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Abstract—View recognition of distribution network towers is 

a key technology in UAV intelligent inspection. To address the 

problem of low accuracy of existing deep learning methods in 

complex background interference, this paper proposes a tower 

view classification method based on EfficientNet that integrates 

foreground perception, multi-scale feature fusion, and dual-

dimensional attention. First, a Mask-Guided Fusion Module 

(MGFM) is designed to extract tower foreground masks using 

the BiRefNet network, enhancing foreground representation and 

suppressing background interference through a two-stage fusion 

strategy. Second, a Multi-Scale Attention Aggregation Module 

(MSAA) is constructed to achieve efficient cross-layer feature 

fusion through parallel multi-scale convolution, fully integrating 

shallow details and deep semantic information. Finally, the 

Convolutional Block Attention Module (CBAM) is introduced to 

adaptively strengthen view-discriminative features through 

channel and spatial dual-attention mechanisms, significantly 

improving the recognition capability for small-sample categories 

such as top views. Ablation experiments on a self-built multi-view 

tower dataset show that the proposed method can effectively 

distinguish different views such as top view, front view, and side 

view, with significantly improved accuracy compared to other 

deep learning models, providing technical support for intelligent 

inspection of transmission lines. 
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I. INTRODUCTION 

Transmission lines constitute a critical component of 
modern power systems, and their safe and stable operation is 
essential for national economic development and public quality 
of life [1, 2]. Owing to the vast geographical coverage of 
transmission networks—often deployed across complex 
terrains such as mountainous regions and river crossings—
traditional manual inspection methods are increasingly 
constrained by low efficiency, high operational costs, and 
potential safety risks. In recent years, the rapid development of 
unmanned aerial vehicle (UAV) technology has enabled 
vision-based intelligent inspection to emerge as a promising 
alternative for power infrastructure monitoring [3]. 

As the primary load-bearing structures of transmission 
lines, towers play a decisive role in ensuring system reliability. 
During UAV-based inspection, accurately recognizing the 
shooting viewpoint of a tower (e.g., front, side, or top view) 
provides essential spatial context for subsequent inspection 
tasks, including defect detection, component localization, and 

three-dimensional reconstruction [4, 5]. Moreover, reliable 
viewpoint information can facilitate inspection path planning 
and improve the overall efficiency and consistency of 
automated inspection workflows. Consequently, high-accuracy 
and robust tower viewpoint recognition is of significant 
practical importance for intelligent power inspection systems. 

Existing inspection solutions have achieved notable 
progress by leveraging advances in computer vision and deep 
learning. Nevertheless, real-world UAV inspection scenes 
remain highly challenging. Images are frequently captured 
under complex natural backgrounds, varying illumination 
conditions, and occlusions, which can severely degrade 
recognition performance. In addition, inspection data often 
exhibit strong viewpoint imbalance, where certain 
viewpoints—such as top views—are underrepresented, further 
limiting the robustness of conventional recognition pipelines. 
These practical constraints highlight the need for viewpoint 
recognition approaches that are not only accurate but also 
resilient to background interference and data imbalance. 

Recent research trends indicate that enhancing visual 
recognition performance often relies on improved foreground 
perception, multi-scale feature representation, and attention-
based feature refinement. While these directions have 
demonstrated effectiveness in general vision tasks, they are 
typically explored in isolation or adopted as generic 
components without being explicitly tailored to the 
characteristics of UAV-based tower inspection. As a result, 
existing approaches struggle to jointly address background 
suppression, cross-scale feature interaction, and viewpoint-
discriminative enhancement within a unified framework, 
particularly under complex inspection scenarios. 

To bridge this gap, this paper investigates the following 
research question: how can foreground awareness, multi-scale 
feature interaction, and attention-driven discrimination be 
systematically integrated into a unified, task-oriented 
framework to improve tower viewpoint recognition under real 
UAV inspection conditions? To address these issues, this paper 
proposes a task-oriented and stage-wise tower viewpoint 
recognition framework based on EfficientNet-B4. The 
proposed approach organizes viewpoint recognition as a 
progressive enhancement process, explicitly strengthening 
foreground guidance, adaptive multi-scale interaction, and 
viewpoint-discriminative attention in a coordinated manner. 

The main contributions of this work are summarized as 
follows: 1) A task-oriented, stage-wise viewpoint recognition 
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framework is developed to systematically integrate foreground-
guided perception, adaptive multi-scale feature fusion, and 
attention-based discrimination for UAV-based tower 
inspection. 2) A Mask-Guided Fusion Module (MGFM) is 
introduced to enhance tower foreground perception and 
suppress complex background interference through a two-stage 
fusion strategy. 3) A Multi-scale Attention Aggregation 
Module (MSAA) and a dual-dimensional attention mechanism 
are incorporated to strengthen cross-scale feature interaction 
and improve recognition robustness for minority viewpoints. 
The remainder of this paper is organized as follows. Section II 
reviews related work on UAV-based inspection, viewpoint 
recognition, and feature enhancement strategies. Section III 
details the proposed framework and its constituent modules. 
Section IV presents the experimental setup and comprehensive 
performance evaluation is given in Section V. Finally, Section 
VI concludes the paper and discusses future research 
directions. 

II. RELATED WORK 

A. UAV-Based Intelligent Inspection of Power Infrastructure 

Unmanned aerial vehicles (UAVs) have been increasingly 
adopted in power infrastructure inspection due to their 
flexibility, low operational cost, and capability to access 
complex terrains that are difficult for manual inspection. 
Existing UAV-based inspection systems mainly focus on tasks 
such as transmission line detection, tower localization, and 
defect identification. Early studies relied on handcrafted visual 
features and traditional image processing techniques to extract 
tower or line structures from aerial images. However, these 
methods generally exhibit limited robustness under complex 
backgrounds, illumination variations, and occlusion. 

With the advancement of deep learning, convolutional 
neural networks (CNNs) have become the dominant paradigm 
in UAV-based power inspection. Shajahan et al. [6] proposed a 
ROS-based computer vision framework to automatically locate 
tower regions of interest in UAV images, while Manninen et al. 
[7] developed a multi-stage deep learning network for 
automated assessment of transmission infrastructure using fly-
by images. These approaches demonstrate the effectiveness of 
data-driven feature learning for inspection tasks. Nevertheless, 
in most existing works, viewpoint information is treated as an 
implicit factor rather than an explicit recognition objective. In 
practical inspection workflows, viewpoint recognition can 
provide reliable spatial priors for downstream tasks such as 
defect detection, component localization, and three-
dimensional reconstruction. Despite its practical significance, 
tower viewpoint recognition has received comparatively 
limited attention as an independent and systematically studied 
problem in UAV inspection literature. 

B. Viewpoint Recognition and Multi-View Classification 

Viewpoint recognition and multi-view classification have 
been widely studied in computer vision, aiming to learn 
discriminative representations across different observation 
angles. Recent studies indicate that exploiting viewpoint 
diversity plays a crucial role in enhancing feature 
discrimination. Liu et al. [8] explored trusted multi-view deep 
learning frameworks and demonstrated that effective 

aggregation of multi-view information can significantly 
improve classification robustness and accuracy. Yan et al. [9] 
provided a comprehensive review of deep multi-view learning 
methods, highlighting the importance of self-attention and 
cross-attention mechanisms in aligning cross-view 
representations and modeling inter-view dependencies. 

In the context of power infrastructure inspection, viewpoint 
information has also been recognized as an important factor for 
improving downstream perception tasks. Luo et al. [10] 
conducted a comprehensive survey of UAV-based intelligent 
transmission line inspection systems and emphasized that 
viewpoint awareness is critical for subsequent tasks such as 
defect detection and three-dimensional reconstruction. 
Furthermore, Faisal et al. [11] pointed out in their recent 
review that although traditional inspection methods may still 
be effective under constrained conditions, their generalization 
capability is significantly inferior to that of end-to-end deep 
learning models, particularly in complex real-world 
environments. 

Despite these advances, existing multi-view learning and 
inspection-oriented approaches are mostly designed for generic 
scenarios or treat viewpoint as auxiliary information rather than 
an explicit recognition target. When directly applied to UAV-
based tower inspection, such methods often struggle with 
severe background interference, viewpoint ambiguity, and 
class imbalance, especially for minority viewpoints. These 
limitations highlight the necessity of developing task-specific 
viewpoint recognition frameworks that explicitly model 
viewpoint discrimination under realistic UAV inspection 
conditions. 

Meanwhile, generic image classification architectures have 
evolved rapidly, from classical convolutional neural networks 
to modern transformer-based models. Architectures such as 
Inception, ResNet, and VGG have achieved strong 
performance on large-scale benchmarks, while Vision 
Transformer (ViT) and Swin Transformer further improve 
global modeling capability through self-attention mechanisms. 
Although these models provide powerful feature extractors, 
they are primarily designed for generic object recognition tasks. 
When directly applied to UAV-based tower viewpoint 
recognition, their performance may be limited by severe 
background interference, viewpoint ambiguity, and class 
imbalance commonly encountered in real inspection scenarios. 
These characteristics distinguish tower viewpoint recognition 
from conventional multi-view benchmarks and call for task-
specific modeling strategies. 

C. Foreground Perception, Multi-Scale Feature Fusion, and 

Attention Mechanisms 

Foreground perception and background suppression are 
essential for visual recognition in complex scenes. 
Segmentation-based methods have been widely used to obtain 
object-level priors that help reduce background interference, 
among which encoder–decoder architectures such as U-Net 
demonstrate the effectiveness of explicitly modeling 
foreground regions for complex visual environments [12]. 
Such priors are particularly valuable in UAV inspection images, 
where the target tower often occupies only a small portion of 
the image and is surrounded by cluttered natural backgrounds. 
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However, in many recognition pipelines, foreground extraction 
and classification are treated as separate stages, and the 
segmentation prior is not explicitly integrated into the feature 
learning hierarchy. 

Multi-scale feature fusion is another key strategy for 
improving recognition robustness, as shallow features capture 
fine-grained spatial details while deep features encode high-
level semantic information. Feature pyramid networks (FPN) 
explicitly construct hierarchical feature representations across 
multiple scales, highlighting the importance of structured 
cross-scale interaction for robust visual recognition [13]. In 
practice, various fusion strategies, including feature 
concatenation, weighted summation, and pyramid-based 
architectures, have been explored to exploit cross-scale 
complementarity. At the same time, attention mechanisms have 
been extensively investigated to enhance feature representation 
by emphasizing informative channels or spatial regions. 

Despite these advances, existing fusion and attention 
mechanisms are typically applied as generic plug-and-play 
components. They are often optimized independently and lack 
a unified, task-oriented design that jointly considers foreground 
perception, cross-scale interaction, and viewpoint-
discriminative enhancement. In the context of UAV-based 
tower inspection, this limitation becomes more pronounced 
under complex backgrounds and severe viewpoint imbalance. 
Consequently, there remains a gap in developing a coordinated 
and hierarchical framework that systematically integrates these 
techniques for robust tower viewpoint recognition. 

III. IMPROVED EFFICIENTNET ALGORITHM 

Unlike existing approaches that treat foreground perception, 
multi-scale fusion, and attention mechanisms as independent 
components, the proposed framework organizes these 
processes into a progressive enhancement pipeline specifically 
tailored for viewpoint recognition. The EfficientNet model [14] 
consists of three parts: input, backbone, and classification head. 
This paper selects EfficientNet-B4 as the baseline model with 
an input resolution of 380×380. The backbone starts with a 
Stem module (a stride=2, 3×3 standard convolution) followed 
by multiple MBConv modules. The MBConv module expands 
channels via a 1×1 convolution, extracts spatial features 
through depthwise separable convolution, integrates an SE 
module for adaptive channel recalibration, and finally restores 
the dimension via a 1×1 convolution with a residual connection 
to the input (see Fig. 1). The model employs a compound 
scaling strategy to jointly adjust network depth, width, and 
resolution, and applies stochastic depth regularization to 
enhance generalization, achieving an optimal balance between 
accuracy and efficiency. 
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Fig. 1. The structure of MBConv. 

Despite EfficientNet's strong performance in various vision 
tasks, it still faces challenges in the specific context of 
distribution network tower viewpoint recognition, including 
severe background interference, insufficient multi-scale feature 
fusion, and weak discriminative capability for minority 
viewpoints. To address this, a multi-module collaborative 
framework is proposed, in which three innovative modules are 
embedded at different stages of the backbone network to 
construct a progressive feature learning and enhancement 
mechanism. The overall framework adopts a "Foreground 
Guidance — Multi-scale Feature Fusion — Dual-dimensional 
Attention Modulation" three-stage enhancement strategy: First, 
the Mask-Guided Fusion Module (MGFM) is introduced at the 
shallow layer (Layer2). It uses a foreground mask extracted by 
BiRefNet [15] to spatially guide shallow features, enabling the 
network to focus on the tower body region early in feature 
learning and effectively suppress complex background noise. 
Second, the Multi-scale Attention Aggregation Module 
(MSAA) is deployed between the middle-deep layers (Layer3 
and Layer5). It achieves intra-branch addition fusion and inter-
layer feature concatenation through parallel multi-scale 
convolutions and channel attention weighting, fully integrating 
shallow details and deep semantic information. Finally, the 
Convolutional Block Attention Module (CBAM) is applied to 
the global features. Through dual channel and spatial attention 
mechanisms, it adaptively strengthens the feature response of 
viewpoint-discriminative regions, significantly enhancing the 
recognition robustness for minority classes like the top view. 
The overall architecture of the proposed model is illustrated in 
Fig. 2. 

The three modules work synergistically to form a complete 
feature enhancement chain: MGFM solves the background 
interference problem at the source of feature extraction, 
providing high-quality foreground-enhanced features for 
subsequent modules; MSAA achieves efficient and 
complementary multi-scale feature fusion in the intermediate 
stage, breaking the limitations of traditional unidirectional 
propagation or simple concatenation; CBAM performs 
channel-spatial joint modulation at the decision front-end, 
ensuring the network can adaptively focus on the most 
discriminative regions and channels for different viewpoints. 
This hierarchical, progressive design philosophy closely aligns 
with the requirements of tower viewpoint recognition, enabling 
the model to receive targeted optimization at different 
abstraction levels, thereby achieving high-accuracy and robust 
multi-view classification performance. 
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Fig. 2. The overall structure of the model. 
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A. MGFM Module 

The Mask-Guided Fusion Module (MGFM) is designed to 
address the issue of foreground-background confusion in 
shallow feature extraction by traditional convolutional neural 
networks. In viewpoint classification tasks, objects under 
different viewpoints exhibit significant differences in 
foreground-background distribution. Conventional methods 
often treat foreground and background information equally, 
causing key foreground features to be corrupted by background 
noise and degrading subsequent viewpoint discrimination 
performance. Regarding the choice of the foreground 
segmentation network, this paper systematically evaluated 
several candidates and ultimately selected BiRefNet as the core 
component of the MGFM module. Compared to mainstream 
salient object detection networks such as U²-Net [16] and 
ISNet [17], BiRefNet demonstrates significant advantages in 
the power tower scenario. First, BiRefNet employs an 
innovative bidirectional refinement mechanism that leverages 
both top-down and bottom-up pathways in a collaborative 
manner, enabling it to simultaneously capture global semantic 
context and fine-grained local details. This characteristic is 
particularly crucial for power towers: as a structured object, a 
tower exhibits a clear topological hierarchy, which the top-
down pathway effectively models through global contextual 
reasoning. Meanwhile, critical small-scale components (e.g., 
bolts, grading rings) possess strong discriminative power, and 
the bottom-up pathway ensures these fine details are preserved 
during segmentation. Second, BiRefNet achieves high 
segmentation accuracy while maintaining exceptional 
computational efficiency, with only 27.8 million parameters—
significantly fewer than U²-Net or ISNet. 

To leverage this high-quality prior, the MGFM module 
integrates the foreground mask generated by BiRefNet as 
spatial guidance. It is inserted after Layer2 of EfficientNet-B4 
and employs a two-stage fusion strategy to enhance foreground 
representation and suppress background interference. The 
detailed structure of the MGFM is shown in Fig. 3. 
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Fig. 3. The structure of MGFM. 

The complete MGFM pipeline is as follows: 1) Mask 
Channel Compression: The three-channel RGB-format mask is 
first passed through a 1×1 convolutional layer to compress it 
into a single-channel grayscale map, which is then constrained 
to the [0,1] range via a Sigmoid activation function to generate 
a spatial attention prior. 2) Mask Resolution Alignment: The 
single-channel mask is upsampled/downsampled via bilinear 
interpolation to match the spatial resolution (H'×W') of the 
backbone feature map. 3) Mask Channel Embedding: The 
aligned single-channel mask is passed through another 1×1 

convolutional layer, combined with Batch Normalization (BN) 
and ReLU activation, to map it to the same C-dimensional 
channel space as the backbone feature, generating the 
embedded mask Embedded_Mask. 4) Spatial Guidance Fusion: 
Embedded_Mask is element-wise multiplied (broadcasting) 
with the original feature Input_Feature to obtain the 
foreground-enhanced Weighted_Feature. 5) Adaptive 
Weighted Fusion: A learnable scalar parameter α ∈ [0,1] 
(constrained by Sigmoid) is introduced to linearly weight 
Weighted_Feature and the original Input_Feature. 

The core advantage of the MGFM module lies in its 
efficient foreground perception capability. The mask 
embedding mechanism accurately identifies foreground 
regions, avoiding the negative impact of background 
interference on feature learning. The single learnable fusion 
parameter α allows the network to adaptively adjust the 
intensity of foreground enhancement based on task 
requirements, providing sufficient flexibility while maintaining 
model lightweightness. 

B. MSAA Module 

The Multi-scale Attention Aggregation Module (MSAA) is 
designed to address the limitations of traditional convolutional 
neural networks in cross-layer feature fusion, specifically the 
insufficient information interaction and limited multi-scale 
modeling capability. In deep networks, shallow features 
contain rich spatial details, while deep features encode stronger 
semantic information. However, these two types of features are 
often difficult to effectively collaborate due to their differing 
receptive fields and levels of abstraction. To this end, the 
MSAA module employs parallel multi-scale convolutional 
pathways combined with a channel attention mechanism to 
achieve efficient and complementary cross-layer feature fusion. 
Fig. 4 depicts the architecture of the proposed MSAA module. 
It is deployed after the outputs of Layer3 and Layer5 in 
EfficientNet-B4 to enhance the model's joint representation 
capability for both local details and global structures of the 
power tower. 
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Fig. 4. The structure of MSAA. 

The MSAA module’s core pipeline consists of two main 
branches processing features from Layer3 and Layer5, 
respectively. For each input feature map, it is first mapped to a 
unified intermediate channel dimension via a Conv1×1, then 
replicated into three copies and fed into three parallel 
convolutional branches using Conv3×3, Conv5×5, and 
Conv7×7 kernels to cover a range of receptive fields from 
small to large. Within each parallel branch, channel attention 
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weights are generated through global average pooling, a 1×1 
convolution (implemented as 7×7 due to 1×1 input), and 
Sigmoid activation, which are then used to modulate the 
original features. The channel-modulated feature maps are 
element-wise added to the original features to obtain the final 
output feature map for that branch. Finally, the final output 
feature maps from the Layer3 and Layer5 branches are 
concatenated along the channel dimension and compressed to 
produce the final fused feature map. 

C. CBAM Module 

To achieve finer feature selection and viewpoint-
discriminative enhancement at the decision front-end, this 
paper introduces the Convolutional Block Attention Module 
(CBAM) [18] after global feature fusion. CBAM is a 
lightweight, plug-and-play attention mechanism that 
sequentially applies Channel Attention Mechanism (CAM) and 
Spatial Attention Mechanism (SAM) to doubly modulate the 
input feature map, thereby adaptively enhancing the response 
intensity of key regions and channels. The serial structure of 
CBAM is presented in Fig. 5. 

input_feature

CAM SAM

output_feature

CAM ＝ input_feature

Max 
Pooling

Average 
Pooling

MLP
Channel 

Attention 
Weights

SAM ＝ input_feature

Max 
Pooling

Average 
Pooling

Concat
conv

Activation 
functions

CBAM

 

Fig. 5. The structure of CBAM. 

The CBAM module adopts a serial structure of CAM and 
SAM to doubly modulate the input feature map. Its processing 
flow is as follows: First, the channel attention mechanism 
compresses the input feature map through Global Average 
Pooling (GAP) and Global Max Pooling (GMP) to generate 
two channel descriptors. These descriptors are then processed 
by a shared Multi-Layer Perceptron (MLP) for feature 
interaction and nonlinear transformation. Their outputs are 
summed and passed through a Sigmoid activation function to 
obtain the final channel attention weight map, which is 
element-wise multiplied with the original feature map to 
complete channel-wise adaptive recalibration. Next, the spatial 
attention mechanism takes the output from the previous step, 
performs max and average pooling along the channel 
dimension, concatenates the resulting two spatial maps, fuses 
them through a 7×7 convolutional layer, and applies a Sigmoid 
activation function to generate the spatial attention weight map. 
Finally, this spatial weight map is element-wise multiplied with 
the current feature map to achieve spatial focusing 
enhancement, yielding the final feature after dual channel-
spatial attention modulation. 

The core advantage of the CBAM module lies in its simple 
structure, high computational efficiency, and no requirement 
for additional annotations. In this work, the module is applied 

to the final feature map of the backbone network (before global 
average pooling). Its functions are: 1) highlighting key channel 
features relevant to viewpoint discrimination through channel 
attention; 2) focusing on the most discriminative regions in the 
image through spatial attention, thereby effectively suppressing 
background interference; 3) being particularly suitable for 
solving the recognition problem of minority viewpoints like the 
top view, as it can adaptively amplify the discriminative feature 
responses of these rare viewpoints. 

IV. EXPERIMENTAL SETUP 

A. Experimental Environment and Dataset 

The experimental hardware environment is shown in 
Table I. All experiments were conducted on a single server 
equipped with an NVIDIA GeForce RTX 3090, with CUDA 
12.1 driver installed. The software environment uses Ubuntu 
20.04 OS, Python 3.10, and deep learning frameworks PyTorch 
2.2.1 and Torchvision 0.17.1. The ablation experiments used 
the AdamW optimizer with momentum parameters beta1 and 
beta2 set to 0.9 and 0.999, respectively. The model was trained 
for 30 epochs with a cosine annealing learning rate scheduler 
(maximum learning rate: 0.001), a batch size of 8, and a weight 
decay of 0.01. 

TABLE I.  EXPERIMENTAL HARDWARE ENVIRONMENT 

Hardware Model Quantity 

CPU Intel Xeon 6148 Processor 1 

Memory Samsung DDR4 16GB 8 

GPU NVIDIA GeForce RTX 3090 1 

Storage Samsung SSD 980 PRO 2TB 1 

The dataset was collected during routine UAV inspections 
conducted by a power grid company in real operational 
environments. All images were captured under clear weather 
conditions with sufficient natural illumination, which is 
representative of typical inspection scenarios. The UAV flight 
altitude ranged approximately from 11 m to 50 m, covering 
different observation distances and view scales. The dataset 
mainly includes two common structural types of distribution 
network towers, namely reinforced concrete towers and angle 
steel towers. In addition, multiple functional tower categories 
are involved, including straight-line towers, strain towers, and 
angle towers. Such diversity in acquisition conditions and 
tower configurations contributes to the robustness and 
generalization ability of the proposed method. The dataset used 
in this paper is a distribution network tower dataset captured by 
a power grid company, containing 5,268 multi-view tower 
images. There are three viewpoint types: front/back, side, and 
top. The dataset was randomly split into training and validation 
sets at a 7:3 ratio, with the validation set also serving as the test 
set, resulting in 3,686 training images and 1,582 validation/test 
images. 

B. Evaluation Metrics 

1) Top-1 accuracy: Accuracy is the most intuitive and 

commonly used evaluation metric in classification tasks, 

measuring the proportion of samples correctly predicted by the 

model. In viewpoint classification, accuracy reflects the 
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model's overall performance in recognizing different 

viewpoints (front/back, side, top). The formula is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝐶

𝑖=1 𝑃𝑖

𝑁
                         (1) 

where 𝐶 is the number of classes, 𝑁 is the total number of 
samples, and 𝑇𝑃𝑖 is the number of true positives for class 𝑖 . 
While accuracy provides an intuitive measure of overall 
performance, it can be misleading under class imbalance. 

2) Macro-F1 score: To fairly evaluate the model's 

performance on each class (especially minority classes), this 

paper adopts the Macro-F1 Score. The F1 score is the 

harmonic mean of Precision and Recall: 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
               (2) 

Where, 𝐹𝑃 and 𝐹𝑁 are the false positives and false 
negatives for class, respectively. The Macro-F1 Score is the 
arithmetic mean of the F1 scores of all classes, independent of 
the number of samples per class: 

𝐹1macro =
1

𝐶
∑ 𝐹1𝑖

𝐶
𝑖=1                            (3) 

V. EXPERIMENTS AND RESULTS ANALYSIS 

A. Ablation Study on Individual Modules 

To validate the effectiveness of each proposed module, a 
systematic ablation study is conducted on a self-built multi-
view tower dataset. The results are summarized in Table II. 

TABLE II.  ABLATION STUDY ON INDIVIDUAL MODULES 

Model Top-1/% 𝑭𝟏macro/% 

EfficientNet-B4 88.56 66.40 

EfficientNet-B4+MGFM 89.82 69.97 

EfficientNet-B4+MGFM+MSAA 90.71 71.75 

EfficientNet-B4+MGFM+ MSAA+CBAM 92.38 72.26 

The results demonstrate that each module contributes 
positively to model performance, and their combination yields 
strong synergistic effects. The MGFM module, serving as the 
foundation for foreground-aware perception, leverages high-
quality foreground masks generated by BiRefNet to effectively 
suppress complex background interference. It improves Top-1 
accuracy by 1.26% and boosts Macro-F1 by 3.57%, confirming 
the efficacy of foreground guidance in addressing background 
noise. Building upon this, the MSAA module further refines 
multi-scale feature fusion. Although it only increases Top-1 
accuracy by 0.91%, it significantly raises Macro-F1 by 1.78%, 
indicating that its parallel multi-scale convolutions and 
channel-wise attention weighting effectively enhance the 
complementary representation between shallow details and 
deep semantics, thereby improving the model’s joint modeling 
of local structures and global layouts of towers. Finally, the 
CBAM module, acting as a dual-modulation mechanism at the 
decision front-end, further elevates Top-1 accuracy by 1.65%, 
achieving a final accuracy of 92.38%. Its channel-spatial dual 
attention adaptively focuses on viewpoint-discriminative 
regions, substantially enhancing robustness for minority classes 
(e.g., top view) while maintaining class balance. Together, 

these three modules form a complete feature enhancement 
chain following the hierarchical design principle of 
“Foreground Guidance — Multi-scale Feature Fusion — Dual-

dimensional Attention Modulation”, effectively addressing the 
core challenges in distribution network tower viewpoint 
classification and validating the superiority of progressive 
feature enhancement in power vision tasks. 

B. Comparison of Different Attention Mechanisms 

To investigate the impact of attention mechanisms on 
classification performance, four representative attention 
modules—SE [19], ECA [20], EMA [21], and CBAM—are 
integrated before the classification head of the baseline model. 
The results are shown in Table III. 

TABLE III.  COMPARISON OF DIFFERENT ATTENTION MECHANISMS 

Attention Top-1/% 𝑭𝟏macro/% 

SE 87.73 66.38 

ECA 88.59 64.46 

EMA 88.25 65.15 

CBAM 89.41 68.19 

As shown, CBAM outperforms all other attention 
mechanisms in both Top-1 accuracy and Macro-F1. While SE, 
ECA, and EMA primarily operate in the channel dimension, 
CBAM’s incorporation of spatial attention enables more 
comprehensive feature recalibration. This dual-dimensional 
modulation not only improves overall performance but also 
significantly enhances recognition of minority classes. The 
results confirm that, in tower viewpoint classification, spatial 
localization is as critical as channel-wise feature selection, and 
their joint optimization leads to more discriminative feature 
representations. 

C. Comparison of Experiments 

The full model is further compared with several 
mainstream deep learning architectures, including classical 
CNNs (Inception V3 [22], ResNet50 [23], VGGNet [24]) and 
modern vision transformers (ViT [25], Swin Transformer [26]). 
The results are presented in Table IV. 

TABLE IV.  COMPARISON OF EXPERIMENTS 

Model Top-1/% 𝑭𝟏macro/% 

EfficientNet-B4 88.56 66.40 

MobileNetV3 88.75 77.08 

ShuffleNetV2 85.30 63.57 

Inception V3 83.43 64.69 

Resnet 50 85.24 67.20 

VggNet 83.18 64.72 

Vision Transformer 88.57 67.42 

Swin Transformer 90.42 70.35 

Ours 92.38 72.26 

The proposed method achieves a Top-1 accuracy of 
92.38%, significantly outperforming all baseline approaches. 
Notably, it surpasses the second-best model (Swin Transformer) 
by 1.96% in accuracy and 1.91% in Macro-F1. This consistent 
improvement across both metrics—particularly the higher 
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Macro-F1—demonstrates that the proposed approach not only 
attains superior overall performance but also exhibits stronger 
robustness under class imbalance, which is a critical 
requirement for real-world power inspection scenarios. 

To further evaluate the effectiveness of the proposed 
method under resource-constrained settings, a comparison is 
conducted with representative lightweight architectures, 
including MobileNetV3 and ShuffleNetV2. As shown in Table 
Ⅳ, MobileNetV3 achieves a Top-1 accuracy of 88.75% with a 

Macro-F1 of 77.08%, while ShuffleNetV2 attains 85.30% Top-
1 accuracy and 63.57% Macro-F1. These results indicate that 
although lightweight models offer advantages in computational 
efficiency, their discriminative capability for viewpoint 
recognition—especially under class imbalance—remains 
limited. 

D. Scalability Analysis Across Different EfficientNet Variants 

To evaluate the scalability of the proposed modules, 
experiments are further conducted by integrating them into 
different EfficientNet variants. The results are shown in 
Table V. 

TABLE V.  PERFORMANCE COMPARISON ACROSS DIFFERENT 

EFFICIENTNET VARIANTS 

Backbone 
Baseline Ours 

Top-1(%) F1macro(%) Top-1(%) F1macro(%) 

Efficient-B0 90.77 70.47 92.58 74.68 

Efficient-B1 87.62 66.37 89.35 68.13 

Efficient-B2 87.41 66.29 89.93 67.82 

Efficient-B3 89.43 68.37 93.16 70.46 

Efficient-B4 88.56 66.40 92.38 72.26 

Efficient-B5 87.27 67.38 88.15 68.29 

Efficient-B6 89.49 69.41 91.24 71.31 

Efficient-B7 86.43 66.15 86.19 65.32 

As shown in Table V, the proposed method consistently 
improves performance over the corresponding baselines across 
most backbone scales. Notable gains in both Top-1 accuracy 
and Macro-F1 are observed for EfficientNet-B0 to B6, 
indicating that the proposed foreground-guided and multi-scale 
attention mechanisms generalize well across different model 
capacities. 

In particular, the improvements in Macro-F1 demonstrate 
enhanced class-balanced recognition performance, suggesting 
that the proposed framework effectively alleviates viewpoint 
imbalance regardless of backbone depth. Although marginal 
performance saturation or slight fluctuation is observed on the 
largest backbone (EfficientNet-B7), the overall trend confirms 
that the proposed method is not limited to a specific 
EfficientNet configuration. These results validate the 
scalability and robustness of the proposed framework across a 
wide range of network capacities. 

E. Confusion Matrix 

To gain deeper insight into the model's classification 
performance for each individual category, particularly its error 

patterns, this section employs confusion matrices for visual 
analysis. In addition to the visual analysis, quantitative 
confusion-matrix-derived statistics are reported to further 
clarify class-wise misclassification behavior. Table VI 
summarizes the class-wise precision and recall of the baseline 
model and the proposed method, providing a quantitative 
comparison of classification performance across different 
viewpoints. 

TABLE VI.  CLASS-WISE PRECISION AND RECALL COMPARISON BETWEEN 

BASELINE AND PROPOSED METHOD 

Class 
Baseline Ours 

Precision(%) Recall(%) Precision(%) Recall(%) 

Front/Back 90.44 93.96 93.52 96.23 

Side 92.26 89.07 96.76 90.86 

Top 17.24 15.63 24.71 32.81 

The confusion matrix clearly illustrates the model's 
classification and misclassification situations for each 
viewpoint category. The diagonal elements represent the 
proportion of correctly classified samples, while the off-
diagonal elements reveal the category pairs that the model 
tends to confuse. The confusion matrices of the baseline model 
(EfficientNet-B4) and the models with the proposed modules 
incrementally integrated on the test set are compared, as shown 
in Fig. 6 to Fig. 9. 

 

Fig. 6. Confusion matrix of the baseline model (EfficientNet-B4). 

 

Fig. 7. Confusion matrix of the baseline model with MGFM. 
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Fig. 8. Confusion matrix of the baseline model with MGFM and MSAA. 

 

Fig. 9. Confusion matrix of the proposed full model (with MGFM, MSAA, 

and CBAM). 

Fig. 6 illustrates the confusion matrix of the baseline 
EfficientNet-B4 model. Although satisfactory performance is 
achieved for the front/back and side viewpoints, severe 
misclassification is observed for the top view. A large 
proportion of top-view samples are incorrectly predicted as 
side view, resulting in extremely low recall for the top category. 
This indicates that the baseline model struggles to capture 
discriminative features for minority viewpoints under complex 
backgrounds, which directly contributes to the low Macro-F1 
score. As shown in Fig. 7, after introducing the Mask-Guided 
Fusion Module (MGFM), the classification performance for 
front/back and side views is moderately improved, and 
background-induced misclassification is partially suppressed. 
However, confusion between the top and side viewpoints 
remains prominent, suggesting that foreground guidance alone 
is insufficient to resolve viewpoint ambiguity caused by scale 
variation and limited semantic discrimination. Fig. 8 presents 
the confusion matrix of the model with both MGFM and 
MSAA integrated. Compared with the previous configurations, 
the number of top-view samples correctly classified increases 
noticeably, while misclassification into the side category is 
reduced. This improvement demonstrates that multi-scale 

feature aggregation effectively enhances the representation of 
viewpoint-sensitive structural cues, particularly for small-scale 
and underrepresented viewpoints. Finally, Fig. 9 shows the 
confusion matrix of the full model incorporating MGFM, 
MSAA, and CBAM. The results reveal a substantial reduction 
in cross-view confusion across all categories. In particular, the 
recall of the top view is significantly improved, indicating that 
the attention-based modulation further strengthens viewpoint-
discriminative regions in both channel and spatial dimensions. 
The overall confusion pattern becomes more compact along the 
diagonal, which is consistent with the highest Top-1 accuracy 
and Macro-F1 score achieved by the proposed method. 

Overall, the progressive reduction of misclassification 
errors from the baseline to the full model validates the 
complementary roles of foreground guidance, multi-scale 
feature fusion, and dual-dimensional attention modulation. 
These results confirm that the proposed framework effectively 
alleviates viewpoint imbalance and enhances classification 
robustness in real UAV-based tower inspection scenarios. 

F. Overall Experimental Discussion 

Overall, the experimental results demonstrate that the 
proposed method achieves consistent and substantial 
performance improvements across different evaluation metrics 
and backbone configurations. Compared with the baseline 
model, the proposed framework improves Top-1 accuracy by 
up to 3.82% and Macro-F1 by more than 6%, with particularly 
notable gains observed on the minority top-view category. 
These improvements are most evident under challenging 
conditions, such as complex backgrounds and severe class 
imbalance, which commonly occur in real UAV-based power 
inspection scenarios. Consequently, the proposed method 
provides a more reliable and robust solution for tower 
viewpoint recognition, facilitating downstream inspection tasks 
and supporting practical deployment in real-world power grid 
applications. 

VI. CONCLUSION 

To address the key challenges in multi-view classification 
of distribution network towers—such as severe background 
interference, difficulty in recognizing minority viewpoints, and 
insufficient cross-scale feature interaction—this paper presents 
an improved EfficientNet-B4-based viewpoint recognition 
framework. A progressive three-stage enhancement mechanism, 
consisting of foreground-guided perception, adaptive multi-
scale feature fusion, and dual-dimensional attention modulation, 
is constructed to systematically enhance viewpoint-
discriminative representations. 

Extensive experimental results on a self-built multi-view 
tower dataset demonstrate that the proposed method achieves 
consistent and significant performance improvements under 
challenging UAV inspection conditions, including complex 
natural backgrounds and pronounced class imbalance. 
Specifically, foreground-guided feature extraction effectively 
suppresses background noise and emphasizes tower body 
regions, while adaptive multi-scale fusion fully exploits the 
complementary characteristics of shallow structural details and 
deep semantic information. In addition, the dual attention 
modulation mechanism further strengthens viewpoint-sensitive 
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regions, leading to substantial robustness gains for minority 
viewpoints, particularly the top view. 

Beyond the specific application of tower viewpoint 
recognition, this work provides a generalizable framework for 
multi-view visual classification under challenging conditions. 
By organizing foreground guidance, multi-scale feature 
interaction, and attention-based discrimination into a unified 
progressive pipeline, the proposed method establishes a 
reusable design paradigm that can be extended to other UAV 
inspection tasks and viewpoint-sensitive recognition problems. 
Owing to its stage-wise and task-oriented design, the 
framework exhibits strong generality and transferability across 
different backbone configurations. 

From a practical perspective, the consistent improvements 
in both Top-1 accuracy and Macro-F1—especially under 
complex backgrounds and severe class imbalance—directly 
translate into more reliable perception in real inspection 
scenarios. The robust viewpoint recognition results provide 
stable spatial priors for downstream tasks such as tower defect 
detection, component localization, inspection path planning, 
and three-dimensional reconstruction, thereby supporting real-
world deployment beyond performance-driven architectural 
refinements. Future work will focus on three directions: (1) 
expanding the dataset scale and viewpoint diversity to further 
improve model generalization; (2) investigating lightweight 
deployment strategies to enable real-time inference on edge 
devices; and (3) exploring end-to-end joint optimization of 
viewpoint recognition and defect detection to construct a more 
integrated and efficient inspection perception pipeline. 
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