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Abstract—Reward-based crowdfunding platform fraud has 

now become a multimodal and temporally dynamic threat, with 

conventional text-only or snapshot-based detection methods 

ineffective at detecting more complex deceptive campaigns. In this 

study, a Temporal Dynamics Aware Multi-Model Fraud Detection 

Framework (TDMM-FDF) that simultaneously models linguistic 

indicators, visual discrepancies, and time behavioral changes is 

proposed. The framework introduces three key innovations: 

1) HM4, a Hidden Method-of-Moments Markov model for 

modeling long-range latent transitions across campaign updates, 

2) Polynomial Expansion Canonical Correlation Analysis 

(PECCA) for quantifying nonlinear semantic discrepancies 

between textual narratives and associated images, and 

3) Frequency-Gated GRU (FG-GRU) which separates recurrent 

activations into low frequency (trend) and high frequency 

(anomaly) components in order to achieve higher sensitivity to 

abrupt fraudulent behaviors. Massive simulations on an actual 

Kickstarter data set prove that the given architecture outperforms 

classical machine learning models, sequence encoders, and 

transformer baselines significantly [96.4% accuracy and good 

calibration (ECE = 0.06) and high ROC-AUC]. The 

supplementary role of all modules is confirmed in ablation studies, 

and their qualitative analyses provide precise semantic-visual 

discrepancies and semantic time anomalies of fraudulent 

campaigns. 
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I. INTRODUCTION 

Over the past years, online crowdfunding sites have 
transformed the world of entrepreneurship and innovation 
funding through a system that helps individuals and startups to 
raise funds through the help of a large group of supporters and 
cuts off the middlemen. In fact, the reward-based crowdfunding 
model has gained popularity; specifically, the Kickstarter 
platform has already assisted in the launch of hundreds of 
thousands of campaigns, with the billions of dollars pledged [1], 
[2]. This liberalization of capital has opened new possibilities to 
both project creators and those who support the projects. 
However, it has also brought great new risks. 

Fraud is one of the gravest threats to crowdfunding 
ecosystems: creators who lie about themselves, who cannot 
deliver on their promises, or otherwise abuse the trust of backers. 
The trend of misleading campaigns based on the use of linguistic 

indicators, insignificant responsibility of creators, and the 
absence of effective control over platforms is increasing. 
Crowdfunding fraud is a betrayal of trust, a risk to the reputation 
of the platform, and compromises the future sustainability of the 
crowdfunding business model [3]. Nevertheless, even being 
significant, the analysis of fraud in this field of crowdfunding is 
at a comparatively young age, particularly in comparison with 
fraud prevention in the banking or credit-card sectors. 

One of the difficulties of identifying crowdfunding fraud is 
time-related factors. Although much of the literature is devoted 
to the fixed characteristics of campaigns (e.g., funding goal, 
number of backers, presence of video), the movement of a 
campaign, how updates are displayed, how the activity of 
backers varies with time, and how communications by creators 
vary with time can provide dense information about legitimacy 
or dishonesty. To give an example, Bernardino et al. in their 
exploratory analyses of crowdfunding dynamics observed that 
backer and updates temporal dynamics may differentiate 
between successful and non-successful campaigns [4]. 
Nevertheless, these time indicators are still mostly unexploited 
in the field of fraud detection studies. According to one of the 
recent systematic reviews [5], the detection of fraud within the 
context of crowdfunding tends to ignore the time and multi-
modality of behavior, concentrating on static snapshot 
characteristics. Multi-modal information is also another 
important dimension. Contemporary crowdfunding efforts 
usually contain text (project description, updates, and 
comments), images and video (media of the product or 
prototype), and time (frequency of updates, funding pattern, 
reactions of backers). Fraudsters can exploit a single modality 
and conceal inconsistencies in another (or both) or may conceal 
discrepancies between modalities or in the timing of 
interactions. Such cross-modal incongruity as a shiny image of 
the product, but slow updates or missing comments by true 
backers can be powerful red flags, but there is little 
incorporation of multiple modalities and time. 

This study introduces a temporal dynamics-aware multi-
modal fraud detection framework, which is explicitly 
implemented in a reward-based crowdfunding platform. It can 
be driven by the fact that there is a growing sophistication in 
terms of deceiving potential followers using multimedia content 
and time behavior by fraudulent campaigns. To overcome these 
difficulties, we design our framework, incorporating time 
modelling, multi-modal feature fusion, and cross-modal 
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consistency validation to have a holistic mechanism of fraud 
detection. Our system is based on the Hidden Method-of-
Moments Markov Model (HM4), the first great component that 
represents sequential dependencies in campaign updates and 
interactions between supporters. HM4 is useful in learning such 
latent behavioral patterns, which differentiate legitimate 
campaigns and those with suspicious or erratic updating 
behavior patterns. This time sensitivity enables the model to 
sense any abnormality in the frequency of postings, 
development of contents and the support of posts over time. 

This study was inspired by the fact that the nature of 
deception on crowdfunding sites has been evolving at a high rate 
since the phishers on the crowdfunding sites have outgrown the 
textual lies into the so-called temporal-multimodal deception. 
Although the current body of literature has devoted much 
attention to the so-called snapshot-characteristics these 
approaches are getting more and more oblivious to the high-tech 
rhythm of the modern fraud. A dishonest designer might be able 
to provide a professional impression, but have a suspicious 
update rate or textual content that does not match visual 
prototype clues. It is in dire need of a framework that not only 
views multiple data types but also comprehends their correlation 
and time dynamics. The optimization of verifying temporal 
behaviors should be coupled with cross-distribution checks, 
whereby platforms can transition to the state of proactive fraud 
resistance and high precision. 

For fusing heterogeneous data modalities, we propose a 
Frequency-Gated Gated Recurrent Unit (FG-GRU) architecture. 
This new form of GRU inserts multi-scale frequency gating to 
primarily highlight meaningful temporal variations. The FG-
GRU takes in three streams of inputs: 1) textual features, which 
have been extracted based on a Hierarchical Pattern Distillation-
based approach on BERT representations to identify semantic 
inconsistencies, 2) visual features, which have been extracted 
based on ICI-based CLAHE and HOG/SIFT to take in image 
manipulation or reuse, and 3) temporal states by the HM4 
model. The combination of those modalities allows the classifier 
to make resilient campaign honesty forecasts. We also use 
Polynomial Expansion Canonical Correlation Analysis 
(PECCA) in cross-modal consistency checking between textual 
and visual modalities. This will guarantee the semantics 
adherence, where the potential discrepancies will be indicated, 
including the presence of overly professional imagery and the 
incoherent or misleading textual explanations. This will make 
PECCA more interpretable and will increase the trust in the 
decision-making process of the model. 

The rest of the study is structured in the following way: 
Section II is the review of the related literature about 
crowdfunding fraud, temporal modelling, and multi-modal 
detection. Section III will provide our methodology, such as data 
preprocessing, feature extraction, model configuration, and 
training strategy. Section IV presents our results, comparison 
with baselines, ablation studies and qualitative case studies. 
Lastly, Section V concludes and identifies the future research 
directions. 

II. RELATED WORK 

Crowdfunding has grown into a mainstream tool of 
financing in its early stages, but the transparency that empowers 

creativity can also prove flaws on the platforms in its ease of 
cheating. Initial studies of crowdfunding-related fraud focused 
their analysis more on fixed characteristics of campaigns, such 
as creator profile features, language indicators, and top-level 
engagement mechanisms, and used classical classifiers. Lee et 
al. have built a labelled Kickstarter corpus and have shown that 
forward stepwise logistic regression using engineered 
campaign/creator/content features can distinguish between 
fraudulent and legitimate campaigns with an accuracy of 87.3%; 
noteworthy, they also observed the vulnerability of snapshot 
features that disregard the dynamics of behaviors over time [1]. 
As previously explained, Perez et al. expanded the field to 
include platforms, modalities, and reported good AUC when 
using text-image features and traditional ML baselines, but not 
with temporal signals in model selection [3]. Qu and Hou wrote 
a corresponding thread about textual self-contradiction in a 
campaign and suggested a dual BERT-mT5 pipeline with 
sentence designs and sentiment classification to achieve 85.26% 
accuracy-text only, but ignoring visual/temporal cues [6]. A 
PRISMA bibliometric study has enhanced the fragmentation in 
the field and identified precisely such gaps as a deficient 
temporal modelling and a deficient multi-modal integration as 
the key obstacles to effective fraud detection in the sites of a 
crowdfunding business [7]. 

Temporal signals are significant candidates of project 
success and, by implication, plausibly informative of fraud 
detection in the event of the patterns being out of place. In each 
of the 2852 projects, the analysis by Solodoha revealed non-
linear effects of frequency of updates: both neglect and over-
updating imply different implications on the results, hence the 
importance of fixed snapshots being blind to important context 
[8]. Though neighboring entrepreneurship literature explores 
uncertainty, hype, and incompleteness of decisions in 
crowdfunding and similar environments, it usually does not go 
beyond this; however, these articles encourage behavioral and 
time-sensitive phenomena (e.g., cadence of updates, latency 
between commitments and posts, dynamics of backer counts) 
that a fraud detector should learn [9]. Together with the 
preceding stream, this stream justifies the requirement of 
sequence-sensitive models as opposed to fixed classifiers. 

Because most of these deceptive campaigns appear through 
professional-looking media so as to conceal suspicious text, 
cross-modal reasoning is paramount. Lin introduced a text-
image fusion image-to-text misinformation model, which is an 
improvement over unimodal baselines and demonstrates that 
joint representations can detect subtle inconsistencies that 
individual modalities would be blind to [10]. This concept is 
refined in a few deep multimodal fake-news experiments that 
have contrastive objectives and optimal transportation to align 
and compare modalities (Shen et al.), or that have contrastive 
learning based on data-augmentation to harden models to 
distribution changes (Hua et al.) [11], [12]. Segura-Bedmar and 
Martinez showed that CNN-based fusion achieved competitive 
accuracy in Fakeddit, which proves the worth of acquired cross-
modal features in comparison with concatenation alone [9]. In 
this area (Nasser et al.; Shen et al.), architectural forms, 
including late versus early fusion, attention-based alignment, 
and consistency scoring, are synthesized and can be directly 
translated to crowdfunding, although benchmarks may vary 
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[13], [14]. The literature confirms that explicit text-image 
correspondence plays a critical role in determining that there is 
a semantic discrepancy in digital content. Mohan et al. suggested 
a synergistic detection model based on TextGCN, Vision 
Transformers to learn intricate inter-modal association [15]. 
Hangloo and Arora proposed a feature fusion model that is 
specifically created to identify multimodal fake news through 
matching between divergent streams of data [16]. Huang et al. 
revealed that the diffusion model could be used to reveal text-
image inconsistencies through visual data reconstruction based 
on textual prompts [17]. In addition, Kumari and Singh proposed 
a multimodal deep learning framework that combines different 
techniques of feature extraction to enhance the accuracy of the 
classification [18]. Fraud cannot easily take a single and fixed 
signature, and much more frequently is manifested in local 
anomalies in more or less plausible regions of behavior. The 
Local Outlier Factor (LOF) has been appealing to high-
throughput systems since it models density-based deviations 
without any heavy parametric restrictions. Adesh et al. explain 
LOF and improved-LOF in the context of HPCC environments 
and focus on additional considerations of scalability and 
practical deployment that are relevant in the context of real-time 
platform defense [19].  

Hybrid pipelines are being more often applied in further 
financial and enterprise terms to stabilize predictions. Cherif et 
al. provided a systematic review of credit card fraud detection 
with disruptive technologies and stressed on the transition to 
integrated deep learning models [20]. Khalid et al. suggested an 
ensemble machine learning methodology which involves using 
a combination of several classifiers to improve the screening of 
fraudulent transactions [21]. Ismail and Haq showed how 
enterprise financial fraud detection can be enhanced by 
addressing the features of engineering and hybrid model 
architecture to process unstructured information [22]. These 
experiments validate the application of unsupervised locality 
scores, e.g., LOF, to scale-down pronounced supervised 
classification confidence. 

In modern fraud detection, signals occur in a sequence, or 
updates, comments, promises, but models must be able to retain 
long-range and short-range dependencies. Other than 
LSTM/GRU surveys, there are two strands that are of particular 
interest. First, GRU, based on architecture or training 
innovations offer more robust sequence encoders at restricted 
data. To learn spatial-temporal dependencies, Liu et al. use 
GRUs in a graph neural network to form GR-GNN and obtain 
reduced error in time-series prediction and how graphical 
inductive bias can stabilize recurrent learning [23]. Another 
article by Liu et al. is devoted to evolutionary optimization of 
GRU hyperparameters, where the authors report steady 
improvement as compared to vanilla GRUs in sequential 
prediction [24]. Second, there are spatial-temporal models of 
GAST (graph attention + temporal forecasting) which show that 
the attention toward changing relational structure enhances 
predictive fidelity when encountering the problem of 
distributional shift [25]. These advances provide information 
that leads us to augment GRU with (and for an NAR) frequency 
gating for separating low-frequency (slow-varying, strategic 
behavior) and high-frequency (abrupt, tactical actions) 

components to better pad both the drift and sudden anomalies at 
the campaign level. 

Irrespective of the improvement, there are several loopholes. 
Multimodal datasets with temporal granularity unique to the 
phenomena of crowdfunding are still rare; much of the existing 
literature brings in the experiences of fake-news or financial 
transactions with alternative labels. Measures that are reported 
are usually based on average accuracy or AUC but do not 
include calibration and early-warning performance, which is 
also fundamental to intervention on the platform. Finally, 
multimodal, temporality explainability is underdeveloped; 
besides the attention maps, techniques that assign cross-modal 
discrepancies to tangible objects would be more helpful in 
moderating workflows. 

III. METHODOLOGY 

The proposed Temporal Dynamics Aware Multi-Modal 
Fraud Detection Framework (TDMM-FDF) combines the text, 
visual, and temporal features to detect fraudulent crowdfunding 
campaigns. The architecture consists of nine steps, namely, data 
collection and preprocessing, feature extraction, temporal 
modelling, cross-modal consistency validation, feature 
selection, classification with FG-GRU, and blockchain 
verification. Fig. 1 depicts the block diagram of a sequential 
workflow in which a preprocessing stage is carried out on the 
text and images obtained in the form of crowdfunding 
campaigns and the features are extracted and aligned, and HM4 
is used to model the temporal patterns. Such multimodal 
representations are merged with each other and maximized and 
then given into the FG-GRU classifier. The final legitimate 
results are recorded in a ledger infrastructure based on 
blockchain to provide integrity and security. 

A. Data Collection and Preprocessing 

The data used in this research was obtained from the 
Kickstarter crowdfunding platform and was heterogeneous in 
multimodal form, that are needed to conduct effective fraud 
analysis. The dataset used is summarized in Table I. In each 
campaign example, there were organized and unstructured 
items, such as the project title, entire narrative descriptions, 
creator profiles, visual media, logs of updates and backer 
comments in a timely manner. The time-sensitive aspect of these 
fields allowed the modelling of both the static correlations, as 
well as dynamic behavioral routes that are usually characteristic 
of a fraudulent campaign. 

Considering the noisiness and informality of user-generated 
Kickstarter contents, an elaborate pretext text processing 
pipeline was used so as to make sure semantic integrated before 
feature extraction. First of all, the extraneous HTML tags, links, 
emojis, and non-standard punctuation were eliminated, and 
lexical distortion was avoided. Any textual information was then 
normalized in two steps: 1) lowercasing all texts to token 
uniformity, and 2) stop word elimination to bury high-frequency 
and low-information words. This normalization can be 
formulated as in Eq. (1): 

𝑇′ = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑇) = 𝐿𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒 (𝑅𝑒𝑚𝑜𝑣𝑒𝑆𝑡𝑜𝑝𝑤𝑜𝑟𝑑𝑠(𝑇)) (1) 
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Fig. 1. Block diagram of the proposed framework. 

TABLE I.  DATASET AND PREPROCESSING SUMMARY 

Attribute Description 

Number of campaigns 28,500 campaigns after preprocessing 

Temporal coverage 2014–2024 Kickstarter data  

Textual components 
Titles, long descriptions, FAQs, updates, 

comments, creator metadata  

Visual components 
Poster images, prototype photos (1–8 per 

campaign) 

Temporal sequences 
Update timelines, backer activity logs, milestone 

timestamps 

OCR-derived features Extracted embedded poster text 

Text preprocessing 
HTML/emoji removal, normalization, 

stemming, NER 

Image preprocessing Median filtering, CLICAHE, OCR 

Output modalities 
Text vectors, image descriptors, temporal latent 

states 

In addition, stemming was used to decrease inflexion forms, 
which minimized the inflexibility of token distribution. NER 
was later used to recognize semantically important entities 
which included organization names, product identifiers, time 
phrases, monetary values, and geopolitical positions. These 
entity-level annotations facilitated the verification of cross-
image-based and time-based signals later on in the framework. 

The image processing pipeline of the campaign was a 
combination of noise removal, texture-textuality-sensitive 

contrast segmentation, and inscribed text recovery to ensure the 
visual data quality brought across the actions of different 
campaigns matched adequately. Firstly, the images were 
morphologically enhanced with the Median Filtering (MF), 
which is a non-linear denoising operator that is efficient in noise 
reduction, especially salt-and-pepper noise, and the edges of the 
images are maintained. The process of filtering is given in the 
form of an equation, as shown in Eq. (2): 

𝐼′(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐼(𝑖, 𝑗) ∣ (𝑖, 𝑗) ∈ 𝑁(𝑥, 𝑦)}           (2) 

Subsequently, image contrast was improved using Contrast-
Limited Image Complexity Adaptive Histogram Equalization 
(CLICAHE), an advanced extension of CLAHE. Unlike 
standard CLAHE, which applies a fixed clip limit, CLICAHE 
dynamically adjusts the clip threshold based on the Image 
Complexity Index (ICI) of each local region. Let 𝐻𝑘 denote the 
histogram of a contextual region 𝑘, and let 𝛼𝑘 [Eq. (3)] be the 
adaptive clip limit: 

𝛼𝑘 = 𝛼0(1 + 𝜆 ⋅ 𝐼𝐶𝐼𝑘)                             (3) 

where, 𝛼0 is the baseline clip limit, 𝜆 controls sensitivity to 
complexity, and 𝐼𝐶𝐼𝑘 is defined as in Eq. (4): 

𝐼𝐶𝐼𝑘 =
1

|𝑅𝑘|
∑ |∇𝐼(𝑥, 𝑦)|(𝑥,𝑦)∈𝑅𝑘

                   (4) 

Lastly, Optical Character Recognition (OCR) was used to 
extract textual clues that were within the poster-type images like 
product specifications, promotional statements, or disclaimers. 
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The OCR text was subsequently cross tabulated with the cleaned 
narrative descriptions to determine the presence of any textual 
variation or exaggerations that were suggestive of some form of 
fraud.  

B. Textual Feature Extraction 

The textual modality was enhanced by the extraction of 
lexical, semantic, and pragmatic cues, which make it possible to 
model linguistic behaviors of deceptive or misleading narratives 
in a comprehensive manner. The lexical indicators consisted of 
part-of-speech (POS) distributions, type-token ratios, and 
vocabulary richness measures, which all measure structural 
characteristics of campaign narratives. The pragmatic features 
have been calculated in order to distinguish between 
professionally written descriptions and suspiciously twisted or 
over-simplified text. Also, sentiment polarity and subjectivity 
scores were calculated to measure the tone of emotion, as 
fraudulent campaigns tend to be based on overstated optimism 
or framing of sentiment. 

To have a deep semantic representation, the study utilized 
the Bidirectional Hierarchical Pattern Distillation Transformer 
(BERT-HPD), an improved transformer architecture, which 
aims to maintain the contextual depth and, at the same time, 
minimize computational costs. The underlying BERT encoder 
uses a contextualizing representation of all the tokens in the text 
by learning bi-directional dependencies between the text. 
Mathematically, given a sequence of input tokens ( 𝑤1,𝑤2
, … , 𝑤𝑛), BERT will compute a contextual representation vector 
ℎ𝑖 [Eq. (5)] at every token position: 

ℎ𝑖 = 𝐵𝐸𝑅𝑇(𝑤1,𝑤2 , … , 𝑤𝑛)                      (5) 

As much as standard BERT offers high-quality semantic 
features, when operational on a large scale, its implementation 
can be expensive in terms of computation requirement to large 
multimodal pipelines. To solve this, a masked generation 
architecture (HPD) mechanism was incorporated that enabled 
the transfer of hierarchical linguistic knowledge of a high-
capacity teacher BERT to a smaller student model. This 
distillation has a guarantee that significant 
syntactic/semantic/discourse-level structure is still present in the 

reduced representation. ℎ𝑙
(𝑡𝑒𝑎𝑐ℎ𝑒𝑟)

 and ℎ𝑙
(𝑠𝑡𝑢𝑑𝑒𝑛𝑡)

 will 
represent the hidden states of layer 𝑙 of the teacher and student 
models, respectively. The objective of the HPD is to reduce the 
difference between representations on a layer basis and to be 
able to faithfully recreate linguistic hierarchical patterns. The 
loss during the distillation is determined as in the Eq. (6): 

ℒ𝐻𝑃𝐷 = ∑ ‖ℎ𝑙
(𝑡𝑒𝑎𝑐ℎ𝑒𝑟) − ℎ𝑙

(𝑠𝑡𝑢𝑑𝑒𝑛𝑡)‖
2

2𝐿
𝑙=1           (6) 

The student model implements multi levels of linguistic 
abstraction, including local syntactic interactions as well as 
global semantic dependencies, without initially having the 
computational costs of the entire BERT architecture, by 
applying this constraint. The process does not only minimize the 
overfitting potential that would have occurred when, in the text 
training, it is important to train on text that has strong stylistic 
variations like crowdfunding campaigns but also retains fine-
grained deception signals such as semantic inconsistencies, 
over-general content, and unnatural emphasis patterns. 

Consequently, BERT-HPD offers a high-capacity and effective 
basis of downstream multimodal fraud detection. 

C. Temporal Dynamics Modelling 

To model the temporal evolution of campaign behavior, this 
work employs the HM4, an advanced variant of the traditional 
HMM. HM4 is designed to capture long-range dependencies 
and structural dynamics in sequential update patterns that often 
characterize legitimate and fraudulent crowdfunding projects. 
Let the hidden state space be defined as, 𝑆 = {𝑠1 ,𝑠2 , … , 𝑠𝑘}, 
where each latent state corresponds to an underlying behavioural 
regime such as consistent updates, erratic communication, 
sudden activity surges, or prolonged inactivity. Similarly, the 
observable sequence is represented as, 𝑂 = {𝑜1 ,𝑜2 , … , 𝑜𝑇} , 
derived from timestamped campaign updates, linguistic tone 
shifts, and engagement metrics. 

The classical HMMs have the transition matrix 𝐴, emission 
matrix 𝐵, and initial state distribution 𝜋, which are estimated by 
the Baum-Welch algorithm, which is an Expectation-
Maximization (EM) implementation. Despite its popularity, 
Baum-Welch is iterative in nature and tends to become trapped 
in bad local minima especially when dealing with noisy or high-
variability behavioral data like crowdfunding updates. This is 
the restriction that renders standard HMMs inadequate in 
detecting fraud cases when the underlying behavioral patterns 
are not close to stationary or smooth tracks. 

To overcome these issues, HM4 is introduced to replace EM-
based optimization with a global statistical moment-matching 
model, which allows analytical recovery of model parameters. 
The point is that when properly designed, low-order observable 
moments capture enough information concerning the dynamics 
of latent states. The first-order moment of observations meets 
the Eq. (7). Similarly, second-order cross-moments between 
adjacent observations capture transition structure: 

𝐸|𝑂𝑡 | = ∑ 𝜋𝑖𝜇𝑖,          𝐸|𝑂𝑡 𝑂𝑡+1| =𝑘
𝑖=1 𝜋𝑖𝐴𝑖𝑗𝜇𝑖𝜇𝑗

𝑇        (7) 

These moment equations constitute a web of algebraic 
equations. HM4 computes transmission and emission 
parameters without the need to find the transition matrix A or q 
in an iterative improvement HM4 computes the initial state 
distribution p, the emission parameters B and the overall 
transition matrix A by means of spectral decomposition or by 
means of the tensor’s factorization directly. This does away with 
local minima vulnerability and offers a globally compatible 
forecast of the temporal dynamics. 

D. Image Feature Extraction 

After contrast enhancement and denoising, each processed 
image was then run through a detailed feature extraction pipeline 
that aimed to extract a set of complementary image features with 
respect to fraud detection. Images used in crowdfunding 
campaigns frequently include minor anomalies, including 
recycled or stock images, artificially-enhanced prototypes, or 
artificial visuals of products, that cannot be readily found by raw 
pixel inspection. To resolve this, a collection of well-defined 
handcrafted descriptors was used and each of them provided a 
different approach to texture, structure, and information in the 
key point level. 
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Local Binary Patterns (LBP) were first calculated to describe 
the patterns of micro-textures of the surface of the image. LBP 
represents local spatial difference by thresholding intensity of 
neighborhoods around each pixel thus producing rotation-
invariant descriptors, which are very sensitive to material 
textures and surface consistency. This is especially concerning 
when trying to determine the inconsistencies on the surfaces of 
products or when trying to detect image patches which are 
artificial and are very common in fake campaigns. Then, Gray 
Level Co-occurrence Matrix (GLCM) characteristics were 
computed to measure the existence of higher-order spatial 
relations. GLCM is the intensity correlation of pairs of values at 
a set of offsets, and it can measure the contrast, homogeneity, 
entropy, and correlation. These characteristics give an 
understanding of structural coherence and can identify 
abnormalities like inappropriate lighting patterns, inappropriate 
shading, or a background that has been made up, which would 
suggest tampered or non-original images. 

Histogram of Oriented Gradients (HOG) descriptors were 
applied to obtain geometric information. The distribution of 
gradient orientations is coded in HOG and the edges and 
contours and object boundaries can be represented in detail. This 
assists in revealing unnatural formation of edges or silhouettes 
that are overly smooth that can indicate image manipulation or 
utilization of unrealistic prototype images. The Scale-Invariant 
Feature Transform (SIFT) algorithm was also used to find strong 
key points and calculate local descriptions that are feature scale, 
rotation and illumination independent. SIFT is specifically good 
at recognizing recurring regions in images or recognizing the 
presence of an image borrowed by external, publicly accessible 
stock libraries. The resulting image-feature representation is an 
ensemble of all the descriptors obtained [Eq. (8)]: 

𝐹𝑖𝑚𝑔 = [𝐿𝐵𝑃,𝐺𝐿𝐶𝑀, 𝐻𝑂𝐺, 𝑆𝐼𝐹𝑇]                 (8) 

E. Cross-Modal Consistency Check 

The suggested framework includes the cross-modal 
consistency analysis mechanism, as PECCA, to be sure that 
textual and visual modalities are mutually consistent in terms of 
evidence. This module assesses the semantic consistency 
between campaign images and textual descriptions, which are 
essential in fraud detection since misleading campaigns tend to 
exhibit images that do not match with the textual description to 
give the illusion of being credible. Canonical Correlation 
Analysis (CCA) provides the classical foundation for Multiview 
alignment by learning linear projections of text features 𝑋and 
image features 𝑌 such that the correlation between their 
projected representations is maximized.  

The architecture uses PECCA, which is a nonlinear 
extension of CCA that develops each modality by feature 
expansion via polynomials. These extended representations 
enable PECCA to represent the higher-order dependencies 
among modalities, which in effect capture subtle nonlinear 
dependencies, e.g., stylistic inconsistencies or unrealistic image-
text co-occurrence or semantic discrepancies between the 
claimed product functionality and the visual representation. 
After its expansion, PECCA uses standard CCA on transformed 
feature spaces ∅(𝑋) and ∅(𝑌), therefore integrating the analysis 
of nonlinear correlations and omitting deep learning-based 
fusion networks. 

F. Feature Selection 

After extracting text-based, image-based, and temporal 
features, the three modalities were concatenated [Eq. (9)] to 
form a unified multimodal representation. Whereby each 
element holds complementary data: the semantics of language 
and cues of deception in the text, structural and surface-level 
data in the images, and behavior patterns in the dynamics of 
time. This fused representation, despite being very expressive, 
generally falls into a high-dimensional feature space. This 
dimensionality may bring about redundancy, higher 
computational cost, and even diminished model generalization 
because of irrelevant or noisy attributes. Metaheuristic strategy 
of feature selection, which relies on the optimization of the grey 
wolf (GWO), was used to solve these problems. 

𝐹 = [𝐹𝑡𝑒𝑥𝑡, 𝐹𝑖𝑚𝑔 , 𝐹𝑡𝑒𝑚𝑝]                              (9) 

GWO is a bio-inspired optimization method which imitates 
the hierarchical leadership and hunter-cooperative behavior of 
the grey wolves. This hierarchy places the three most fit wolves 
in the form of 𝛼, 𝛽, and 𝛿. They are the candidate solutions that 
are most fit in the feature space, and direct the search means the 
feature space. The rest of the wolves, the 𝜔 wolves, refresh their 
locations in accordance with such three leaders, and in this way, 
we have a balance in exploration and exploitation in the 
optimization. A fitness function based on classification accuracy 
was used to assess the quality of an individual candidate feature 
subset. In particular, a lightweight classifier was trained on a 
validation split based on the selected subset of features only, and 
the accuracy obtained was used as the fitness score. 

G. Fraud Detection Model (FG-GRU) 

The last prediction step performed by the proposed 
framework uses a Frequency-Gated Gated Recurrent Unit (FG-
GRU), a recurrent network architecture specific to both gradual 
and rapid behavioral change, as well as sudden, high-intensity 
change that often indicates a fraudulent campaign. Compared to 
the classical GRU, which interacts dependency with time using 
its update and reset gates, the FG-GRU proves this operation, 
dividing the dynamics of the hidden state into low-frequency 
and high-frequency components and is able to significantly 
differentiate two long-term behavioral patterns and discrete 
upsurges. The base GRU computes its hidden state ℎ𝑡 at time 
step 𝑡 using the gated recurrence formulation [Eq. (10)]. 

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ tanh (𝑊𝑥𝑡 + 𝑟𝑡 ⊙ 𝑈ℎ𝑡−1) (10) 

To better distinguish between smooth behavioral 
progressions and sharp deviations, the FG-GRU introduces a 
frequency decomposition stage. The hidden state ℎ𝑡 is passed 
through two filtering operators 𝐹low(⋅), which extracts low-
frequency (slow-varying) temporal components, and 𝐹high(⋅), 

which extracts high-frequency (rapid-change) components. To 
integrate both frequency bands, FG-GRU introduces two 
learnable gating functions, 𝑔𝐿𝐹 and 𝑔𝐻𝐹, which determine how 
much each component contributes to the final blended 
representation [Eq. (11)]. 

ℎ𝑡
𝐹𝐺 = 𝑔𝐿𝐹 ⊙ ℎ𝑡

𝐿𝐹 + 𝑔𝐻𝐹 ⊙ ℎ𝑡
𝐻𝐹                    (11) 

To increase the reliability of the decisions, the FG-GRU 
output is assessed based on Local Outlier Factor (LOF). LOF 
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measures the isolation of a particular instance against the local 
neighborhood of such an instance in the latent representation 
space. Campaigns with multimodal temporal signatures that are 
significantly different than normal behavioral clusters are 
assigned lower density scores, and thus the prediction ambiguity 
is minimized, and more effectively distinguish between 
legitimate and fraudulent activities. 

H. Blockchain Execution Layer 

The framework uses a blockchain-based execution layer to 
make sure that the results of detecting the fraud are stored in a 
way that is tamper-resistant and auditable. This section reserves 
the results of the classification engine, namely, the campaign 
name, fraud rating, and final decision tag, into a decentralized 
registry. Using blockchain to anchor these findings will create 
an unalterable and transparent history of all the fraud evaluations 
conducted, which will instill greater confidence in the 
administrators of these platforms, campaign creators and 
sponsors. 

A blockchain transaction 𝑇𝑥𝑖 is created with each campaign 
𝐶𝑖  that has been taken through the multimodal evaluation 
pipeline. This is a transaction that includes key metadata, such 
as campaign ID, an output of the metadata, the fraud score 𝑆𝑖, or 
classification, and the time of evaluation 𝑡𝑖. The content of the 
transaction is encrypted with the help of a cryptographic hash, 
𝐻(∙), the implementation of which makes it impossible to make 
any changes to the stored information. 

After it has been created, every transaction is added to the 
shared blockchain list stored by numerous nodes. The 
decentralization of the ledger makes it so that no one can 
manipulate or overwrite the outcome of a fraud assessment, and 
in the highly stakes setting of a crowdfunding site, where a 
challenge to the legitimacy of a campaign can emerge, it is of 
utmost importance. Additionally, the append-only 
cryptographically secured ledger does offer a verifiable audit 
trace that can be consumed either to conduct compliance audits, 
to resolve disputes, or to provide a long-term audit of campaign 
behavior. 

IV. RESULTS AND ANALYSIS 

A. Simulation Setup 

The study was performed on a real-life dataset that was 
gathered on Kickstarter, which is one of the biggest reward-
based crowdfunding platforms. The structure of the dataset 
consists of campaign descriptions, project titles, visual media, 
creator metadata, update logs, timestamps, and funding progress 
indicators. Fraud labels have been generated using cases of 
scams reported publicly, campaigns identified as suspicious by 
the platform, and those reported by the community as fraudulent. 
To avoid the effect of temporal leakage, an inherent problem in 
sequential or time-dependent data where information in a future 
sample somehow affects the model’s knowledge of historical 
behavior, the data has been stratified on a chronological basis. 
This guarantees that the time sequence of the campaign events 
is maintained during training and assessment. Namely, the first 
70 per cent of campaigns were designated to the training set, 
which enabled the model to learn the patterns based on the 
historical data exclusively. The mid-period time frame entailed 
the subsequent 15% of campaigns, which made up the validation 

set and was utilized to tune hyperparameters and refine models. 
The last 15 percent of campaigns were used as the test set, which 
allowed the fair assessment of the model to generalize to new, 
unobservable campaigns that emerge in the future. Table II lists 
the most important hyperparameters for each component: HM4, 
PECCA, feature extractor modules, and the FG-GRU classifier. 

TABLE II.  MODEL HYPERPARAMETERS 

Module Parameter Value / Description 

HM4 

(Temporal 

Model) 

Hidden States (K) 6 

Moment Order 

Used 
Up to 3rd-order cross-moments 

Transition 

Estimation 
Algebraic MoM solver 

Emission Model 
Gaussian Mixture (3 

components) 

Textual 

Encoder 

(BERT-HPD) 

Max Seq Length 256 tokens 

Teacher Model BERT-base (110M parameters) 

Student Model 8-layer distilled variant 

Distillation Loss 
Layer-wise MSE + KL 

divergence 

Image 

Processing 

MF Kernel Size 5×5 

CLICAHE Tiles 8×8 blocks 

Clip-Limit Adaptive (0.5–3.0) 

Image 

Feature 

Extraction 

LBP Radius 1 

GLCM Angles {0°, 45°, 90°, 135°} 

HOG Cells 8×8 

SIFT Keypoints Up to 500 per image 

PECCA 

(Cross-

Modal) 

Polynomial Order 3 

Latent Dim (CCA 

Space) 
120 

Correlation 

Threshold 
0.55 

FG-GRU 

Classifier 

GRU Units 256 

Frequency Filters Low (0–2 Hz), High (2–20 Hz) 

Batch Size 32 

Optimizer AdamW 

Learning Rate 1.00E-04 

Epochs 50 

B. Performance Comparison 

To rigorously assess the efficiency of the developed 
multimodal fraud detector, the performance of the framework 
was compared to a collection of more popular baseline models, 
including classical ML methods, such as SVM and RF, and DL 
models, such as LSTM, GRU, and fine-tuned BERT. There were 
the same baselines train on the same experimental conditions, 
with the same chronologically stratified splits, and with the same 
normalized feature representations, in order to have an unbiased 
and fair comparison. 

The outcomes of the performance, which are provided in 
Table III, indicate a steady and significant percentage of 
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improvement provided by the proposed model in all significant 
evaluation indicators. Conventional baselines like SVM and RF 
are also somewhat effective, but they fail to deal with the high 
temporal, visual, linguistic, and disparate nature of fraudulent 
crowdfunding activities. The sequential models, including 
LSTM and GRU, exhibit significant improvements since they 
can learn temporal dependencies; nevertheless, they cannot 

work well in the situation when cross-modal contradictions or 
irregularities in the behavioral pattern are present. The 
performance of Fine-tuned BERT is as good as it should be, 
especially regarding its contextual semantic knowledge, but it is 
restricted by its lack of inter-modal footing and explicitly 
modelled time view. 

TABLE III.  PERFORMANCE COMPARISON WITH BASELINE METHODS 

Model Accuracy Precision Recall F1-Score ROC-AUC ECE 

SVM 82.40% 79.50% 74.20% 76.70% 0.84 0.19 

Random Forest 86.10% 83.80% 81.20% 82.50% 0.88 0.15 

LSTM 88.70% 86.50% 84.10% 85.30% 0.9 0.13 

GRU 90.30% 88.10% 85.60% 86.80% 0.92 0.12 

BERT (Fine-tuned) 92.80% 91.20% 89.60% 90.40% 0.95 0.11 

Proposed HM⁴ + PECCA + FG-GRU 96.40% 95.10% 94.20% 94.60% 0.982 0.06 

 

The developed HM4 + PECCA + FG-GRU fusion 
architecture is obviously more superior. The system learns a 
much more diverse range of behavioral and semantic cues by 
combining HM4 with its strong ability to estimate temporal 
states, PECCA with its ability to model nonlinearly across cross-
modal features, and frequency-aware sequential modelling, 
which is provided by FG-GRU. This leads to particularly high 
increases in Recall, a vital measure on fraud detection, and 
missing a fraudulent campaign is risky. The fact that the ROC-
AUC score is very close to 0.98 is also a testimony to the high 
discriminatory power of the model in ranking suspicious 
campaigns over legitimate ones, suggesting that there is reliable 
discriminatory power even in difficult borderline cases. The 
other important benefit is the fact that the Expected Calibration 
Error (ECE) is reduced drastically between 0.11 with fine-tuned 
BERT and 0.06 in the offered system. This enhancement also 
indicates more credible confidence estimates, so that forecasts 
of fraud are closer to the likely outcomes, a necessary quality of 
real-world decision-making systems employed by 
crowdfunding platforms. 

The proposed system has an ROC curve (Fig. 2) that shows 
a steep and very steep climb up to the upper-left corner, 
indicating that it has a high capacity to differentiate between 
fraudulent and legitimate campaigns at different decision 
thresholds. The model with a ROC-AUC of 0.982 has a 
significantly high discrimination capacity in comparison to all 
the baseline methods. This implies that, with the combination of 
time, text, and visual cues, the classifier is able to make accurate 
and correct ranking decisions even in borderline cases. 

The Precision-Recall (PR) curve (Fig. 3) also proves the 
strength of the model to deal with the inherent class imbalance 
in fraud detection tasks. The suggested framework ensures that 
its precision exceeds 0.90 throughout a broad range of recall, 
which proves that the framework is capable of detecting 
fraudulent campaigns in an effective manner without the use of 
many false positives. This is especially crucial in real-life 
environments where a high rate of false alarms would destroy 
credibility and augment the operational load of investigation 
teams. The model proposed is highly precise at above 0.90 recall 

level, which can be explained by the fact that PECCA and FG-
GRU complement each other with nonlinear multimodal 
alignment and frequency-conscious temporal modeling, 
respectively. These mechanisms taken jointly can provide a 
more detailed insight into campaign behavior and the system 
would hold true even in challenging conditions. 

 
Fig. 2. ROC curve of the proposed fraud detection model. 

 
Fig. 3. Precision–Recall (PR) curve of the proposed fraud detection model. 
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As in Table IV, the confusion matrix obtained after testing 
the set shows that the proposed model possesses significantly 
low misclassification rates. Among all valid campaigns, 41 were 
falsely reported as fraudulent and the number of false negatives 
was only 23, which is significantly less than the baseline models. 
This enhancement underscores the usefulness of incorporating 
temporal state transitions of HM4 and multimodal contradiction 
detection of PECCA, which helps the system to identify subtle 
behavioural abnormalities that most simple models fail to detect. 

Moreover, in the calibration curve (Fig. 4), it can be seen that 
there is a strong agreement between the predicted probability of 
fraud and the actual outcome frequency. It means that the model 
is effective in classification, as well as yielding credible 
confidence estimates. These predictability-aware predictions 
prove important at work with fraud-monitors, where the 
tolerance to operational risk or policy-specific to platform alert 
thresholds can be changed dynamically. 

TABLE IV.  CONFUSION MATRIX 

 Predicted 

Legitimate 
Predicted Fraudulent 

Actual Legitimate 1035 41 

Actual Fraudulent 23 412 

 
Fig. 4. Calibration curve of the proposed fraud detection 

C. Computational Cost Analysis 

To analyze three important aspects of computation, the 
runtime benchmarked three main aspects of computation, 
including training time per epoch, inference latency per sample, 
and memory usage on the GPU. The suggested model has 
greater computational overhead than the baseline GRU and fine-
tuned BERT models, as illustrated in Table V. It has a 13.8 
seconds per epoch training time and a 16.7ms per sample 
inference latency that indicates the extra processing added by 
multimodal feature integration, temporal moment modelling and 
frequency-gated recurrence. There is also the increment in GPU 
memory requirement to 7.9 GB due to the extended architecture 
and poly expansion modules. 

A standard penciling of the blockchain integration in real-
time detection systems is possible prohibitive latency, resource 
overhead. But in the TDMM-FDF architecture, the blockchain 
layer does not work as a processing module, but as an integrity-
assurance layer, which is asynchronously running with the FG-
GRU classifier. The system deters fraud scores ( 𝑆𝑖 ) and 

metadata of campaigns by embedding them in a decentralized 
register, avoiding the so-called log-tampering that is a 
recognized vulnerability in a centralized platform management. 
We did a comparison of our blockchain-powered ledger and a 
regular centralized SQL-based logging system to determine that 
the integration is feasible. The findings, which are summarized 
in Table V, show that although the blockchain layer does add a 
slight increase in latency (22.4ms), the security advantages, 
namely, immutability and auditability by multiple parties, are 
essential to high-stakes governance of crowdfunding. 

TABLE V.  COMPUTATION COST ANALYSIS 

Model 
Training Time 

(per epoch) 

Inference 

Latency (per 

sample) 

GPU/System 

Memory 

BERT (Fine-

tuned) 
11.2 s 14.3ms 6.5 GB 

GRU (Vanilla) 4.3 s 5.1ms 2.1 GB 

Proposed 

TDMM-FDF 
13.8 s 16.7ms 7.9 GB 

Blockchain 

Module 

N/A 

(Asynchronous) 

+22.4ms 

(Latency) 

Negligible 

(CPU-bound) 

Total Integrated 

System 
13.8 s 39.1ms 

7.9 GB + 

Storage 

The computational trade-off would be fair even in the light 
of the extra costs because the gains in detection accuracy, recall, 
calibration reliability and ranking performance are significant. 
The enhanced predictive robustness and cross-modal 
interpretability of the suggested system offset the resource 
consumption increase in safety-critical settings, like fraud 
detection, where the outcomes of the failure to notice a 
fraudulent campaign can vary greatly in terms of financial and 
reputational implications. 

D. Comparative Analysis of Feature Selection Methods 

The choice to use the Grey Wolf Optimization (GWO) in the 
feature selection stage was due to the fact that it has a better 
balance of exploration and exploitation over the traditional 
metaheuristics. In high-dimensional multimodal spaces, such as 
that created by concatenating text, image and time features, 
approaches such as Genetic Algorithms (GA) are usually 
susceptible to premature convergence, whereas Particle Swarm 
Optimization (PSO) might get lost in local optima when 
optimizing non-convex fitness landscapes, as is the case with 
fraud detection data. In order to empirically defend this 
selection, a comparison was carried out with the use of a 
Kickstarter validation set. We compared GWO to GA, PSO and 
a standard L1-based (Lasso) selection. As the results, 
summarized in Table VI, indicate, GWO was able to find a 
smaller feature subset and a higher classification rate, which 
confirms its effectiveness in eliminating redundancy, and no 
important cues on deception were lost. 

The GWO strategy achieved the largest reduction ratio 
(82.9) and the best fitness score (96.4), which was effective in 
recovering the curse of dimensionality, which is present in our 
28,500 campaign data. This effectiveness is owed to alpha, beta, 
and delta leadership structure, which guides the search process 
towards the most informative region of the feature space faster 
as compared to the stochastic ones. 
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TABLE VI.  COMPARATIVE ANALYSIS OF FEATURE SELECTION METHODS 

Selection 

Method 

Feature 

Reduction 

Ratio 

Fitness 

(Acc) 

Convergence 

(Iter) 

Stability 

(Std 

Dev) 

L1-

Regularization 
62.40% 91.80% N/A (Linear) ±0.05 

Genetic 

Algorithm (GA) 
74.10% 93.50% 85 ±0.12 

Particle Swarm 

(PSO) 
78.50% 94.20% 62 ±0.09 

Proposed GWO 82.90% 96.40% 48 ±0.04 

E. Ablation Study 

The ablation study (Table VII) clearly demonstrates the 
contribution to the overall system performance of each of the 
components of the proposed architecture. The complete model 
scores the highest in all measures, proving the complementary 
advantages of the HM4, PECCA, BHPD-enhanced semantics, 
and the FG-GRU. The removal of the BHPD semantic 
distillation layer leads to a perceptible reduction in performance, 
which can be explained by the fact that the system would be less 
capable of detecting subtle linguistic information that is 
associated with campaign lie stories. The state-of-the-art HM4 
leads to some of the greatest decreases in ROC-AUC and F1-
Score, which shows that modeling the temporal state is 
important. The system cannot detect drift in behavioral patterns 
over time in the absence of HM4, and this increases the FNR. 
The removal of PECCA also harms the performance, especially 
the precision, because the model will be less effective in 
detecting the discrepancies between textual assertions and visual 
pieces of information. 

TABLE VII.  ABLATION STUDY RESULTS 

Model Variant Accuracy 
F1-

Score 

ROC-

AUC 
Observation 

Full Model 

(HM4 + PECCA 

+ FG-GRU) 

96.40% 94.60% 0.982 Best performance 

Without BHPD 

(raw BERT) 
94.10% 92.30% 0.964 

Loss in semantic 

quality and 

deception cues 

Without HM4 92.80% 90.70% 0.951 

Temporal drift 

ignored; higher 

false negatives 

Without PECCA 93.40% 91.10% 0.944 
Missed text–image 

contradictions 

Without FG-

Gating (vanilla 

GRU) 

91.90% 89.40% 0.935 

Short-term spikes 

and long-term  

drifts poorly 

separated 

Likewise, by substituting FG-GRU with regular GRU, the 
characteristics of the system to differentiate between the trends 
in long-term behavioral changes and unexpected anomalies 
decrease. This causes a poor depiction of irregularities in time, 
which in most cases are reflective of fraudulent activity. In 
general, the ablation findings indicate that all the components, 
that is, HM4, PECCA, BHPD, and FG-Gating, play a distinct 
and significant role in the robustness of the model, with HM4 
leading the way toward Recall improvement, PECCA Precision 
improvement, and FG-GRU stabilization of the temporal 
dynamics through frequency-aware decomposition. 

F. Discussion and Interpretations 

The experimental outcomes show that the TDMM-FDF 
model is highly effective in overcoming the shortcomings of the 
traditional, one-dimensional models, because it can reflect the 
multifaceted, dynamic character of contemporary crowdfunding 
deception. The high and comparable performance of the 
proposed model compared to the baselines, such as BERT and 
vanilla GRU, indicates that fraud is not a linguistic or behavioral 
indicator but an emerged value of the cross-modal 
inconsistencies over time. As an example, the high Recall (94.2) 
indicates that the frequency-aware gates in FG-GRU are 
especially skillful to find out the so-called strategic fraud, in 
which a generator may fabricate a semblance of legitimacy by 
using slow-varying trends at the expense of sudden anomalies in 
updates or interaction in order to deceive supporters. 

Moreover, the capability of the PECCA module to highlight 
discrepancies between the project narratives and visual 
prototypes is a response to a serious weakness wherein, in this 
case, the scammers rely on the use of professional-grade 
imagery to conceal poor or plagiarized textual descriptions. In 
addition to the spectral nature of the transitions of latent states 
expected of an HM4, this cross-modal correspondence gives the 
HM4 a type of interpretability that DL models that are black 
boxes frequently lack. The framework provides platform 
moderators with practical information about a certain behavioral 
change and semantic-visual contradictions instead of binary 
labels. 

Practically, such multi-dimensional assessments are resistant 
to tampering and auditable, as the integration of a blockchain-
based execution layer would provide. This openness is essential 
to ensuring long-term confidence in automated moderation 
systems, as it leaves a history of evaluation that cannot be 
changed, that shields both honest creators and prospective 
supporters against arbitrary decisions by platforms. Finally, the 
computational overhead trade-off is compensated by a massive 
decrease in Expected Calibration Error (ECE) that is converted 
to more accurate and confident fraud forecasting in high-stakes 
financial settings. 

V. CONCLUSION 

This study has provided a detailed Temporal Dynamics 
Aware Multi-Modal Fraud Detection Framework (TDMM-
FDF), which has been developed to work in a reward-based 
crowdfunding system wherein fraudulent actions are exhibited 
with intricate interplay of linguistic indicators, visual anomalies 
and temporal aberrations. The combination of the proposed 
HM4 spectral-temporal model, Polynomial Expansion 
Canonical Correlation Analysis (PECCA), and the Frequency-
Gated GRU (FG-GRU) classifier allows the framework to show 
a strong capability to identify deceptive campaigns that 
unimodal or snapshot-based classifiers would otherwise not 
identify. The experimental findings prove the existence of a 
unique, complementary role of each of the modules to enhance 
the predictive ability of the system. HM4 is a reliable indicator 
of latent behavioral regimes and temporal drift patterns that have 
a strong predictive potential of manipulative activity. PECCA 
offers a logical system of bringing to light semantic and stylistic 
contradictions between the narrative and the images in the 
campaign- one of the most commonly misused features of 
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advanced scammers. Likewise, the frequency-aware 
decomposition of FG-GRU allows the model to be able to 
distinguish between slow-moving behavioral cues and abrupt 
anomalies, thus being able to model both strategy-level 
deception and bursts of manipulative behaviors in updates or 
engagement.  

In addition to model performance, the incorporation of a 
blockchain-based execution layer implies that it provides fraud 
assessment logs with secure storage, tamper resilience, and 
auditability, therefore, facilitating platform governance and 
long-term trust in automated decision systems. Although 
predictive accuracy and multi-modes integration of the 
framework is very high, there are a number of limitations that 
need to be recognized. First, the existing TDMO-FDF 
framework uses a database that is mostly based on Kickstarter. 
Although this gives a huge sample of 28,500 campaigns, the 
results cannot be completely extrapolated to equity-based or 
donation-based platforms where fraud indicators and backer 
activity patterns are not that similar. Second, the PECCA is an 
effective approach to learn the nonlinear discrepancy but it does 
so by choosing a polynomial order, which might need manual 
adjustment to other platform architectures. Future research must 
enhance capable early-warning identification in most lingering 
campaigns, project explainability to multi-modal time thought, 
and device self-trained pre-training on supernumerary lofty 
unlabelled crowdfunding datasets. Further extensions can also 
add video partitioning, pioneered hop of creator histories, and 
proactive learning processions of real-world moderation. 
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