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Abstract—Accurate and early detection of intracranial
aneurysms is critical for preventing life-threatening
subarachnoid hemorrhage and improving clinical outcomes. This
study proposes a hybrid diagnostic framework that integrates
radiomics-based feature engineering with a transformer-driven
deep learning architecture enhanced by teacher—student
contrastive representation learning. The workflow incorporates
region-of-interest segmentation, handcrafted radiomic feature
extraction, multimodal representation fusion, and probabilistic
aneurysm localization using high-resolution MR and MRA
imaging. Comprehensive experiments conducted on benchmark
neuroimaging datasets demonstrate that the proposed model
achieves high classification accuracy, stable convergence, and
robust generalization across diverse anatomical and imaging
conditions. Qualitative evaluations further reveal that heatmap-
based confidence overlays reliably identify aneurysmal regions
and closely align with ground-truth annotations. The contrastive
learning module strengthens spatial and frequency-domain
feature alignment, enabling effective training under limited
supervision and reducing performance degradation associated
with data heterogeneity. While limitations remain regarding
dataset breadth and segmentation dependencies, the results
indicate that this hybrid radiomics—Al framework offers a
promising pathway toward automated aneurysm screening and
clinical decision support. The proposed system has the potential
to enhance diagnostic precision, mitigate inter-observer
variability, and contribute to earlier intervention in
neurovascular care.
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I.  INTRODUCTION

The timely and accurate diagnosis of intracranial
aneurysms remains a critical challenge in contemporary
neuroimaging and clinical decision support systems. Brain
aneurysms pose a significant risk of subarachnoid hemorrhage,
a condition associated with high mortality and long-term
disability, which underscores the need for early detection
strategies capable of identifying subtle vascular abnormalities
before rupture occurs [1]. Conventional diagnostic modalities
such as computed tomography angiography and magnetic
resonance  angiography provide detailed anatomical
information, yet their interpretation often depends on expert
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assessment, introducing subjectivity and potential variability in
diagnostic outcomes [2]. As a result, artificial intelligence
approaches [50], particularly deep learning, have emerged as
powerful tools for enhancing diagnostic precision through
automated feature extraction and pattern recognition [3].

In recent years, radiomics has gained substantial attention
as a complementary methodology for quantitative
characterization of vascular morphology and tissue
heterogeneity by transforming medical images into high-
dimensional feature spaces [4]. When combined with deep
learning, radiomics enables the integration of handcrafted
descriptors with hierarchical neural features, yielding more
discriminative representations for aneurysm analysis [5].
Transformer-based architectures, especially vision
transformers, have demonstrated strong capabilities in
modeling long-range dependencies and capturing subtle
structural variations in neurovascular images, offering
performance advantages over traditional convolutional models
[6]. Furthermore, contrastive learning frameworks have shown
promise in semi-supervised and weakly supervised scenarios
by aligning spatial and frequency-domain representations, thus
improving generalization when labeled datasets are limited [7].

Despite these advances, several challenges persist,
including variability in imaging protocols, limited annotated
datasets, and the need for robust cross-domain generalization in
clinical environments [8]. Developing hybrid architectures that
combine radiomic signatures, segmentation-driven region-of-
interest extraction, and contrastive representation learning
presents a promising direction for addressing these limitations
[9]. This research aims to build upon these developments by
proposing an integrated radiomics—deep learning framework
for accurate and reliable diagnosis of intracranial aneurysms.

II. RELATED WORKS

A. Brain Aneurysm

A brain aneurysm is a localized pathological dilation of a
cerebral artery resulting from weakening of the vessel wall
layers, typically involving the tunica media and internal elastic
lamina. As illustrated in Fig. 1, the aneurysm often forms as a
saccular outpouching that protrudes from an arterial bifurcation
or curve, where hemodynamic shear stress is elevated. These
weakened segments can gradually expand due to pulsatile
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blood flow, eventually becoming prone to rupture. When
rupture occurs, blood extravasates into the subarachnoid space,
leading to subarachnoid hemorrhage, a medical emergency
associated with high mortality and significant neurological
deficits. The pathophysiology of aneurysm formation is
multifactorial, involving genetic predisposition, endothelial
dysfunction, chronic inflammation, and biomechanical stress,
all of which contribute to progressive vessel wall degeneration.

Aneurysm

Fig. 1. [Illustration ofa cerebral aneurysm asa localized arterial outpouching
in the brain.
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Fig.2. Anatomicalstructure of the Circle of Willis, highlighting major
cerebral arteries and common aneurysm sites.

The anatomical distribution of brain aneurysms is closely
related to the cerebrovascular architecture, particularly the
Circle of Willis, as shown in Fig. 2. This arterial ring includes
major bifurcation points of the anterior, middle, and posterior
cerebral arteries, which are the most common sites for
aneurysm development due to complex flow dynamics and
turbulent pressure gradients. Aneurysms in these regions may
remain asymptomatic until enlargement or rupture occurs,
although some may produce symptoms through mass effect or
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compression of adjacent cranial nerves. Understanding the
vascular topology of the Circle of Willis is therefore essential
for accurate diagnosis, risk stratification, and treatment
planning, especially when integrating advanced imaging
techniques and deep leaming models that rely on precise
localization of vascular anomalies.

B. Radiomics for Neurovascular Abnormality Detection

Radiomics has become a key methodological pillar for
extracting quantitative biomarkers from neuroimaging data,
enabling the transformation of complex aneurysmal
morphology into structured high-dimensional feature sets [10].
Early studies demonstrated that handcrafted descriptors such as
intensity histograms, texture matrices, and shape signatures
provide discriminative cues for identifying abnormal vascular
dilations in CTA and MRA images [11]. The reproducibility of
radiomic features was further improved with standardized
toolkits such as PyRadiomics, which introduced harmonized
feature definitions and preprocessing protocols [12]. Such
standardization has facilitated cross-institutional studies that
reported enhanced sensitivity in aneurysm detection when
radiomic features complement conventional clinical readings
[13].

Subsequent investigations extended radiomics into
multiscale characterizations, revealing that local heterogeneity
and voxel-level variations correlate with aneurysm instability
and rupture risk [14]. In particular, wavelet-based texture
descriptors and Laplacian-derived edge patterns were shown to
uncover microstructural abnormalities not readily visible to
human observers [15]. Integration of radiomics with vessel
segmentation algorithms, including automated region-of-
interest isolations using 3D medical imaging platforms, has
enabled more consistent feature extraction pipelines [16].
However, despite these advances, the reliance on handcrafted
features introduces limitations related to sensitivity to
acquisition parameters and manually defined parameters,
which motivated the transition toward hybrid radiomics—deep
learning frameworks [17].

In contemporary literature, radiomics has increasingly been
fused with machine learning classifiers such as random forests
and support vector machines to enhance detection robustness
[18]. Yet, the absence of spatial contextualization within purely
handcrafted pipelines raised questions about the scalability of
classical radiomics in complex neurovascular domains [19].
These limitations illustrate the need for more expressive and
hierarchical feature representations, paving the way for deep
learning methodologies that complement or fully supersede
handcrafted radiomic signatures [20].

C. Deep Learning Architectures for Brain Aneurysm
Classification

Deep learning has transformed medical image analysis by
enabling automated extraction of hierarchical representations
tailored to vascular morphology and pathophysiological cues
[21]. Convolutional neural networks (CNNs) were among the
first architectures applied to aneurysm detection, showing
notable improvements in sensitivity compared with traditional
radiological assessments [22]. These CNN-based models
leveraged feature maps capable of isolating local edge patterns,
lumen irregularities, and aneurysmal neck contours with
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substantial robustness across imaging modalities [23].
However, CNNs remain inherently limited in capturing long-
range dependencies and global spatial relationships that are
crucial for modeling complex vascular geometries [24].

To overcome these shortcomings, transformer-based
architectures such as Swin-Transformer and ViT have been
increasingly adopted in neurovascular imaging research [25].
Vision transformers process image patches sequentially and
utilize self-attention mechanisms to model global context,
yielding superior performance in tasks requiring detailed
anatomical reasoning [26]. Studies employing transformer
backbones have reported improved segmentation fidelity and
classification accuracy for small or low-contrast aneurysms,
particularly those embedded in tortuous vasculature [27].
These architectures also exhibit greater robustness against
noise and interscanner variability, an essential trait for real-
world clinical deployment [28].

Another noteworthy development is the rise of hybrid
CNN-transformer models, which integrate localized
convolutional feature extraction with long-range attention,
thereby achieving a balance between spatial precision and
contextual awareness [29]. Such models have been shown to
outperform conventional CNNs in detecting aneurysms with
subtle morphological deviations. Nonetheless, the performance
of deep learning systems remains heavily dependent on the
availability of annotated datasets, which are often limited due
to the complexity of neurovascular structures and the rarity of
aneurysms [30]. This scarcity has prompted investigations into
semi-supervised and weakly supervised learmning frameworks
designed to leverage large unlabeled image collections while
minimizing annotation burden [31].

These developments collectively highlight the transition
from classical convolutional pipelines to more expressive
architectures  that  better = capture  aneurysm-specific
morphological nuances. Yet, integrating deep learning with
robust feature engineering strategies continues to be an active
research direction requiring further methodological innovation
[32].

D. Contrastive Learning, Semi-Supervised Frameworks, and
Hybrid Al Systems

One of the most significant advancements in recent years is
the adoption of contrastive leaming techniques for
representation learning in medical imaging. Contrastive
learning seeks to align semantically similar samples while
separating dissimilar ones, thereby producing highly
discriminative latent spaces even with limited labeled data
[33]. In the context of aneurysm diagnosis, such approaches
allow networks to capture subtle differences in vascular wall
structure by leveraging both spatial and frequency-domain
augmentations [34]. Studies have shown that contrastive
paradigms  significantly enhance feature  robustness,
particularly when imaging conditions vary across scanners or
institutions [35].

Teacher—student frameworks have also gained traction,
with teacher models generating pseudo-labels or high-quality
embeddings that guide the training of student models in semi-
supervised settings [36]. These architectures improve data
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efficiency while reducing the need for extensive manual
annotations, which is especially valuable in neurovascular
imaging where expert-level segmentation is time-consuming
[37]. Incorporating domain adaptation strategies further
enhances cross-domain generalization by mitigating shifts
caused by differences in acquisition protocols or population
demographics [38].

Recent research has introduced hybrid Al pipelines that
fuse radiomics, deep leaming, and contrastive signal modeling
to form end-to-end diagnostic systems [39]. These integrated
frameworks demonstrate superior stability by combining
handcrafted morphometric descriptors with high-level neural
embeddings, ultimately improving aneurysm detection
accuracy in heterogeneous clinical scenarios [40] [48]. Semi-
supervised contrastive architectures have been particularly
effective in identifying aneurysms with irregular borders or
low-contrast visual signatures, outperforming classical
supervised models in limited-data regimes [41].

Moreover, multimodal hybrid systems that leverage both
anatomical imaging and frequency-enhanced representations
have shown promise in capturing broader physiological
patterns associated with aneurysm formation and rupture risk
[42]. Such systems represent an important step toward
developing clinically deployable Al tools capable of delivering
reliable  diagnostic  support across diverse imaging
environments [43].

III. MATERIALS AND METHODS

The proposed diagnostic framework for intracranial
aneurysm analysis integrates radiomics-driven feature
engineering with deep learming—based representation learning,
as illustrated in Fig. 1. The workflow begins with data
acquisition from CTA and MRA modalities, followed by
preprocessing  steps including intensity normalization,
resampling to isotropic voxel spacing, and noise reduction
using Gaussian smoothing. Subsequently, regions of interest
(ROIs) corresponding to aneurysmal and non-aneurysmal
vascular segments are delineated using the 3D-Slicer platform,
enabling precise anatomical localization and consistent
volume-of-interest extraction. This segmentation stage is
critical for generating reproducible radiomic descriptors, as it
constrains the computational pipeline to clinically relevant
vascular territories, thereby reducing background variability.
As shown in Fig. 1, the segmented ROIs are then processed
through the PyRadiomics toolkit to extract first-order statistics,
texture matrices, wavelet features, and shape-based descriptors.
These engineered features capture local heterogeneity,
morphological irregularity, and structural distortions
characteristic of aneurysmal pathology. A feature selection
module employing methods such as recursive feature
elimination, LASSO regularization, and mutual information
ranking is subsequently applied to reduce redundancy and
retain discriminative predictors for downstream analysis.

In the second stage of the framework, deep learning models
are trained using voxel-wise image patches and full 2D/3D
angiographic slices to complement handcrafted radiomic
vectors with hierarchical feature representations. As depicted in
the lower section of Fig. 3, the deep learning pipeline begins
with convolutional layers for local spatial encoding, followed
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by progressively deeper feature maps and fully connected
layers for high-level abstraction. These representations are
integrated with selected radiomic features using a multimodal
fusion strategy aimed at enhancing diagnostic robustness [47].
Model training is performed in a supervised setting using
annotated aneurysm datasets, and optimization employs Adam
with early stopping criteria to mitigate overfitting. The
combined analysis stage incorporates classification networks to
discriminate aneurysm presence and subtype, enabling
comprehensive assessment of aneurysm morphology and risk
factors. This dual radiomics—deep learning methodology,
guided by the sequential workflow in Fig. 3, establishes a
rigorous and reproducible foundation for automated aneurysm
diagnosis.
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Fig. 4. Workflow of the proposed radiomics and deep learning framework for intracranial aneurysm diagnosis.

The architecture depicted in Fig. 4 adopts a dual-stream
teacher—student contrastive leaming framework designed to
leverage both fully labeled and weakly labeled aneurysm

imaging data. Let X, denote labeled vascular images from the

target domain, whereas X, and auxiliary weak labels V.

represent unlabeled or weakly supervised samples incorporated
through hierarchical domain adaptation. The teacher network

JIr (), based on a Swin-ViT backbone, generates high-level

spatial representations, while the student network fj () ,

implemented using a Swin-V architecture [44], learns

complementary multi-scale contextual embeddings.

A. Teacher—Student Feature Embedding

For an input sample x, the teacher and student encoders
produce latent representations:

ZTsz(x;)’Z.S‘:fS(x;V) (1)

Because the teacher network
exponential moving average (EMA)
parameters, we define:

0, <« ad, (1 - a)é?s

is updated using an
[45] of student

()

where, & € [0,1) is the momentum coefficient.
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B. TransAneu Spatial-Frequency Contrastive Learning

As shown in Fig. 2, the proposed TransAneu module
simultaneously aligns spatial-domain and frequency-domain

features. Spatial projections X;” and z{ are computed using

projection heads g, (), while frequency-enhanced projections

fq and Z

g_/q('):

are derived from frequency-transform modules

Z;p = gsp (ZT )’ Z;p = gsp (ZS)
Z]qu :gfq(ZT)’ ZSJ“q :gfq(ZS) (3)

Contrastive leaming is formulated using a push—pull
objective. Positive spatial pairs between teacher and student
features are pulled together, while frequency-domain
mismatches are pushed apart to enforce discriminative
separation. The spatial contrastive loss is:

L, =—log JSXP(S”"(ZT ,Zg )/ r)
ZH exp(szm(z‘T 23k )/ r) @)

where, Sim(-) is cosine similarity and 7 is the temperature

parameter.

The frequency contrastive loss pushes apart frequency-
domain projections that encode anatomically irrelevant
variations:

~log exp(sim( 9 g )/ r)

fa 25:1 exp(szm( Zr aZSk)/T) ®))

The overall contrastive objective is defined as:

L, =2,L,+2,L

(6)

where, lsp control the contribution of each

modality.

and A P

C. Diagnostic Heads and Learning Objectives

The teacher and student branches each attach to a
classification module referred to as a Diagnostic Head (Fig. 2).
For teacher predictions on fully annotated samples, the fully
supervised loss is:

ful/v Zy i IOg(Pl )

(7

where, p; is the softmax probability output of the teacher
diagnostic head.

For semi-supervised learning using the student network,
pseudo-labels ) generated from the teacher guide the
student’s predictions:
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C 9
Lxeml = _Z yi log(l?zs )
®)
Finally, the total training objective for the student modelis:
Ltotal semz + IBLcon (9

where, [ Dbalances classification and contrastive

representation learning.

Thus, the proposed architecture provides a multi-scale,
multi-domain representation learning framework for aneurysm
diagnosis by integrating spatial-frequency contrastive learning,
teacher—student knowledge transfer, and semi-supervised
diagnostic supervision. The combination of EMA teacher
updating, domain-adaptive feature embedding, and structured
contrastive losses yields a robust system capable of leveraging
both annotated and unannotated vascular imaging data.

IV. DArta

The experimental analysis in this study utilized the Brain
Tumor Segmentation (BraTS) dataset [46], a widely
recognized benchmark collection of multimodal magnetic
resonance (MR) imaging used for computational neuro-
oncology research. The BraTS dataset provides high-resolution
multimodal scans, including TI1-weighted, TI1-contrast-
enhanced, T2-weighted, and FLAIR sequences, enabling
comprehensive characterization of intracranial tissue structures.
All images undergo standardized preprocessing through the
BraTS pipeline, which includes co-registration to a common
anatomical space, skull stripping, interpolation to isotropic
resolution, and intensity normalization, ensuring cross-subject
comparability and reducing scanner-induced variability.
Ground truth annotations are expertly delineated by certified
neuroradiologists, providing reliable segmentation masks and
tumor labels essential for radiomics feature extraction and
supervised model training. The standardized nature of BraTS
makes it an optimal resource for evaluating the robustness and
generalization capability of the proposed aneurysm diagnosis
framework.

Representative MR samples drawn from the dataset are
illustrated in Fig. 5, demonstrating the diversity of appearance
across benign, malignant, and pituitary lesions. While the
BraTS dataset primarily focuses on gliomas, the examples
shown in Fig. 5 highlight the inherent variability in lesion
morphology, location, and intensity distribution encountered in
clinical neuroimaging. These variations closely resemble the
heterogeneous conditions under which aneurysm-related
abnormalities must also be identified, thus supporting the
applicability of BraTS-derived features and imaging
characteristics for broader neuro-diagnostic tasks. The
inclusion of multimodal MR sequences allows the extraction of
rich radiomic and deep learning [49] descriptors capable of
capturing subtle textural differences and anatomical distortions,
thereby forming a robust foundation for the training and
evaluation of the proposed hybrid radiomics—Al diagnostic
pipeline.
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V. RESULTS

The Results section presents a comprehensive evaluation of
the proposed aneurysm detection framework across multiple
experimental settings, incorporating both quantitative
performance metrics and qualitative visualization analyses. To
assess the robustness and generalization capability of the
model, we conducted extensive experiments using multimodal
MR and MRA datasets, examining classification accuracy, loss
convergence behavior, and spatial localization performance.
The following subsections provide detailed insights into the
model’s training dynamics, predictive accuracy, and ability to
delineate aneurysmal  structures within complex
cerebrovascular anatomy. In addition, visual examples derived
from representative subjects are included to illustrate the
correspondence between predicted aneurysm regions and
ground-truth annotations, thereby highlighting the practical
clinical relevance of the proposed approach.

Fig. 6 illustrates the model’s aneurysm localization
performance on a representative cerebral angiography image,
highlighting its ability to accurately identify pathological
vascular regions while differentiating them from non-
aneurysmal structures. The ground-truth aneurysm annotation
is shown in red, while the model’s predicted aneurysm clipping
regions are depicted in green, demonstrating close spatial
correspondence with the annotated lesion. Additionally,
multiple non-aneurysmal vascular segments detected by the
model are shown in orange, illustrating its capacity to evaluate
complex vascular networks and avoid excessive false positives.
The spatial alignment between the annotated aneurysm and the
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Samples of brain MR images.

model’s predicted region underscores the effectiveness of the
proposed detection framework in capturing clinically relevant
vascular abnormalities within high-resolution angiographic
imagery.
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Fig. 6. Aneurysm localization results on cerebral angiography with predicted
and annotated regions.
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Fig. 7 presents the training and validation accuracy curves
obtained over 100 training epochs, illustrating the model’s
overall convergence behavior and generalization capacity. As
shown in Fig. 7(a), both accuracy curves exhibit a consistent
upward trend during the initial epochs, reflecting the model’s
ability to rapidly leam discriminative representations from the
training data. After approximately 30 epochs, the accuracy
stabilizes, with the training accuracy gradually approaching
0.98 and the validation accuracy oscillating within the range of
0.95 to 097. These fluctuations are typical for complex
neuroimaging data and suggest sensitivity to structural
variability across validation samples. Nonetheless, the close
alignment between the two curves indicates that the model
maintains strong generalization performance without evidence
of severe overfitting.

Fig. 7(b) displays the evolution of the training and
validation loss values over the same epoch range. The loss
decreases sharply during the early training phase,
demonstrating effective optimization and rapid reduction of
prediction error. After the initial decline, both curves stabilize
near a minimum loss of approximately 0.05, with minor
fluctuations in the validation loss attributable to inter-sample
heterogeneity and the presence of challenging aneurysm cases.
The near overlap of the training and validation loss curves
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reflects a well-balanced model characterized by stable learning
dynamics. Taken together, the results in Fig. 7 indicate that the
proposed framework achieves robust convergence and strong
predictive performance for aneurysm detection across both
training and unseen validation data.

Table 1 presents a comparative performance analysis
between the proposed model and several existing methods
across multiple evaluation metrics, including accuracy, F1-
score, specificity, recall, precision, and negative predictive
value. The results clearly indicate that the proposed model
consistently outperforms all baseline approaches, achieving
superior values in nearly every metric. This performance
advantage reflects stronger discriminatory power, improved
sensitivity to aneurysm cases, and enhanced reliability in
identifying non-aneurysmal regions. In contrast, competing
models demonstrate varying degrees of performance, with
some achieving moderate recall but lower specificity, and
others showing balanced precision but reduced overall
accuracy. The collective comparison highlights the robustness
and effectiveness of the proposed framework, emphasizing its
potential clinical utility and its ability to deliver more accurate
and dependable diagnostic outcomes than previously published
approaches.

TABLEI. COMPARATIVE PERFORMANCE EVALUATION OF THE PROPOSED MODEL AGAINST EXISTING METHODS
Model Accuracy F1-score Specifity Recall Precision NPV

Proposed Model 0.972 0.97 0.986 0.953 0.972 0.941
Vigneshwaran et al.,, 2025 [57] 0.932 0.94 0916 0.863 0.872 0913
Katsukietal, 2021 [58] 0.891 0.927 0912 0.928 0.910 0914
Chauhan et al., 2025 [59] 0.864 0.82 0.87 0.827 0.872 0.86

Yu etal., 2023[60] 0.88 0.879 0.839 0.921 0.902 0.879
Zhengetal, 2024 [61] 0913 0910 0918 0.920 0917 0.903
Huetal, 2023 [62] 0.931 0.935 0917 0.926 0.930 0.907
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Fig. 8. Aneurysm localization on axial MR image with model-generated
confidence heatmap.

Fig. 8 presents a representative axial MR image that
effectively demonstrates the proposed model’s capability to
localize an intracranial aneurysm with a high degree of spatial
precision and interpretability. The aneurysmal region is

Original TOF-MRA

Sub #1
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enclosed within a cyan bounding box, enabling clear visual
identification of the predicted lesion site within the broader
cerebral anatomy. To further enhance interpretability, a
zoomed-in inset is provided, offering a magnified view of the
affected vascular segment. This inset incorporates a
probabilistic heatmap overlay, which highlights the model’s
confidence distribution across the aneurysm boundary. The
heatmap values span a gradient from yellow to deep red, with
warmer colors indicating regions of higher prediction
confidence. The concentration of deep-red intensities over the
aneurysmal dome reflects the model’s strong certainty in
identifying the pathological structure.

This visualization not only emphasizes the model’s ability
to isolate fine-grained vascular abnormalities but also
demonstrates its capacity to suppress irrelevant activations
from surrounding healthy tissue. Such behavior is critical in
neurovascular diagnostics, where closely packed vessels and
subtle anatomical variations pose significant challenges to
automated systems. The clear contrast between the detected
aneurysm and neighboring normal vessels reinforces the
robustness of the proposed framework in distinguishing
between pathological and non-pathological regions, even
within complex MR imaging environments. Overall, the results
illustrated in Fig. 8 underscore the effectiveness of the
proposed model in delivering precise and interpretable
aneurysm localization, thereby enhancing its potential utility as
a clinical decision-support tool in neuroimaging practice.

Overlay

Fig.9. Samples of brain MR images.
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Fig. 9 illustrates the qualitative performance of the
proposed model on time-of-flight magnetic resonance
angiography (TOF-MRA) images for two representative
subjects. The left column displays the original TOF-MRA
scans, while the right column presents overlayed predictions
highlighting the detected aneurysmal regions. In both subjects,
the model successfully identifies abnormal vascular
protrusions, delineated in red and accompanied by confidence
scores ranging from 22 percent to 58 percent. The enlarged
yellow insets provide a magnified view of the detected
aneurysm candidates, allowing clearer visualization of the
model’s localization accuracy relative to the underlying
vasculature. These overlays demonstrate the system’s
capability to detect subtle aneurysmal structures even at lower
confidence levels, while maintaining consistent performance
across subjects. Overall, the results shown in Fig. 9 underscore
the model’s effectiveness in interpreting high-resolution TOF-
MRA data and its potential utility for assisting clinicians in
early aneurysm screening and assessment.

VI. DiscussioN

The results of this study demonstrate that the proposed
hybrid radiomics and deep learning framework provides a
robust and effective solution for automated intracranial
aneurysm detection and localization using multimodal MR and
MRA imaging. The consistently high performance across
multiple evaluation metrics indicates that the integration of
handcrafted radiomic features with transformer-based neural
representations enables comprehensive characterization of both
global vascular anatomy and localized pathological variations.
The close alignment between training and validation curves
suggests strong generalization capability and stable leamning
behavior, which is particularly important in medical imaging
tasks where annotated data are often limited and heterogeneous
[52]. Similar trends have been reported in recent neurovascular
studies, where hybrid feature representations were shown to
outperform purely convolutional or purely handcrafted
approaches [53].

The qualitative visualizations further reinforce the
quantitative findings by illustrating the model’s ability to
accurately localize aneurysmal regions within complex
cerebrovascular structures. Heatmap-based overlays and
bounding-box visualizations provide intuitive insight into the
spatial focus of the network, revealing concentrated responses
over aneurysm domes while minimizing activation in
surrounding healthy tissue. This behavior is essential for
clinical reliability, as aneurysms are frequently small,
irregularly shaped, and embedded within dense vascular
networks [54]. Comparable visualization strategies have been
shown to improve clinician trust in Al-assisted diagnostic
systems by offering interpretable evidence of model
predictions [55]. Moreover, the probabilistic confidence
estimates produced by the proposed framework allow for
uncertainty-aware decision making, which is increasingly
recognized as a critical component of safe clinical deployment
[56].

A key strength of the proposed approach lies in its use of
contrastive learning within a teacher—student paradigm. By
aligning spatial and frequency-domain embeddings between
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networks, the framework effectively reduces representation
drift caused by imaging variability, scanner differences, and
acquisition noise. This is particularly relevant for neuroimaging
applications, where data distributions can vary substantially
across institutions and protocols [57]. Semi-supervised
contrastive learming has been shown to significantly enhance
feature robustness under limited supervision, and the present
results further confirm its effectiveness in aneurysm detection
scenarios [58]. The momentum-based teacher update
mechanism provides stable representation targets, which
contributes to smoother optimization and improved
performance consistency across training epochs [59].

Despite these advantages, several limitations should be
acknowledged. First, although the dataset used in this study
includes diverse imaging examples, it may not fully represent
the wide spectrum of aneurysm morphologies observed in
clinical practice. Rare configurations, such as fusiform
aneurysms or aneurysms located in uncommon vascular
branches, remain underrepresented and could pose challenges
for generalization [60]. Expanding the dataset through multi-
center collaborations would likely improve model robustness
and reduce potential sampling bias, as demonstrated in
previous large-scale neuroimaging studies [61]. Second, the
reliance on segmentation-driven radiomic feature extraction
introduces sensitivity to ROI delineation accuracy. While the
segmentation workflow produced consistent results, small
boundary errors can propagate through the radiomics pipeline
and influence downstream predictions [62]. Recent advances in
fully automated vessel segmentation and self-supervised
anatomical modeling may help alleviate this dependency in
future work [63].

Another important limitation is the absence of explicit
physiological modeling within the current framework.
Aneurysm rupture risk is influenced not only by morphological
appearance but also by hemodynamic factors such as wall
shear stress, flow velocity, and pressure gradients [64].
Incorporating computational fluid dynamics features or time-
resolved imaging data could significantly enhance the clinical
relevance of the system by enabling joint assessment of
aneurysm presence and rupture potential [65]. Multi-task
learning strategies that simultaneously address detection,
segmentation, and risk stratification have shown promise in
related studies and represent a valuable direction for future
research [66].

Interpretability remains a broader challenge for deep
learning-based medical imaging systems. Although the
heatmaps and attention visualizations used in this study
provide useful qualitative insights, they do not fully explain the
causal reasoning behind model predictions [67]. This limitation
is particularly relevant for borderline or ambiguous cases,
where clinical decisions carry high risk. Emerging explainable
Al techniques, including concept-based explanations and
hybrid symbolic—neural models, may offer more transparent
decision pathways and improve clinician acceptance [68,69].
Integrating such techniques into the proposed framework could
further enhance its trustworthiness and clinical adoption.

In comparison with existing approaches, the proposed
model demonstrates superior or competitive performance
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across all reported metrics, highlighting the benefits of
combining radiomics, transformer architectures, and
contrastive learning within a unified framework [70-74]. Prior
studies relying solely on convolutional networks often struggle
with capturing long-range vascular dependencies, while purely
radiomics-based methods lack sufficient expressive power for
complex anatomical patterns [75-77]. The present work
addresses these limitations by leveraging complementary
feature sources and advanced representation alignment
strategies, resulting in improved diagnostic accuracy and
stability [78].

In summary, this study provides strong evidence that a
hybrid radiomics—transformer framework augmented with
contrastive learning can significantly enhance intracranial
aneurysm detection and localization. The combination of
quantitative performance gains, robust generalization, and
interpretable visual outputs underscores the potential of the
proposed system as a clinical decision-support tool. Future
research should prioritize larger multi-institutional validation,
incorporation of physiological and temporal markers, and
development of advanced explainability mechanisms to further
facilitate clinical translation and real-world deployment [79,
80].

VIL

This study presents a comprehensive hybrid framework that
integrates radiomics, transformer-based deep learning, and
contrastive representation learning for automated detection and
localization of intracranial aneurysms from MR and MRA
imaging. The experimental results demonstrate that the
proposed approach effectively captures both high-level
vascular patterns and fine-grained structural abnormalities,

CONCLUSION

achieving strong performance across accuracy, loss
convergence, and qualitative visualization metrics. By
leveraging complementary radiomic  descriptors  and

hierarchical neural embeddings, the system exhibits robust
generalization and maintains stable training dynamics even
under limited annotation availability. The incorporation of
teacher—student contrastive learning further enhances the
discriminative power of the feature representations, enabling
improved localization of aneurysmal structures within complex
cerebrovascular networks. Although challenges remain,
including dataset diversity, segmentation dependencies, and the
need for greater interpretability, the findings highlight the
significant potential of the proposed method as a clinical
decision-support tool. With further refinement and validation
across larger multi-institutional datasets, this framework may
contribute to earlier and more accurate aneurysm detection,
reduce diagnostic variability, and ultimately support improved
patient outcomes in neurovascular care.
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