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Abstract—Reward-based crowdfunding platform fraud has
now become a multimodal and temporally dynamic threat, with
conventional text-only or snapshot-based detection methods
ineffective at detecting more complex deceptive campaigns. In this
study, a Temporal Dynamics Aware Multi-Model Fraud Detection
Framework (TDMM-FDF) that simultaneously models linguistic
indicators, visual discrepancies, and time behavioral changes is
proposed. The framework introduces three key innovations:
1) HM4, a Hidden Method-of-Moments Markov model for
modeling long-range latent transitions across campaign updates,
2) Polynomial Expansion Canonical Correlation Analysis
(PECCA) for quantifying nonlinear semantic discrepancies
between textual narratives and associated images, and
3) Frequency-Gated GRU (FG-GRU) which separates recurrent
activations into low frequency (trend) and high frequency
(anomaly) components in order to achieve higher sensitivity to
abrupt fraudulent behaviors. Massive simulations on an actual
Kickstarter data set prove that the given architecture outperforms
classical machine learning models, sequence encoders, and
transformer baselines significantly [96.4% accuracy and good
calibration (ECE = 0.06) and high ROC-AUC]. The
supplementary role of all modules is confirmed in ablation studies,
and their qualitative analyses provide precise semantic-visual
discrepancies and semantic time anomalies of fraudulent
campaigns.

Keywords—Crowdfunding fraud detection;  multimodal
learning; temporal behavior modeling; cross-modal consistency
analysis; blockchain-based verification

I INTRODUCTION

Over the past years, online crowdfunding sites have
transformed the world of entrepreneurship and innovation
funding through a system that helps individuals and startups to
raise funds through the help of a large group of supporters and
cuts off the middlemen. In fact, the reward-based crowdfunding
model has gained popularity; specifically, the Kickstarter
platform has already assisted in the launch of hundreds of
thousands of campaigns, with the billions of dollars pledged [1],
[2]. This liberalization of capital has opened new possibilities to
both project creators and those who support the projects.
However, it has also brought great new risks.

Fraud is one of the gravest threats to crowdfunding
ecosystems: creators who lie about themselves, who cannot
deliver ontheir promises, or otherwise abuse the trustof backers.
The trend of misleading campaignsbased on the use of linguistic

indicators, insignificant responsibility of creators, and the
absence of effective control over platforms is increasing.
Crowdfunding fraud is a betrayal of trust, a risk to the reputation
of'the platform,and compromises the future sustainability of the
crowdfunding business model [3]. Nevertheless, even being
significant, the analysis of fraud in this field of crowdfunding is
at a comparatively young age, particularly in comparison with
fraud prevention in the banking or credit-card sectors.

One of the difficulties of identifying crowdfunding fraud is
time-related factors. Although much of the literature is devoted
to the fixed characteristics of campaigns (e.g., funding goal,
number of backers, presence of video), the movement of a
campaign, how updates are displayed, how the activity of
backers varies with time, and how communications by creators
vary with time can provide dense information about legitimacy
or dishonesty. To give an example, Bernardino et al. in their
exploratory analyses of crowdfunding dynamics observed that
backer and updates temporal dynamics may differentiate
between successful and non-successful campaigns [4].
Nevertheless, these time indicators are still mostly unexploited
in the field of fraud detection studies. According to one of the
recentsystematic reviews [ 5], the detection of fraud within the
context of crowdfunding tends to ignore the time and multi-
modality of behavior, concentrating on static snapshot
characteristics. Multi-modal information is also another
important dimension. Contemporary crowdfunding efforts
usually contain text (project description, updates, and
comments), images and video (media of the product or
prototype), and time (frequency of updates, funding pattern,
reactions of backers). Fraudsters can exploit a single modality
and conceal inconsistencies in another (or both) or may conceal
discrepancies between modalities or in the timing of
interactions. Such cross-modal incongruity as a shiny image of
the product, but slow updates or missing comments by true
backers can be powerful red flags, but there is little
incorporation of multiple modalities and time.

This study introduces a temporal dynamics-aware multi-
modal fraud detection framework, which is explicitly
implemented in a reward-based crowdfunding platform. It can
be driven by the fact that there is a growing sophistication in
terms of deceiving potential followers using multimedia content
and time behavior by fraudulent campaigns. To overcome these
difficulties, we design our framework, incorporating time
modelling, multi-modal feature fusion, and cross-modal
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consistency validation to have a holistic mechanism of fraud
detection. Our system is based on the Hidden Method-of-
Moments Markov Model (HM4), the first great component that
represents sequential dependencies in campaign updates and
interactions between supporters. HM4 is useful in learning such
latent behavioral patterns, which differentiate legitimate
campaigns and those with suspicious or erratic updating
behavior patterns. This time sensitivity enables the model to
sense any abnormality in the frequency of postings,
developmentof contents and the support of posts over time.

This study was inspired by the fact that the nature of
deceptionon crowdfundingsites has beenevolvingat a high rate
since the phishers on the crowdfunding sites have outgrown the
textual lies into the so-called temporal-multimodal deception.
Although the current body of literature has devoted much
attention to the so-called snapshot-characteristics these
approaches are gettingmore and more oblivious to the high-tech
rhythm ofthe modern fraud. A dishonest designer might be able
to provide a professional impression, but have a suspicious
update rate or textual content that does not match visual
prototype clues. It is in dire need of a framework that not only
views multiple data types but also comprehends their correlation
and time dynamics. The optimization of verifying temporal
behaviors should be coupled with cross-distribution checks,
whereby platforms can transition to the state of proactive fraud
resistance and high precision.

For fusing heterogeneous data modalities, we propose a
Frequency-Gated Gated Recurrent Unit (FG-GRU) architecture.
This new form of GRU inserts multi-scale frequency gating to
primarily highlight meaningful temporal variations. The FG-
GRU takes in three streams of inputs: 1) textual features, which
havebeenextracted based on a Hierarchical Pattern Distillation-
based approach on BERT representations to identify semantic
inconsistencies, 2) visual features, which have been extracted
based on ICI-based CLAHE and HOG/SIFT to take in image
manipulation or reuse, and 3) temporal states by the HM4
model. The combination of those modalities allows the classifier
to make resilient campaign honesty forecasts. We also use
Polynomial Expansion Canonical Correlation Analysis
(PECCA) in cross-modal consistency checking between textual
and visual modalities. This will guarantee the semantics
adherence, where the potential discrepancies will be indicated,
including the presence of overly professional imagery and the
incoherent or misleading textual explanations. This will make
PECCA more interpretable and will increase the trust in the
decision-making process of the model.

The rest of the study is structured in the following way:
Section I is the review of the related literature about
crowdfunding fraud, temporal modelling, and multi-modal
detection. SectionIll will provide our methodology, suchas data
preprocessing, feature extraction, model configuration, and
training strategy. Section IV presents our results, comparison
with baselines, ablation studies and qualitative case studies.
Lastly, Section V concludes and identifies the future research
directions.

II. RELATED WORK

Crowdfunding has grown into a mainstream tool of
financing in its early stages, but the transparency that empowers
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creativity can also prove flaws on the platforms in its ease of
cheating. Initial studies of crowdfunding-related fraud focused
their analysis more on fixed characteristics of campaigns, such
as creator profile features, language indicators, and top-level
engagement mechanisms, and used classical classifiers. Lee et
al. have built a labelled Kickstarter corpus and have shown that
forward stepwise logistic regression using engineered
campaign/creator/content features can distinguish between
fraudulent andlegitimate campaigns with an accuracy 0f87.3%;
noteworthy, they also observed the vulnerability of snapshot
features that disregard the dynamics of behaviors over time [1].
As previously explained, Perez et al. expanded the field to
include platforms, modalities, and reported good AUC when
using text-image features and traditional ML baselines, but not
with temporal signals in model selection [3 ]. Qu and Hou wrote
a corresponding thread about textual self-contradiction in a
campaign and suggested a dual BERT-mT5 pipeline with
sentence designs and sentiment classificationto achieve 85.26%
accuracy-text only, but ignoring visual/temporal cues [6]. A
PRISMA bibliometric study has enhanced the fragmentation in
the field and identified precisely such gaps as a deficient
temporal modellingand a deficient multi-modal integration as
the key obstacles to effective fraud detection in the sites of a
crowdfunding business [7].

Temporal signals are significant candidates of project
success and, by implication, plausibly informative of fraud
detection in the event of the patterns being out of place. In each
of the 2852 projects, the analysis by Solodoha revealed non-
linear effects of frequency of updates: both neglect and over-
updating imply different implications on the results, hence the
importance of fixed snapshots being blind to important context
[8]. Though neighboring entrepreneurship literature explores
uncertainty, hype, and incompleteness of decisions in
crowdfunding and similar environments, it usually does not go
beyond this; however, these articles encourage behavioral and
time-sensitive phenomena (e.g., cadence of updates, latency
between commitments and posts, dynamics of backer counts)
that a fraud detector should learn [9]. Together with the
preceding stream, this stream justifies the requirement of
sequence-sensitive models as opposed to fixed classifiers.

Because most of these deceptive campaigns appear through
professional-looking media so as to conceal suspicious text,
cross-modal reasoning is paramount. Lin introduced a text-
image fusion image-to-text misinformation model, which is an
improvement over unimodal baselines and demonstrates that
joint representations can detect subtle inconsistencies that
individual modalities would be blind to [10]. This concept is
refined in a few deep multimodal fake-news experiments that
have contrastive objectives and optimal transportation to align
and compare modalities (Shen et al.), or that have contrastive
learning based on data-augmentation to harden models to
distribution changes (Hua etal.)[11],[12]. Segura-Bedmar and
Martinez showed that CNN-based fusion achieved competitive
accuracy in Fakeddit, which proves the worth of acquired cross-
modal features in comparison with concatenation alone [9]. In
this area (Nasser et al.; Shen et al.), architectural forms,
including late versus early fusion, attention-based alignment,
and consistency scoring, are synthesized and can be directly
translated to crowdfunding, although benchmarks may vary
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[13], [14]. The literature confirms that explicit text-image
correspondence plays a critical role in determining that there is
asemanticdiscrepancy in digital content. Mohan et al. suggested
a synergistic detection model based on TextGCN, Vision
Transformers to learn intricate inter-modal association [15].
Hangloo and Arora proposed a feature fusion model that is
specifically created to identify multimodal fake news through
matching between divergent streams of data [16]. Huanget al.
revealed that the diffusion model could be used to reveal text-
image inconsistencies through visual data reconstruction based
on textual prompts [ 17]. In addition, Kumariand Singh proposed
a multimodal deep learning framework that combines different
techniques of feature extraction to enhance the accuracy of the
classification [ 18]. Fraud cannot easily take a single and fixed
signature, and much more frequently is manifested in local
anomalies in more or less plausible regions of behavior. The
Local Outlier Factor (LOF) has been appealing to high-
throughput systems since it models density-based deviations
withoutany heavy parametric restrictions. Adesh et al. explain
LOF and improved-LOF in the context of HPCC environments
and focus on additional considerations of scalability and
practical deploymentthat arerelevant in the context of real-time
platform defense [19].

Hybrid pipelines are being more often applied in further
financial and enterprise terms to stabilize predictions. Cherif et
al. provided a systematic review of credit card fraud detection
with disruptive technologies and stressed on the transition to
integrated deep learning models [20]. Khalid et al. suggested an
ensemble machine learning methodology which involves using
a combination of several classifiers to improve the screening of
fraudulent transactions [21]. Ismail and Haq showed how
enterprise financial fraud detection can be enhanced by
addressing the features of engineering and hybrid model
architecture to process unstructured information [22]. These
experiments validate the application of unsupervised locality
scores, e.g., LOF, to scale-down pronounced supervised
classification confidence.

In modern fraud detection, signals occur in a sequence, or
updates, comments, promises, but models mustbe able to retain
long-range and short-range dependencies. Other than
LSTM/GRU surveys, there are two strands that are of particular
interest. First, GRU, based on architecture or training
innovations offer more robust sequence encoders at restricted
data. To learn spatial-temporal dependencies, Liu et al. use
GRUs in a graph neural network to form GR-GNN and obtain
reduced error in time-series prediction and how graphical
inductive bias can stabilize recurrent learning [23]. Another
article by Liu etal. is devoted to evolutionary optimization of
GRU hyperparameters, where the authors report steady
improvement as compared to vanilla GRUs in sequential
prediction [24]. Second, there are spatial-temporal models of
GAST (graph attention + temporal forecasting) which show that
the attention toward changing relational structure enhances
predictive fidelity when encountering the problem of
distributional shift [25]. These advances provide information
that leads us to augment GRU with (and for an NAR) frequency
gating for separating low-frequency (slow-varying, strategic
behavior) and high-frequency (abrupt, tactical actions)

Vol. 16, No. 12, 2025

components to better pad both the drift and sudden anomalies at
the campaign level.

Irrespective of the improvement, there are several loopholes.
Multimodal datasets with temporal granularity unique to the
phenomena of crowdfunding are still rare; much of the existing
literature brings in the experiences of fake-news or financial
transactions with alternative labels. Measures that are re ported
are usually based on average accuracy or AUC but do not
include calibration and early-warning performance, which is
also fundamental to intervention on the platform. Finally,
multimodal, temporality explainability is underdeveloped;
besides the attention maps, techniques that assign cross-modal
discrepancies to tangible objects would be more helpful in
moderating workflows.

III. METHODOLOGY

The proposed Temporal Dynamics Aware Multi-Modal
Fraud Detection Framework (TDMM-FDF) combines the text,
visual, and temporal features to detect fraudulent crowdfunding
campaigns. The architecture consists of nine steps, namely, data
collection and preprocessing, feature extraction, temporal
modelling, cross-modal consistency validation, feature
selection, classification with FG-GRU, and blockchain
verification. Fig. 1 depicts the block diagram of a sequential
workflow in which a preprocessing stage is carried out on the
text and images obtained in the form of crowdfunding
campaigns and the features are extracted and aligned, and HM4
is used to model the temporal patterns. Such multimodal
representations are merged with each other and maximized and
then given into the FG-GRU classifier. The final legitimate
results are recorded in a ledger infrastructure based on
blockchain to provide integrity and security.

A. Data Collection and Preprocessing

The data used in this research was obtained from the
Kickstarter crowdfunding platform and was heterogeneous in
multimodal form, that are needed to conduct effective fraud
analysis. The dataset used is summarized in Table I. In each
campaign example, there were organized and unstructured
items, such as the project title, entire narrative descriptions,
creator profiles, visual media, logs of updates and backer
comments in a timely manner. The time-sensitive aspect ofthese
fields allowed the modelling of both the static correlations, as
well as dynamic behavioral routes that are usually characteristic
of a fraudulent campaign.

Considering the noisiness and informality of user-generated
Kickstarter contents, an elaborate pretext text processing
pipeline was used so as to make sure semantic integrated before
feature extraction. First of all, the extraneous HTML tags, links,
emojis, and non-standard punctuation were eliminated, and
lexical distortion was avoided. Any textual information was then
normalized in two steps: 1) lowercasing all texts to token
uniformity,and 2 ) stop word elimination to bury high-frequency
and low-information words. This normalization can be
formulated as in Eq. (1):

T' = Normalize(T) = Lowercase (RemoveStopwords(T)) (1)
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Fig. 1. Block diagram of the proposed framework.

TABLEI. DATASET AND PREPROCESSING SUMMARY
Attribute Description
Number of campaigns | 28,500 campaigns after preprocessing
Temporal coverage 2014-2024 Kickstarter data

Titles, long descriptions, FAQs,
comments, creator metadata

Poster images, prototype photos (1-8 per
campaign)

Update timelines, backeractivity logs, milestone
timestamps

dat
Textual components updates,

Visual components

Temporal sequences

OCR-derived features Extracted embedded poster text

HTML/emoji
stemming, NER

Median filtering, CLICAHE, OCR

removal, normalization,

Text preprocessing

Image preprocessing

Text vectors, image descriptors, temporal latent

Output modalities
states

In addition, stemming was used to decrease inflexion forms,
which minimized the inflexibility of token distribution. NER
was later used to recognize semantically important entities
which included organization names, product identifiers, time
phrases, monetary values, and geopolitical positions. These
entity-level annotations facilitated the verification of cross-
image-based and time-based signals later on in the framework.

The image processing pipeline of the campaign was a
combination of noise removal, texture-textuality-sensitive

contrast segmentation, and inscribed textrecovery to ensure the
visual data quality brought across the actions of different
campaigns matched adequately. Firstly, the images were
morphologically enhanced with the Median Filtering (MF),
which is a non-linear denoising operator that is efficient in noise
reduction, especially salt-and-pepper noise, and the edges of the
images are maintained. The process of filtering is given in the
form of an equation, as shown in Eq. (2):

I'(x,y) = median{I(i,)) | (i,j) € N(x,y)} )

Subsequently, image contrast was improved using Contrast-
Limited Image Complexity Adaptive Histogram Equalization
(CLICAHE), an advanced extension of CLAHE. Unlike
standard CLAHE, which applies a fixed clip limit, CLICAHE
dynamically adjusts the clip threshold based on the Image
Complexity Index (ICI) of each local region. Let H;, denote the
histogram of a contextual region k, and let a;, [Eq. (3)] be the
adaptive clip limit:

where, a is the baseline clip limit, A controls sensitivity to
complexity, and ICI, is defined as in Eq. (4):

1
[C = 7 Byyer, | VI () Q)

Lastly, Optical Character Recognition (OCR) was used to
extract textual clues that were within the poster-typeimageslike
product specifications, promotional statements, or disclaimers.
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The OCR text was subsequently crosstabulated with the cleaned
narrative descriptions to determine the presence of any textual
variation or exaggerations that were suggestive of some form of
fraud.

B. Textual Feature Extraction

The textual modality was enhanced by the extraction of
lexical, semantic, and pragmatic cues, which make it possible to
model linguistic behaviors of deceptive or misleading narratives
in a comprehensive manner. The lexical indicators consisted of
part-of-speech (POS) distributions, type-token ratios, and
vocabulary richness measures, which all measure structural
characteristics of campaign narratives. The pragmatic features
have been calculated in order to distinguish between
professionally written descriptions and suspiciously twisted or
over-simplified text. Also, sentiment polarity and subjectivity
scores were calculated to measure the tone of emotion, as
fraudulent campaigns tend to be based on overstated optimism
or framing of sentiment.

To have a deep semantic representation, the study utilized
the Bidirectional Hierarchical Pattern Distillation Transformer
(BERT-HPD), an improved transformer architecture, which
aims to maintain the contextual depth and, at the same time,
minimize computational costs. The underlying BERT encoder
uses a contextualizing representation of all the tokens in the text
by learning bi-directional dependencies between the text.
Mathematically, given a sequence of input tokens ( w;,w,
, ., Wy), BERT will compute a contextual representation vector
h; [Eq. (5)] at every token position:

h; = BERT(wy,w,, ..., W) %)

As much as standard BERT offers high-quality semantic
features, when operational on a large scale, its implementation
can be expensive in terms of computation requirement to large
multimodal pipelines. To solve this, a masked generation
architecture (HPD) mechanism was incorporated that enabled
the transfer of hierarchical linguistic knowledge of a high-
capacity teacher BERT to a smaller student model. This
distillation has a guarantee  that  significant
syntactic/semantic/discourse-level structure is still present in the
reduced representation. h, (%" and ™M™ il
represent the hidden states of layer [ of the teacher and student
models, respectively. The objective of the HPD is to reduce the
difference between representations on a layer basis and to be
able to faithfully recreate linguistic hierarchical patterns. The
loss during the distillation is determined as in the Eq. (6):

LHPD — Zleluhl(teacher) _ hl(student)”z (6)

The student model implements multi levels of linguistic
abstraction, including local syntactic interactions as well as
global semantic dependencies, without initially having the
computational costs of the entire BERT architecture, by
applyingthis constraint. The process does not only minimize the
overfitting potential that would have occurred when, in the text
training, it is important to train on text that has strong stylistic
variations like crowdfunding campaigns but also retains fine-
grained deception signals such as semantic inconsistencies,
over-general content, and unnatural emphasis patterns.
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Consequently, BERT-HPD offers a high-capacity and effective
basis of downstream multimodal fraud detection.

C. Temporal Dynamics Modelling

To model the temporal evolution of campaign behavior, this
work employs the HM4, an advanced variant of the traditional
HMM. HM4 is designed to capture long-range dependencies
and structural dynamics in sequential update patterns that often
characterize legitimate and fraudulent crowdfunding projects.
Let the hidden state space be defined as, S = {s;,S,, ..., S},
where each latentstate correspondsto an underlying behavioural
regime such as consistent updates, erratic communication,
sudden activity surges, or prolonged inactivity. Similarly, the
observable sequence is represented as, O = {0,,0,, ...,07} ,
derived from timestamped campaign updates, linguistic tone
shifts, and engagement metrics.

The classical HMMs have the transition matrix A, emission
matrix B, and initial state distribution 7z, which are estimated by
the Baum-Welch algorithm, which is an Expectation-
Maximization (EM) implementation. Despite its popularity,
Baum-Welch s iterative in nature and tends to become trapped
in bad local minima especially when dealing with noisy or high-
variability behavioral data like crowdfunding updates. This is
the restriction that renders standard HMMs inadequate in
detecting fraud cases when the underlying behavioral patterns
are not close to stationary or smooth tracks.

To overcome theseissues, HM4 is introduced to replace EM-
based optimization with a global statistical moment-matching
model, which allows analytical recovery of model parameters.
The point is that when properly designed, low-order observable
moments capture enough information concerning the dynamics
of latent states. The first-order moment of observations meets
the Eq. (7). Similarly, second-order cross-moments between
adjacent observations capture transition structure:

E|O/| = XK mp;, E|0Opiq| =mAjjmp]  (7)

These moment equations constitute a web of algebraic
equations. HM4 computes transmission and emission
parameters without the need to find the transition matrix A or q
in an iterative improvement HM4 computes the initial state
distribution p, the emission parameters B and the overall
transition matrix A by means of spectral decomposition or by
means of the tensor’s factorization directly. This does away with
local minima vulnerability and offers a globally compatible
forecast of the temporal dynamics.

D. Image Feature Extraction

After contrast enhancement and denoising, each processed
image was then run through a detailed feature extraction pipeline
thataimed to extracta set of complementary image features with
respect to fraud detection. Images used in crowdfunding
campaigns frequently include minor anomalies, including
recycled or stock images, artificially-enhanced prototypes, or
artificial visuals of products, thatcannot be readily found by raw
pixel inspection. To resolve this, a collection of well-defined
handcrafted descriptors was used and each of them provided a
different approach to texture, structure, and information in the
key point level.

353 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Local Binary Patterns (LBP) were firstcalculated to describe
the patterns of micro-textures of the surface of the image. LBP
represents local spatial difference by thresholding intensity of
neighborhoods around each pixel thus producing rotation-
invariant descriptors, which are very sensitive to material
textures and surface consistency. This is especially concerning
when trying to determine the inconsistencies on the surfaces of
products or when trying to detect image patches which are
artificial and are very common in fake campaigns. Then, Gray
Level Co-occurrence Matrix (GLCM) characteristics were
computed to measure the existence of higher-order spatial
relations. GLCM is the intensity correlation of pairs of values at
a set of offsets, and it can measure the contrast, homogeneity,
entropy, and correlation. These characteristics give an
understanding of structural coherence and can identify
abnormalities like inappropriate lighting patterns, inappropriate
shading, or a background that has been made up, which would
suggest tampered or non-original images.

Histogram of Oriented Gradients (HOG) descriptors were
applied to obtain geometric information. The distribution of
gradient orientations is coded in HOG and the edges and
contours andobject boundaries canbe represented in detail. This
assists in revealing unnatural formation of edges or silhouettes
that are overly smooth thatcan indicate image manipulation or
utilization of unrealistic prototype images. The Scale-Invariant
Feature Transform (SIFT) algorithm was alsoused to find strong
key points and calculate local descriptions thatare feature scale,
rotation and illumination independent. SIFT is specifically good
at recognizing recurring regions in images or recognizing the
presence of an image borrowed by external, publicly accessible
stock libraries. The resulting image-feature representation is an
ensemble of all the descriptors obtained [Eq. (8)]:

Fyng = [LBP,GLCM, HOG, SIFT] ®)

E. Cross-Modal Consistency Check

The suggested framework includes the cross-modal
consistency analysis mechanism, as PECCA, to be sure that
textual and visual modalities are mutually consistent in terms of
evidence. This module assesses the semantic consistency
between campaign images and textual descriptions, which are
essential in fraud detection since misleading campaigns tend to
exhibit images that do not match with the textual description to
give the illusion of being credible. Canonical Correlation
Analysis (CCA) provides the classical foundation for Multiview
alignment by learning linear projections of text features Xand
image features Y such that the correlation between their
projected representations is maximized.

The architecture uses PECCA, which is a nonlinear
extension of CCA that develops each modality by feature
expansion via polynomials. These extended representations
enable PECCA to represent the higher-order dependencies
among modalities, which in effect capture subtle nonlinear
dependencies, e.g., stylistic inconsistencies or unrealistic image-
text co-occurrence or semantic discrepancies between the
claimed product functionality and the visual representation.
After its expansion, PECCA uses standard CCA on transformed
feature spaces @ (X) and @ (Y), therefore integratingthe analysis
of nonlinear correlations and omitting deep learning-based
fusion networks.
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F. Feature Selection

After extracting text-based, image-based, and temporal
features, the three modalities were concatenated [Eq. (9)] to
form a unified multimodal representation. Whereby each
element holds complementary data: the semantics of language
and cues of deception in the text, structural and surface-level
data in the images, and behavior patterns in the dynamics of
time. This fused representation, despite being very expressive,
generally falls into a high-dimensional feature space. This
dimensionality may bring about redundancy, higher
computational cost,and even diminished model generalization
because of irrelevant or noisy attributes. Metaheuristic strategy
of feature selection, which relies on the optimization ofthe grey
wolf (GWO), was used to solve these problems.

F= [Ftext' Fimg'Ftemp] (9)

GWO is a bio-inspired optimization method which imitates
the hierarchical leadership and hunter-cooperative behavior of
the grey wolves. This hierarchy places the three most fit wolves
in the form of @, 8, and §. They are the candidate solutions that
are most fit in the feature space, and direct the search means the
feature space. The restofthe wolves, the w wolves, refresh their
locations in accordance with such three leaders, and in this way,
we have a balance in exploration and exploitation in the
optimization. A fitness functionbased on classification accuracy
was used to assess the quality of an individual candidate feature
subset. In particular, a lightweight classifier was trained on a
validationsplitbased on theselected subset of features only, and
the accuracy obtained was used as the fitness score.

G. Fraud Detection Model (FG-GRU)

The last prediction step performed by the proposed
framework uses a Frequency-Gated Gated Recurrent Unit (FG-
GRU), a recurrent network architecture specific to both gradual
and rapid behavioral change, as well as sudden, high-intensity
change that often indicates a fraudulent campaign. Compared to
the classical GRU, which interacts dependency with time using
its update and reset gates, the FG-GRU proves this operation,
dividing the dynamics of the hidden state into low-frequency
and high-frequency components and is able to significantly
differentiate two long-term behavioral patterns and discrete
upsurges. The base GRU computes its hidden state h, at time
step t using the gated recurrence formulation [Eq. (10)].

hi=z,Ohi 1+ (1 —2z) Otanh Wx; +1, ©Uh;_,) (10)

To better distinguish between smooth behavioral
progressions and sharp deviations, the FG-GRU introduces a
frequency decomposition stage. The hidden state h, is passed
through two filtering operators F,,, (-), which extracts low-
frequency (slow-varying) temporal components, and Fg, (+),
which extracts high-frequency (rapid-change) components. To
integrate both frequency bands, FG-GRU introduces two
learnable gating functions, g, » and g, which determine how
much each component contributes to the final blended
representation [Eq. (11)].

hi® = g.r O h¢" + gur O RYF (11)

To increase the reliability of the decisions, the FG-GRU
output is assessed based on Local Outlier Factor (LOF). LOF

354 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

measures the isolation of a particular instance against the local
neighborhood of such an instance in the latent representation
space. Campaigns with multimodal temporal signatures that are
significantly different than normal behavioral clusters are
assigned lower density scores, and thus the prediction ambiguity
is minimized, and more effectively distinguish between
legitimate and fraudulent activities.

H. Blockchain Execution Layer

The framework uses a blockchain-based execution layer to
make sure that the results of detecting the fraud are storedin a
way that is tamper-resistant and auditable. This section reserves
the results of the classification engine, namely, the campaign
name, fraud rating, and final decision tag, into a decentralized
registry. Using blockchain to anchor these findings will create
anunalterable and transparent history ofallthe fraud evaluations
conducted, which will instill greater confidence in the
administrators of these platforms, campaign creators and
sponsors.

A blockchain transaction Tx; is created with each campaign
C; that has been taken through the multimodal evaluation
pipeline. This is a transaction that includes key metadata, such
as campaign ID, an output of the metadata, the fraud score S;, or
classification, and the time of evaluation t;. The content of the
transaction is encrypted with the help of a cryptographic hash,
H ("), the implementation of which makes it impossible to make
any changes to the stored information.

After it has been created, every transaction is added to the
shared blockchain list stored by numerous nodes. The
decentralization of the ledger makes it so that no one can
manipulate or overwrite the outcome ofa fraud assessment, and
in the highly stakes setting of a crowdfunding site, where a
challenge to the legitimacy of a campaign can emerge, it is of
utmost importance. Additionally, the append-only
cryptographically secured ledger does offer a verifiable audit
trace that can be consumed either to conduct compliance audits,
to resolve disputes, or to provide a long-term audit of campaign
behavior.

IV. RESULTS AND ANALYSIS

A. Simulation Setup

The study was performed on a real-life dataset that was
gathered on Kickstarter, which is one of the biggest reward-
based crowdfunding platforms. The structure of the dataset
consists of campaign descriptions, project titles, visual media,
creator metadata, update logs, timestamps, and funding progress
indicators. Fraud labels have been generated using cases of
scams reported publicly, campaigns identified as suspicious by
the platform, andthose reported by the community as fraudulent.
To avoid the effect of temporal leakage, an inherent problem in
sequential or time-dependent data where information in a future
sample somehow affects the model’s knowledge of historical
behavior, the data has been stratified on a chronological basis.
This guarantees thatthe time sequence of the campaign events
is maintained during training and assessment. Namely, the first
70 per cent of campaigns were designated to the training set,
which enabled the model to learn the pattermns based on the
historical data exclusively. The mid-period time frame entailed
the subsequent 15% of campaigns, which madeup the validation

Vol. 16, No. 12, 2025

set and was utilized to tune hyperparameters and refine models.
Thelast 15 percent of campaigns were used as thetest set, which
allowed the fair assessment of the model to generalize to new,
unobservable campaigns that emerge in the future. Table II lists
the most important hyperparameters for each component: HM4,
PECCA, feature extractor modules, and the FG-GRU classifier.

TABLE II. MODEL HYPERPARAMETERS
Module Parameter Value / Description
Hidden States (K) 6
HM4 ll\j[s(:élem Order Up to 3rd-order cross-moments
(Temporal Transition
Model) Estimation Algebraic MoM solver
Emission Model Gaussian Mixture (3
components)
Max Seq Length 256 tokens
Textual Teacher Model BERT-base (110M parameters)
Encoder . .
(BERT-HPD) Student Model 8-layer distilled variant
Distillation Loss Layer-wise MSE + KL
divergence
MF Kernel Size 5x5
Image CLICAHE Tiles 8x8 blocks
Processing
Clip-Limit Adaptive (0.5-3.0)
LBP Radius 1
Image GLCM Angles {0°, 45°,90°, 135°}
Feature
Extraction HOG Cells 8x8
SIFT Keypoints Up to 500 per image
Polynomial Order 3
PECCA Latent Dim (CCA
(Cross- Space) 120
Modal) -
Correlation 055
Threshold )
GRU Units 256
Frequency Filters Low (0-2 Hz), High (2-20 Hz)
FG-GRU Batch Size 32
Classifier Optimizer AdamW
Learning Rate 1.00E-04
Epochs 50

B. Performance Comparison

To rigorously assess the efficiency of the developed
multimodal fraud detector, the performance of the framework
was compared to a collection of more popular baseline models,
including classical ML methods, suchas SVM and RF, and DL
models,suchas LSTM, GRU, and fine-tuned BERT. There were
the same baselines train on the same experimental conditions,
with the same chronologically stratified splits, and withthe same
normalized feature representations, in order to have an unbiased
and fair comparison.

The outcomes of the performance, which are provided in
Table III, indicate a steady and significant percentage of
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improvement provided by the proposed model in all significant
evaluation indicators. Conventional baselines like SVM and RF
are also somewhat effective, but they fail to deal with the high
temporal, visual, linguistic, and disparate nature of fraudulent
crowdfunding activities. The sequential models, including
LSTM and GRU, exhibit significant improvements since they
can learn temporal dependencies; nevertheless, they cannot
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work well in the situation when cross-modal contradictions or
irregularities in the behavioral pattern are present. The
performance of Fine-tuned BERT is as good as it should be,
especially regarding its contextual semantic knowledge, but it is
restricted by its lack of inter-modal footing and explicitly
modelled time view.

TABLEIII.  PERFORMANCE COMPARISON WITH BASELINE METHODS
Model Accuracy Precision Recall F1-Score ROC-AUC ECE
SVM 82.40% 79.50% 74.20% 76.70% 0.84 0.19
Random Forest 86.10% 83.80% 81.20% 82.50% 0.88 0.15
LSTM 88.70% 86.50% 84.10% 85.30% 0.9 0.13
GRU 90.30% 88.10% 85.60% 86.80% 0.92 0.12
BERT (Fine-tuned) 92.80% 91.20% 89.60% 90.40% 0.95 0.11
Proposed HM* + PECCA + FG-GRU 96.40% 95.10% 94.20% 94.60% 0.982 0.06

The developed HM4 + PECCA + FG-GRU fusion
architecture is obviously more superior. The system learns a
much more diverse range of behavioral and semantic cues by
combining HM4 with its strong ability to estimate temporal
states, PECCA with its ability to modelnonlinearly across cross-
modal features, and frequency-aware sequential modelling,
which is provided by FG-GRU. This leads to particularly high
increases in Recall, a vital measure on fraud detection, and
missing a fraudulent campaign is risky. The fact thatthe ROC-
AUC scoreis very close to 0.98 is also a testimony to the high
discriminatory power of the model in ranking suspicious
campaigns over legitimate ones, suggesting that there is reliable
discriminatory power even in difficult borderline cases. The
other important benefit is the fact that the Expected Calibration
Error (ECE) is reduced drastically between 0.1 1 with fine-tuned
BERT and 0.06 in the offered system. This enhancement also
indicates more credible confidence estimates, so that forecasts
of fraud are closer to the likely outcomes, a necessary quality of
real-world  decision-making systems employed by
crowdfunding platforms.

The proposed system has an ROC curve (Fig. 2) that shows
a steep and very steep climb up to the upper-left comner,
indicating that it has a high capacity to differentiate between
fraudulent and legitimate campaigns at different decision
thresholds. The model with a ROC-AUC of 0.982 has a
significantly high discrimination capacity in comparison to all
the baseline methods. This implies that, with the combination of
time, text, and visual cues, the classifier is able to make accurate
and correct ranking decisions even in borderline cases.

The Precision-Recall (PR) curve (Fig. 3) also proves the
strength of the model to deal with the inherent class imbalance
in fraud detection tasks. The suggested framework ensures that
its precision exceeds 0.90 throughout a broad range of recall,
which proves that the framework is capable of detecting
fraudulent campaigns in an effective manner without the use of
many false positives. This is especially crucial in real-life
environments where a high rate of false alarms would destroy
credibility and augment the operational load of investigation
teams. The modelproposedis highly precise atabove 0.90 recall

level, which can be explained by the factthat PECCA and FG-
GRU complement each other with nonlinear multimodal
alignment and frequency-conscious temporal modeling,
respectively. These mechanisms taken jointly can provide a
more detailed insight into campaign behavior and the system
would hold true even in challenging conditions.
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<]
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True Positive Rate

= Proposed (HM4+PECCA+FG-GRU} (AUC = 0.982)

0.2 —— BERT (Fine-tuned) (AUC = 0.950)
. GRU (AUC = 0.920)
e LSTM (AUC = 0.900)
e m Random Forest (AUC = 0.880)
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0.0 0.2 0.4 0.6 08 1.0
False Positive Rate
Fig.2. ROC curve of the proposed fraud detection model.
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Fig.3. Precision—Recall (PR) curve of the proposed fraud detection model.
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As in Table IV, the confusion matrix obtained after testing
the set shows that the proposed model possesses significantly
lowmisclassification rates. Amongall valid campaigns, 4 1 were
falsely reported as fraudulent and the number of false negatives
wasonly 23, whichis significantly less thanthe baseline models.
This enhancement underscores the usefulness of incorporating
temporal state transitions of HM4 and multimodal contradiction
detection of PECCA, which helps the system to identify subtle
behavioural abnormalities that most simple models fail to detect.

Moreover,in the calibration curve (Fig. 4),it can be seenthat
there is a strong agreement between the predicted probability of
fraud and the actual outcome frequency. It means that the model
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metadata of campaigns by embedding them in a decentralized
register, avoiding the so-called log-tampering that is a
recognized vulnerability in a centralized platform management.
We did a comparison of our blockchain-powered ledger and a
regular centralized SQL-based logging systemto determine that
the integration is feasible. The findings, which are summarized
in Table V, show that although the blockchain layer does add a
slight increase in latency (22.4ms), the security advantages,
namely, immutability and auditability by multiple parties, are
essential to high-stakes governance of crowdfunding.

TABLE V. COMPUTATION COST ANALYSIS

is effective in classification, as well as yielding credible Training Time Inference GPU/System
confidence estimates. These predictability-aware predictions Model (per epoch) Last:r;fglger Memory
prove important at work with fraud-monitors, where the BERT _ (Fine-
tolerance to operational risk or policy-specific to platformalert tuned) 1125 14.3ms 6.5 GB
thresholds can be changed dynamically. GRU (Vanilla) | 43 s s lms 2 1GB
Proposed
TABLEIV.  CONFUSION MATRIX
TDMM_EDF 1385 16.7ms 7.9 GB
Predicted . Blockchain N/A +22.4ms Negligible
Legitimate Predicted Fraudulent Module (Asynchronous) (Latency) (CPU-bound)
Actual Legitimate | 1035 41 Total Integrated | ;o 39.1ms 79 GB  +
System Storage
Actual Fraudulent 23 412 . . . .
The computational trade-off would be fair even in the light
1.0 of the extra costs because the gains in detection accuracy, recall,
calibration reliability and ranking performance are significant.
08 The enhanced predictive robustness and cross-modal
interpretability of the suggested system offset the resource
2o " consumption increase in safety-critical settings, like fraud
3 4\@“@\\ detection, where the outcomes of the failure to notice a
& N << fraudulent campaign can vary greatly in terms of financial and
E ’ reputational implications.
Perfectly
02 b D. Comparative Analysis of Feature Selection Methods
The choice to use the Grey Wolf Optimization (GWO) in the
0.0 feature selection stage was due to the fact that it has a better
0.0 0.2 04 0.6 08 10

Predicted Probability

Fig. 4. Calibration curve of the proposed fraud detection

C. Computational Cost Analysis

To analyze three important aspects of computation, the
runtime benchmarked three main aspects of computation,
including training time per epoch, inference latency per sample,
and memory usage on the GPU. The suggested model has
greater computational overhead than the baseline GRU and fine-
tuned BERT models, as illustrated in Table V. It hasa 13.8
seconds per epoch training time and a 16.7ms per sample
inference latency that indicates the extra processing added by
multimodal feature integration, temporalmoment modellingand
frequency-gated recurrence. There is also the increment in GPU
memory requirement to 7.9 GB due to the extended architecture
and poly expansion modules.

A standard penciling of the blockchain integration in real-
time detection systems is possible prohibitive latency, resource
overhead. But in the TDMM-FDF architecture, the blockchain
layer does notwork as a processing module, but as an integrity-
assurance layer, which is asynchronously running with the FG-
GRU classifier. The system deters fraud scores ( S;) and

balance of exploration and exploitation over the traditional
metaheuristics. In high-dimensional multimodal spaces, such as
that created by concatenating text, image and time features,
approaches such as Genetic Algorithms (GA) are usually
susceptible to premature convergence, whereas Particle Swarm
Optimization (PSO) might get lost in local optima when
optimizing non-convex fitness landscapes, as is the case with
fraud detection data. In order to empirically defend this
selection, a comparison was carried out with the use of a
Kickstarter validation set. We compared GWO to GA, PSO and
a standard Ll-based (Lasso) selection. As the results,
summarized in Table VI, indicate, GWO was able to find a
smaller feature subset and a higher classification rate, which
confirms its effectiveness in eliminating redundancy, and no
important cues on deception were lost.

The GWO strategy achieved the largest reduction ratio
(82.9) and the best fitness score (96.4), which was effective in
recovering the curse of dimensionality, which is present in our
28,500 campaign data. This effectiveness is owed to alpha, beta,
and delta leadership structure, which guides the search process
towards the most informative region of the feature space faster
as compared to the stochastic ones.
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TABLE VI. COMPARATIVE ANALYSIS OF FEATURE SELECTION METHODS
Selection Featm:e Fitness Convergence Stability
Method Reduction (Acc) (Iter) (Std
Ratio Dev)
; 'gulan.zation 62.40% 91.80% | N/A (Linear) | +0.05
if;ﬁi;m Gay | 7410% 9350% | 85 +0.12
Efsn(l;)]e Swam | 7¢ 509 9420% | 62 £0.09
Proposed GWO 82.90% 96.40% 48 +0.04

E. Ablation Study

The ablation study (Table VII) clearly demonstrates the
contribution to the overall system performance of each of the
components of the proposed architecture. The complete model
scores the highest in all measures, proving the complementary
advantages of the HM4, PECCA, BHPD-enhanced semantics,
and the FG-GRU. The removal of the BHPD semantic
distillation layer leads to a perceptiblereduction in performance,
which canbe explained by the fact that the system would be less
capable of detecting subtle linguistic information that is
associated with campaign lie stories. The state-of-the-art HM4
leads to some of the greatest decreases in ROC-AUC and F1-
Score, which shows that modeling the temporal state is
important. The system cannotdetect driftin behavioral patterns
over time in the absence of HM4, and this increases the FNR.
The removal of PECCA also harms the performance, especially
the precision, because the model will be less effective in
detectingthe discrepancies between textual assertions and visual
pieces of information.

TABLE VII. ABLATION STUDY RESULTS
. F1- ROC- .
Model Variant | Accuracy Score AUC Observation
Full Model
(HM4 + PECCA | 96.40% 94.60% | 0.982 Best performance
+ FG-GRU)
Loss in semantic
Without BHPD o o .
(raw BERT) 94.10% 92.30% | 0.964 quahty. and
deception cues
Temporal drift
Without HM4 92.80% 90.70% | 0.951 ignored; higher
false negatives
Without PECCA | 93.40% | 91.10% | 0.944 | Missed text-image
contradictions
Without FG- Shgn—terrln sptlkes
Gating (vanilla | 91.90% 89.40% | 0935 | 20 ong-term
drifts poorly
GRU)
separated

Likewise, by substituting FG-GRU with regular GRU, the
characteristics of the system to differentiate between the trends
in long-term behavioral changes and unexpected anomalies
decrease. This causes a poor depiction of irregularities in time,
which in most cases are reflective of fraudulent activity. In
general, the ablation findings indicate that all the components,
that is, HM4, PECCA, BHPD, and FG-Gating, play a distinct
and significant role in the robustness of the model, with HM4
leading the way toward Recall improvement, PECCA Precision
improvement, and FG-GRU stabilization of the temporal
dynamics through frequency-aware decomposition.
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F. Discussion and Interpretations

The experimental outcomes show that the TDMM-FDF
model is highly effective in overcoming the shortcomings of the
traditional, one-dimensional models, because it can reflect the
multifaceted, dynamic character of contemporary crowdfunding
deception. The high and comparable performance of the
proposed model compared to the baselines, such as BERT and
vanilla GRU, indicatesthatfraud is notalinguistic or behavioral
indicator but an emerged value of the cross-modal
inconsistencies over time. As an example, the high Recall (94.2)
indicates that the frequency-aware gates in FG-GRU are
especially skillful to find out the so-called strategic fraud, in
which a generator may fabricate a semblance of legitimacy by
usingslow-varyingtrends at the expense of suddenanomaliesin
updates or interaction in order to deceive supporters.

Moreover, the capability of the PECCA module to highlight
discrepancies between the project narratives and visual
prototypes is a response to a serious weakness wherein, in this
case, the scammers rely on the use of professional-grade
imagery to conceal poor or plagiarized textual descriptions. In
addition to the spectral nature of the transitions of latent states
expected of an HM4, this cross-modal correspondence gives the
HM4 a type of interpretability that DL models that are black
boxes frequently lack. The framework provides platform
moderators with practical informationabout a certain behavioral
change and semantic-visual contradictions instead of binary
labels.

Practically, such multi-dimensional assessments areresistant
to tampering and auditable, as the integration of a blockchain-
based execution layer would provide. This openness is essential
to ensuring long-term confidence in automated moderation
systems, as it leaves a history of evaluation that cannot be
changed, that shields both honest creators and prospective
supporters against arbitrary decisions by platforms. Finally, the
computational overhead trade-off is compensated by a massive
decrease in Expected Calibration Error (ECE) that is converted
to more accurate and confident fraud forecasting in high -stakes
financial settings.

V. CONCLUSION

This study has provided a detailed Temporal Dynamics
Aware Multi-Modal Fraud Detection Framework (TDMM-
FDF), which has been developed to work in a reward-based
crowdfunding system wherein fraudulent actions are exhibited
with intricate interplay oflinguistic indicators, visual anomalies
and temporal aberrations. The combination of the proposed
HM4 spectral-temporal model, Polynomial Expansion
Canonical Correlation Analysis (PECCA), and the Frequency-
Gated GRU (FG-GRU) classifier allows the framework to show
a strong capability to identify deceptive campaigns that
unimodal or snapshot-based classifiers would otherwise not
identify. The experimental findings prove the existence of a
unique, complementary role of each of the modules to enhance
the predictive ability of the system. HM4 is a reliable indicator
oflatentbehavioralregimes and temporal drift patternsthat have
a strong predictive potential of manipulative activity. PECCA
offersa logical systemof bringing to light semantic and stylistic
contradictions between the narrative and the images in the
campaign- one of the most commonly misused features of
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advanced scammers. Likewise, the frequency-aware
decomposition of FG-GRU allows the model to be able to
distinguish between slow-moving behavioral cues and abrupt
anomalies, thus being able to model both strategy-level
deception and bursts of manipulative behaviors in updates or
engagement.

In addition to model performance, the incorporation of a
blockchain-based execution layer implies that it provides fraud
assessment logs with secure storage, tamper resilience, and
auditability, therefore, facilitating platform governance and
long-term trust in automated decision systems. Although
predictive accuracy and multi-modes integration of the
framework is very high, there are a number of limitations that
need to be recognized. First, the existing TDMO-FDF
framework uses a database thatis mostly based on Kickstarter.
Although this gives a huge sample of 28,500 campaigns, the
results cannot be completely extrapolated to equity-based or
donation-based platforms where fraud indicators and backer
activity patterns are not that similar. Second, the PECCA is an
effective approach to learn the nonlinear discrepancy but it does
so by choosing a polynomial order, which might need manual
adjustment to other platform architectures. Future research must
enhance capable early-warning identification in most lingering
campaigns, project explainability to multi-modal time thought,
and device self-trained pre-training on supernumerary lofty
unlabelled crowdfunding datasets. Further extensions can also
add video partitioning, pioneered hop of creator histories, and
proactive learning processions of real-world moderation.
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