to Poor 0.00 0.00 0.00 100.00
XV). This instability suggests sensitivity to data partitioning mean 50.00 26.47 34.62 50.00
and pf)tﬁr}tml overfltnng, which can be qttrlbuted to .the d 7071 744 1805 7071
model’s higher architectural complexity relative to the limited
size of the curated panoramic radiograph dataset. Although k-fold=5 Recall Precision Fl-score Specificity
residual connections are designed to facilitate deeper feature Good 100.00 60.78 75.61 45.95
learning, th 1 1 timization when
eaming, they may cad to u.nstab.e.op ation when the Poor 4595 100.00 62.96 100.00
available training data are insufficient to support robust
In contrast, VGG16 demonstrated consistently lower std 38.22 2773 894 38.22
variance across folds and more balanced class-wise
performance (Tables VII to IX and Tables XVI to XVIID). The TABLE V. RESNETS50 (GAP+BN) EVALUATION RESULTS FOR EACH
: . ; CLASS
integration of GAP reduced the number of trainable
parameters, while BN improved gradient flow and training k-fold=1 Recall Precision Fl-score Specificity
stability. These architectural refinements enabled VGGI6 to Good 66.67 3889 76.19 90.63
achieve the most reliable overall performance, with an average . 5063 p— " e
accuracy of 85.00% and an AUC of 94.72%. The relatively oor i i i i
shallow and uniform convolutional structure of VGGI16 mean 78.65 7981 77.82 78.65
appears to be better suited for capturing global structural std 16.94 12.84 231 16.94
distortions and  acquisition-related  artifacts commonly ifold=2 Recall Procision Flscore Specificity
observed in panoramic radiographs.
Good 22.86 88.89 36.36 96.97
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Poor 96.97 54.24 5404 2286 TABLE VII. VGG16 (GAP) EVALUATION RESULTS FOR EACH CLASS
mean 5991 71.56 4530 5991 k-fold=1 Recall Precision Fl-score Specificity
std 52.41 2450 12.64 52.41 Good 86.11 72.09 78.48 62.50
k-fold=3 Recall Precision Fl-score Specificity Poor 62.50 80.00 70.18 86.11
Good 0.00 0.00 0.00 100.00 mean 7431 76.05 7433 7431
- : : : std 16.70 5.59 5.87 16.70
Poor 100.00 5294 69.23 0-00 k-fold=2 Recall Precision Fl-score Specificity
mean 50.00 26.47 34.62 50.00 Good 60.00 87.50 71.19 9091
std 70.71 37.44 48.95 70.71 Poor 9091 68.18 77.92 60.00
k-fold=4 Recall Precision Fl-score Specificity mean 75.45 77.84 74.55 75.45
Good 100.00 52.94 69.23 0.00 std 2186 1366 476 2186
Poor 0.00 0.00 0.00 100.00 k-fold=3 Recall Precision Fl-score Specificity
5000 o7 160 5000 Good 84.38 64.29 72.97 58.33
meat : : : : Poor 5833 80.77 67.74 8438
std 70.71 37.44 4895 70.71 mean 7135 7253 7036 7135
k-fold=5 Recall Precision Fl-score Specificity std 1841 11.66 3.70 18.41
Good 100.00 45.59 62.63 0.00 k-fold=4 Recall Precision Fl-score Specificity
Poor 0.00 0.00 0.00 100.00 Good 97.22 67.31 79.55 46.88
mean 50.00 2279 3131 50.00 Poor 46.88 93.75 62.50 97.22
“td 7071 32.24 2428 2071 mean 72.05 80.53 71.02 72.05
: - - - std 35.60 18.70 12.05 35.60
k-fold=5 Recall Precisi F1- Specificit
TABLE VI.  RESNET50 (GAP+BN) OPTIMIZER ADAMW EVALUATION ° - eron o peeliely
RESULTS FOR EACH CLASS Good 93.55 69.05 79.45 64.86
— — Poor 64.86 9231 76.19 93.55
k-fold=1 Recall Precision Fl-score Specificity mean 7901 30.68 77.82 7921
Good 100.00 61.02 579 28.13 std 20.28 16.45 231 20.28
Poor 28.13 100.00 43.90 100.00
mean 64.06 8051 59.85 64.06 TABLE VIII. VGG16 (GAP+BN) EVALUATION RESULTS FOR EACH CLASS
std 50.82 27.57 22.55 50.82 k-fold=1 Recall Precision Fl-score Specificity
k-fold=2 Recall Precision Fl-score Specificity Good 69.44 100.00 81.97 100.00
Good 100.00 5147 67.96 0.00 Poor 100.00 74.42 85.33 69.44
Poor 0.00 0.00 0.00 100.00 mean 84.72 87.21 83.65 84.72
' . ' ‘ std 21.61 18.09 238 2161
mean 5000 25.74 3398 5000 k-fold=2 Recall Precision Fl-score Specificity
k-fold=3 Recall Precision F1-score Specificity Poor 96.97 71.11 82.05 62.86
Good 0.00 0.00 0.00 100.00 mean 7991 83.38 78.96 7991
Poor 100.00 52.94 69.23 0.00 std 24.12 1735 438 24.12
mean 50.00 26.47 34.62 50.00 k-fold=3 Recall Precision Fl-score Specificity
" 2071 3744 1595 7071 Good 96.88 81.58 88.57 80.56
s . . . .
Poor 80.56 96.67 87.88 96.88
k-fold=4 Recall Precision Fl-score Specificity mean 3872 3912 3823 3872
Good 97.22 62.50 76.09 34.38 std 11.54 10.67 0.49 11.54
Poor 3438 91.67 50.00 97.22 k-fold=4 Recall Precision Fl-score Specificity
mean 65.80 77.08 63.04 65.80 Good 100.00 83.72 91.14 78.13
std 44 44 2062 18.45 44 44 Poor 78.13 100.00 87.72 100.00
89.06 91.86 89.43 89.06
k-fold=5 Recall Precision Fl-score Specificity mean
std 1547 11.51 242 15.47
Good 100.00 4559 62.63 0-00 k-fold=5 Recall Precision Fl-score Specificity
Poor 0.00 0.00 0.00 100.00 Good 93.55 76.32 84.06 75.68
mean 50.00 22.79 3131 50.00 Poor 75.68 93.33 83.58 93.55
std 70.71 32.24 4428 70.71 mean 84.61 84.82 83.82 84.61
std 12.64 12.03 0.34 12.64
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TABLE IX. VGG16 (GAP+BN) OPTIMIZER ADAMW EVALUATION
RESULTS FOR EACH CLASS

k-fold=1 Recall Precision Fl-score Specificity
Good 63.89 95.83 76.67 96.88
Poor 96.88 70.45 81.58 63.89
mean 80.38 83.14 79.12 80.38
std 23.32 17.95 3.47 2332
k-fold=2 Recall Precision F1-score Specificity
Good 97.14 7391 83.95 63.64
Poor 63.64 95.45 76.36 97.14
mean 80.39 84.68 80.16 80.39
std 23.69 15.23 5.36 23.69
k-fold=3 Recall Precision Fl-score Specificity
Good 90.63 74.36 81.69 7222
Poor 7222 89.66 80.00 90.63
mean 81.42 82.01 80.85 81.42
std 13.01 10.82 1.20 13.01
k-fold=4 Recall Precision Fl-score Specificity
Good 100.00 80.00 88.89 71.88
Poor 71.88 100.00 83.64 100.00
mean 85.94 90.00 86.26 85.94
std 19.89 14.14 3.71 19.89
k-fold=5 Recall Precision Fl-score Specificity
Good 16.13 100.00 27.78 100.00
Poor 100.00 58.73 74.00 16.13
mean 58.06 79.37 50.89 58.06
std 59.31 29.18 32.68 59.31

TABLE X. VGG19 (GAP) EVALUATION RESULTS FOR EACH CLASS

k-fold=1 Recall Precision Fl-score Specificity
Good 7222 74.29 73.24 71.88
Poor 71.88 69.70 70.77 72.22
mean 72.05 71.99 72.00 72.05
std 0.25 3.24 1.75 0.25
k-fold=2 Recall Precision Fl-score Specificity
Good 80.00 70.00 74.67 63.64
Poor 63.64 75.00 68.85 80.00
mean 71.82 72.50 71.76 71.82
std 11.57 3.54 4.11 11.57
k-fold=3 Recall Precision F1-score Specificity
Good 90.63 6591 76.32 58.33
Poor 5833 87.50 70.00 90.63
mean 74.48 76.70 73.16 7448
std 22.83 15.27 4.47 22.83
k-fold=4 Recall Precision Fl-score Specificity

Good 88.89 68.09 77.11 53.13
Poor 53.13 80.95 64.15 88.89
mean 71.01 74.52 70.63 71.01
std 25.29 9.10 9.16 25.29
k-fold=5 Recall Precision Fl-score Specificity
Good 77.42 77.42 7742 81.08
Poor 81.08 81.08 81.08 77.42
mean 79.25 79.25 79.25 79.25
std 2.59 2.59 2.59 2.59
TABLE XI. VGG19 (GAP+BN) EVALUATION RESULTS FOR EACH CLASS
k-fold=1 Recall Precision Fl-score Specificity
Good 86.11 79.49 82.67 75.00
Poor 75.00 82.76 78.69 86.11
mean 80.56 81.12 80.68 80.56
std 7.86 231 2.81 7.86
k-fold=2 Recall Precision Fl-score Specificity
Good 100.00 59.32 74.47 27.27
Poor 2727 100.00 42.86 100.00
mean 63.64 79.66 58.66 63.64
std 51.43 28.76 2235 51.43
k-fold=3 Recall Precision Fl-score Specificity
Good 96.88 50.00 65.96 13.89
Poor 13.89 83.33 23.81 96.88
mean 55.38 66.67 4488 55.38
std 58.68 23.57 29.80 58.68
k-fold=4 Recall Precision Fl-score Specificity
Good 72.22 86.67 78.79 87.50
Poor 87.50 73.68 80.00 72.22
mean 79.86 80.18 79.39 79.86
std 10.80 9.18 0.86 10.80
k-fold=5 Recall Precision Fl1-score Specificity
Good 87.10 90.00 88.52 91.89
Poor 91.89 89.47 90.67 87.10
mean 89.49 89.74 89.60 89.49
std 3.39 0.37 1.51 3.39
TABLE XII. VGG19 (GAP+BN) OPTIMIZER ADAMW EVALUATION
RESULTS FOR EACH CLASS
k-fold=1 Recall Precision Fl-score Specificity
Good 72.22 86.67 78.79 87.50
Poor 87.50 73.68 80.00 7222
mean 79.86 80.18 79.39 79.86
std 10.80 9.18 0.86 10.80
k-fold=2 Recall Precision Fl-score Specificity
Good 100.00 70.00 82.35 54.55
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TABLE XVI. VGG16 (GAP) K-FOLD CROSS-VALIDATION RESULTS

Poor 54.55 100.00 70.59 100.00
mean 7727 85.00 7647 7727 k-fold | Accuracy | Precision Recall sfgr_e AUC Specificity
std 32.14 2121 8.32 32.14 1 75.00 80.00 6250 | 7018 | 7821 | 86.11
k-fold=3 Recall Precision Fl1-score Specificity 2 75.00 68.18 90.91 77.92 85.45 60.00
Good 90.63 80.56 8520 80.56 3 70.59 80.77 58.33 67.74 74.48 84.38
- - - - 4 73.53 93.75 4688 | 6250 | 86.89 [ 97.22
Poor 80.56 90.63 8529 90.63 5 77.94 9231 6486 | 76.19 | 85.00 | 93.55
mean 85.59 85.59 85.29 85.59 max 77.94 93.75 9091 7792 86.89 97.22
mean 74 .41 83.00 64.70 7091 82.01 84.25
std 712 712 0.00 712 std 2.67 10.44 1620 | 629 | 538 | 1455
k-fold=4 Recall Precision Fl-score Specificity
Good 36.11 83.78 84.93 81.25 TABLE XVII. VGG16 (GAP+BN) K-FOLD CROSS-VALIDATION RESULTS
Poor 81.25 83.87 82.54 86.11 k-fold | Accuracy | Precision | Recall sl(:;r-e AUC Specificity
mean 83.68 83.83 83.74 83.68 1 83.82 7442 100.00 | 8533 | 9575 | 69.44
std 3.44 0.06 1.69 3.44 2 79.41 71.11 96.97 82.05 96.19 62.86
k-fold=5 Recall Precision Fl-score Specificity 3 88.24 96.67 80.56 87.88 J4.88 | 96.88
4 89.71 100.00 78.13 87.72 94.79 100.00
Good 19.35 100.00 32.43 100.00 5 83.82 93.33 7568 | 83.58 | 9198 | 93.55
Poor 100.00 59 63 7475 1935 max__ | 89.71 100.00 100.00 | 87.88 [ 96.19 | 100.00
mean 85.00 87.11 86.27 85.31 94.72 84.55
mean 39.68 7984 3359 59.68 std 708 1335 1134 | 255 | 164 | 17.11
std 57.02 28.51 29.92 57.02
TABLE XVIII.VGG16 (GAP+BN) OPTIMIZER ADAMW K-FOLD
TABLE XIII. RESNET50 (GAP) K-FOLD CROSS-VALIDATION RESULTS CROSS-VALIDATION RESULTS
.. F1- [
kfold | Accuracy | Precision | Recall str-e AUC Specificity k-fold | Accuracy | Precision Recall score AUC Specificity
1 79.41 70.45 96.88 | 81.58 | 95.05 | 63.89
1 69.12 62.79 8438 | 72.00 | 7821 | 55.56 > 20,88 9545 ier 7636 o595 o714
2 52.94 50.98 78.79 61.90 69.52 28.57 3 30.88 89.66 7200 20.00 93 84 90.63
3 66.18 70.97 61.11 65.67 72.92 71.88 4 86.76 100.00 71.88 83.64 90.00 100.00
4 52.94 0.00 0.00 0.00 7639 100.00 5 61.76 58.73 100.00 | 74.00 91.63 16.13
5 7059 100.00 4595 62.96 92.07 100.00 max 86.76 100.00 100.00 83.64 9593 100.00
: : . : - . mean | 77.94 82.86 80.92 79.12 [ 9329 [ 73.56
max 70.59 100.00 84.38 72.00 92.07 100.00 std 947 1757 1639 391 245 3514
mean 62.35 56.95 54.05 52.51 77.82 71.20
std 8.74 36.62 33.80 29.61 8.63 30.50 TABLE XIX. VGG19 (GAP) K-FOLD CROSS-VALIDATION RESULTS
TABLE XIV. RESNET50 (GAP+BN) K-FOLD CROSS-VALIDATION RESULTS k-fold | Accuracy | Precision | Recall sf(ilje AUC Specificity
kfold | Accuracy | Precision | Recall sf;r'e AUC | Specificity | | 1 72.06 69.70 7188 | 7077 | 8438 | 7222
1 77.94 70.73 90.63 79.45 91.58 | 66.67 2 72.06 75.00 63.64 68.85 8026 80.00
5 5882 5424 96.97 6957 9126 | 22.86 3 73.53 87.50 58.30 70.00 72.60 90.63
3 5294 52.94 100.00 | 69.23 | 90.23 | 0.00 4 72.06 80.95 5313 | 64.15 | 77.08 | 88.89
7 5292 0.00 0.00 0.00 3785 100.00 5 79.41 81.08 81.08 81.08 88.14 77.42
5 45'59 0'00 0'00 0'00 93.98 100'00 max 79.41 87.50 81.08 81.08 88.14 90.63
- - ; - - - mean 73.82 78.85 65.61 70.97 80.49 81.83
max 77.94 70.73 100.00 79.45 93.98 100.00 o 319 576 11.09 621 607 =79
mean 57.65 35.58 57.52 43.65 9098 | 5791 . . . - . .
std 12.28 33.23 52.62 40.06 2.22 4528
TABLE XX. VGG19 (GAP+BN) K-FOLD CROSS-VALIDATION RESULTS
TABLE XV. RESNET50 (GAP+BN) OPTIMIZER ADAMW K-FOLD fol A . I Fl- Fici
CROSS-VALIDATION RESULTS k-fold ccuracy [ Precision | Reca score AUC | Specificity
— L — 1 80.88 82.76 7500 | 78.69 | 86.72 | 86.11
k-fold | Accuracy | Precision | Recall score AUC Specificity 3 6271 100.00 5727 1286 9558 100.00
1 66.18 10000 | 28.13 [ 43.90 [ 86.20 [ 100.00 3 504 3333 1389 | 2381 | 9227 | 96.88
2 >147 0.00 0.00 0.00 89.61 100.00 4 79.41 73.68 87.50 80.00 92.71 72.22
3 52.94 52.94 100.00 | 69.23 | 93.06 | 0.00
2 67 65 o167 3438 15000 1 8906 19722 5 89.71 89.47 91.89 | 90.67 | 9346 | 87.10
5 45.59 0.00 0.00 0.00 95.90 100.00 max 89.71 100.00 91.89 90.67 95.58 100.00
max 67.65 100.00 100.00 | 69.23 | 9590 | 100.00 mean | 73.53 85.85 59.11 6321 | 92.15 | 88.46
ntlg"‘n ;6657;7 ;‘Z-gé 23;8 gfg; 207';7 ZZ-Z‘;‘ std 14.60 971 36.03 | 2847 | 329 | 1090
S . B . . . .
293 |Page

www.ijacsa.thesai.org




(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

TABLE XXI.  VGG19 (GAP+BN) OPTIMIZER ADAMW K-FOLD CROSS- VGG19 exhibited competitive discriminative performance,
VALIDATION RESULTS

with mean AUC values around 92% (Table X to Table XII

k-fold | Accuracy | Precision Recall F1- AUC Specificity and . Table  XIX t(.) T?ble . I) - However, its 'dee':p er
score architecture resulted in slightly higher performance variability
1 79.41 73.68 87.50 | 80.00 | 89.15 | 72.22 compared to VGGI16, suggesting increased sensitivity to
limited data and fold composition. Among VGGI9 variants,
2 7794 100.00 3455 17059 ] 9576 1 100.00 the use of adaptive optimization (AdamW) improved
3 3529 90.63 3056 | 8520 | 9193 | 9063 convergence consistency, reinforcing the importance of
optimizer selection in small-scale medical imaging datasets.
4 83.82 83.87 81.25 82.54 92.88 86.11 . .
Fig. 3 illustrates the ROC curves for all evaluated
5 63.24 59.68 100.00 | 7475 | 93.55 | 1935 configurations, further confirming that VGG16 with GAP and
B hi rior mort nsistent discrimination
max | 8529 10000 | 10000 | 8529 | 9576 | 100.00 N achieved superior and more consistent discriminatio
between good- and poor-quality radiographs. The proximity of
mean | 77.94 81.57 80.77 | 78.63 | 92.65 | 73.66 the ROC curve to the upper-left comer indicates a favorable
balance between sensitivity and specificity, which is critical in
std 8.76 1556 1660 | 594 241 31.97 quality assessment tasks where both false positives and false
negatives carry clinical consequences.
ROC Curve - External Test Set ROC Curve - External Test Set ROC Curve - External Test Set
109 —— AUC =0.921 10 ,7’ L0q — AUC = 0.959
0.8 L g 0.8 /_/" 0.8 ‘/"
% 0.4 % 04 ,—"/ % 04 g
E E F
0.2 0.2 g 0.2
00 0.0 —— AUC = 0.940 0.0
0.0 0.2 04 06 08 10 0.0 0.2 0.4 0.6 0.8 10 0.0 02 04 06 08 10
False Positive Rate False Positive Rate False Positive Rate
ResNet50 (GAP) Optimizer Adam ResNet50 (GAP+BN) Optimizer Adam ResNet50 (GAP+BN) Optimizer AdamW
ROC Curve - External Test Set ROC Curve - External Test Set ROC Curve - External Test Set
L0q — AUC = 0.869 R 1o 10
% 06 - % 0.6 % oe - -
g o4 g o4 :'E o - .
= £ £
02 0.2 0.2
00 0.0 i —— AUC = 0.962 0.0 — AUC = 0959
0.0 0.2 04 0.6 0.8 10 () 0.2 0.4 0.6 0.8 L0 0.0 0.2 04 06 o8 10
False Positive Rate False Positive Rate False Positive Rate
VGG16 (GAP) Optimizer Adam VGG16 (GAP+BN) Optimizer Adam VGG16 (GAP+BN) Optimizer AdamW
ROC Curve - External Test Set ROC Curve - External Test Set ROC Curve - External Test Set
101 — AUC = 0.881 10{ — AUC = 0956 ” 10
08 08 - "’ o8
% 06 % 0.6 ”/'/ % 0.6
g L % 0.4 7 g % 0.4
g E E
02 0.2 0.2
0.0 0.0 0.0 " —— AUC =0.958
0.0 0.2 0.4 0.6 08 10 0.0 02 04 06 08 10 0.0 02 0.4 06 08 10
False Positive Rate False Positive Rate False Positive Rate
VGG19 (GAP) Optimizer Adam VGG19 (GAP+BN) Optimizer Adam VGG19 (GAP+BN) Optimizer AdamW
Fig.3. ROC-AUC curves of transfer leaming models.
From an error analysis perspective, false negatives where may result in diagnostically inadequate images being

poor-quality radiographs are misclassified as good quality accepted, potentially leading to misdiagnosis or delayed
pose a greater clinical risk than false positives. Such errors treatment. The VGG16 (GAP+BN, Adam) model exhibited a
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lower false-negative rate compared to other configurations,
suggesting improved reliability for clinical deployment. False
positives, while less critical from a safety standpoint, may still
contribute to unnecessary retakes and workflow inefficiencies;
however, these errors are generally preferable to false
negatives in radiographic quality assurance.

A comparative evaluation with previous studies
(Table XXII) demonstrates that the proposed VGG16-based
approach achieves competitive performance relative to more
complex frameworks such as CNN-SVM hybrids or object
detection-based models (e.g., YOLOvS). Importantly, the
proposed method maintains a lightweight architecture and
efficient training process, making it more practical for real-
world clinical implementation.

Overall, these findings indicate that domain-adapted
transfer leamning, when combined with architectural
simplification and normalization strategies, can effectively

Vol. 16, No. 12, 2025

enhance model generalization for automatic panoramic
radiograph quality assessment. By providing reliable
differentiation between diagnostically acceptable and poor-
quality images, the proposed approach has the potential to
reduce unnecessary retakes, improve patient safety by
minimizing radiation exposure, and support standardized
quality control in dental radiology practice.

Despite the promising results, this study has several
limitations. The relatively small dataset, although carefully
curated with expert consensus, may limit the generalizability
of the proposed models to broader clinical settings. While the
use of transfer learning, GAP, BN, and k-fold cross-validation
helps mitigate overfitting, external validation using
independent datasets from additional institutions would
provide stronger evidence of generalizability. Furthermore,
ablation studies investigating the effects of dataset size and
class balance were not conducted and will be considered in
future research.

TABLE XXII. CITATION-ONLY CONTEXTUAL COMPARISON

No Model Research Focus

Evaluation Results

1 Model CNN feature fusion+SVM [28]

Patient positioning errors (multi-class)

Accuracy=83.2%, AUC up to 0.998

Artifacts (Accuracy=87.2%, Precision=88.9%, F1-Score=0.864-0.943);
Coverage area (Accuracy=74.1%, Precision =83.3-91.3%, F1-
Score=0.769-0.941); Patient positioning (Accuracy=77.3%,

2 YOLOv8 Classification Model [12] | Radiograph quality Precision=76.9%, F1-Score=0.72-0.67); Contrast/Density
(Accuracy=97.9%, Precision=83.3-84.6%, F1-Score=0.782-0.765);
Overall image quality (Accuracy=79.3%, Precision=81.4%, F1-
Score=0.809-0.820)
— 0, T — 0, — 0, _
3 Proposed Method Radiograph quality (zood and poor) Accuracy=85.00%, Precision=87.11%, Recall=86.27%, F1

score=85.31%, AUC=94.72%, Specificity=84.55%

V. CONCLUSION

Based on the experimental results and analysis, the
proposed transfer learning-based CNN models demonstrated
promising performance in the automatic quality classification
of panoramic dental radiographs. Among the evaluated
architectures, the VGG16 model enhanced with Global
Average Pooling (GAP) and Batch Normalization (BN) and
optimized using the Adam optimizer achieved the best overall
performance under k-fold cross-validation, with an average
accuracy of 85.00%, precision of 87.11%, recall of 86.27%,
Fl-score of 8531%, AUC of 94.72%, and specificity of
84.55%. The integration of GAP and BN effectively improved
training stability and reduced overfitting, allowing the model
to generalize well across folds. These findings confirm that the
domain-adapted transfer learning approach can provide a
stable and reliable framework for automated panoramic
radiograph quality assessment. In the future, expanding the
dataset and incorporating external validation across multiple
institutions will further strengthen model generalizability and
clinical applicability. This study contributes to advancing Al-
based quality assurance systems in dental radiology, enabling
more consistent diagnostic outcomes and reducing retake rates
in clinical practice.

Based on these findings, several directions for future
research are recommended: Increasing data quantity and
diversity to improve model robustness and generalization.
Further fine-tuning of pretrained models to better adapt to
radiographic features. System implementation and integration
into clinical workflows for real-time image quality
assessment.
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