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Abstract—View recognition of distribution network towers is
a key technology in UAV intelligent inspection. To address the
problem of low accuracy of existing deep learning methods in
complex background interference, this paper proposes a tower
view classification method based on EfficientNet that integrates
foreground perception, multi-scale feature fusion, and dual-
dimensional attention. First, a Mask-Guided Fusion Module
(MGFM) is designed to extract tower foreground masks using
the BiRefNet network, enhancing foreground representation and
suppressing background interference through a two-stage fusion
strategy. Second, a Multi-Scale Attention Aggregation Module
(MSAA) is constructed to achieve efficient cross-layer feature
fusion through parallel multi-scale convolution, fully integrating
shallow details and deep semantic information. Finally, the
Convolutional Block Attention Module (CBAM) is introduced to
adaptively strengthen view-discriminative features through
channel and spatial dual-attention mechanisms, significantly
improving the recognition capability for small-sample categories
such as top views. Ablation experiments on a self-built multi-view
tower dataset show that the proposed method can effectively
distinguish different views such as top view, front view, and side
view, with significantly improved accuracy compared to other
deep learning models, providing technical support for intelligent
inspection of transmission lines.

Keywords—Multi-view classification of power towers; mask-
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I.  INTRODUCTION

Transmission lines constitute a critical component of
modern power systems, and their safe and stable operation is
essential for national economic development and public quality
of life [1, 2]. Owing to the vast geographical coverage of
transmission networks—often deployed across complex
terrains such as mountainous regions and river crossings—
traditional manual inspection methods are increasingly
constrained by low efficiency, high operational costs, and
potential safety risks. In recent years, the rapid development of
unmanned aerial vehicle (UAV) technology has enabled
vision-based intelligent inspection to emerge as a promising
alternative for power infrastructure monitoring [3].

As the primary load-bearing structures of transmission
lines, towers play a decisive role in ensuring system reliability.
During UAV-based inspection, accurately recognizing the
shooting viewpoint of a tower (e.g., front, side, or top view)
provides essential spatial context for subsequent inspection
tasks, including defect detection, component localization, and

three-dimensional reconstruction [4, 5]. Moreover, reliable
viewpoint information can facilitate inspection path planning
and improve the overall efficiency and consistency of
automated inspection workflows. Consequently, high-accuracy
and robust tower viewpoint recognition is of significant
practical importance for intelligent power inspection systems.

Existing inspection solutions have achieved notable
progress by leveraging advances in computer vision and deep
learning. Nevertheless, real-world UAV inspection scenes
remain highly challenging. Images are frequently captured
under complex natural backgrounds, varying illumination
conditions, and occlusions, which can severely degrade
recognition performance. In addition, inspection data often
exhibit strong viewpoint imbalance, where certain
viewpoints—such as top views—are underrepresented, further
limiting the robustness of conventional recognition pipelines.
These practical constraints highlight the need for viewpoint
recognition approaches that are not only accurate but also
resilient to background interference and data imbalance.

Recent research trends indicate that enhancing visual
recognition performance often relies on improved foreground
perception, multi-scale feature representation, and attention-
based feature refinement. While these directions have
demonstrated effectiveness in general vision tasks, they are
typically explored in isolation or adopted as generic
components without being explicitly tailored to the
characteristics of UAV-based tower inspection. As a result,
existing approaches struggle to jointly address background
suppression, cross-scale feature interaction, and viewpoint-
discriminative enhancement within a unified framework,
particularly under complex inspection scenarios.

To bridge this gap, this paper investigates the following
research question: how can foreground awareness, multi-scale
feature interaction, and attention-driven discrimination be
systematically integrated into a unified, task-oriented
framework to improve tower viewpoint recognition under real
UAYV inspection conditions? To address these issues, this paper
proposes a task-oriented and stage-wise tower viewpoint
recognition framework based on EfficientNet-B4. The
proposed approach organizes viewpoint recognition as a
progressive enhancement process, explicitly strengthening
foreground guidance, adaptive multi-scale interaction, and
viewpoint-discriminative attention in a coordinated manner.

The main contributions of this work are summarized as
follows: 1) A task-oriented, stage-wise viewpoint recognition
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framework is developed to systematically integrate foreground-
guided perception, adaptive multi-scale feature fusion, and
attention-based  discrimination for UAV-based tower
inspection. 2) A Mask-Guided Fusion Module (MGFM) is
introduced to enhance tower foreground perception and
suppress complex background interference through a two-stage
fusion strategy. 3) A Multi-scale Attention Aggregation
Module (MSAA) and a dual-dimensional attention mechanism
are incorporated to strengthen cross-scale feature interaction
and improve recognition robustness for minority viewpoints.
The remainder of this paper is organized as follows. Section II
reviews related work on UAV-based inspection, viewpoint
recognition, and feature enhancement strategies. Section III
details the proposed framework and its constituent modules.
Section IV presents the experimental setup and comprehensive
performance evaluation is given in Section V. Finally, Section
VI concludes the paper and discusses future research
directions.

II.  RELATED WORK

A. UAV-Based Intelligent Inspection of Power Infrastructure

Unmanned aerial vehicles (UAVs) have been increasingly
adopted in power infrastructure inspection due to their
flexibility, low operational cost, and capability to access
complex terrains that are difficult for manual inspection.
Existing UAV-based inspection systems mainly focus on tasks
such as transmission line detection, tower localization, and
defect identification. Early studies relied on handcrafted visual
features and traditional image processing techniques to extract
tower or line structures from aerial images. However, these
methods generally exhibit limited robustness under complex
backgrounds, illumination variations, and occlusion.

With the advancement of deep learning, convolutional
neural networks (CNNs) have become the dominant paradigm
in UAV-based power inspection. Shajahan et al. [6] proposed a
ROS-based computer vision framework to automatically locate

tower regions of interest in UAV images, while Manninen et al.

[7] developed a multi-stage deep learning network for
automated assessment of transmission infrastructure using fly-
by images. These approaches demonstrate the effectiveness of
data-driven feature learning for inspection tasks. Nevertheless,
in most existing works, viewpoint information is treated as an
implicit factor rather than an explicit recognition objective. In
practical inspection workflows, viewpoint recognition can
provide reliable spatial priors for downstream tasks such as
defect detection, component localization, and three-
dimensional reconstruction. Despite its practical significance,
tower viewpoint recognition has received comparatively
limited attention as an independent and systematically studied
problem in UAV inspection literature.

B. Viewpoint Recognition and Multi-View Classification

Viewpoint recognition and multi-view classification have
been widely studied in computer vision, aiming to learn
discriminative representations across different observation
angles. Recent studies indicate that exploiting viewpoint
diversity plays a crucial role in enhancing feature
discrimination. Liu et al. [8] explored trusted multi-view deep
learning frameworks and demonstrated that effective
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aggregation of multi-view information can significantly
improve classification robustness and accuracy. Yan et al. [9]
provided a comprehensive review of deep multi-view learning
methods, highlighting the importance of self-attention and
cross-attention ~ mechanisms in  aligning  cross-view
representations and modeling inter-view dependencies.

In the context of power infrastructure inspection, viewpoint
information has also been recognized as an important factor for
improving downstream perception tasks. Luo et al. [10]
conducted a comprehensive survey of UAV-based intelligent
transmission line inspection systems and emphasized that
viewpoint awareness is critical for subsequent tasks such as
defect detection and three-dimensional reconstruction.
Furthermore, Faisal et al. [11] pointed out in their recent
review that although traditional inspection methods may still
be effective under constrained conditions, their generalization
capability is significantly inferior to that of end-to-end deep
learning models, particularly in complex real-world
environments.

Despite these advances, existing multi-view learning and
inspection-oriented approaches are mostly designed for generic
scenarios or treat viewpoint as auxiliary information rather than
an explicit recognition target. When directly applied to UAV-
based tower inspection, such methods often struggle with
severe background interference, viewpoint ambiguity, and
class imbalance, especially for minority viewpoints. These
limitations highlight the necessity of developing task-specific
viewpoint recognition frameworks that explicitly model
viewpoint discrimination under realistic UAV inspection
conditions.

Meanwhile, generic image classification architectures have
evolved rapidly, from classical convolutional neural networks
to modem transformer-based models. Architectures such as
Inception, ResNet, and VGG have achieved strong
performance on large-scale benchmarks, while Vision
Transformer (ViT) and Swin Transformer further improve
global modeling capability through self-attention mechanisms.
Although these models provide powerful feature extractors,
they are primarily designed for generic object recognition tasks.
When directly applied to UAV-based tower viewpoint
recognition, their performance may be limited by severe
background interference, viewpoint ambiguity, and class
imbalance commonly encountered in real inspection scenarios.
These characteristics distinguish tower viewpoint recognition
from conventional multi-view benchmarks and call for task-
specific modeling strategies.

C. Foreground Perception, Multi-Scale Feature Fusion, and
Attention Mechanisms

Foreground perception and background suppression are
essential for wvisual recognition in complex scenes.
Segmentation-based methods have been widely used to obtain
object-level priors that help reduce background interference,
among which encoder—decoder architectures such as U-Net
demonstrate the effectiveness of explicitly modeling
foreground regions for complex visual environments [12].
Such priors are particularly valuable in UAV inspection images,
where the target tower often occupies only a small portion of
the image and is surrounded by cluttered natural backgrounds.
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However, in many recognition pipelines, foreground extraction
and classification are treated as separate stages, and the
segmentation prior is not explicitly integrated into the feature
learning hierarchy.

Multi-scale feature fusion is another key strategy for
improving recognition robustness, as shallow features capture
fine-grained spatial details while deep features encode high-
level semantic information. Feature pyramid networks (FPN)
explicitly construct hierarchical feature representations across
multiple scales, highlighting the importance of structured
cross-scale interaction for robust visual recognition [13]. In
practice, various fusion strategies, including feature
concatenation, weighted summation, and pyramid-based
architectures, have been explored to exploit cross-scale
complementarity. At the same time, attention mechanisms have
been extensively investigated to enhance feature representation
by emphasizing informative channels or spatial regions.

Despite these advances, existing fusion and attention
mechanisms are typically applied as generic plug-and-play
components. They are often optimized independently and lack
a unified, task-oriented design that jointly considers foreground
perception,  cross-scale interaction, and  viewpoint-
discriminative enhancement. In the context of UAV-based
tower inspection, this limitation becomes more pronounced
under complex backgrounds and severe viewpoint imbalance.
Consequently, there remains a gap in developing a coordinated
and hierarchical framework that systematically integrates these
techniques for robust tower viewpoint recognition.

III. IMPROVED EFFICIENTNET ALGORITHM

Unlike existing approaches that treat foreground perception,
multi-scale fusion, and attention mechanisms as independent
components, the proposed framework organizes these
processes into a progressive enhancement pipeline specifically
tailored for viewpoint recognition. The EfficientNet model [14]
consists of three parts: input, backbone, and classification head.
This paper selects EfficientNet-B4 as the baseline model with
an input resolution of 380x380. The backbone starts with a
Stem module (a stride=2, 3x3 standard convolution) followed
by multiple MBConv modules. The MBConv module expands
channels via a 1x1 convolution, extracts spatial features
through depthwise separable convolution, integrates an SE
module for adaptive channel recalibration, and finally restores
the dimension via a 1x1 convolution with a residual connection
to the input (see Fig. 1). The model employs a compound
scaling strategy to jointly adjust network depth, width, and
resolution, and applies stochastic depth regularization to
enhance generalization, achieving an optimal balance between
accuracy and efficiency.
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Fig. 1.

The structure of MBConv.
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Despite EfficientNet's strong performance in various vision
tasks, it still faces challenges in the specific context of
distribution network tower viewpoint recognition, including
severe background interference, insufficient multi-scale feature
fusion, and weak discriminative capability for minority
viewpoints. To address this, a multi-module collaborative
framework is proposed, in which three innovative modules are
embedded at different stages of the backbone network to
construct a progressive feature learning and enhancement
mechanism. The overall framework adopts a "Foreground
Guidance — Multi-scale Feature Fusion — Dual-dimensional
Attention Modulation" three-stage enhancement strategy: First,
the Mask-Guided Fusion Module (MGFM) is introduced at the
shallow layer (Layer2). It uses a foreground mask extracted by
BiRefNet [15] to spatially guide shallow features, enabling the
network to focus on the tower body region early in feature
learning and effectively suppress complex background noise.
Second, the Multi-scale Attention Aggregation Module
(MSAA) is deployed between the middle-deep layers (Layer3
and Layer5). It achieves intra-branch addition fusion and inter-
layer feature concatenation through parallel multi-scale
convolutions and channel attention weighting, fully integrating
shallow details and deep semantic information. Finally, the
Convolutional Block Attention Module (CBAM) is applied to
the global features. Through dual channel and spatial attention
mechanisms, it adaptively strengthens the feature response of
viewpoint-discriminative regions, significantly enhancing the
recognition robustness for minority classes like the top view.
The overall architecture of the proposed model is illustrated in
Fig. 2.

The three modules work synergistically to form a complete
feature enhancement chain: MGFM solves the background
interference problem at the source of feature extraction,
providing high-quality foreground-enhanced features for
subsequent modules; MSAA achieves efficient and
complementary multi-scale feature fusion in the intermediate
stage, breaking the limitations of traditional unidirectional
propagation or simple concatenation, CBAM performs
channel-spatial joint modulation at the decision front-end,
ensuring the network can adaptively focus on the most
discriminative regions and channels for different viewpoints.
This hierarchical, progressive design philosophy closely aligns
with the requirements of tower viewpoint recognition, enabling
the model to receive targeted optimization at different
abstraction levels, thereby achieving high-accuracy and robust
multi-view classification performance.

The overall structure of the model.

Fig. 2.
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A. MGFM Module

The Mask-Guided Fusion Module (MGFM) is designed to
address the issue of foreground-background confusion in
shallow feature extraction by traditional convolutional neural
networks. In viewpoint classification tasks, objects under
different viewpoints exhibit significant differences in
foreground-background distribution. Conventional methods
often treat foreground and background information equally,
causing key foreground features to be corrupted by background
noise and degrading subsequent viewpoint discrimination
performance. Regarding the choice of the foreground
segmentation network, this paper systematically evaluated
several candidates and ultimately selected BiRefNet as the core
component of the MGFM module. Compared to mainstream
salient object detection networks such as U2-Net [16] and
ISNet [17], BiRefNet demonstrates significant advantages in
the power tower scenario. First, BiRefNet employs an
innovative bidirectional refinement mechanism that leverages
both top-down and bottom-up pathways in a collaborative
manner, enabling it to simultaneously capture global semantic
context and fine-grained local details. This characteristic is
particularly crucial for power towers: as a structured object, a
tower exhibits a clear topological hierarchy, which the top-
down pathway effectively models through global contextual
reasoning. Meanwhile, critical small-scale components (e.g.,
bolts, grading rings) possess strong discriminative power, and
the bottom-up pathway ensures these fine details are preserved
during segmentation. Second, BiRefNet achieves high
segmentation accuracy while maintaining exceptional
computational efficiency, with only 27.8 million parameters—
significantly fewer than U?-Net or ISNet.

To leverage this high-quality prior, the MGFM module
integrates the foreground mask generated by BiRefNet as
spatial guidance. It is inserted after Layer2 of EfficientNet-B4
and employs a two-stage fusion strategy to enhance foreground
representation and suppress background interference. The
detailed structure of the MGFM is shown in Fig. 3.
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Fig.3. The structure of MGFM.

The complete MGFM pipeline is as follows: 1) Mask
Channel Compression: The three-channel RGB-format mask is
first passed through a 1x1 convolutional layer to compress it
into a single-channel grayscale map, which is then constrained
to the [0,1] range via a Sigmoid activation function to generate
a spatial attention prior. 2) Mask Resolution Alignment: The
single-channel mask is upsampled/downsampled via bilinear
interpolation to match the spatial resolution (H'*XW'") of the
backbone feature map. 3) Mask Channel Embedding: The
aligned single-channel mask is passed through another 1x1
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convolutional layer, combined with Batch Normalization (BN)
and ReLU activation, to map it to the same C-dimensional
channel space as the backbone feature, generating the
embedded mask Embedded Mask. 4) Spatial Guidance Fusion:
Embedded Mask is element-wise multiplied (broadcasting)
with the original feature Input Feature to obtain the
foreground-enhanced ~ Weighted Feature. 5)  Adaptive
Weighted Fusion: A leamable scalar parameter o € [0,1]
(constrained by Sigmoid) is introduced to linearly weight
Weighted Feature and the original Input_Feature.

The core advantage of the MGFM module lies in its
efficient foreground perception capability. The mask
embedding mechanism accurately identifies foreground
regions, avoiding the negative impact of background
interference on feature learning. The single learnable fusion
parameter o allows the network to adaptively adjust the
intensity of foreground enhancement based on task
requirements, providing sufficient flexibility while maintaining
model lightweightness.

B. MSAA Module

The Multi-scale Attention Aggregation Module (MSAA) is
designed to address the limitations of traditional convolutional
neural networks in cross-layer feature fusion, specifically the
insufficient information interaction and limited multi-scale
modeling capability. In deep networks, shallow features
contain rich spatial details, while deep features encode stronger
semantic information. However, these two types of features are
often difficult to effectively collaborate due to their differing
receptive fields and levels of abstraction. To this end, the
MSAA module employs parallel multi-scale convolutional
pathways combined with a channel attention mechanism to
achieve efficient and complementary cross-layer feature fusion.
Fig. 4 depicts the architecture of the proposed MSAA module.
It is deployed after the outputs of Layer3 and Layer5 in
EfficientNet-B4 to enhance the model's joint representation
capability for both local details and global structures of the
power tower.
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Fig. 4. The structure of MSAA.

The MSAA module’s core pipeline consists of two main
branches processing features from Layer3 and LayerS,
respectively. For each input feature map, it is first mapped to a
unified intermediate channel dimension via a ConvlXx1, then
replicated into three copies and fed into three parallel
convolutional branches using Conv3x3, Conv5x5, and
Conv7x7 kemels to cover a range of receptive fields from
small to large. Within each parallel branch, channel attention

300 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

weights are generated through global average pooling, a 1x1
convolution (implemented as 7x7 due to 1x1 input), and
Sigmoid activation, which are then used to modulate the
original features. The channel-modulated feature maps are
element-wise added to the original features to obtain the final
output feature map for that branch. Finally, the final output
feature maps from the Layer3 and LayerS branches are
concatenated along the channel dimension and compressed to
produce the final fused feature map.

C. CBAM Module

To achieve finer feature selection and viewpoint-
discriminative enhancement at the decision front-end, this
paper introduces the Convolutional Block Attention Module
(CBAM) [18] after global feature fusion. CBAM is a
lightweight, plug-and-play attention mechanism that
sequentially applies Channel Attention Mechanism (CAM) and
Spatial Attention Mechanism (SAM) to doubly modulate the
input feature map, thereby adaptively enhancing the response
intensity of key regions and channels. The serial structure of
CBAM is presented in Fig. 5.
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Fig. 5.

The structure of CBAM.

The CBAM module adopts a serial structure of CAM and
SAM to doubly modulate the input feature map. Its processing
flow is as follows: First, the channel attention mechanism
compresses the input feature map through Global Average
Pooling (GAP) and Global Max Pooling (GMP) to generate
two channel descriptors. These descriptors are then processed
by a shared Multi-Layer Perceptron (MLP) for feature
interaction and nonlinear transformation. Their outputs are
summed and passed through a Sigmoid activation function to
obtain the final channel attention weight map, which is
element-wise multiplied with the original feature map to
complete channel-wise adaptive recalibration. Next, the spatial
attention mechanism takes the output from the previous step,
performs max and average pooling along the channel
dimension, concatenates the resulting two spatial maps, fuses
them through a 7x7 convolutional layer, and applies a Sigmoid
activation function to generate the spatial attention weight map.
Finally, this spatial weight map is element-wise multiplied with
the current feature map to achieve spatial focusing
enhancement, yielding the final feature after dual channel-
spatial attention modulation.

The core advantage of the CBAM module lies in its simple
structure, high computational efficiency, and no requirement
for additional annotations. In this work, the module is applied
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to the final feature map of the backbone network (before global
average pooling). Its functions are: 1) highlighting key channel
features relevant to viewpoint discrimination through channel
attention; 2) focusing on the most discriminative regions in the
image through spatial attention, thereby effectively suppressing
background interference; 3) being particularly suitable for
solving the recognition problem of minority viewpoints like the
top view, as it can adaptively amplify the discriminative feature
responses of these rare viewpoints.

IV. EXPERIMENTAL SETUP

A. Experimental Environment and Dataset

The experimental hardware environment is shown in
Table I. All experiments were conducted on a single server
equipped with an NVIDIA GeForce RTX 3090, with CUDA
12.1 driver installed. The software environment uses Ubuntu
20.04 OS, Python 3.10, and deep learning frameworks Py Torch
2.2.1 and Torchvision 0.17.1. The ablation experiments used
the AdamW optimizer with momentum parameters betal and
beta2 set to 0.9 and 0.999, respectively. The model was trained
for 30 epochs with a cosine annealing learning rate scheduler
(maximum learning rate: 0.001), a batch size of 8, and a weight
decay of 0.01.

TABLE . EXPERIMENTAL HARDWARE ENVIRONMENT
Hardware Model Quantity
CPU Intel Xeon 6148 Processor 1
Memory Samsung DDR4 16GB 8
GPU NVIDIA GeForce RTX 3090 1
Storage Samsung SSD 980 PRO 2TB 1

The dataset was collected during routine UAV inspections
conducted by a power grid company in real operational
environments. All images were captured under clear weather
conditions with sufficient natural illumination, which is
representative of typical inspection scenarios. The UAV flight
altitude ranged approximately from 11 m to 50 m, covering
different observation distances and view scales. The dataset
mainly includes two common structural types of distribution
network towers, namely reinforced concrete towers and angle
steel towers. In addition, multiple functional tower categories
are involved, including straight-line towers, strain towers, and
angle towers. Such diversity in acquisition conditions and
tower configurations contributes to the robustness and
generalization ability of the proposed method. The dataset used
in this paper is a distribution network tower dataset captured by
a power grid company, containing 5,268 multi-view tower
images. There are three viewpoint types: front/back, side, and
top. The dataset was randomly split into training and validation
sets ata 7:3 ratio, with the validation set also serving as the test
set, resulting in 3,686 training images and 1,582 validation/test
images.

B. Evaluation Metrics

1) Top-1 accuracy: Accuracy is the most intuitive and
commonly used evaluation metric in classification tasks,
measuring the proportion of samples correctly predicted by the
model. In viewpoint classification, accuracy reflects the
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model's overall performance in recognizing different
viewpoints (front/back, side, top). The formula is:
¢ rp.
Accuracy = % €))

where C is the number of classes, N is the total number of
samples, and TP; is the number of true positives for class i.
While accuracy provides an intuitive measure of overall
performance, it can be misleading under class imbalance.

2) Macro-F1 score: To fairly evaluate the model's
performance on each class (especially minority classes), this
paper adopts the Macro-F1 Score. The F1 score is the
harmonic mean of Precision and Recall:

__ 2XPrecisionXRecall __ 2TP

= 2
Precision+Recall 2TP+FP+FN ( )

Where, FP and FN are the false positives and false
negatives for class, respectively. The Macro-F1 Score is the
arithmetic mean of the F1 scores of all classes, independent of
the number of samples per class:

1
Flmacro = EZ?:lFli (3)

V. EXPERIMENTS AND RESULTS ANALYSIS

A. Ablation Study on Individual Modules

To validate the effectiveness of each proposed module, a
systematic ablation study is conducted on a self-built multi-
view tower dataset. The results are summarized in Table IL

F1
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these three modules form a complete feature enhancement
chain following the hierarchical design principle of
“Foreground Guidance — Multi-scale Feature Fusion — Dual-
dimensional Attention Modulation”, effectively addressing the
core challenges in distribution network tower viewpoint
classification and validating the superiority of progressive
feature enhancement in power vision tasks.

B. Comparison of Different Attention Mechanisms

To investigate the impact of attention mechanisms on
classification performance, four representative attention
modules—SE [19], ECA [20], EMA [21], and CBAM—are
integrated before the classification head of the baseline model.
The results are shown in Table III.

TABLE II. ABLATION STUDY ON INDIVIDUAL MODULES
Model Top-1/% F1 ..,/%
EfficientNet-B4 88.56 66.40
EfficientNet-B4+MGFM 89.82 69.97
EfficientNet-B4+MGFM+MSAA 90.71 71.75
EfficientNet-B4+MGFM+ MSAA+CBAM | 92.38 72.26

The results demonstrate that each module contributes
positively to model performance, and their combination yields
strong synergistic effects. The MGFM module, serving as the
foundation for foreground-aware perception, leverages high-
quality foreground masks generated by BiRefNet to effectively
suppress complex background interference. It improves Top-1
accuracy by 1.26% and boosts Macro-F1 by 3.57%, confirming
the efficacy of foreground guidance in addressing background
noise. Building upon this, the MSAA module further refines
multi-scale feature fusion. Although it only increases Top-1
accuracy by 0.91%, it significantly raises Macro-F1 by 1.78%,
indicating that its parallel multi-scale convolutions and
channel-wise attention weighting effectively enhance the
complementary representation between shallow details and
deep semantics, thereby improving the model’s joint modeling
of local structures and global layouts of towers. Finally, the
CBAM module, acting as a dual-modulation mechanism at the
decision front-end, further elevates Top-1 accuracy by 1.65%,
achieving a final accuracy of 92.38%. Its channel-spatial dual
attention adaptively focuses on viewpoint-discriminative
regions, substantially enhancing robustness for minority classes
(e.g., top view) while maintaining class balance. Together,

TABLEIII.  COMPARISON OF DIFFERENT ATTENTION MECHANISMS
Attention Top-1/% F1, 000/ %
SE 87.73 66.38
ECA 88.59 64.46
EMA 88.25 65.15
CBAM 89.41 68.19
As shown, CBAM outperforms all other attention

mechanisms in both Top-1 accuracy and Macro-F1. While SE,
ECA, and EMA primarily operate in the channel dimension,
CBAM’s incorporation of spatial attention enables more
comprehensive feature recalibration. This dual-dimensional
modulation not only improves overall performance but also
significantly enhances recognition of minority classes. The
results confirm that, in tower viewpoint classification, spatial
localization is as critical as channel-wise feature selection, and
their joint optimization leads to more discriminative feature
representations.

C. Comparison of Experiments

The full model is further compared with several
mainstream deep learning architectures, including classical
CNNs (Inception V3 [22], ResNet50 [23], VGGNet [24]) and
modern vision transformers (ViT [25], Swin Transformer [26]).
The results are presented in Table IV.

TABLEIV. COMPARISON OF EXPERIMENTS
Model Top-1/% F1, .00/ %
EfficientNet-B4 88.56 66.40
MobileNetV3 88.75 77.08
ShuffleNetV2 85.30 63.57
Inception V3 83.43 64.69
Resnet 50 85.24 67.20
VggNet 83.18 64.72
Vision Transformer 88.57 67.42
Swin Transformer 90.42 70.35
Ours 92.38 72.26

The proposed method achieves a Top-l1 accuracy of
92.38%, significantly outperforming all baseline approaches.
Notably, it surpasses the second-best model (Swin Transformer)
by 1.96% in accuracy and 1.91% in Macro-F1. This consistent
improvement across both metrics—particularly the higher
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Macro-F1—demonstrates that the proposed approach not only
attains superior overall performance but also exhibits stronger
robustness under class imbalance, which is a critical
requirement for real-world power inspection scenarios.

To further evaluate the effectiveness of the proposed
method under resource-constrained settings, a comparison is
conducted with representative lightweight architectures,
including MobileNetV3 and ShuffleNetV2. As shown in Table
IV, MobileNetV3 achieves a Top-1 accuracy of 88.75% with a
Macro-F1 of 77.08%, while ShuffleNetV2 attains 85.30% Top-
1 accuracy and 63.57% Macro-F1. These results indicate that
although lightweight models offer advantages in computational
efficiency, their discriminative capability for viewpoint
recognition—especially under class imbalance—remains
limited.

D. Scalability Analysis Across Different EfficientNet Variants

To evaluate the scalability of the proposed modules,
experiments are further conducted by integrating them into
different EfficientNet variants. The results are shown in
Table V.
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patterns, this section employs confusion matrices for visual
analysis. In addition to the visual analysis, quantitative
confusion-matrix-derived statistics are reported to further
clarify class-wise misclassification behavior. Table VI
summarizes the class-wise precision and recall of the baseline
model and the proposed method, providing a quantitative
comparison of classification performance across different
viewpoints.

TABLE VI. CLASS-WISE PRECISION AND RECALL COMPARISON BETWEEN
BASELINE AND PROPOSED METHOD
Baseline Ours
Class

Precision(%) Recall(%) Precision(%) | Recall(%)
Front/Back | 90.44 93.96 93.52 96.23
Side 92.26 89.07 96.76 90.86
Top 17.24 15.63 2471 32.81

TABLE V. PERFORMANCE COMPARISON ACROSS DIFFERENT
EFFICIENTNET VARIANTS
Backbone Baseline Ours
Top-1(%) Fluaero(%) | Top-1(%) | F1uacro(%)
Efficient-BO 90.77 70.47 92.58 74.68
Efficient-B1 87.62 66.37 89.35 68.13
Efficient-B2 87.41 66.29 89.93 67.82
Efficient-B3 89.43 68.37 93.16 70.46
Efficient-B4 88.56 66.40 9238 72.26
Efficient-B5 87.27 67.38 88.15 68.29
Efficient-B6 89.49 69.41 91.24 7131
Efficient-B7 86.43 66.15 86.19 65.32

As shown in Table V, the proposed method consistently
improves performance over the corresponding baselines across
most backbone scales. Notable gains in both Top-1 accuracy
and Macro-F1 are observed for EfficientNet-BO to B6,
indicating that the proposed foreground-guided and multi-scale
attention mechanisms generalize well across different model
capacities.

In particular, the improvements in Macro-F1 demonstrate
enhanced class-balanced recognition performance, suggesting
that the proposed framework effectively alleviates viewpoint
imbalance regardless of backbone depth. Although marginal
performance saturation or slight fluctuation is observed on the
largest backbone (EfficientNet-B7), the overall trend confirms
that the proposed method is not limited to a specific
EfficientNet configuration. These results validate the
scalability and robustness of the proposed framework across a
wide range of network capacities.

E. Confusion Matrix

To gain deeper insight into the model's classification
performance for each individual category, particularly its error

The confusion matrix clearly illustrates the model's
classification and misclassification situations for each
viewpoint category. The diagonal elements represent the
proportion of correctly classified samples, while the off-
diagonal elements reveal the category pairs that the model
tends to confuse. The confusion matrices of the baseline model
(EfficientNet-B4) and the models with the proposed modules
incrementally integrated on the test set are compared, as shown
in Fig. 6 to Fig. 9.

EfficientNet-B4 Confusion Matrix
Top-1 Acc: 88.56%, Macro-FL: 66.40%
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Fig. 6. Confusion matrix of the baseline model (EfficientNet-B4).

EfficientNet-B4-+MGFM Confusion Matrix
Top-1 Acc: 89.82%, Macro-F1: 69.97%
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Fig. 7. Confusion matrix of the baseline model with MGFM.
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EfficientNet-B4+MGFM+MSAA Confusion Matrix
Top-1 Acc: 30.71%, Macro-F1: 71.75%
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Fig. 8. Confusion matrix of the baseline model with MGFM and MSAA.

EfficientNet-B4+MGFM+MSAA+CBAM Confusion Matrix
Top-1 Acc: 92.38%, Macro-F1: 72.26%
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Fig. 9. Confusion matrix of the proposed full model (with MGFM, MSAA,
and CBAM).

Fig. 6 illustrates the confusion matrix of the baseline
EfficientNet-B4 model. Although satisfactory performance is
achieved for the front/back and side viewpoints, severe
misclassification is observed for the top view. A large
proportion of top-view samples are incorrectly predicted as

side view, resulting in extremely low recall for the top category.

This indicates that the baseline model struggles to capture
discriminative features for minority viewpoints under complex
backgrounds, which directly contributes to the low Macro-F1
score. As shown in Fig. 7, after introducing the Mask-Guided
Fusion Module (MGFM), the classification performance for
front/back and side views is moderately improved, and
background-induced misclassification is partially suppressed.
However, confusion between the top and side viewpoints
remains prominent, suggesting that foreground guidance alone
is insufficient to resolve viewpoint ambiguity caused by scale
variation and limited semantic discrimination. Fig. 8 presents
the confusion matrix of the model with both MGFM and
MSAA integrated. Compared with the previous configurations,
the number of top-view samples correctly classified increases
noticeably, while misclassification into the side category is
reduced. This improvement demonstrates that multi-scale
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feature aggregation effectively enhances the representation of
viewpoint-sensitive structural cues, particularly for small-scale
and underrepresented viewpoints. Finally, Fig. 9 shows the
confusion matrix of the full model incorporating MGFM,
MSAA, and CBAM. The results reveal a substantial reduction
in cross-view confusion across all categories. In particular, the
recall of the top view is significantly improved, indicating that
the attention-based modulation further strengthens viewpoint-
discriminative regions in both channel and spatial dimensions.
The overall confusion pattern becomes more compact along the
diagonal, which is consistent with the highest Top-1 accuracy
and Macro-F1 score achieved by the proposed method.

Overall, the progressive reduction of misclassification
errors from the baseline to the full model validates the
complementary roles of foreground guidance, multi-scale
feature fusion, and dual-dimensional attention modulation.
These results confirm that the proposed framework effectively
alleviates viewpoint imbalance and enhances classification
robustness in real UAV-based tower inspection scenarios.

F. Overall Experimental Discussion

Overall, the experimental results demonstrate that the
proposed method achieves consistent and substantial
performance improvements across different evaluation metrics
and backbone configurations. Compared with the baseline
model, the proposed framework improves Top-1 accuracy by
up to 3.82% and Macro-F1 by more than 6%, with particularly
notable gains observed on the minority top-view category.
These improvements are most evident under challenging
conditions, such as complex backgrounds and severe class
imbalance, which commonly occur in real UAV-based power
inspection scenarios. Consequently, the proposed method
provides a more reliable and robust solution for tower
viewpoint recognition, facilitating downstream inspection tasks
and supporting practical deployment in real-world power grid
applications.

VI. CONCLUSION

To address the key challenges in multi-view classification
of distribution network towers—such as severe background
interference, difficulty in recognizing minority viewpoints, and
insufficient cross-scale feature interaction—this paper presents
an improved EfficientNet-B4-based viewpoint recognition
framework. A progressive three-stage enhancement mechanism,
consisting of foreground-guided perception, adaptive multi-
scale feature fusion, and dual-dimensional attention modulation,
is constructed to systematically enhance viewpoint-
discriminative representations.

Extensive experimental results on a self-built multi-view
tower dataset demonstrate that the proposed method achieves
consistent and significant performance improvements under
challenging UAV inspection conditions, including complex
natural backgrounds and pronounced class imbalance.
Specifically, foreground-guided feature extraction effectively
suppresses background noise and emphasizes tower body
regions, while adaptive multi-scale fusion fully exploits the
complementary characteristics of shallow structural details and
deep semantic information. In addition, the dual attention
modulation mechanism further strengthens viewpoint-sensitive
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regions, leading to substantial robustness gains for minority
viewpoints, particularly the top view.

Beyond the specific application of tower viewpoint
recognition, this work provides a generalizable framework for
multi-view visual classification under challenging conditions.
By organizing foreground guidance, multi-scale feature
interaction, and attention-based discrimination into a unified
progressive pipeline, the proposed method establishes a
reusable design paradigm that can be extended to other UAV
inspection tasks and viewpoint-sensitive recognition problems.
Owing to its stage-wise and task-oriented design, the
framework exhibits strong generality and transferability across
different backbone configurations.

From a practical perspective, the consistent improvements
in both Top-1 accuracy and Macro-Fl—especially under
complex backgrounds and severe class imbalance—directly
translate into more reliable perception in real inspection
scenarios. The robust viewpoint recognition results provide
stable spatial priors for downstream tasks such as tower defect
detection, component localization, inspection path planning,
and three-dimensional reconstruction, thereby supporting real-
world deployment beyond performance-driven architectural
refinements. Future work will focus on three directions: (1)
expanding the dataset scale and viewpoint diversity to further
improve model generalization; (2) investigating lightweight
deployment strategies to enable real-time inference on edge
devices; and (3) exploring end-to-end joint optimization of
viewpoint recognition and defect detection to construct a more
integrated and efficient inspection perception pipeline.
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