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Abstract—Accurate and early detection of intracranial 

aneurysms is critical for preventing life-threatening 

subarachnoid hemorrhage and improving clinical outcomes. This 

study proposes a hybrid diagnostic framework that integrates 

radiomics-based feature engineering with a transformer-driven 

deep learning architecture enhanced by teacher–student 

contrastive representation learning. The workflow incorporates 

region-of-interest segmentation, handcrafted radiomic feature 

extraction, multimodal representation fusion, and probabilistic 

aneurysm localization using high-resolution MR and MRA 

imaging. Comprehensive experiments conducted on benchmark 

neuroimaging datasets demonstrate that the proposed model 

achieves high classification accuracy, stable convergence, and 

robust generalization across diverse anatomical and imaging 

conditions. Qualitative evaluations further reveal that heatmap-

based confidence overlays reliably identify aneurysmal regions 

and closely align with ground-truth annotations. The contrastive 

learning module strengthens spatial and frequency-domain 

feature alignment, enabling effective training under limited 

supervision and reducing performance degradation associated 

with data heterogeneity. While limitations remain regarding 

dataset breadth and segmentation dependencies, the results 

indicate that this hybrid radiomics–AI framework offers a 

promising pathway toward automated aneurysm screening and 

clinical decision support. The proposed system has the potential 

to enhance diagnostic precision, mitigate inter-observer 

variability, and contribute to earlier intervention in 

neurovascular care. 
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I. INTRODUCTION 

The timely and accurate diagnosis of intracranial 
aneurysms remains a critical challenge in contemporary 
neuroimaging and clinical decision support systems. Brain 
aneurysms pose a significant risk of subarachnoid hemorrhage, 
a condition associated with high mortality and long-term 
disability, which underscores the need for early detection 
strategies capable of identifying subtle vascular abnormalities 
before rupture occurs [1]. Conventional diagnostic modalities 
such as computed tomography angiography and magnetic 
resonance angiography provide detailed anatomical 
information, yet their interpretation often depends on expert 

assessment, introducing subjectivity and potential variability in 
diagnostic outcomes [2]. As a result, artificial intelligence 
approaches [50], particularly deep learning, have emerged as 
powerful tools for enhancing diagnostic precision through 
automated feature extraction and pattern recognition [3]. 

In recent years, radiomics has gained substantial attention 
as a complementary methodology for quantitative 
characterization of vascular morphology and tissue 
heterogeneity by transforming medical images into high-
dimensional feature spaces [4]. When combined with deep 
learning, radiomics enables the integration of handcrafted 
descriptors with hierarchical neural features, yielding more 
discriminative representations for aneurysm analysis [5]. 
Transformer-based architectures, especially vision 
transformers, have demonstrated strong capabilities in 
modeling long-range dependencies and capturing subtle 
structural variations in neurovascular images, offering 
performance advantages over traditional convolutional models 
[6]. Furthermore, contrastive learning frameworks have shown 
promise in semi-supervised and weakly supervised scenarios 
by aligning spatial and frequency-domain representations, thus 
improving generalization when labeled datasets are limited [7]. 

Despite these advances, several challenges persist, 
including variability in imaging protocols, limited annotated 
datasets, and the need for robust cross-domain generalization in 
clinical environments [8]. Developing hybrid architectures that 
combine radiomic signatures, segmentation-driven region-of-
interest extraction, and contrastive representation learning 
presents a promising direction for addressing these limitations 
[9]. This research aims to build upon these developments by 
proposing an integrated radiomics–deep learning framework 
for accurate and reliable diagnosis of intracranial aneurysms. 

II. RELATED WORKS 

A. Brain Aneurysm 

A brain aneurysm is a localized pathological dilation of a 
cerebral artery resulting from weakening of the vessel wall 
layers, typically involving the tunica media and internal elastic 
lamina. As illustrated in Fig. 1, the aneurysm often forms as a 
saccular outpouching that protrudes from an arterial bifurcation 
or curve, where hemodynamic shear stress is elevated. These 
weakened segments can gradually expand due to pulsatile 
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blood flow, eventually becoming prone to rupture. When 
rupture occurs, blood extravasates into the subarachnoid space, 
leading to subarachnoid hemorrhage, a medical emergency 
associated with high mortality and significant neurological 
deficits. The pathophysiology of aneurysm formation is 
multifactorial, involving genetic predisposition, endothelial 
dysfunction, chronic inflammation, and biomechanical stress, 
all of which contribute to progressive vessel wall degeneration. 

 
Fig. 1. Illustration of a cerebral aneurysm as a localized arterial outpouching 

in the brain. 

 
Fig. 2. Anatomical structure of the Circle of Willis, highlighting major 

cerebral arteries and common aneurysm sites. 

The anatomical distribution of brain aneurysms is closely 
related to the cerebrovascular architecture, particularly the 
Circle of Willis, as shown in Fig. 2. This arterial ring includes 
major bifurcation points of the anterior, middle, and posterior 
cerebral arteries, which are the most common sites for 
aneurysm development due to complex flow dynamics and 
turbulent pressure gradients. Aneurysms in these regions may 
remain asymptomatic until enlargement or rupture occurs, 
although some may produce symptoms through mass effect or 

compression of adjacent cranial nerves. Understanding the 
vascular topology of the Circle of Willis is therefore essential 
for accurate diagnosis, risk stratification, and treatment 
planning, especially when integrating advanced imaging 
techniques and deep learning models that rely on precise 
localization of vascular anomalies. 

B. Radiomics for Neurovascular Abnormality Detection 

Radiomics has become a key methodological pillar for 
extracting quantitative biomarkers from neuroimaging data, 
enabling the transformation of complex aneurysmal 
morphology into structured high-dimensional feature sets [10]. 
Early studies demonstrated that handcrafted descriptors such as 
intensity histograms, texture matrices, and shape signatures 
provide discriminative cues for identifying abnormal vascular 
dilations in CTA and MRA images [11]. The reproducibility of 
radiomic features was further improved with standardized 
toolkits such as PyRadiomics, which introduced harmonized 
feature definitions and preprocessing protocols [12]. Such 
standardization has facilitated cross-institutional studies that 
reported enhanced sensitivity in aneurysm detection when 
radiomic features complement conventional clinical readings 
[13]. 

Subsequent investigations extended radiomics into 
multiscale characterizations, revealing that local heterogeneity 
and voxel-level variations correlate with aneurysm instability 
and rupture risk [14]. In particular, wavelet-based texture 
descriptors and Laplacian-derived edge patterns were shown to 
uncover microstructural abnormalities not readily visible to 
human observers [15]. Integration of radiomics with vessel 
segmentation algorithms, including automated region-of-
interest isolations using 3D medical imaging platforms, has 
enabled more consistent feature extraction pipelines [16]. 
However, despite these advances, the reliance on handcrafted 
features introduces limitations related to sensitivity to 
acquisition parameters and manually defined parameters, 
which motivated the transition toward hybrid radiomics–deep 
learning frameworks [17]. 

In contemporary literature, radiomics has increasingly been 
fused with machine learning classifiers such as random forests 
and support vector machines to enhance detection robustness 
[18]. Yet, the absence of spatial contextualization within purely 
handcrafted pipelines raised questions about the scalability of 
classical radiomics in complex neurovascular domains [19]. 
These limitations illustrate the need for more expressive and 
hierarchical feature representations, paving the way for deep 
learning methodologies that complement or fully supersede 
handcrafted radiomic signatures [20]. 

C. Deep Learning Architectures for Brain Aneurysm 

Classification 

Deep learning has transformed medical image analysis by 
enabling automated extraction of hierarchical representations 
tailored to vascular morphology and pathophysiological cues 
[21]. Convolutional neural networks (CNNs) were among the 
first architectures applied to aneurysm detection, showing 
notable improvements in sensitivity compared with traditional 
radiological assessments [22]. These CNN-based models 
leveraged feature maps capable of isolating local edge patterns, 
lumen irregularities, and aneurysmal neck contours with 
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substantial robustness across imaging modalities [23]. 
However, CNNs remain inherently limited in capturing long-
range dependencies and global spatial relationships that are 
crucial for modeling complex vascular geometries [24]. 

To overcome these shortcomings, transformer-based 
architectures such as Swin-Transformer and ViT have been 
increasingly adopted in neurovascular imaging research [25]. 
Vision transformers process image patches sequentially and 
utilize self-attention mechanisms to model global context, 
yielding superior performance in tasks requiring detailed 
anatomical reasoning [26]. Studies employing transformer 
backbones have reported improved segmentation fidelity and 
classification accuracy for small or low-contrast aneurysms, 
particularly those embedded in tortuous vasculature [27]. 
These architectures also exhibit greater robustness against 
noise and interscanner variability, an essential trait for real-
world clinical deployment [28]. 

Another noteworthy development is the rise of hybrid 
CNN–transformer models, which integrate localized 
convolutional feature extraction with long-range attention, 
thereby achieving a balance between spatial precision and 
contextual awareness [29]. Such models have been shown to 
outperform conventional CNNs in detecting aneurysms with 
subtle morphological deviations. Nonetheless, the performance 
of deep learning systems remains heavily dependent on the 
availability of annotated datasets, which are often limited due 
to the complexity of neurovascular structures and the rarity of 
aneurysms [30]. This scarcity has prompted investigations into 
semi-supervised and weakly supervised learning frameworks 
designed to leverage large unlabeled image collections while 
minimizing annotation burden [31]. 

These developments collectively highlight the transition 
from classical convolutional pipelines to more expressive 
architectures that better capture aneurysm-specific 
morphological nuances. Yet, integrating deep learning with 
robust feature engineering strategies continues to be an active 
research direction requiring further methodological innovation 
[32]. 

D. Contrastive Learning, Semi-Supervised Frameworks, and 

Hybrid AI Systems 

One of the most significant advancements in recent years is 
the adoption of contrastive learning techniques for 
representation learning in medical imaging. Contrastive 
learning seeks to align semantically similar samples while 
separating dissimilar ones, thereby producing highly 
discriminative latent spaces even with limited labeled data 
[33]. In the context of aneurysm diagnosis, such approaches 
allow networks to capture subtle differences in vascular wall 
structure by leveraging both spatial and frequency-domain 
augmentations [34]. Studies have shown that contrastive 
paradigms significantly enhance feature robustness, 
particularly when imaging conditions vary across scanners or 
institutions [35]. 

Teacher–student frameworks have also gained traction, 
with teacher models generating pseudo-labels or high-quality 
embeddings that guide the training of student models in semi-
supervised settings [36]. These architectures improve data 

efficiency while reducing the need for extensive manual 
annotations, which is especially valuable in neurovascular 
imaging where expert-level segmentation is time-consuming 
[37]. Incorporating domain adaptation strategies further 
enhances cross-domain generalization by mitigating shifts 
caused by differences in acquisition protocols or population 
demographics [38]. 

Recent research has introduced hybrid AI pipelines that 
fuse radiomics, deep learning, and contrastive signal modeling 
to form end-to-end diagnostic systems [39]. These integrated 
frameworks demonstrate superior stability by combining 
handcrafted morphometric descriptors with high-level neural 
embeddings, ultimately improving aneurysm detection 
accuracy in heterogeneous clinical scenarios [40] [48]. Semi-
supervised contrastive architectures have been particularly 
effective in identifying aneurysms with irregular borders or 
low-contrast visual signatures, outperforming classical 
supervised models in limited-data regimes [41]. 

Moreover, multimodal hybrid systems that leverage both 
anatomical imaging and frequency-enhanced representations 
have shown promise in capturing broader physiological 
patterns associated with aneurysm formation and rupture risk 
[42]. Such systems represent an important step toward 
developing clinically deployable AI tools capable of delivering 
reliable diagnostic support across diverse imaging 
environments [43]. 

III. MATERIALS AND METHODS 

The proposed diagnostic framework for intracranial 
aneurysm analysis integrates radiomics-driven feature 
engineering with deep learning–based representation learning, 
as illustrated in Fig. 1. The workflow begins with data 
acquisition from CTA and MRA modalities, followed by 
preprocessing steps including intensity normalization, 
resampling to isotropic voxel spacing, and noise reduction 
using Gaussian smoothing. Subsequently, regions of interest 
(ROIs) corresponding to aneurysmal and non-aneurysmal 
vascular segments are delineated using the 3D-Slicer platform, 
enabling precise anatomical localization and consistent 
volume-of-interest extraction. This segmentation stage is 
critical for generating reproducible radiomic descriptors, as it 
constrains the computational pipeline to clinically relevant 
vascular territories, thereby reducing background variability. 
As shown in Fig. 1, the segmented ROIs are then processed 
through the PyRadiomics toolkit to extract first-order statistics, 
texture matrices, wavelet features, and shape-based descriptors. 
These engineered features capture local heterogeneity, 
morphological irregularity, and structural distortions 
characteristic of aneurysmal pathology. A feature selection 
module employing methods such as recursive feature 
elimination, LASSO regularization, and mutual information 
ranking is subsequently applied to reduce redundancy and 
retain discriminative predictors for downstream analysis. 

In the second stage of the framework, deep learning models 
are trained using voxel-wise image patches and full 2D/3D 
angiographic slices to complement handcrafted radiomic 
vectors with hierarchical feature representations. As depicted in 
the lower section of Fig. 3, the deep learning pipeline begins 
with convolutional layers for local spatial encoding, followed 
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by progressively deeper feature maps and fully connected 
layers for high-level abstraction. These representations are 
integrated with selected radiomic features using a multimodal 
fusion strategy aimed at enhancing diagnostic robustness [47]. 
Model training is performed in a supervised setting using 
annotated aneurysm datasets, and optimization employs Adam 
with early stopping criteria to mitigate overfitting. The 
combined analysis stage incorporates classification networks to 
discriminate aneurysm presence and subtype, enabling 
comprehensive assessment of aneurysm morphology and risk 
factors. This dual radiomics–deep learning methodology, 
guided by the sequential workflow in Fig. 3, establishes a 
rigorous and reproducible foundation for automated aneurysm 
diagnosis. 

 
Fig. 3. Workflow of the proposed radiomics and deep learning framework 

for intracranial aneurysm diagnosis. 

 
Fig. 4. Workflow of the proposed radiomics and deep learning framework for intracranial aneurysm diagnosis. 

The architecture depicted in Fig. 4 adopts a dual-stream 
teacher–student contrastive learning framework designed to 
leverage both fully labeled and weakly labeled aneurysm 

imaging data. Let 

tx  denote labeled vascular images from the 

target domain, whereas 
w

ux  and auxiliary weak labels 
w

uy  

represent unlabeled or weakly supervised samples incorporated 
through hierarchical domain adaptation. The teacher network 

( )Tf , based on a Swin-ViT backbone, generates high-level 

spatial representations, while the student network ( )Sf , 

implemented using a Swin-V architecture [44], learns 
complementary multi-scale contextual embeddings. 

A. Teacher–Student Feature Embedding 

For an input sample 𝑥, the teacher and student encoders 
produce latent representations: 

( ) ( )w

uSSTTT xfzxfz == ,

                     () 

Because the teacher network is updated using an 
exponential moving average (EMA) [45] of student 
parameters, we define: 

( ) STT  − 1
                      () 

where,  )1,0  is the momentum coefficient. 
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B. TransAneu Spatial–Frequency Contrastive Learning 

As shown in Fig. 2, the proposed TransAneu module 
simultaneously aligns spatial-domain and frequency-domain 

features. Spatial projections 
sp

Tx  and 
sp

Sz  are computed using 

projection heads ( )spg , while frequency-enhanced projections 

fq

Tz  and 
fq

Sz  are derived from frequency-transform modules 

( )fqg : 

( ) ( )
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fq
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==
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           () 

Contrastive learning is formulated using a push–pull 
objective. Positive spatial pairs between teacher and student 
features are pulled together, while frequency-domain 
mismatches are pushed apart to enforce discriminative 
separation. The spatial contrastive loss is: 

( )( )
( )( ) =

−=
N

k
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sp
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



          () 

where, ( )sim  is cosine similarity and 𝜏 is the temperature 

parameter. 

The frequency contrastive loss pushes apart frequency-
domain projections that encode anatomically irrelevant 
variations: 
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The overall contrastive objective is defined as: 

fqfqspspcon LLL  +=
                       () 

where, sp  and fq  control the contribution of each 

modality. 

C. Diagnostic Heads and Learning Objectives 

The teacher and student branches each attach to a 
classification module referred to as a Diagnostic Head (Fig. 2). 
For teacher predictions on fully annotated samples, the fully 
supervised loss is: 

( )
=

−=
C

i

t

iifully pyL
1

log


                      () 

where, 
t

ip  is the softmax probability output of the teacher 

diagnostic head. 

For semi-supervised learning using the student network, 

pseudo-labels ŷ  generated from the teacher guide the 

student’s predictions: 

( )
=

−=
C

i

s

iisemi pyL
1

log


                      () 

Finally, the total training objective for the student model is: 

consemitotal LLL +=
                       ( 

where, 𝛽 balances classification and contrastive 
representation learning. 

Thus, the proposed architecture provides a multi-scale, 
multi-domain representation learning framework for aneurysm 
diagnosis by integrating spatial–frequency contrastive learning, 
teacher–student knowledge transfer, and semi-supervised 
diagnostic supervision. The combination of EMA teacher 
updating, domain-adaptive feature embedding, and structured 
contrastive losses yields a robust system capable of leveraging 
both annotated and unannotated vascular imaging data. 

IV. DATA 

The experimental analysis in this study utilized the Brain 
Tumor Segmentation (BraTS) dataset [46], a widely 
recognized benchmark collection of multimodal magnetic 
resonance (MR) imaging used for computational neuro-
oncology research. The BraTS dataset provides high-resolution 
multimodal scans, including T1-weighted, T1-contrast-
enhanced, T2-weighted, and FLAIR sequences, enabling 
comprehensive characterization of intracranial tissue structures. 
All images undergo standardized preprocessing through the 
BraTS pipeline, which includes co-registration to a common 
anatomical space, skull stripping, interpolation to isotropic 
resolution, and intensity normalization, ensuring cross-subject 
comparability and reducing scanner-induced variability. 
Ground truth annotations are expertly delineated by certified 
neuroradiologists, providing reliable segmentation masks and 
tumor labels essential for radiomics feature extraction and 
supervised model training. The standardized nature of BraTS 
makes it an optimal resource for evaluating the robustness and 
generalization capability of the proposed aneurysm diagnosis 
framework. 

Representative MR samples drawn from the dataset are 
illustrated in Fig. 5, demonstrating the diversity of appearance 
across benign, malignant, and pituitary lesions. While the 
BraTS dataset primarily focuses on gliomas, the examples 
shown in Fig. 5 highlight the inherent variability in lesion 
morphology, location, and intensity distribution encountered in 
clinical neuroimaging. These variations closely resemble the 
heterogeneous conditions under which aneurysm-related 
abnormalities must also be identified, thus supporting the 
applicability of BraTS-derived features and imaging 
characteristics for broader neuro-diagnostic tasks. The 
inclusion of multimodal MR sequences allows the extraction of 
rich radiomic and deep learning [49] descriptors capable of 
capturing subtle textural differences and anatomical distortions, 
thereby forming a robust foundation for the training and 
evaluation of the proposed hybrid radiomics–AI diagnostic 
pipeline. 
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Fig. 5. Samples of brain MR images. 

V. RESULTS 

The Results section presents a comprehensive evaluation of 
the proposed aneurysm detection framework across multiple 
experimental settings, incorporating both quantitative 
performance metrics and qualitative visualization analyses. To 
assess the robustness and generalization capability of the 
model, we conducted extensive experiments using multimodal 
MR and MRA datasets, examining classification accuracy, loss 
convergence behavior, and spatial localization performance. 
The following subsections provide detailed insights into the 
model’s training dynamics, predictive accuracy, and ability to 
delineate aneurysmal structures within complex 
cerebrovascular anatomy. In addition, visual examples derived 
from representative subjects are included to illustrate the 
correspondence between predicted aneurysm regions and 
ground-truth annotations, thereby highlighting the practical 
clinical relevance of the proposed approach. 

Fig. 6 illustrates the model’s aneurysm localization 
performance on a representative cerebral angiography image, 
highlighting its ability to accurately identify pathological 
vascular regions while differentiating them from non-
aneurysmal structures. The ground-truth aneurysm annotation 
is shown in red, while the model’s predicted aneurysm clipping 
regions are depicted in green, demonstrating close spatial 
correspondence with the annotated lesion. Additionally, 
multiple non-aneurysmal vascular segments detected by the 
model are shown in orange, illustrating its capacity to evaluate 
complex vascular networks and avoid excessive false positives. 
The spatial alignment between the annotated aneurysm and the 

model’s predicted region underscores the effectiveness of the 
proposed detection framework in capturing clinically relevant 
vascular abnormalities within high-resolution angiographic 
imagery. 

 
Fig. 6. Aneurysm localization results on cerebral angiography with predicted 

and annotated regions. 
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Fig. 7. Training and validation accuracy and loss curves over 100 epochs. 

Fig. 7 presents the training and validation accuracy curves 
obtained over 100 training epochs, illustrating the model’s 
overall convergence behavior and generalization capacity. As 
shown in Fig. 7(a), both accuracy curves exhibit a consistent 
upward trend during the initial epochs, reflecting the model’s 
ability to rapidly learn discriminative representations from the 
training data. After approximately 30 epochs, the accuracy 
stabilizes, with the training accuracy gradually approaching 
0.98 and the validation accuracy oscillating within the range of 
0.95 to 0.97. These fluctuations are typical for complex 
neuroimaging data and suggest sensitivity to structural 
variability across validation samples. Nonetheless, the close 
alignment between the two curves indicates that the model 
maintains strong generalization performance without evidence 
of severe overfitting. 

Fig. 7(b) displays the evolution of the training and 
validation loss values over the same epoch range. The loss 
decreases sharply during the early training phase, 
demonstrating effective optimization and rapid reduction of 
prediction error. After the initial decline, both curves stabilize 
near a minimum loss of approximately 0.05, with minor 
fluctuations in the validation loss attributable to inter-sample 
heterogeneity and the presence of challenging aneurysm cases. 
The near overlap of the training and validation loss curves 

reflects a well-balanced model characterized by stable learning 
dynamics. Taken together, the results in Fig. 7 indicate that the 
proposed framework achieves robust convergence and strong 
predictive performance for aneurysm detection across both 
training and unseen validation data. 

Table I presents a comparative performance analysis 
between the proposed model and several existing methods 
across multiple evaluation metrics, including accuracy, F1-
score, specificity, recall, precision, and negative predictive 
value. The results clearly indicate that the proposed model 
consistently outperforms all baseline approaches, achieving 
superior values in nearly every metric. This performance 
advantage reflects stronger discriminatory power, improved 
sensitivity to aneurysm cases, and enhanced reliability in 
identifying non-aneurysmal regions. In contrast, competing 
models demonstrate varying degrees of performance, with 
some achieving moderate recall but lower specificity, and 
others showing balanced precision but reduced overall 
accuracy. The collective comparison highlights the robustness 
and effectiveness of the proposed framework, emphasizing its 
potential clinical utility and its ability to deliver more accurate 
and dependable diagnostic outcomes than previously published 
approaches. 

TABLE I.  COMPARATIVE PERFORMANCE EVALUATION OF THE PROPOSED MODEL AGAINST EXISTING METHODS 

Model Accuracy F1-score Specifity Recall Precision NPV 

Proposed Model 0.972 0.97 0.986 0.953 0.972 0.941 

Vigneshwaran et al., 2025 [57] 0.932 0.94 0.916 0.863 0.872 0.913 

Katsuki et al., 2021 [58] 0.891 0.927 0.912 0.928 0.910 0.914 

Chauhan et al., 2025 [59] 0.864 0.82 0.87 0.827 0.872 0.86 

Yu et al., 2023[60] 0.88 0.879 0.839 0.921 0.902 0.879 

Zheng et al, 2024 [61] 0.913 0.910 0.918 0.920 0.917 0.903 

Hu et al., 2023 [62] 0.931 0.935 0.917 0.926 0.930 0.907 
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Fig. 8. Aneurysm localization on axial MR image with model-generated 

confidence heatmap. 

Fig. 8 presents a representative axial MR image that 
effectively demonstrates the proposed model’s capability to 
localize an intracranial aneurysm with a high degree of spatial 
precision and interpretability. The aneurysmal region is 

enclosed within a cyan bounding box, enabling clear visual 
identification of the predicted lesion site within the broader 
cerebral anatomy. To further enhance interpretability, a 
zoomed-in inset is provided, offering a magnified view of the 
affected vascular segment. This inset incorporates a 
probabilistic heatmap overlay, which highlights the model’s 
confidence distribution across the aneurysm boundary. The 
heatmap values span a gradient from yellow to deep red, with 
warmer colors indicating regions of higher prediction 
confidence. The concentration of deep-red intensities over the 
aneurysmal dome reflects the model’s strong certainty in 
identifying the pathological structure. 

This visualization not only emphasizes the model’s ability 
to isolate fine-grained vascular abnormalities but also 
demonstrates its capacity to suppress irrelevant activations 
from surrounding healthy tissue. Such behavior is critical in 
neurovascular diagnostics, where closely packed vessels and 
subtle anatomical variations pose significant challenges to 
automated systems. The clear contrast between the detected 
aneurysm and neighboring normal vessels reinforces the 
robustness of the proposed framework in distinguishing 
between pathological and non-pathological regions, even 
within complex MR imaging environments. Overall, the results 
illustrated in Fig. 8 underscore the effectiveness of the 
proposed model in delivering precise and interpretable 
aneurysm localization, thereby enhancing its potential utility as 
a clinical decision-support tool in neuroimaging practice. 

 

Fig. 9. Samples of brain MR images. 
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Fig. 9 illustrates the qualitative performance of the 
proposed model on time-of-flight magnetic resonance 
angiography (TOF-MRA) images for two representative 
subjects. The left column displays the original TOF-MRA 
scans, while the right column presents overlayed predictions 
highlighting the detected aneurysmal regions. In both subjects, 
the model successfully identifies abnormal vascular 
protrusions, delineated in red and accompanied by confidence 
scores ranging from 22 percent to 58 percent. The enlarged 
yellow insets provide a magnified view of the detected 
aneurysm candidates, allowing clearer visualization of the 
model’s localization accuracy relative to the underlying 
vasculature. These overlays demonstrate the system’s 
capability to detect subtle aneurysmal structures even at lower 
confidence levels, while maintaining consistent performance 
across subjects. Overall, the results shown in Fig. 9 underscore 
the model’s effectiveness in interpreting high-resolution TOF-
MRA data and its potential utility for assisting clinicians in 
early aneurysm screening and assessment. 

VI. DISCUSSION 

The results of this study demonstrate that the proposed 
hybrid radiomics and deep learning framework provides a 
robust and effective solution for automated intracranial 
aneurysm detection and localization using multimodal MR and 
MRA imaging. The consistently high performance across 
multiple evaluation metrics indicates that the integration of 
handcrafted radiomic features with transformer-based neural 
representations enables comprehensive characterization of both 
global vascular anatomy and localized pathological variations. 
The close alignment between training and validation curves 
suggests strong generalization capability and stable learning 
behavior, which is particularly important in medical imaging 
tasks where annotated data are often limited and heterogeneous 
[52]. Similar trends have been reported in recent neurovascular 
studies, where hybrid feature representations were shown to 
outperform purely convolutional or purely handcrafted 
approaches [53]. 

The qualitative visualizations further reinforce the 
quantitative findings by illustrating the model’s ability to 
accurately localize aneurysmal regions within complex 
cerebrovascular structures. Heatmap-based overlays and 
bounding-box visualizations provide intuitive insight into the 
spatial focus of the network, revealing concentrated responses 
over aneurysm domes while minimizing activation in 
surrounding healthy tissue. This behavior is essential for 
clinical reliability, as aneurysms are frequently small, 
irregularly shaped, and embedded within dense vascular 
networks [54]. Comparable visualization strategies have been 
shown to improve clinician trust in AI-assisted diagnostic 
systems by offering interpretable evidence of model 
predictions [55]. Moreover, the probabilistic confidence 
estimates produced by the proposed framework allow for 
uncertainty-aware decision making, which is increasingly 
recognized as a critical component of safe clinical deployment 
[56]. 

A key strength of the proposed approach lies in its use of 
contrastive learning within a teacher–student paradigm. By 
aligning spatial and frequency-domain embeddings between 

networks, the framework effectively reduces representation 
drift caused by imaging variability, scanner differences, and 
acquisition noise. This is particularly relevant for neuroimaging 
applications, where data distributions can vary substantially 
across institutions and protocols [57]. Semi-supervised 
contrastive learning has been shown to significantly enhance 
feature robustness under limited supervision, and the present 
results further confirm its effectiveness in aneurysm detection 
scenarios [58]. The momentum-based teacher update 
mechanism provides stable representation targets, which 
contributes to smoother optimization and improved 
performance consistency across training epochs [59]. 

Despite these advantages, several limitations should be 
acknowledged. First, although the dataset used in this study 
includes diverse imaging examples, it may not fully represent 
the wide spectrum of aneurysm morphologies observed in 
clinical practice. Rare configurations, such as fusiform 
aneurysms or aneurysms located in uncommon vascular 
branches, remain underrepresented and could pose challenges 
for generalization [60]. Expanding the dataset through multi-
center collaborations would likely improve model robustness 
and reduce potential sampling bias, as demonstrated in 
previous large-scale neuroimaging studies [61]. Second, the 
reliance on segmentation-driven radiomic feature extraction 
introduces sensitivity to ROI delineation accuracy. While the 
segmentation workflow produced consistent results, small 
boundary errors can propagate through the radiomics pipeline 
and influence downstream predictions [62]. Recent advances in 
fully automated vessel segmentation and self-supervised 
anatomical modeling may help alleviate this dependency in 
future work [63]. 

Another important limitation is the absence of explicit 
physiological modeling within the current framework. 
Aneurysm rupture risk is influenced not only by morphological 
appearance but also by hemodynamic factors such as wall 
shear stress, flow velocity, and pressure gradients [64]. 
Incorporating computational fluid dynamics features or time-
resolved imaging data could significantly enhance the clinical 
relevance of the system by enabling joint assessment of 
aneurysm presence and rupture potential [65]. Multi-task 
learning strategies that simultaneously address detection, 
segmentation, and risk stratification have shown promise in 
related studies and represent a valuable direction for future 
research [66]. 

Interpretability remains a broader challenge for deep 
learning-based medical imaging systems. Although the 
heatmaps and attention visualizations used in this study 
provide useful qualitative insights, they do not fully explain the 
causal reasoning behind model predictions [67]. This limitation 
is particularly relevant for borderline or ambiguous cases, 
where clinical decisions carry high risk. Emerging explainable 
AI techniques, including concept-based explanations and 
hybrid symbolic–neural models, may offer more transparent 
decision pathways and improve clinician acceptance [68,69]. 
Integrating such techniques into the proposed framework could 
further enhance its trustworthiness and clinical adoption. 

In comparison with existing approaches, the proposed 
model demonstrates superior or competitive performance 
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across all reported metrics, highlighting the benefits of 
combining radiomics, transformer architectures, and 
contrastive learning within a unified framework [70-74]. Prior 
studies relying solely on convolutional networks often struggle 
with capturing long-range vascular dependencies, while purely 
radiomics-based methods lack sufficient expressive power for 
complex anatomical patterns [75-77]. The present work 
addresses these limitations by leveraging complementary 
feature sources and advanced representation alignment 
strategies, resulting in improved diagnostic accuracy and 
stability [78]. 

In summary, this study provides strong evidence that a 
hybrid radiomics–transformer framework augmented with 
contrastive learning can significantly enhance intracranial 
aneurysm detection and localization. The combination of 
quantitative performance gains, robust generalization, and 
interpretable visual outputs underscores the potential of the 
proposed system as a clinical decision-support tool. Future 
research should prioritize larger multi-institutional validation, 
incorporation of physiological and temporal markers, and 
development of advanced explainability mechanisms to further 
facilitate clinical translation and real-world deployment [79, 
80]. 

VII. CONCLUSION 

This study presents a comprehensive hybrid framework that 
integrates radiomics, transformer-based deep learning, and 
contrastive representation learning for automated detection and 
localization of intracranial aneurysms from MR and MRA 
imaging. The experimental results demonstrate that the 
proposed approach effectively captures both high-level 
vascular patterns and fine-grained structural abnormalities, 
achieving strong performance across accuracy, loss 
convergence, and qualitative visualization metrics. By 
leveraging complementary radiomic descriptors and 
hierarchical neural embeddings, the system exhibits robust 
generalization and maintains stable training dynamics even 
under limited annotation availability. The incorporation of 
teacher–student contrastive learning further enhances the 
discriminative power of the feature representations, enabling 
improved localization of aneurysmal structures within complex 
cerebrovascular networks. Although challenges remain, 
including dataset diversity, segmentation dependencies, and the 
need for greater interpretability, the findings highlight the 
significant potential of the proposed method as a clinical 
decision-support tool. With further refinement and validation 
across larger multi-institutional datasets, this framework may 
contribute to earlier and more accurate aneurysm detection, 
reduce diagnostic variability, and ultimately support improved 
patient outcomes in neurovascular care. 
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