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Abstract—Assessing the quality of panoramic dental 

radiographs is essential to ensure diagnostic accuracy and patient 

safety. However, existing CNN-based approaches for radiograph 

quality assessment often emphasize architectural comparisons, 

while providing limited discussion on training stability and 

generalization, particularly when applied to relatively small and 

heterogeneous datasets. To address this gap, this study proposes 

a transfer learning-based framework that integrates Global 

Average Pooling (GAP) and Batch Normalization (BN) to 

enhance feature robustness and reduce overfitting in panoramic 

dental radiograph quality classification. Three pretrained CNN 

architectures: ResNet50, VGG16, and VGG19 were evaluated 

using panoramic radiographs collected from two tertiary 

hospitals in Indonesia. Experimental results using k-fold cross-

validation indicate that the proposed GAP+BN refinement 

improves classification consistency across models, with VGG16 

demonstrating the most stable and reliable performance. These 

findings suggest that domain-adapted transfer learning with 

appropriate feature aggregation and normalization can support 

the development of automated and clinically reliable quality 

assurance systems for panoramic dental imaging. 

Keywords—Batch Normalization; image quality; panoramic 

radiograph; transfer learning 

I. INTRODUCTION 

Panoramic radiography is one of the most widely used 
imaging modalities in dentistry because it provides 
comprehensive visualization of maxillary and mandibular 
structures with relatively low radiation exposure. However, 
the diagnostic reliability of panoramic radiographs is strongly 
dependent on image quality, which can be adversely affected 
by patient positioning errors, improper exposure parameters, 
and technical disturbances. Poor-quality radiographs reduce 
diagnostic accuracy and increase the likelihood of retakes, 
thereby exposing patients to unnecessary additional radiation. 
Consequently, systematic quality assessment of panoramic 
radiographs is a critical aspect of dental radiology practice. 

Previous studies have evaluated panoramic radiograph 
quality from both technical and diagnostic perspectives. 
Comparative analysis of different imaging devices has shown 

relatively small variations in image quality, indicating that 
multiple systems may be clinically acceptable [1],[2]. Other 
investigations reported that positioning errors, including head 
tilt and patient movement, occur in up to 95% of panoramic 
radiographs and represent the primary contributors to reduced 
diagnostic quality [3]. Although these studies provide valuable 
insights into common sources of image degradation, quality 
assessment in routine clinical practice still relies heavily on 
manual evaluation by operators and radiologists, which is 
inherently subjective and time-consuming. 

Several studies have emphasized the role of operator 
training and quality control in improving panoramic 
radiograph quality. Investigations conducted in South Wales 
and other dental institutions revealed that a large proportion of 
panoramic radiographs failed to meet national quality 
standards, primarily due to patient positioning errors and 
insufficient operator instructions [4],[5],[6]. In addition, 
improper tongue positioning against the palate has been 
identified as one of the most frequent errors, leading to 
radiolucent artifacts in the maxillary region and compromising 
diagnostic interpretation [7], [8]. These findings consistently 
highlight that human-related factors remain the dominant 
cause of poor panoramic radiograph quality. 

With the advancement of artificial intelligence, deep 
learning, particularly Convolutional Neural Networks (CNNs), 
has shown promising performance in automating image 
quality assessment across various radiographic modalities. 
CNN-based approaches have achieved high accuracy in 
evaluating diagnostic quality in ankle radiographs [9], and 
have been successfully applied to automated quality control in 
chest and elbow radiography [10], [11]. In the context of 
dental imaging, recent studies utilizing YOLOv8 and 
Generative Adversarial Networks have primarily focused on 
image enhancement or anatomical anomaly detection rather 
than explicitly addressing acquisition-related errors as 
indicators of panoramic radiograph quality [12], [13]. Despite 
these advances, several challenges remain unresolved. 
Reviews have reported inconsistencies in labeling strategies 
and dataset utilization for machine learning-based panoramic 
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radiograph quality assessment, which limits model 
generalization and reproducibility [14]. Moreover, most deep 
learning applications in panoramic radiography continue to 
prioritize anomaly detection or disease diagnosis, such as 
osteoporosis assessment, rather than systematic quality 
evaluation based on acquisition technique and patient 
positioning errors [15], [16], [17]. This indicates that research 
specifically targeting automated panoramic radiograph quality 
evaluation remains limited, particularly in terms of 
methodological robustness and clinical applicability. 

To address these limitations, this study proposes a transfer 
learning-based CNN framework for panoramic radiograph 
quality classification by systematically comparing three 
widely used architectures: ResNet50, VGG16, and VGG19. 
These models were selected due to their proven effectiveness 
in medical image classification tasks and their distinct feature 
representation capabilities. Previous studies have 
demonstrated the strong performance of VGG16 in binary 
medical image classification tasks, achieving high accuracy 
and F1-scores [18], while ResNet50 is known for its ability to 
mitigate the vanishing gradient problem through residual 
connections. Building upon these findings, the present study 
integrates Global Average Pooling (GAP) and Batch 
Normalization (BN) to enhance training stability and 
generalization, particularly when dealing with limited datasets. 

Unlike previous research that focused on dental anomaly 
detection or disease diagnosis using CNN-based models with 
Batch Normalization [16], This study emphasizes the 
evaluation of panoramic radiograph quality based on 
acquisition-related errors. The main contributions of this 
research are threefold: 1) providing a comparative analysis of 
popular pretrained CNN architectures for panoramic 
radiograph quality assessment, 2) demonstrating the 
effectiveness of GAP and BN in improving training stability 
and classification performance on limited datasets, and 
3) presenting empirical evidence from multi-institutional 
panoramic radiographs collected from Universitas Gadjah 
Mada and Universitas Airlangga hospitals in Indonesia to 
support the development of AI-based automatic quality 
assurance systems in dental radiology. 

This study is organized as follows: Section II presents a 
review of related literature. Section III describes the dataset 
used in this research and explains the proposed method in 
detail. Section IV discusses the experimental results and 
findings. Finally, Section V concludes the study and outlines 
directions for future research. 

II. LITERATURE REVIEW 

The quality of panoramic radiographs determines the 
diagnostic value and reliability of image interpretation. 
Several research have evaluated the consistency and quality of 
images obtained from different radiographic machines and the 
factors influencing them. An early research [1] compared two 
panoramic units and found that both produced equivalent 
diagnostic results for anatomical evaluation, with negligible 
differences in image quality, indicating that both devices were 
clinically acceptable. This suggests that technical acquisition 
parameters and patient positioning have a greater impact on 
diagnostic quality than differences between imaging devices. 

Automated approaches have also been introduced to assess 
radiographic acceptability. In [2], the authors developed an 
automated CNN-based framework to determine whether 
panoramic radiographs were suitable for further analysis. The 
system demonstrated high accuracy and showed potential to 
support diagnostic workflows, particularly in regions with 
limited access to orthodontic radiologists. 

Further applications of deep learning have extended to 
non-panoramic radiographs. For example, research [9] 
evaluated the diagnostic quality of ankle radiographs based on 
anatomical features, achieving 94.1% accuracy, surpassing 
average radiologist performance. Similarly, research [19] 
proposed a CNN with multi-scale feature extraction to 
automatically assess panoramic radiograph quality, 
outperforming conventional methods. Several studies have 
also focused on improving image quality. Research [20] 
introduced a Multi-Scale Top-Hat with Geodesic 
Reconstruction (MSTHGR) method to enhance image contrast 
and detail, while research [13] used a Generative Adversarial 
Network (Pix2Pix) to correct blurred and noisy images, 
significantly improving PSNR and SSIM metrics. Another 
research [21] employed a deep learning-based super-resolution 
technique (LTE) to enhance image resolution with visually 
and quantitatively superior results. 

Panoramic radiography plays an essential role in dental 
diagnosis; however, patient positioning errors frequently occur 
due to equipment complexity and anatomical variations, 
leading to reduced image quality and diagnostic accuracy. 
Research developed a deep learning model to detect six 
common positioning errors: slumped posture, low chin, open 
lips, head rotation, head tilt, and tongue not against the palate, 
using 552 panoramic radiographs. Six CNN architectures were 
employed for feature extraction, and the extracted features 
were fused and classified using a Support Vector Machine 
(SVM). The model achieved an accuracy of 0.832 with high 
precision and recall, proving effective for automatic 
identification of patient positioning errors and improving 
diagnostic reliability. 

Positioning errors are among the main causes of reduced 
diagnostic quality in panoramic imaging. Research [3] 
reported that 95% of 500 radiographs contained one or more 
positioning errors, particularly head tilt. Similarly, research [4] 
found that 54.6% of radiographs in South Wales exhibited 
positioning errors and 47.9% were affected by poor patient 
preparation or instruction. Research [5], which analyzed 1,000 
panoramic radiographs, found that the most common error 
was the tongue not being pressed against the palate (69.5%), 
followed by patient motion (0.4%). Research [6] involving 
2,629 patients revealed that only 32.8% of radiographs were 
error-free, with tongue positioning errors being the most 
prevalent. Research [7] compared image quality across three 
radiographic technicians and found significant inter-operator 
variation, with the “gazebo effect” and condyle positioning 
errors being the most frequent findings. 

In Indonesia, research [8] reported that 98.78% of 
panoramic radiographs exhibited patient positioning errors, 
most commonly due to the tongue not adhering to the palate 
(49.68%), although the overall diagnostic quality remained 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

287 | P a g e  
www.ijacsa.thesai.org 

acceptable. Similar errors have been reported in other research 
[22], [23], [24], [25], where head alignment, lateral rotation, 
and palatoglossal air space were identified as the primary 
factors reducing image quality [26]. 

Several studies have highlighted the impact of imaging 
technique and operator skill on radiographic quality. In [27], 
the authors emphasized the importance of head positioning, 
occlusal plane orientation, mandibular condyle alignment, and 
metal artifact control in producing symmetric and 
diagnostically acceptable panoramic images. Research [28] 
added that horizontal spatial distortion up to ≤20% remains 
clinically acceptable, while a minimum spatial resolution of 
1.88 lp/mm is necessary to maintain anatomical readability. 

In [9], the authors showed that while radiographic quality 
did not vary significantly among technicians, the types of 
errors did, indicating that operator training and experience 
play a major role. This finding was supported by research 
[23], which concluded that radiographic errors are not directly 
correlated with professional experience but are influenced by 
patient cooperation and attentiveness during image 
acquisition. In addition to operator-related issues, technical 
parameters such as exposure settings and image processing 
also affect diagnostic quality. In [24], [25], the authors found 
that post-trauma radiographs frequently suffered from 
exposure errors, out-of-focus positioning, and metal artifacts, 
which limited diagnostic interpretation. 

Efforts to improve radiographic quality control have 
increasingly employed deep learning methods. In [12], the 

authors developed a YOLOv8-based model to assess 
panoramic radiograph quality using five clinical visual 
criteria, achieving an overall accuracy of 81.4%. Similar 
approaches have been applied to chest [10] and elbow [11] 
radiographs, demonstrating strong potential for automated 
medical image quality assessment. 

Moreover, research [14] conducted a systematic review of 
41 research on panoramic radiograph image quality for 
machine learning model training. The review found that most 
research lacked standardized image quality criteria, and 
defective images were often excluded from datasets without 
detailed analysis. This practice introduces bias and reduces 
model generalizability, emphasizing the need for automated 
methods to assess and manage radiograph quality consistently. 

The quality of panoramic radiographs is predominantly 
affected by acquisition technique and patient positioning, with 
the latter being the leading cause of diagnostically 
unacceptable images. Although deep learning systems have 
been widely used for image enhancement and quality 
evaluation, research that integrates expert clinical annotations 
with CNN models for objective assessment of panoramic 
radiograph quality remains limited. 

This highlights an existing research gap that needs to be 
addressed through the development of CNN-based automated 
systems capable of accurately identifying technical and 
positioning errors while providing feedback to improve image 
acquisition quality. Table I summarizes the key differences 
between the present research and the work of [12]. 

TABLE I. COMPARISON BETWEEN THE PROPOSED MODEL AND PREVIOUS RESEARCHES 

Aspect Research [12] Proposed Contribution/Difference 

Objective 

Automated assessment of panoramic 

radiograph quality based on four 

criteria (artifacts, coverage area, 

patient positioning, and 

contrast/density) and clinical 

acceptability (acceptable vs. not 

acceptable). 

Development of a CNN-based 

panoramic radiograph quality 

evaluation model using a domain-

adapted ResNet50 to classify image 

quality into good and poor categories. 

Both assess image quality; however, the 

proposed research focuses on optimizing a 

domain-adapted CNN and evaluating inter-

architecture performance rather than single-

model classification using YOLO. 

Model 

YOLOv8 (single-stage real-time 

classifier with 141 layers, Adam-W 

optimizer, learning rate=0.0001). 

Domain-adapted ResNet50 architecture 

with additional Global Average Pooling 

(GAP) and Batch Normalization (BN) 

layers for improved stability and 

generalization. 

The proposed research presents a transfer 

learning-based modification of a classical CNN 

architecture, which is referred to as a domain-

adapted transfer learning to emphasize its 

adaptation to the specific characteristics of 

panoramic dental radiographs. This adaptation 

was achieved through architectural modification 

(GAP and BN layers) and fine-tuning on 

domain-specific data. 

Evaluation Criteria  

Four aspects (artifacts, coverage, 

positioning, contrast/density) plus 

overall image quality. 

Focuses on overall radiograph quality 

(good or poor) based on coverage, 

vertical and horizontal distortion, detail 

and sharpness, artifacts and ghost 

images, and radiolucent areas in the 

anterior maxillary apical region. 

The proposed method performs holistic 

radiograph quality assessment rather than per-

aspect evaluation, providing faster and more 

efficient results for clinical application. 

Accuracy 

74.1-97.9% per criterion, with an 

average of 81.4% for clinical 

classification. 

Domain-adapted ResNet50 achieved 

82-85% accuracy and the highest F1-

score compared to baseline CNNs 

(VGG architectures). 

The proposed model delivers comparable or 

slightly higher performance with lower model 

complexity than YOLOv8. 

Optimization 

Strategy Data augmentation, Adam-W 

optimizer, and automatic mixed 

precision. 

Transfer learning, Batch Normalization, 

and adaptive learning rate scheduler. 

The proposed approach emphasizes training 

efficiency and domain adaptability without 

requiring high-end GPU resources. 

Clinical Contribution 

Provides a real-time radiograph quality 

control system and an educational tool 

for dental students. 

Offers a lightweight CNN model for 

automated radiograph quality 

evaluation in resource-limited 

institutions. 

The proposed method is easier to implement in 

local dental clinics without the need for high 

computational infrastructure. 
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A. Conventional Approaches and Their Limitations 

Early research relied on manual visual inspection by 
radiologists, which is subjective and time-consuming. Later, 
rule-based metrics such as contrast, entropy, or edge sharpness 
were used to quantify quality, but these fail to capture 
anatomical distortion or exposure errors. Classical machine-
learning models (e.g., SVM, k-NN) using handcrafted texture 
or wavelet features improved objectivity but depended heavily 
on feature design and were sensitive to acquisition variability. 
Recent deep-learning approaches applied CNNs for anomaly 
detection or anatomy segmentation rather than direct 
good/poor quality classification, and often used single-center 
data without cross-institution validation. This research differs 
by applying a transfer-learning CNN (ResNet50, VGG16, 
VGG19) directly to the binary quality classification task of 
panoramic radiographs, reducing the need for handcrafted 
features and improving robustness for small, domain-specific 
datasets. 

III. METHODS 

A. Dataset 

The dataset used in this research was obtained from the 
Dental and Oral Hospital (RSGM) of Universitas Airlangga, 
Surabaya, and the Dental and Oral Hospital of Universitas 
Gadjah Mada, Yogyakarta. Ethical approval for the use of 
radiographic data was granted by both institutions under 
approval numbers 0910/HRECC.FODM/VIII/2025 and 
158/UNI/KEP/FKG-RSGM/EC/2025, respectively. In total, 
1,285 panoramic radiographic images were collected, 
consisting of 820 images from Universitas Airlangga and 465 
images from Universitas Gadjah Mada. 

Each radiograph was independently evaluated by four 
dental radiology experts based on five key diagnostic quality 
aspects (see Table II), with a maximum total score of five. 
Radiographs with a total score of five were categorized as 
good quality, indicating no retake was required, while 
radiographs with a score below five were categorized as poor 
quality, indicating a retake was recommended. To ensure 
annotation reliability and reduce label ambiguity, only 
radiographs with full consensus among all four experts were 
included in the final dataset used for model training and 
evaluation. 

Based on this strict selection criterion, 442 panoramic 
radiographs were retained, including 221 good-quality and 
221 poor-quality images (see Table III). Specifically, 105 
good-quality and 105 poor-quality radiographs were obtained 
from Universitas Airlangga, while 116 good-quality and 116 
poor-quality radiographs were obtained from Universitas 
Gadjah Mada. This balanced class distribution was 
intentionally maintained to prevent model bias towards a 
dominant class. 

Examples of panoramic radiographs used in this study are 
shown in Fig. 1. Good-quality radiographs exhibit complete 
anatomical coverage, clear visualization of the 
maxillomandibular structures, sharp anatomical details, and 
the absence of distortion or artifacts that may interfere with 

diagnosis. In contrast, poor-quality radiographs are 
characterized by positioning-related distortions, asymmetry, 
reduced sharpness due to patient movement, and the presence 
of artifacts such as ghost images or extensive radiolucent 
regions that compromise diagnostic reliability. 

TABLE II. IMAGE QUALITY ASSESSMENT CRITERIA 

No. Aspect 1 0 

1 Coverage 

The image includes 

the lower border of 

the mandible, both 

right and left 

condyles, and the 

lower border of the 

orbits. 

One or more of these 

anatomical areas are 

not included in the 

image. 

2 

Vertical and 

Horizontal 

Distortion 

No vertical or 

horizontal distortion 

is observed.  

Distortion interferes 

with interpretation 

(e.g., inverted or V-

shaped dental arch, 

asymmetrical 

mandibular shape). 

3 
Detail and 

Sharpness 

The image shows 

clear anatomical 

detail and sharpness. 

Image detail is 

unclear or 

overlapping due to 

patient head 

movement during 

exposure. 

4 
Artifacts and Ghost 

Images 

No artifacts or ghost 

images interfere with 

diagnostic 

interpretation. 

Ghost images from 

foreign objects or 

large radiolucent 

areas (air spaces) 

obscure dental or 

maxillofacial 

structures. 

5 

Radiolucent Area in 

the Anterior 

Maxillary Apical 

Region 

No radiolucent area 

interferes with 

interpretation. 

A radiolucent area is 

present in the anterior 

maxillary apical 

region, reducing 

diagnostic clarity. 

TABLE III. DATASET DISTRIBUTION 

Class Training Testing Total 

Good 170 51 221 

Poor 170 51 221 

Total 340 102 442 

Although the final dataset used in this study consists of 
442 curated panoramic radiographs, which may be considered 
relatively small for deep learning applications, this reflects 
realistic clinical constraints where high-quality, expert-labeled 
radiographic data are limited. The reduced dataset size 
increases the risk of overfitting; therefore, several mitigation 
strategies were employed. First, transfer learning from 
pretrained CNN models was used to leverage previously 
learned generic visual features. Second, Global Average 
Pooling (GAP) was applied to reduce the number of trainable 
parameters, while Batch Normalization (BN) was incorporated 
to stabilize training and improve generalization. In addition, k-
fold cross-validation was adopted to maximize data utilization 
and provide a more robust estimate of model performance 
across different data partitions. 
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Fig. 1. Examples of panoramic radiographs. 

Although the final dataset size is relatively limited, this 
scenario reflects realistic clinical conditions where curated, 
high-quality labeled radiographic data are often scarce. To 
mitigate the risk of overfitting associated with limited data, 
this study employed a transfer learning strategy using 

pretrained CNN models, combined with Global Average 
Pooling and Batch Normalization to enhance feature 
robustness and training stability. Furthermore, k-fold cross-
validation was applied to maximize data utilization and 
provide a more reliable estimation of model generalization 
performance across different data splits. 

B. Proposed Method 

This research proposes a transfer learning-based approach 
using three CNN architectures: ResNet50, VGG16, and 
VGG19 to classify the quality of panoramic dental 
radiographs into two classes: good and poor (Fig. 2). All 
pretrained models were initialized with ImageNet weights and 
modified by adding Global Average Pooling (GAP) and Batch 
Normalization (BN) layers to improve adaptability to the 
specific characteristics of dental radiographs. In this context, 
the term domain-adapted refers to the adaptation of a 
pretrained network through transfer learning and fine-tuning 
using dental imaging data, rather than an explicit domain 
adaptation mechanism such as adversarial alignment or feature 
distribution matching. The proposed method aims to automate 
the panoramic radiograph quality assessment process and 
empirically verify the reliability of ResNet50 compared to the 
other architectures. Model performance was evaluated using k-
fold cross-validation to ensure robustness and reduce sampling 
bias. The main stages of the proposed method include the 
following steps (as illustrated in Fig. 2): 

a) Preprocessing data: All panoramic radiograph 
images were converted into RGB format with a resolution of 

512×512 pixels and normalized to a range of [0,1]. 

b) Feature extraction (transfer learning): Three 
pretrained CNN models were employed as feature extractors: 
ResNet50, which utilizes residual connections to preserve 
gradient flow and is well-suited for detecting complex 

radiographic textures; VGG16 and VGG19, which employ 
simple stacked convolutional layers effective for capturing 

edge and shape representations. 

c) Architecture modification: To enhance model 

performance, several layers were added: Global Average 
Pooling (GAP) to reduce feature dimensions while retaining 
essential spatial information; Batch Normalization (BN) to 
stabilize inter-layer activation distributions and accelerate 
convergence; and Dense Layers (128-256 units) with ReLU 
activation as the classifier head. The models were optimized 

using the Adam or AdamW optimizer with a learning rate of 

0.0001, batch size of 2, and 30 training epochs. 

d) Training and evaluation: The models were trained on 
a labeled dataset of 442 panoramic radiographs (340 for 

training and 102 for testing). Evaluation metrics included 
accuracy [Eq. (1)], precision [Eq. (2)], recall (sensitivity) 
[Eq. (3)], specificity [Eq. (4)], and F1-Score [Eq. (5)] analysis 
[18]. These metrics were selected to provide a comprehensive 
understanding of diagnostic reliability, particularly regarding 
false negatives, which may correspond to clinically 

unacceptable images being classified as acceptable. This 
evaluation framework supports the model’s applicability for 
clinical quality assurance and radiation dose reduction in 

dental radiology workflows. 
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Fig. 2. Proposed method framework. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁
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           (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁
                             (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃+𝐹𝑃
    (4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2.𝑇𝑃

2.𝑇𝑃+𝐹𝑃+𝐹𝑁
         (5) 

IV. RESULTS AND DISCUSSION 

Tables IV to XII summarize the class-wise evaluation 
metrics obtained from k-fold cross-validation for all evaluated 
models. Rather than focusing solely on absolute metric values, 
the results reveal clear performance trends across architectures 
and configurations. Overall, VGG16-based models 
consistently demonstrated more stable and balanced 
performance compared to ResNet50 and VGG19, particularly 
when combined with Global Average Pooling (GAP) and 
Batch Normalization (BN). 

ResNet50 achieved relatively high AUC values in several 
folds, indicating strong discriminative potential. However, its 
performance exhibited substantial variability in recall and 
specificity across folds (Tables IV to VI and Tables XIII to 
XV). This instability suggests sensitivity to data partitioning 
and potential overfitting, which can be attributed to the 
model’s higher architectural complexity relative to the limited 
size of the curated panoramic radiograph dataset. Although 
residual connections are designed to facilitate deeper feature 
learning, they may lead to unstable optimization when the 
available training data are insufficient to support robust 
parameter estimation. 

In contrast, VGG16 demonstrated consistently lower 
variance across folds and more balanced class-wise 
performance (Tables VII to IX and Tables XVI to XVIII). The 
integration of GAP reduced the number of trainable 
parameters, while BN improved gradient flow and training 
stability. These architectural refinements enabled VGG16 to 
achieve the most reliable overall performance, with an average 
accuracy of 85.00% and an AUC of 94.72%. The relatively 
shallow and uniform convolutional structure of VGG16 
appears to be better suited for capturing global structural 
distortions and acquisition-related artifacts commonly 
observed in panoramic radiographs. 

TABLE IV. RESNET50 (GAP) EVALUATION RESULTS FOR EACH CLASS 

k-fold=1 Recall Precision F1-score Specificity 

Good 55.56 80.00 65.57 84.38 

Poor 84.38 62.79 72.00 55.56 

mean 69.97 71.40 68.79 69.97 

std 20.38 12.17 4.54 20.38 

 k-fold=2 Recall Precision F1-score Specificity 

Good 28.57 58.82 38.46 78.79 

Poor 78.79 50.98 50.98 28.57 

mean 53.68 54.90 44.72 53.68 

std 35.51 5.55 8.85 35.51 

k-fold=3 Recall Precision F1-score Specificity 

Good 71.88 62.16 66.67 61.11 

Poor 61.11 70.97 65.67 71.88 

mean 66.49 66.56 66.17 66.49 

std 7.61 6.23 0.70 7.61 

k-fold=4 Recall Precision F1-score Specificity 

Good 100.00 52.94 69.23 0.00 

Poor 0.00 0.00 0.00 100.00 

mean 50.00 26.47 34.62 50.00 

std 70.71 37.44 48.95 70.71 

k-fold=5 Recall Precision F1-score Specificity 

Good 100.00 60.78 75.61 45.95 

Poor 45.95 100.00 62.96 100.00 

mean 72.97 80.39 69.29 72.97 

std 38.22 27.73 8.94 38.22 

TABLE V. RESNET50 (GAP+BN) EVALUATION RESULTS FOR EACH 

CLASS 

k-fold=1 Recall Precision F1-score Specificity 

Good 66.67 88.89 76.19 90.63 

Poor 90.63 70.73 79.45 66.67 

mean 78.65 79.81 77.82 78.65 

std 16.94 12.84 2.31 16.94 

k-fold=2 Recall Precision F1-score Specificity 

Good 22.86 88.89 36.36 96.97 
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Poor 96.97 54.24 54.24 22.86 

mean 59.91 71.56 45.30 59.91 

std 52.41 24.50 12.64 52.41 

k-fold=3 Recall Precision F1-score Specificity 

Good 0.00 0.00 0.00 100.00 

Poor 100.00 52.94 69.23 0.00 

mean 50.00 26.47 34.62 50.00 

std 70.71 37.44 48.95 70.71 

k-fold=4 Recall Precision F1-score Specificity 

Good 100.00 52.94 69.23 0.00 

Poor 0.00 0.00 0.00 100.00 

mean 50.00 26.47 34.62 50.00 

std 70.71 37.44 48.95 70.71 

k-fold=5 Recall Precision F1-score Specificity 

Good 100.00 45.59 62.63 0.00 

Poor 0.00 0.00 0.00 100.00 

mean 50.00 22.79 31.31 50.00 

std 70.71 32.24 44.28 70.71 

TABLE VI. RESNET50 (GAP+BN) OPTIMIZER ADAMW EVALUATION 

RESULTS FOR EACH CLASS 

k-fold=1 Recall Precision F1-score Specificity 

Good 100.00 61.02 75.79 28.13 

Poor 28.13 100.00 43.90 100.00 

mean 64.06 80.51 59.85 64.06 

std 50.82 27.57 22.55 50.82 

k-fold=2 Recall Precision F1-score Specificity 

Good 100.00 51.47 67.96 0.00 

Poor 0.00 0.00 0.00 100.00 

mean 50.00 25.74 33.98 50.00 

std 70.71 36.40 48.06 70.71 

k-fold=3 Recall Precision F1-score Specificity 

Good 0.00 0.00 0.00 100.00 

Poor 100.00 52.94 69.23 0.00 

mean 50.00 26.47 34.62 50.00 

std 70.71 37.44 48.95 70.71 

k-fold=4 Recall Precision F1-score Specificity 

Good 97.22 62.50 76.09 34.38 

Poor 34.38 91.67 50.00 97.22 

mean 65.80 77.08 63.04 65.80 

std 44.44 20.62 18.45 44.44 

k-fold=5 Recall Precision F1-score Specificity 

Good 100.00 45.59 62.63 0.00 

Poor 0.00 0.00 0.00 100.00 

mean 50.00 22.79 31.31 50.00 

std 70.71 32.24 44.28 70.71 

TABLE VII. VGG16 (GAP) EVALUATION RESULTS FOR EACH CLASS 

k-fold=1 Recall Precision F1-score Specificity 

Good 86.11 72.09 78.48 62.50 

Poor 62.50 80.00 70.18 86.11 

mean 74.31 76.05 74.33 74.31 

std 16.70 5.59 5.87 16.70 

k-fold=2 Recall Precision F1-score Specificity 

Good 60.00 87.50 71.19 90.91 

Poor 90.91 68.18 77.92 60.00 

mean 75.45 77.84 74.55 75.45 

std 21.86 13.66 4.76 21.86 

k-fold=3 Recall Precision F1-score Specificity 

Good 84.38 64.29 72.97 58.33 

Poor 58.33 80.77 67.74 84.38 

mean 71.35 72.53 70.36 71.35 

std 18.41 11.66 3.70 18.41 

k-fold=4 Recall Precision F1-score Specificity 

Good 97.22 67.31 79.55 46.88 

Poor 46.88 93.75 62.50 97.22 

mean 72.05 80.53 71.02 72.05 

std 35.60 18.70 12.05 35.60 

k-fold=5 Recall Precision F1-score Specificity 

Good 93.55 69.05 79.45 64.86 

Poor 64.86 92.31 76.19 93.55 

mean 79.21 80.68 77.82 79.21 

std 20.28 16.45 2.31 20.28 

TABLE VIII. VGG16 (GAP+BN) EVALUATION RESULTS FOR EACH CLASS 

k-fold=1 Recall Precision F1-score Specificity 

Good 69.44 100.00 81.97 100.00 

Poor 100.00 74.42 85.33 69.44 

mean 84.72 87.21 83.65 84.72 

std 21.61 18.09 2.38 21.61 

k-fold=2 Recall Precision F1-score Specificity 

Good 62.86 95.65 75.86 96.97 

Poor 96.97 71.11 82.05 62.86 

mean 79.91 83.38 78.96 79.91 

std 24.12 17.35 4.38 24.12 

k-fold=3 Recall Precision F1-score Specificity 

Good 96.88 81.58 88.57 80.56 

Poor 80.56 96.67 87.88 96.88 

mean 88.72 89.12 88.23 88.72 

std 11.54 10.67 0.49 11.54 

k-fold=4 Recall Precision F1-score Specificity 

Good 100.00 83.72 91.14 78.13 

Poor 78.13 100.00 87.72 100.00 

mean 89.06 91.86 89.43 89.06 

std 15.47 11.51 2.42 15.47 

k-fold=5 Recall Precision F1-score Specificity 

Good 93.55 76.32 84.06 75.68 

Poor 75.68 93.33 83.58 93.55 

mean 84.61 84.82 83.82 84.61 

std 12.64 12.03 0.34 12.64 
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TABLE IX. VGG16 (GAP+BN) OPTIMIZER ADAMW EVALUATION 

RESULTS FOR EACH CLASS 

k-fold=1 Recall Precision F1-score Specificity 

Good 63.89 95.83 76.67 96.88 

Poor 96.88 70.45 81.58 63.89 

mean 80.38 83.14 79.12 80.38 

std 23.32 17.95 3.47 23.32 

k-fold=2 Recall Precision F1-score Specificity 

Good 97.14 73.91 83.95 63.64 

Poor 63.64 95.45 76.36 97.14 

mean 80.39 84.68 80.16 80.39 

std 23.69 15.23 5.36 23.69 

k-fold=3 Recall Precision F1-score Specificity 

Good 90.63 74.36 81.69 72.22 

Poor 72.22 89.66 80.00 90.63 

mean 81.42 82.01 80.85 81.42 

std 13.01 10.82 1.20 13.01 

k-fold=4 Recall Precision F1-score Specificity 

Good 100.00 80.00 88.89 71.88 

Poor 71.88 100.00 83.64 100.00 

mean 85.94 90.00 86.26 85.94 

std 19.89 14.14 3.71 19.89 

k-fold=5 Recall Precision F1-score Specificity 

Good 16.13 100.00 27.78 100.00 

Poor 100.00 58.73 74.00 16.13 

mean 58.06 79.37 50.89 58.06 

std 59.31 29.18 32.68 59.31 

TABLE X. VGG19 (GAP) EVALUATION RESULTS FOR EACH CLASS 

k-fold=1 Recall Precision F1-score Specificity 

Good 72.22 74.29 73.24 71.88 

Poor 71.88 69.70 70.77 72.22 

mean 72.05 71.99 72.00 72.05 

std 0.25 3.24 1.75 0.25 

k-fold=2 Recall Precision F1-score Specificity 

Good 80.00 70.00 74.67 63.64 

Poor 63.64 75.00 68.85 80.00 

mean 71.82 72.50 71.76 71.82 

std 11.57 3.54 4.11 11.57 

k-fold=3 Recall Precision F1-score Specificity 

Good 90.63 65.91 76.32 58.33 

Poor 58.33 87.50 70.00 90.63 

mean 74.48 76.70 73.16 74.48 

std 22.83 15.27 4.47 22.83 

k-fold=4 Recall Precision F1-score Specificity 

Good 88.89 68.09 77.11 53.13 

Poor 53.13 80.95 64.15 88.89 

mean 71.01 74.52 70.63 71.01 

std 25.29 9.10 9.16 25.29 

k-fold=5 Recall Precision F1-score Specificity 

Good 77.42 77.42 77.42 81.08 

Poor 81.08 81.08 81.08 77.42 

mean 79.25 79.25 79.25 79.25 

std 2.59 2.59 2.59 2.59 

TABLE XI. VGG19 (GAP+BN) EVALUATION RESULTS FOR EACH CLASS 

k-fold=1 Recall Precision F1-score Specificity 

Good 86.11 79.49 82.67 75.00 

Poor 75.00 82.76 78.69 86.11 

mean 80.56 81.12 80.68 80.56 

std 7.86 2.31 2.81 7.86 

k-fold=2 Recall Precision F1-score Specificity 

Good 100.00 59.32 74.47 27.27 

Poor 27.27 100.00 42.86 100.00 

mean 63.64 79.66 58.66 63.64 

std 51.43 28.76 22.35 51.43 

k-fold=3 Recall Precision F1-score Specificity 

Good 96.88 50.00 65.96 13.89 

Poor 13.89 83.33 23.81 96.88 

mean 55.38 66.67 44.88 55.38 

std 58.68 23.57 29.80 58.68 

k-fold=4 Recall Precision F1-score Specificity 

Good 72.22 86.67 78.79 87.50 

Poor 87.50 73.68 80.00 72.22 

mean 79.86 80.18 79.39 79.86 

std 10.80 9.18 0.86 10.80 

k-fold=5 Recall Precision F1-score Specificity 

Good 87.10 90.00 88.52 91.89 

Poor 91.89 89.47 90.67 87.10 

mean 89.49 89.74 89.60 89.49 

std 3.39 0.37 1.51 3.39 

TABLE XII. VGG19 (GAP+BN) OPTIMIZER ADAMW EVALUATION 

RESULTS FOR EACH CLASS 

k-fold=1 Recall Precision F1-score Specificity 

Good 72.22 86.67 78.79 87.50 

Poor 87.50 73.68 80.00 72.22 

mean 79.86 80.18 79.39 79.86 

std 10.80 9.18 0.86 10.80 

k-fold=2 Recall Precision F1-score Specificity 

Good 100.00 70.00 82.35 54.55 
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Poor 54.55 100.00 70.59 100.00 

mean 77.27 85.00 76.47 77.27 

std 32.14 21.21 8.32 32.14 

k-fold=3 Recall Precision F1-score Specificity 

Good 90.63 80.56 85.29 80.56 

Poor 80.56 90.63 85.29 90.63 

mean 85.59 85.59 85.29 85.59 

std 7.12 7.12 0.00 7.12 

k-fold=4 Recall Precision F1-score Specificity 

Good 86.11 83.78 84.93 81.25 

Poor 81.25 83.87 82.54 86.11 

mean 83.68 83.83 83.74 83.68 

std 3.44 0.06 1.69 3.44 

k-fold=5 Recall Precision F1-score Specificity 

Good 19.35 100.00 32.43 100.00 

Poor 100.00 59.68 74.75 19.35 

mean 59.68 79.84 53.59 59.68 

std 57.02 28.51 29.92 57.02 

TABLE XIII. RESNET50 (GAP) K-FOLD CROSS-VALIDATION RESULTS 

k-fold Accuracy Precision Recall 
F1-

score 
AUC Specificity 

1 69.12 62.79 84.38 72.00 78.21 55.56 

2 52.94 50.98 78.79 61.90 69.52 28.57 

3 66.18 70.97 61.11 65.67 72.92 71.88 

4 52.94 0.00 0.00 0.00 76.39 100.00 

5 70.59 100.00 45.95 62.96 92.07 100.00 

max 70.59 100.00 84.38 72.00 92.07 100.00 

mean 62.35 56.95 54.05 52.51 77.82 71.20 

std 8.74 36.62 33.80 29.61 8.63 30.50 

TABLE XIV. RESNET50 (GAP+BN) K-FOLD CROSS-VALIDATION RESULTS 

k-fold Accuracy Precision Recall 
F1-

score 
AUC Specificity 

1 77.94 70.73 90.63 79.45 91.58 66.67 

2 58.82 54.24 96.97 69.57 91.26 22.86 

3 52.94 52.94 100.00 69.23 90.23 0.00 

4 52.94 0.00 0.00 0.00 87.85 100.00 

5 45.59 0.00 0.00 0.00 93.98 100.00 

max 77.94 70.73 100.00 79.45 93.98 100.00 

mean 57.65 35.58 57.52 43.65 90.98 57.91 

std 12.28 33.23 52.62 40.06 2.22 45.28 

TABLE XV. RESNET50 (GAP+BN) OPTIMIZER ADAMW K-FOLD  
CROSS-VALIDATION RESULTS 

k-fold Accuracy Precision Recall 
F1-

score 
AUC Specificity 

1 66.18 100.00 28.13 43.90 86.20 100.00 

2 51.47 0.00 0.00 0.00 89.61 100.00 

3 52.94 52.94 100.00 69.23 93.06 0.00 

4 67.65 91.67 34.38 50.00 89.06 97.22 

5 45.59 0.00 0.00 0.00 95.90 100.00 

max 67.65 100.00 100.00 69.23 95.90 100.00 

mean 56.77 48.92 32.50 32.63 90.77 79.44 

std 9.68 48.06 40.90 31.22 3.77 44.43 

TABLE XVI. VGG16 (GAP) K-FOLD CROSS-VALIDATION RESULTS 

k-fold Accuracy Precision Recall 
F1-

score 
AUC Specificity 

1 75.00 80.00 62.50 70.18 78.21 86.11 

2 75.00 68.18 90.91 77.92 85.45 60.00 

3 70.59 80.77 58.33 67.74 74.48 84.38 

4 73.53 93.75 46.88 62.50 86.89 97.22 

5 77.94 92.31 64.86 76.19 85.00 93.55 

max 77.94 93.75 90.91 77.92 86.89 97.22 

mean 74.41 83.00 64.70 70.91 82.01 84.25 

std 2.67 10.44 16.20 6.29 5.38 14.55 

TABLE XVII. VGG16 (GAP+BN) K-FOLD CROSS-VALIDATION RESULTS 

k-fold Accuracy Precision Recall 
F1-

score 
AUC Specificity 

1 83.82 74.42 100.00 85.33 95.75 69.44 

2 79.41 71.11 96.97 82.05 96.19 62.86 

3 88.24 96.67 80.56 87.88 94.88 96.88 

4 89.71 100.00 78.13 87.72 94.79 100.00 

5 83.82 93.33 75.68 83.58 91.98 93.55 

max 89.71 100.00 100.00 87.88 96.19 100.00 

mean 85.00 87.11 86.27 85.31 94.72 84.55 

std 4.08 13.35 11.34 2.55 1.64 17.11 

TABLE XVIII. VGG16 (GAP+BN) OPTIMIZER ADAMW K-FOLD  
CROSS-VALIDATION RESULTS 

k-fold Accuracy Precision Recall 
F1-

score 
AUC Specificity 

1 79.41 70.45 96.88 81.58 95.05 63.89 

2 80.88 95.45 63.64 76.36 95.93 97.14 

3 80.88 89.66 72.22 80.00 93.84 90.63 

4 86.76 100.00 71.88 83.64 90.00 100.00 

5 61.76 58.73 100.00 74.00 91.63 16.13 

max 86.76 100.00 100.00 83.64 95.93 100.00 

mean 77.94 82.86 80.92 79.12 93.29 73.56 

std 9.47 17.57 16.39 3.91 2.45 35.14 

TABLE XIX. VGG19 (GAP) K-FOLD CROSS-VALIDATION RESULTS 

k-fold Accuracy Precision Recall 
F1-

score 
AUC Specificity 

1 72.06 69.70 71.88 70.77 84.38 72.22 

2 72.06 75.00 63.64 68.85 80.26 80.00 

3 73.53 87.50 58.30 70.00 72.60 90.63 

4 72.06 80.95 53.13 64.15 77.08 88.89 

5 79.41 81.08 81.08 81.08 88.14 77.42 

max 79.41 87.50 81.08 81.08 88.14 90.63 

mean 73.82 78.85 65.61 70.97 80.49 81.83 

std 3.19 6.76 11.09 6.21 6.07 7.79 

TABLE XX. VGG19 (GAP+BN) K-FOLD CROSS-VALIDATION RESULTS 

k-fold Accuracy Precision Recall 
F1-

score 
AUC Specificity 

1 80.88 82.76 75.00 78.69 86.72 86.11 

2 64.71 100.00 27.27 42.86 95.58 100.00 

3 52.94 83.33 13.89 23.81 92.27 96.88 

4 79.41 73.68 87.50 80.00 92.71 72.22 

5 89.71 89.47 91.89 90.67 93.46 87.10 

max 89.71 100.00 91.89 90.67 95.58 100.00 

mean 73.53 85.85 59.11 63.21 92.15 88.46 

std 14.60 9.71 36.03 28.47 3.29 10.90 
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TABLE XXI. VGG19 (GAP+BN) OPTIMIZER ADAMW K-FOLD CROSS-
VALIDATION RESULTS 

k-fold Accuracy Precision Recall 
F1-

score 
AUC Specificity 

1 79.41 73.68 87.50 80.00 89.15 72.22 

2 77.94 100.00 54.55 70.59 95.76 100.00 

3 85.29 90.63 80.56 85.29 91.93 90.63 

4 83.82 83.87 81.25 82.54 92.88 86.11 

5 63.24 59.68 100.00 74.75 93.55 19.35 

max 85.29 100.00 100.00 85.29 95.76 100.00 

mean 77.94 81.57 80.77 78.63 92.65 73.66 

std 8.76 15.56 16.60 5.94 2.41 31.97 

VGG19 exhibited competitive discriminative performance, 
with mean AUC values around 92% (Table X to Table XII 
and Table XIX to Table XXI). However, its deeper 
architecture resulted in slightly higher performance variability 
compared to VGG16, suggesting increased sensitivity to 
limited data and fold composition. Among VGG19 variants, 
the use of adaptive optimization (AdamW) improved 
convergence consistency, reinforcing the importance of 
optimizer selection in small-scale medical imaging datasets. 

Fig. 3 illustrates the ROC curves for all evaluated 
configurations, further confirming that VGG16 with GAP and 
BN achieved superior and more consistent discrimination 
between good- and poor-quality radiographs. The proximity of 
the ROC curve to the upper-left corner indicates a favorable 
balance between sensitivity and specificity, which is critical in 
quality assessment tasks where both false positives and false 
negatives carry clinical consequences. 

 

ResNet50 (GAP) Optimizer Adam 

 

ResNet50 (GAP+BN) Optimizer Adam 

 

ResNet50 (GAP+BN) Optimizer AdamW 

 

VGG16 (GAP) Optimizer Adam 

 

VGG16 (GAP+BN) Optimizer Adam 

 

VGG16 (GAP+BN) Optimizer AdamW 

 

VGG19 (GAP) Optimizer Adam 

 

VGG19 (GAP+BN) Optimizer Adam 

 

VGG19 (GAP+BN) Optimizer AdamW 

Fig. 3. ROC-AUC curves of transfer learning models. 

From an error analysis perspective, false negatives where 
poor-quality radiographs are misclassified as good quality 
pose a greater clinical risk than false positives. Such errors 

may result in diagnostically inadequate images being 
accepted, potentially leading to misdiagnosis or delayed 
treatment. The VGG16 (GAP+BN, Adam) model exhibited a 
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lower false-negative rate compared to other configurations, 
suggesting improved reliability for clinical deployment. False 
positives, while less critical from a safety standpoint, may still 
contribute to unnecessary retakes and workflow inefficiencies; 
however, these errors are generally preferable to false 
negatives in radiographic quality assurance. 

A comparative evaluation with previous studies 
(Table XXII) demonstrates that the proposed VGG16-based 
approach achieves competitive performance relative to more 
complex frameworks such as CNN-SVM hybrids or object 
detection-based models (e.g., YOLOv8). Importantly, the 
proposed method maintains a lightweight architecture and 
efficient training process, making it more practical for real-
world clinical implementation. 

Overall, these findings indicate that domain-adapted 
transfer learning, when combined with architectural 
simplification and normalization strategies, can effectively 

enhance model generalization for automatic panoramic 
radiograph quality assessment. By providing reliable 
differentiation between diagnostically acceptable and poor-
quality images, the proposed approach has the potential to 
reduce unnecessary retakes, improve patient safety by 
minimizing radiation exposure, and support standardized 
quality control in dental radiology practice. 

 Despite the promising results, this study has several 
limitations. The relatively small dataset, although carefully 
curated with expert consensus, may limit the generalizability 
of the proposed models to broader clinical settings. While the 
use of transfer learning, GAP, BN, and k-fold cross-validation 
helps mitigate overfitting, external validation using 
independent datasets from additional institutions would 
provide stronger evidence of generalizability. Furthermore, 
ablation studies investigating the effects of dataset size and 
class balance were not conducted and will be considered in 
future research. 

TABLE XXII. CITATION-ONLY CONTEXTUAL COMPARISON 

No Model Research Focus Evaluation Results 

1 Model CNN feature fusion+SVM [28] Patient positioning errors (multi-class) Accuracy=83.2%, AUC up to 0.998 

2 YOLOv8 Classification Model [12] Radiograph quality 

Artifacts (Accuracy=87.2%, Precision=88.9%, F1-Score=0.864-0.943); 

Coverage area (Accuracy=74.1%, Precision =83.3-91.3%, F1-

Score=0.769-0.941); Patient positioning (Accuracy=77.3%, 

Precision=76.9%, F1-Score=0.72-0.67); Contrast/Density 

(Accuracy=97.9%, Precision=83.3-84.6%, F1-Score=0.782-0.765); 

Overall image quality (Accuracy=79.3%, Precision=81.4%, F1-

Score=0.809-0.820) 

3 Proposed Method Radiograph quality (good and poor) 
Accuracy=85.00%, Precision=87.11%, Recall=86.27%, F1-

score=85.31%, AUC=94.72%, Specificity=84.55% 

 

V. CONCLUSION 

Based on the experimental results and analysis, the 
proposed transfer learning-based CNN models demonstrated 
promising performance in the automatic quality classification 
of panoramic dental radiographs. Among the evaluated 
architectures, the VGG16 model enhanced with Global 
Average Pooling (GAP) and Batch Normalization (BN) and 
optimized using the Adam optimizer achieved the best overall 
performance under k-fold cross-validation, with an average 
accuracy of 85.00%, precision of 87.11%, recall of 86.27%, 
F1-score of 85.31%, AUC of 94.72%, and specificity of 
84.55%. The integration of GAP and BN effectively improved 
training stability and reduced overfitting, allowing the model 
to generalize well across folds. These findings confirm that the 
domain-adapted transfer learning approach can provide a 
stable and reliable framework for automated panoramic 
radiograph quality assessment. In the future, expanding the 
dataset and incorporating external validation across multiple 
institutions will further strengthen model generalizability and 
clinical applicability. This study contributes to advancing AI-
based quality assurance systems in dental radiology, enabling 
more consistent diagnostic outcomes and reducing retake rates 
in clinical practice. 

Based on these findings, several directions for future 
research are recommended: Increasing data quantity and 
diversity to improve model robustness and generalization. 
Further fine-tuning of pretrained models to better adapt to 
radiographic features. System implementation and integration 
into clinical workflows for real-time image quality 
assessment. 
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