

Towards Quantum-Accelerated Urban Systems: Integrating Quantum Computing into Saudi Smart City Megaprojects

Architecting Quantum-Smart Infrastructure for Deployment in Vision 2030 Initiatives

Eissa Alreshidi

Associate Professor, College of Computer Science & Engineering, University of Hail, Hail, P.O. Box 2440, Saudi Arabia

Abstract—Quantum Computing (QC), rooted in the principles of superposition and entanglement, enables transformative computational capabilities that surpass classical systems, particularly in solving NP-hard combinatorial optimization, simulation, and machine learning problems. These capabilities are increasingly vital for smart cities, which depend on real-time data from the Internet of Things (IoT) devices, Artificial Intelligence (AI), and Urban Digital Twins (UDTs) to orchestrate complex urban systems such as traffic, energy, logistics, and public safety. As global urbanization accelerates, the demand for hyper-efficient, secure, and adaptive infrastructure exceeds the limits of classical computation. This study employs a multi-pronged methodology that combines literature synthesis, algorithmic mapping, and strategic roadmap design. This study investigates the strategic alignment between QC and the computational demands of next-generation urban environments, with a specific focus on Saudi Arabia's greenfield megaprojects, including NEOM, The Line, and the Red Sea Project, within the Saudi Vision 2030 framework. The analysis systematically maps urban computational challenges to applicable quantum algorithm families—Quantum Approximate Optimization Algorithm (QAOA), Variational Quantum Eigensolver (VQE), and Quantum Machine Learning (QML)—and synthesizes the technical, organizational, financial, ethical, and regulatory prerequisites for national deployment. The core contribution is the development of a conceptual Hybrid Quantum-Classical Architecture (HQCA) and a methodologically grounded three-phase deployment roadmap, tailored to the Saudi context, mapping quantum technical readiness to policy and infrastructure milestones in Saudi Arabia. This framework positions Saudi Arabia to pioneer quantum-accelerated urban systems, enabling resilient infrastructure, sovereign digital capabilities, and global leadership in the emerging Quantum City paradigm.

Keywords—Quantum Computing (QC); Hybrid Quantum-Classical Architecture (HQCA); quantum security; smart cities; NEOM; Saudi Vision 2030; combinatorial optimization; Urban Digital Twin (UDT); Quantum Machine Learning (QML); roadmap

I. INTRODUCTION

The development of Smart Cities (SC) represents a global strategic shift toward sustainable, hyper-efficient, and digitally integrated urban living environments. These ecosystems rely on the real-time processing of massive data streams generated by the Internet of Things (IoT), sophisticated Artificial Intelligence (AI) models, and comprehensive Urban Digital Twins (UDTs) to manage everything from water distribution to public security

[1], [2], [3]. Designed to be adaptive and data-driven, smart cities promise enhanced citizen well-being, resource optimization, and resilient governance.

As smart cities evolve, they generate massive, complex, and real-time datasets from millions of interconnected sensors and systems. The management of these data requires advanced computational methods capable of handling dynamic multivariate environments. Many of the most pressing urban management tasks, such as global traffic synchronization, real-time energy grid balancing, and large-scale logistical coordination, are classified as combinatorial optimization problems. The computational complexity of these challenges increases exponentially with scale, often rendering them intractable, even for the most powerful classical supercomputers [4], [5].

Although classical High-Performance Computing (HPC) has facilitated the first generation of smart cities, the exponential scaling of computational demands now presents a critical bottleneck. Core operational problems in these hyperscale environments, such as dynamic traffic and logistics routing (Vehicle Routing Problem), complex energy grid load balancing (QUBO), and full-fidelity UDT simulation, require solutions that go beyond heuristic approximations, which often lead to systemic inefficiencies and instability in critical infrastructure.

Quantum Computing (QC), grounded in the principles of superposition and entanglement, unlocks new capabilities for a paradigm shift in computational capability. Quantum algorithms, including the Quantum Approximate Optimization Algorithm (QAOA), Variational Quantum Eigensolver (VQE), Quantum Annealing (QA), and Quantum Machine Learning (QML), are particularly well-suited to address the bottlenecks inherent in smart city operations [6], [7], [8]. Their integration into smart city platforms and UDTs enables high-fidelity simulations, predictive modeling of climate and energy dynamics, and real-time decision support for autonomous agents [9], [10].

This opportunity is especially salient in the Kingdom of Saudi Arabia, where Vision 2030 is driving the creation of greenfield urban megaprojects such as NEOM, The Line, and the Red Sea Project, which are designed to be zero-carbon, high-speed, and sovereign in terms of digital infrastructure [11], [12]. These developments require computational solutions that exceed the current urban planning standards. Embedding

quantum capabilities from inception offers Saudi Arabia a unique opportunity to leapfrog legacy constraints and pioneer the Quantum City paradigm.

Despite its compelling technical potential, a significant research and policy gap remains: the absence of a concrete, nation-specific, and phased architectural blueprint for QC adoption in urban transformation initiatives. Most existing studies focus on theoretical algorithmic advantages without addressing the Hybrid Quantum-Classical Architecture (HQCA) required for integration or the strategic framework involving hardware investment, talent development, and regulatory governance required for national deployment.

This study addresses this gap through two key contributions: 1) Architectural Blueprint: Development of the conceptual Hybrid Quantum-Classical Architecture (HQCA) for managing and executing quantum-tractable subproblems in complex smart city operations, providing the necessary technical foundation for integration. 2) Strategic Deployment Roadmap: A methodologically grounded, three-phase roadmap tailored to Saudi Arabia's Vision 2030, guiding policymakers and technical teams from foundational infrastructure readiness to operational quantum advantage, linking technical requirements to strategic policy milestones.

The remainder of this study is structured as follows: Section II provides a comprehensive review of the quantum computing landscape and current smart city architectures, identifying the key research gap this work addresses. Section III details the multi-pronged methodology, including the systematic approach for algorithmic mapping and strategic roadmap development, providing the necessary methodological rigor requested by reviewers. Section IV introduces the foundational Hybrid Quantum-Classical Architecture (HQCA) for smart urban systems and clarifies the distinction between genuine quantum and quantum-inspired methods. Section V presents the strategic three-phase roadmap for integrating QC into Saudi megaprojects, outlining specific use cases and readiness levels. Finally, Section VI concludes the study and discusses future research directions and policy implications.

II. LITERATURE REVIEW

This section critically examines the intersection of quantum computing and smart city development and establishes the theoretical and practical foundations of the proposed framework. It begins by outlining the core principles and architectural models of quantum computing, emphasizing their relevance to urban optimization challenges. This review explores the computational demands of smart cities, highlighting the limitations of classical systems and the strategic imperative for quantum integration. Building on this, the synergy between quantum technologies and smart city platforms is analyzed, with particular attention paid to urban digital twins and autonomous systems. Finally, the literature converges on the context of Saudi Arabia's Vision 2030, presenting an integrated architecture that aligns Smart City layers with quantum capabilities. This progression identifies key research gaps and sets the stage for the technical and strategic contributions of this study to address them.

A. Quantum Computing: Fundamentals and Architecture for Urban Optimization

Quantum Computing (QC) represents a transformative shift in computational paradigms, leveraging quantum-mechanical principles such as superposition, entanglement, and interference to process information in fundamentally different ways from classical von Neumann architectures [8]. Unlike classical bits, which encode data as either 0 or 1, quantum bits (qubits) can exist in multiple states simultaneously. This property enables quantum systems to explore exponentially larger solution spaces in parallel, offering powerful capabilities for solving complex urban challenges [4].

These principles underpin several algorithmic families that are relevant to smart city applications. Quantum optimization algorithms, such as the Quantum Approximate Optimization Algorithm (QAOA) and quantum annealing, have shown promise in solving traffic routing, resource allocation, and scheduling problems [6], [14]. Quantum Machine Learning (QML) enhances predictive modeling in domains such as mobility, infrastructure, and public services [15], whereas quantum simulation enables high-fidelity modeling of physical systems such as climate, energy, and water networks [16]. Additionally, quantum-safe cryptographic protocols, including Post-Quantum Cryptography (PQC) and Quantum Key Distribution (QKD), are essential for securing municipal data and IoT infrastructure [17], [18].

Although the potential of Quantum Computing (QC) is vast, its current realization is characterized by the Noisy Intermediate-Scale Quantum (NISQ) era [4]. This designation describes today's hardware, which features a limited number of physical qubits (typically 50 to a few hundred) and critically lacks robust quantum error correction (QEC). The inherent noise and limited qubit connectivity in NISQ devices impose severe practical constraints on the complexity and runtime of quantum algorithms, causing quantum states to decohere and computational errors to accumulate rapidly.

For smart city applications, this reality mandates the use of Hybrid Quantum-Classical Architectures (HQCAs), particularly in algorithms such as the QAOA and VQE. In these models, quantum processors handle computationally intensive kernels (e.g., optimization components), whereas classical supercomputers manage most data handling and iterative loop control [19]. Furthermore, research efforts are intensely focused on error mitigation techniques—methods that use existing noisy hardware to produce statistically meaningful results by carefully managing and analyzing error signatures rather than relying on full-scale QEC, which remains years away. This pragmatic hybrid approach is critical for the phased adoption outlined in this study, ensuring that early-stage quantum pilots in megaprojects are grounded in achievable computational gains, rather than idealized future performance.

Quantum computing architectures are typically categorized into gate-based systems and quantum annealers. Gate-based architectures support universal quantum algorithms and are programmable and scalable, making them suitable for long-term Smart City applications, such as urban simulation and autonomous system coordination [7]. Quantum annealers, on the other hand, are specialized for solving combinatorial

optimization problems formulated as Quadratic Unconstrained Binary Optimization (QUBO), which are common in traffic signal coordination, smart grid balancing, and logistics routing [14], and [10]. Fig. 1 illustrates the foundational structure of the integrated Smart City framework, emphasizing the role of the computational core in processing vast amounts of urban data.

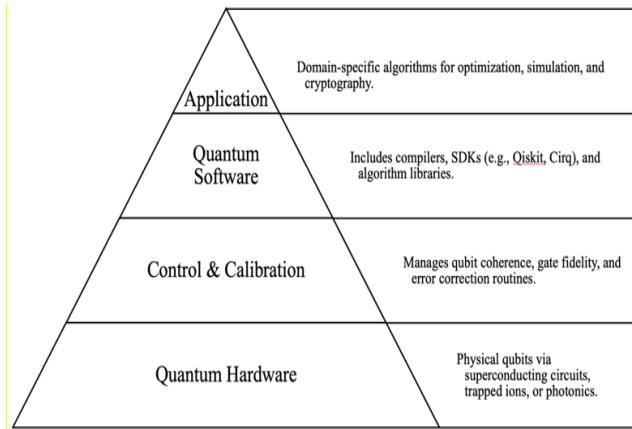


Fig. 1. Architectural layers of quantum computing.

To interface with smart city platforms, quantum architectures must be extended using hybrid quantum-classical systems, middleware abstraction layers, and quantum-safe security modules. Hybrid Quantum-Classical Architectures (HQCA) combine quantum solvers with classical infrastructure to enable real-time decision support in Urban Digital Twins (UDTs), traffic systems, and energy grids [11]. Middleware translators convert Smart City variables into QUBO or Hamiltonian formats for quantum processing [20], whereas quantum-safe security modules embed PQC and QKD into IoT and blockchain layers to ensure resilience against future quantum threats [17], [18].

Although fault-tolerant quantum advantage is still a medium-term objective, quantum-inspired algorithms and hybrid workflows are already delivering near-term value. These approaches enhance performance in targeted domains, such as smart grid balancing and traffic optimization. Moreover, the rise of QC necessitates immediate preparation for quantum threats to current encryption standards, as algorithms such as RSA and ECC are vulnerable to quantum attacks.

B. Smart Cities and the Computational Imperative for Quantum Integration

Smart cities are dynamic ecosystems that integrate advanced technologies to enhance urban life, optimize resource utilization, and ensure sustainability. They represent the convergence of physical infrastructure, digital intelligence, and human-centric governance, orchestrated through interconnected systems [1], [2]. At their core, smart cities rely on Information and Communication Technologies (ICT), Internet of Things (IoT) devices, Urban Digital Twins (UDTs), automated control systems, and real-time analytics to deliver responsive, efficient, and equitable services [3], [10].

The architecture of a smart city comprises multiple interdependent layers, as shown in Fig. 2, including physical infrastructure, sensor networks, connectivity, data management,

service orchestration, and governance. These layers support strategic pillars, such as smart governance, smart mobility, smart environments, and smart living. Each pillar involves solving complex optimization problems, multivariate simulations, and secure communications. For example, smart governance demands the predictive modeling of policy outcomes and secure data sharing [9], whereas smart mobility demands real-time route planning and congestion prediction [14]. Smart environments involve dynamic energy balancing and climate resilience modeling [16], whereas smart living depends on the orchestration of intelligent services and secure communications [7].

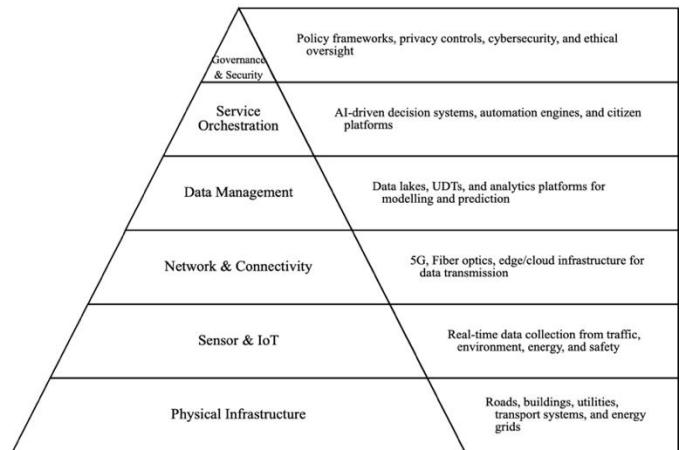


Fig. 2. Architecture layers of smart cities.

The computational demands of these systems, particularly for real-time optimization and high-fidelity simulations, are rapidly outpacing the capabilities of classical computing. Many of the most critical smart city tasks are NP-hard, meaning that the time required to determine optimal solutions increases exponentially with system complexity [4], [8]. Quantum computing provides a novel approach for strategically addressing these bottlenecks. Algorithms such as the QAOA and quantum annealing solve routing and scheduling problems more efficiently [5], [6], while QML enhances predictive modeling, and quantum simulation supports infrastructure planning and resilience [15], [16]. Quantum-safe cryptography ensures long-term data integrity and privacy across Smart City layers [17], [18].

Saudi Arabia's Vision 2030 presents a unique opportunity to embed quantum technologies from inception into greenfield megaprojects, such as NEOM, The Line, and the Red Sea Project [21], [22]. These developments demand computational solutions that exceed the current urban planning standards, particularly in achieving zero-carbon, high-speed, and adaptive operations.

C. Quantum Technologies and Smart City Synergy

The convergence of quantum technologies with smart city systems marks a pivotal evolution in urban innovation. As cities become increasingly complex and data-driven, classical computational architectures struggle to meet the demands of real-time optimization, predictive modeling, and secure communication [4], [8]. The Quantum City paradigm introduces a new computational model that leverages quantum physics to

unlock hyper-efficiency, resilience, and intelligence in urban domains [10].

Conventional smart city technologies—including IoT, AI, blockchain, and cloud computing—operate within deterministic, binary frameworks. Although these systems have enabled significant advancements in urban management, they are inherently limited in solving large-scale combinatorial problems and securing data against emerging threats [1], [2]. Quantum computing bridges this gap by accelerating complex calculations using superpositions and entanglements. Quantum annealing is ideal for solving QUBO problems, such as traffic coordination and energy grid balancing [14], whereas gate-based quantum computing supports universal algorithms, such as QML, for predictive modeling [6], [15].

Quantum communication technology further enhances the resilience of smart cities. Quantum Key Distribution (QKD) provides provably secure encryption, and Post-Quantum Cryptography (PQC) protects urban systems from future quantum attacks (Mosca, 2018; Barletta et al., 2023). These capabilities are especially critical for safeguarding IoT networks, blockchain platforms, and cloud-based services.

Urban Digital Twins (UDTs) are among the most promising applications of quantum technologies. Quantum-enhanced UDTs enable accelerated simulations of traffic systems, climate impacts, and energy demand (Georgescu et al., 2014). Quantum Reinforcement Learning (QRL) trains autonomous agents, such as traffic controllers and energy regulators, within UDT environments, allowing them to adapt in real time and improve system-wide performance [7]. By embedding quantum capabilities into UDTs, Saudi Arabia can achieve predictive, resilient, and intelligent urban systems that scale with complexity and adapt to uncertainties.

D. Integrated Smart City Architecture with Quantum Computing

To operationalize the convergence of smart city systems and quantum technologies, this study presents an integrated architectural framework that aligns urban infrastructure layers with the corresponding quantum computing capabilities of the latter. As cities evolve into complex, data-intensive ecosystems, the limitations of classical computing are becoming increasingly apparent, particularly in domains that require real-time optimization, high-dimensional simulation, and secure communication.

The proposed framework reflects the layered nature of smart cities, as structured in Table I, beginning with the foundational physical infrastructure and progressing through sensor networks, connectivity, data management, service orchestration, and governance. Each layer is mapped to a quantum counterpart, illustrating how quantum hardware, algorithms, simulation engines, and cryptographic protocols can be embedded in the urban stack. For example, quantum hardware environments support infrastructure-level integration, whereas quantum sensors enhance data collection precision. Quantum communication channels, such as QKD-secure network layers and quantum simulation engines, enhance the data management

systems. The QAOA, QML, and QRL enhance service orchestration, whereas the PQC and ethical quantum governance modules reinforce governance and security [10], [11], [18].

To bridge classical and quantum systems, the architecture includes integration middleware components, such as a Hybrid Execution Manager, which routes tasks to either classical or quantum processors based on complexity. The Quantum API Gateway provides a unified interface for accessing Quantum-as-a-Service (QaaS) platforms such as IBM and Pasqal, whereas the Semantic Translator converts smart city variables, such as traffic flows, energy loads, or policy constraints, into quantum-compatible formats such as QUBO or Hamiltonians.

TABLE I. LAYERED ARCHITECTURE: CLASSICAL-QUANTUM ALIGNMENT

Layer	Smart City Components (Classical)	Quantum Integration (Enhancement)
Governance & Security	Policy frameworks, privacy controls, cybersecurity, ethical oversight	Post-Quantum Cryptography (PQC), Quantum-safe Protocols, Ethical Governance Modules
Service Orchestration	Automated control systems, intelligent service delivery, multi-agency coordination	Quantum Algorithms (QAOA, QML, QRL) for optimization, learning, and autonomy
Data Management	Urban Digital Twins (UDTs), data lakes, AI-driven analytics platforms	Quantum Simulation Engines and Quantum-Enhanced Data Processing
Network & Connectivity	5G, fiber optics, and edge/cloud infrastructure for data transmission	Quantum Communication Channels (QKD, Entanglement-based Networks)
Sensor & IoT	Real-time data collection from traffic, environment, energy, and public safety	Quantum sensors for ultra-precise measurements (e.g., magnetic fields, temperature)
Physical Infrastructure	Roads, buildings, transport systems, energy grids, and utilities	Quantum Hardware Environments (Cryogenic Systems, Superconducting Circuits, Photonics)

Fig. 3 illustrates the vertical alignment between the conventional five-layer Smart City stack and the specific Quantum Computing (QC) technologies designed to accelerate, optimize, and secure each layer. The model highlights the use of Post-Quantum Cryptography (PQC) and Quantum Key Distribution (QKD) for foundational security, while Quantum Machine Learning (QML) and optimization algorithms (QAOA, VQE) provide the necessary computational speedup to manage NP-hard problems in real-time city operations.

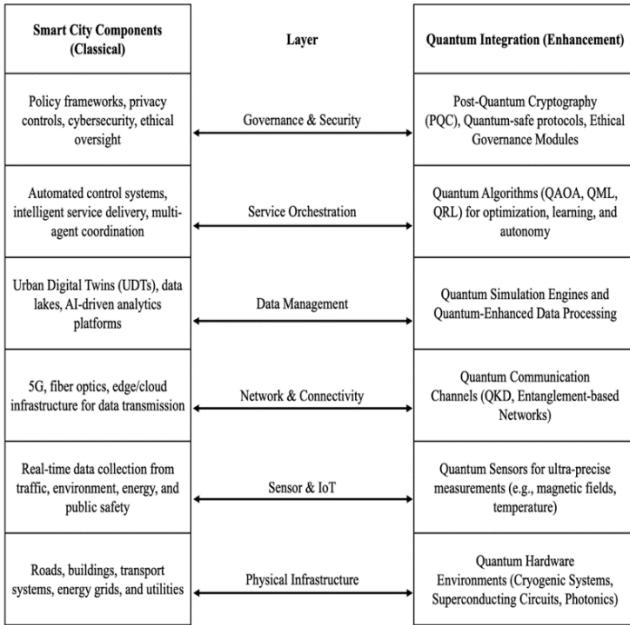


Fig. 3. Hybrid Quantum-Classical Architectures (HQCA) for urban systems.

E. Saudi Arabia: Quantum Computing Technologies and Smart Cities Context

Saudi Arabia's Vision 2030 positions the Kingdom as a global leader in digital transformation and urban innovation. Greenfield megaprojects, such as NEOM, The Line, and the Red Sea Project, are designed to be zero-carbon, high-speed, and digitally sovereign, making them ideal testbeds for quantum integration [11], [12]. The strategic imperative is clear: classical systems cannot meet the computational demands of hyperscale environments.

Although Saudi Arabia has invested in AI, 5G, and IoT infrastructure, quantum computing is an emerging frontier. There is limited national literature on phased QC adoption, talent development, and regulatory alignment. This gap underscores the need for a tailored Strategic Adoption Framework that maps quantum capabilities to Saudi Arabia's urban transformation goals to ensure operational readiness and sovereign-technology leadership.

III. METHODOLOGY

A. Overview of Methodological Framework

This study adopts a multi-layered methodological framework to guide the strategic integration of quantum computing (QC) into Saudi Arabia's emerging smart city ecosystem. The approach begins with a systematic literature review synthesizing global advancements in quantum technologies across urban domains. Peer-reviewed publications, government reports, and pilot project documentation were analyzed to benchmark the technical feasibility and deployment patterns. This review was complemented by a thematic synthesis of Saudi Arabia's digital transformation agenda, particularly Vision 2030 and the National Strategy for Data and AI, to contextualize quantum integration within the national priorities.

Building on this foundation, this study conducts a comparative contextual analysis that juxtaposes international quantum-smart city use cases with the unique characteristics of Saudi greenfield megaprojects, such as NEOM, The Line, and Qiddiya. These developments, unconstrained by legacy infrastructure, present distinct requirements for low-carbon efficiency, secure communications, and real-time urban intelligence. From this analysis, three high-impact domains were systematically selected:

- Traffic signal coordination, mapped to QAOA and quantum annealing for optimization.
- Smart grid balancing, mapped to VQE for complex simulation and optimization.
- Infrastructure simulation via Urban Digital Twins (UDTs), mapped to QML and QRL for predictive modeling and autonomous decision-making.

Hybrid quantum-classical workflows were designed using platforms such as IBM Qiskit and D-Wave Leap, with problem formulations translated into quantum-compatible formats like QUBO and Hamiltonians.

The final phase of the methodology involved strategic synthesis and roadmap design processes. Insights from the literature and algorithmic mapping were consolidated into a three-phase national roadmap—exploration, pilot deployment, and scaled integration—each of which is aligned with technical, organizational, and financial milestones. Key Performance Indicators (KPIs) were defined to measure progress in infrastructure readiness, talent development, regulatory alignment, and cross-sector adoption. To validate the framework, evaluation criteria were applied across four dimensions: computational efficiency, scalability, integration feasibility, and strategic alignment with Saudi Vision 2030. This iterative process ensures that the proposed roadmap remains adaptable to the evolving quantum capabilities and urban planning priorities. Fig. 4 illustrates the overall iterative methodology used in this study.

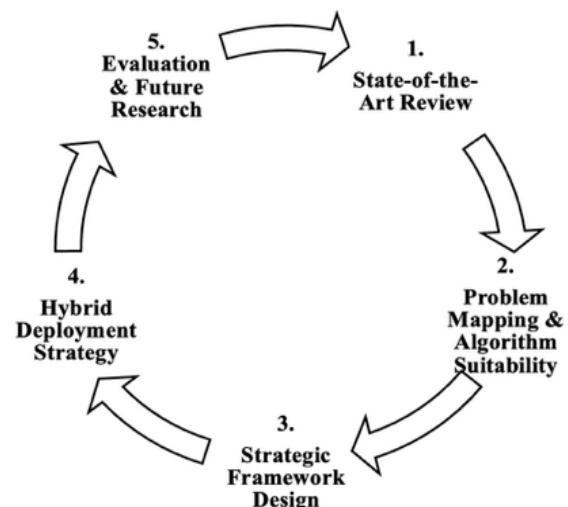


Fig. 4. Overall methodology.

B. Methodological Grounding of Algorithmic Mapping and Roadmap Design

This study adopts a systematic algorithmic mapping and strategic foresight analysis approach to address the need for greater methodological transparency and rigor in the mapping and strategic design processes. This study adopts an approach of systematic algorithmic mapping and strategic foresight analysis. The criteria for use case selection, mapping scope, and roadmap phasing were explicitly defined as follows.

First, the criteria for Use Case Selection and prioritization were based on three synergistic factors that justify the strategic investment in quantum resources. These factors are Strategic Relevance, where cases were chosen based on their direct alignment with the high-impact, technologically ambitious goals of Saudi Vision 2030 megaprojects (e.g., NEOM's cognitive systems, high-speed logistics, and sustainable resource management); Classical Bottleneck Justification, which explicitly placed focus on problems identified as NP-hard (e.g., complex combinatorial optimization, large-scale traffic modeling, resource allocation) where current state-of-the-art classical High-Performance Computing (HPC) or AI solutions face known computational limitations, thereby justifying the search for quantum acceleration; and Theoretical Quantum Applicability, where use cases were confirmed against existing, peer-reviewed literature demonstrating a theoretical fit with known quantum algorithm families (e.g., the QUBO formulation required by QAOA or the linear algebra necessary for HHL).

Second, the Algorithmic Mapping and Technical Scope section clarifies that the mapping presented is a conceptual architectural blueprint rather than a formal complexity proof. It links the class of urban problems to the class of suitable quantum algorithms. This is explicitly a strategic mapping intended to both identify where potential quantum advantage could be realized and inform the design of the Hybrid Quantum-Classical Architecture (HQCA) discussed in Section IV. Formal complexity analysis and empirical performance comparisons against classical HPC are acknowledged as critical future work, dependent on the scaling and maturity of fault-tolerant quantum hardware. Therefore, this study provides the necessary conceptual foundation for those future comparisons.

Third, the Roadmap Phasing and Readiness Assessment explains that the three-phase roadmap adapts the conventional Technology Readiness Level (TRL) framework to a Quantum Readiness Level (QRL) relevant for strategic urban systems deployment. The phasing is benchmarked against three factors: QPU Scaling, which considers anticipated global timelines for NISQ device maturity (e.g., 50+ effective qubits) and the development of rudimentary fault-tolerant QPUs; Infrastructure Maturity, encompassing the projected development schedule and foundational readiness of the specific Saudi megaprojects; and Goal Orientation, where each phase (Readiness, Pilot, and Deployment) is structured to progressively move from foundational research/quantum-inspired techniques to full integration of true QPU acceleration, providing a clear path from current capabilities to future quantum advantage.

IV. RESULTS

This section presents the analytical results and strategic insights derived from the proposed methodology. It begins by examining the international use cases of quantum computing in smart cities and offers comparative benchmarks and insights. The discussion then shifts to the Saudi Arabian context, evaluating its current readiness and identifying the key requirements for quantum integration. Based on this foundation, a three-phase strategic roadmap is proposed to guide adoption across national megaprojects. This section elaborates on a holistic technical integration strategy and hybrid quantum-classical software architecture designed to support scalable, secure, and intelligent urban systems. Finally, this study critically assesses the benefits and challenges of quantum adoption, offering a balanced perspective on its feasibility, impact, and future direction.

A. Use Cases from Around the World for Quantum Computing Adoption in Smart Cities

Global pilot projects and proof-of-concept deployments have demonstrated that quantum computing (QC) offers tangible near-term value for smart cities, not by replacing classical systems, but by augmenting them using hybrid algorithms, simulation-based proofs, and targeted hardware trials. These initiatives span a wide spectrum of domains, including traffic optimization, energy grid management, logistics, environmental sensing, cybersecurity, healthcare, education, and digital governance. These pilots offer strategic foresight for Saudi Arabia's megaprojects, such as NEOM, Qiddiya, and the Red Sea Project, especially in areas where classical computational limits are likely to be reached owing to the scale, complexity, and sustainability ambitions of these developments.

In traffic and mobility optimization, quantum annealing and quantum-inspired algorithms have been applied to complex routing and scheduling problems, such as the Traveling Salesperson Problem (TSP), enabling real-time traffic light sequencing and congestion reduction. In energy grid management, hybrid quantum-classical algorithms accelerate unit commitment and battery placement, enhancing grid balance in renewable-heavy microgrids. Urban logistics and supply chain routing have benefited from quantum formulations for last-mile delivery and dynamic routing, thereby improving freight efficiency in densely populated city environments.

In environmental modeling and sensing, quantum-enhanced sensors and quantum machine learning (QML) enable high-fidelity anomaly detection and climate-resilience forecasting. Cybersecurity pilots have deployed Quantum Key Distribution (QKD) and post-quantum cryptography (PQC) to secure municipal infrastructure and citizen data. Smart healthcare modeling leverages quantum graph analytics and probabilistic modeling to simulate disease spread and optimize hospital logistics, thereby supporting national preparedness and NEOM's health systems.

Emerging domains are gaining popularity. Smart waste management uses quantum optimization for dynamic bin scheduling and route planning, aligning with circular economy goals in cities such as Medina. In education, quantum-enhanced

clustering and recommendation systems enable personalized learning paths and adaptive curricula, supporting NEOM's digital education platforms. Digital twin simulation integrates quantum-enhanced multi-agent modeling for real-time urban planning and resilience forecasting. Finally, smart tourism applications use quantum algorithms to optimize visitor

flows and enhance cultural site management, which is critical for destinations such as Alula, Diriyah, and Hajj logistics.

Table II summarizes these global pilot projects, highlighting their focus areas, enabling technologies, demonstrated outcomes, and strategic relevance to Saudi Arabia's Smart City initiatives.

TABLE II. GLOBAL QUANTUM COMPUTING PILOT PROJECTS FOR SMART CITIES

Focus Area	Technology & Mechanism	Outcome	Saudi Applicability	Technical Enhancement	Ref.
Traffic Signal Optimization	Quantum Annealing (QUBO formulation)	Adaptive signal control, reduced congestion	NEOM and Riyadh traffic systems	Quantum-assisted learning automata for dynamic timing	[23], [24], [25]
Port Logistics & Routing	Quantum-Inspired Optimization (Digital Annealer)	Lower truck travel time, reduced CO ₂ emissions	Jeddah and Dammam logistics hubs	Hybrid QUBO for multi-modal freight routing	[26], [27]
Grid Battery Placement	Hybrid Quantum-Classical Algorithms	Optimized voltage control and battery siting	Saudi smart grid expansion	Quantum-enhanced simulation for energy resource planning	[28], [29], [30]
Urban Mobility Forecasting	Quantum Machine Learning (QML) on traffic sensor data	Improved traffic prediction accuracy	Riyadh and NEOM AI mobility platforms	Quantum-enhanced time series forecasting	[31], [32], [33]
Emergency Response Optimization	Quantum annealing for multi-agent dispatch	Faster resource allocation and coordination	NEOM autonomous emergency systems	Quantum scheduling for emergency logistics	[34], [35]
Infrastructure Optimization	Quantum-Inspired Evolutionary Algorithms	Multi-variable optimization for traffic and energy	NEOM and Qiddiya infrastructure planning	QiEA restarts and swarm intelligence	[36], [37], [38]
Energy & Water Management	Quantum simulation for desalination and grid modeling	Improved modeling of water-energy nexus	Red Sea Project and NEOM water-energy systems	Quantum-enhanced digital twin for resource optimization	[39], [40], [41]
Cybersecurity Infrastructure	Quantum Key Distribution (QKD) and Post-Quantum Cryptography (PQC)	Secured municipal data links	PQC rollout across Saudi smart city platforms	Integration of QKD with blockchain-based services	[42], [43]
Urban Governance Simulation	Quantum-enhanced agent-based modeling	Simulated policy outcomes across complex urban systems	NEOM governance and Vision 2030 policy planning	Quantum scenario simulation for zoning, taxation, and incentives	[13]
Climate Resilience Forecasting	Quantum simulation for climate and disaster modeling	High-resolution prediction of floods and heatwaves	Coastal and desert urban adaptation	Quantum-enhanced microclimate and extreme event modeling	[39], [41]
Smart Healthcare Modeling	Quantum graph analytics and probabilistic modeling	Disease spread modeling, hospital logistics optimization	NEOM health infrastructure and national preparedness	Quantum-enhanced epidemiological simulation	[44], [45], [46], [47]
Digital Identity & Citizen Services	Quantum-secure identity verification and blockchain integration	Secure e-government, voting, and citizen data platforms	National digital identity and civic platforms	PQC-based authentication and encrypted citizen services	[42], [48], [49], [50]
Smart Waste Management	Quantum optimization for route planning and bin prediction	Dynamic scheduling, reduced fuel and overflow	NEOM circular economy, Medina municipal services	Quantum-enhanced logistics for sanitation networks	[51], [52]
Smart Education & Learning Analytics	Quantum-enhanced clustering and recommendation systems	Personalized learning paths, curriculum optimization	NEOM education platforms, national e-learning	Quantum machine learning for adaptive education	[53], [54]
Digital Twin & Urban Simulation	Quantum simulation for multi-agent urban modeling	Real-time city-scale digital twins	NEOM, Qiddiya, Red Sea infrastructure	Quantum-enhanced planning and resilience modeling	[55], [56]
Smart Tourism & Cultural Heritage	Quantum-enhanced recommendation and crowd flow modeling	Optimized visitor experience, congestion prediction	AlUla, Diriyah, Hajj logistics	Quantum algorithms for cultural site management	[57], [58]

These benchmarks inform the technical and strategic directions for quantum adoption in Saudi Arabia. The following subsections explore three representative use cases in greater depth, illustrating how quantum algorithms address specific Smart City challenges and how these solutions translate into measurable impacts within the Saudi context.

1) *Energy grid load balancing and optimization:* An excellent example of a combinatorial-optimization problem is

managing scattered urban energy systems heavily reliant on renewable sources. In smart cities, such as NEOM, where energy systems are built around 100% renewable sources, a considerable amount of computer power is required to balance the real-time energy flow, predict how demand will change, and schedule battery storage among thousands of dynamic nodes. Quadratic Unconstrained Binary Optimization (QUBO) models typically address these issues. Classical solvers use heuristics

to solve them; however, these heuristics become less accurate and slower as the system becomes more complex.

Quantum computing is an intriguing alternative to classical computing methods. The Quantum Approximate Optimization Algorithm (QAOA) and Variational Quantum Eigensolver (VQE) are two examples of algorithms that can solve QUBO problems by converting them into quantum circuits. These circuits examine extensive solution spaces in superposition and identify near-optimal configurations for load distribution and storage scheduling. The VQE and QAOA can determine the optimal times to charge and discharge a quantum system by lowering its energy state. This reduces energy loss and maximizes the use of renewable sources.

In Saudi Arabia, this ability immediately helps the Line and other megaprojects achieve their goal of carbon neutrality. Recalibrating the grid in real time makes operations more reliable, reduces energy waste, and makes the system more sustainable in the long run. Improvements in computing efficiency can lead to significant reductions in costs and emissions, demonstrating the importance of quantum integration in national energy planning.

2) Dynamic traffic and logistics routing: In hyper-connected cities, urban logistics and mobility systems require route optimization that is always on and can predict the next event. As Saudi Arabia moves toward fleets of self-driving cars and public transit networks that function together, managing real-time traffic flow and supply chains becomes increasingly difficult. These problems are usually modeled as different versions of the Vehicle Routing Problem (VRP) or the Traveling Salesperson Problem (TSP). Both problems are NP-hard and scale poorly in classical computations.

Quantum Annealing (QA) is a powerful way to solve these kinds of problems. QA enables a quantum system to anneal toward its lowest-energy state by introducing routing constraints and objectives in the energy landscape. This is the most efficient method for setting up routes. This approach offers significant speed-ups over classical heuristics, such as simulated annealing, particularly in high-dimensional and time-sensitive scenarios.

Quantum-enhanced routing can guarantee zero-latency mobility and logistics in smart cities in Saudi Arabia. This is a basic prerequisite for NEOM's autonomous infrastructure. Efficient routing reduces fuel consumption, minimizes battery drainage, and lowers the environmental emissions. Moreover, quantum scheduling can support multi-agent coordination across emergency response systems, freight hubs, and public transit, making both operations more efficient and improving the experience of citizens.

3) Urban digital twin (UDT) simulation and forecasting: Urban Digital Twins (UDTs) are central to predictive governance in smart cities, enabling planners to simulate and evaluate infrastructure, environmental, and social systems before implementation. Planners can test and assess infrastructure, environmental, and social systems using UDTs prior to construction. However, for UDTs to work well, they must simulate complicated, interconnected tasks, such as fluid

dynamics, air quality, population mobility, and material behavior. These tasks involve solving large systems of equations and modeling high-dimensional physical processes, which often exceed the capabilities of classical computing.

Quantum Simulation and Quantum Machine Learning (QML) are two methods that work well together to solve problems. Quantum simulation uses quantum mechanics to represent physical systems at an exponential speed, making it ideal for simulating chemical reactions and designing materials. In contrast, QML excels at extracting patterns from noisy sensor data, enabling accurate forecasting and predictive maintenance of urban infrastructure.

Quantum-enhanced UDTs can transform static planning tools into dynamic engines for resilience and foresight in Saudi Arabia. For example, they can be used to forecast water demand under stress conditions, simulate the structural integrity of new materials, and predict the spread of airborne pollutants. These capabilities aid in proactive governance, smart capital planning, and the long-term success of urban transformation initiatives, especially in areas susceptible to climate change, such as the Red Sea Coast and NEOM.

B. Quantum Computing Adoption for Smart Cities in Saudi Arabia

Saudi Arabia is undergoing a profound transformation under the Vision 2030 framework, with smart city development as the national cornerstone. The Kingdom desires to build smart, zero-carbon, and hyper-efficient cities using advanced technologies such as Artificial Intelligence (AI), the Internet of Things (IoT), and quantum computing (QC). NEOM, The Line, Riyadh Smart City, and the Red Sea Project are some of the most important projects that demonstrate this goal in Saudi Arabia.

These projects differ because of their massive size and "greenfield" design, which allows quantum-readiness to be embedded into the infrastructure and data architecture from the start. This strategic advantage enables Saudi cities to bypass outdated integration challenges and utilize the most advanced computational models from the beginning. In this case, three imperatives drive the adoption of QC. First, the absence of legacy systems allows the native integration of quantum technologies, thereby avoiding costly retrofitting. Second, the optimization-critical nature of energy, water, and mobility systems requires computational capabilities that exceed the classical limits. Third, the Kingdom's ability to invest and its long-term commitment to Vision 2030 make it possible to continue investing in quantum infrastructure, talent development, and ecosystem creation.

Quantum computing is particularly important for Saudi Arabia's initiatives. NEOM is a \$500 billion cognitive megacity designed to integrate AI, quantum technologies, and self-driving systems to improve sustainability and operational efficiencies. The Line is a 170-kilometer-long city in NEOM that aims to have no cars and no carbon emissions, which means it needs real-time smart systems to manage different types of transportation. The Red Sea Project and Qiddiya are large-scale tourism and entertainment hubs that require smart infrastructure for logistics, resource management, and the provision of tailored services. Owing to their size and

complexity, these projects are likely to reach classical computational limits sooner than retrofitted cities. Therefore, quantum computing is not a luxury upgrade but a strategic necessity for real-time multimodal optimization across the energy, water, mobility, and security domains.

Saudi Arabia has initiated the development of a local quantum ecosystem to facilitate such changes. The Quantum Valley Initiative is a partnership between the King Abdulaziz City for Science and Technology (KACST), the Saudi Data and AI Authority (SDAIA), IBM, and Pasqal. Its goal is to create a national center for quantum research, hardware hosting, and application development. Early-stage quantum security pilots in NEOM are working on quantum-secured IoT and blockchain frameworks to ensure city resilience and maintain data integrity. There are national talent programs underway to teach more than 50 graduate students in Quantum Information Science (QIS) and provide more than 200 IT professionals with certificates in quantum computing and post-quantum cryptography (PQC). In addition, hybrid pilots are used in the energy, logistics, and water sectors to test quantum-classical operations and help shape regulatory frameworks.

Saudi smart cities are in a unique position to profit from quantum computing because they utilize Urban Digital Twins (UDTs), maintain expansive IoT networks, and implement blockchain-based infrastructure. UDTs require real-time simulation and optimization of multimodal systems, whereas the rapid growth of sensor networks necessitates the use of PQC and QKD for secure data transmission. QC also complements blockchain platforms by enhancing data integrity and cyber resilience. In this perspective, NEOM and The Line are worthy examples of the quantum imperatives. Because they require operational complexity and demand QC for predictive modeling, resource allocation, and coordinating autonomous systems, the Kingdom's smart city future will be based on quantum computing.

C. Requirements of Quantum Computing Adoption for Smart Cities in Saudi Arabia

As Saudi Arabia accelerates its smart city transformation under the Vision 2030 framework, quantum computing (QC) is becoming a strategic enabler, creating urban settings that are zero-carbon, hyper-efficient, and cognitively adaptive urban environments. NEOM, The Line, and the Red Sea Project are major projects that require computing power greater than that provided by traditional methods, particularly for tasks such as real-time optimization, secure data sharing, and accurate simulation. To harness quantum technologies effectively, a multidimensional understanding of the technical, organizational, financial, legal, ethical, and regulatory requirements is essential. Saudi Arabia has a unique position for quantum integration because it offers a greenfield advantage, the ability to invest in its quantum ecosystem, and a commitment to its development.

Drawing on global governance frameworks and strategic roadmaps, including those from the World Economic Forum, Stanford Law, Cambridge University Press, and UK government publications, this section outlines the key prerequisites for QC adoption in Saudi Arabia's Smart Cities.

- **Technical Requirements.** Quantum adoption requires robust hybrid architecture, secure communication protocols, and middleware integration. To ensure data sovereignty, Saudi Arabia must move from quantum-as-a-service (QaaS) models to sovereign Hybrid Quantum-Classical Architectures (HQCA). It is critical to integrate QC into NEOM's digital twin and smart grid platforms, along with standardized Post-Quantum Cryptography (PQC) across IoT and blockchain systems. Mitigation strategies include investing in sovereign infrastructure, collaborating with global vendors for localized deployments, and launching a national standards body under the KACST and SDAIA.
- **Social and Human Capital Requirements.** Quantum-literate staff and public trust are foundational elements of quantum governance. Addressing talent shortages in Quantum Information Science (QIS), engaging citizens in data governance, and localizing QIS curricula are essential steps. Initiatives such as the Quantum Talent Initiative (QTI), public engagement campaigns, and joint academic programs with King Abdullah University of Science and Technology (KAUST), King Abdulaziz University (KAU), and other international institutions support inclusive and sustainable capacity building.
- **Organizational Requirements.** Effective QC adoption requires agile governance, inter-agency coordination, and collaboration. Aligning the governance structures of SDAIA, KACST, the Ministry of Education, and NEOM will make it possible to prototype and deploy quickly. Institutionalizing quantum innovation requires the establishment of a National Quantum Steering Committee, the use of regulatory sandboxes, and the hiring of Chief Quantum Officers (CQOs) within megaprojects.
- **Financial Requirements.** Long-term sovereign investments and private-sector incentives are vital. Leveraging the Public Investment Fund (PIF) and Vision 2030 resources, attracting Foreign Direct Investment (FDI), and modeling the Return on Investment (ROI) in hybrid deployments will ensure financial sustainability. The Quantum Innovation Fund, tax credits, and cost-benefit frameworks for pilot evaluation are recommended as mitigation strategies.
- **Regulatory Requirements.** Saudi Arabia must define a national quantum policy, align it with international compliance standards, and regulate quantum-enhanced services. Ensuring adherence to global PQC and QKD protocols, addressing dual-use concerns, and being consistent with Gulf Cooperation Council (GCC) and Organization for Economic Cooperation and Development (OECD) digital regulations are all important considerations. Developing a National Quantum Regulatory Framework and participating in working groups for the International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) and the European Telecommunications Standards Institute (ETSI) would aid regulatory maturity.

- Ethical Requirements. Responsible innovation must lead to quantum AI deployment. Ethical risks in predictive policing, facial recognition, and behavioral modeling must be addressed in accordance with Islamic principles and Vision 2030 standards. A National Quantum Ethics Board will be established, WEF Quantum Governance Principles will be adopted, and fairness audits of quantum algorithms will be mandated to ensure transparency and cultural sensitivity.
- Legal Requirements. Legal frameworks must be adjusted to accommodate these technologies. It is important to update intellectual property laws, define liability in quantum-enhanced decision-making systems, and clarify

data ownership and cross-border flows. Saudi Arabia must safeguard its sovereign rights over quantum-generated insights, oversee quantum-enhanced public services, and guarantee adherence to national data protection laws, such as the Personal Data Protection Law (PDPL). Mitigation strategies include amending cybersecurity laws, drafting hybrid AI/QC legal frameworks, and defining thresholds for quantum automation.

Table III summarizes a structured overview of the key requirements for adopting quantum computing in Saudi smart cities.

TABLE III. QUANTUM COMPUTING ADOPTION REQUIREMENTS FOR SMART CITIES IN SAUDI ARABIA

Requirement Category	Key Requirements	Specific Requirements for Saudi Arabia	Mitigation Strategy
Technical	Develop Hybrid Quantum-Classical Architectures (HQCA) Implement Post-Quantum Cryptography (PQC) standards. Build middleware for UDT-QC integration. Establish benchmarking and error mitigation protocols.	Transition from QaaS to sovereign HQCA for data sovereignty. Integrate QC into NEOM's digital twin and smart grid platforms. Standardize PQC across smart city IoT and blockchain systems.	Invest in sovereign quantum infrastructure. Collaborate with global QC vendors for localized deployments. Launch a national QC standards body under KACST/SDAIA.
Social / Human Capital	Build a quantum-literate workforce. Promote public awareness and trust. Ensure inclusive access to quantum education.	Address QIS talent shortages in academia and industry. Engage citizens in smart city data governance. Localize QIS curricula in Arabic and align with Vision 2030 education reforms.	Expand the Quantum Talent Initiative (QTI). Launch public engagement campaigns. Partner with KAUST, KAU, and international institutions for joint programs.
Organizational	Establish inter-agency coordination frameworks. Create agile pilot governance models. Embed quantum innovation units in city planning bodies.	Align SDAIA, KACST, MoE, and NEOM governance structures. Enable rapid prototyping and iterative deployment in smart city zones.	Form a National Quantum Steering Committee. Use regulatory sandboxes for pilot testing. Appoint Chief Quantum Officers (CQOs) in megaprojects.
Financial	Secure long-term sovereign investment. Incentivize private sector R&D and startups. Model ROI for hybrid QC deployments.	Leverage PIF and Vision 2030 funds for infrastructure. Attract FDI in quantum ventures. Justify QC investment through energy, logistics, and security gains.	Establish a Quantum Innovation Fund. Offer tax credits and grants for QC R&D. Develop cost-benefit frameworks for pilot evaluation.
Regulatory	Define national quantum policy and standards. Align with international export controls and compliance. Regulate quantum-enhanced services and data flows.	Ensure compliance with global PQC and QKD standards. Address dual-use concerns in defense and energy sectors. Harmonize with GCC and OECD digital regulations.	Draft a National Quantum Regulatory Framework. Participate in ISO/IEC and ETSI quantum working groups. Create a regulatory sandbox for quantum pilots.
Ethical	Promote responsible innovation and transparency. Prevent misuse of quantum-enhanced surveillance. Ensure cultural and social sensitivity in deployment.	Address ethical risks in predictive policing, facial recognition, and behavioral modeling. Align with Islamic ethical principles and Vision 2030 values.	Establish a National Quantum Ethics Board. Adopt WEF Quantum Governance Principles. Require explanations and fairness audits for quantum algorithms.
Legal	Update IP laws for quantum algorithms and hardware. Define liability in quantum-enhanced decision systems. Clarify data ownership and cross-border data flows.	Protect sovereign rights over quantum-generated insights. Regulate quantum-enhanced public services (e.g., traffic, energy, and health). Ensure compliance with Saudi data protection laws (e.g., PDPL).	Amend IP and cybersecurity laws to include quantum domains. Draft legal frameworks for hybrid AI/QC systems. Define legal thresholds for quantum-enhanced automation.

D. Proposed Strategic Three-Phased Roadmap for QC Adoption in Saudi Arabia's Smart Cities

1) *Proposed strategic three-phased roadmap for QC adoption:* The quantum computing roadmap for Saudi Arabia's smart cities is designed to evolve from foundational capability building to full operational deployment, in alignment with the Saudi Vision 2030 mandates for human capital development, digital transformation, and sovereign technological leadership. The roadmap is divided into three strategic phases and includes key pillars, focus areas, and measurable milestones to guide the Kingdom's transition from pilot experimentation to global quantum leadership. Fig. 5 presents the proposed three-phase roadmap for QC adoption in smart cities in Saudi Arabia. The three phases are detailed as follows:

- Phase I: Foundation and Preparation (0–3 years). This initial phase focuses on establishing a foundational ecosystem required for the adoption of quantum computing. Activities include the publication of a National Quantum Strategy and the development of ethical, legal, and social implications (ELSI) frameworks to guide responsible innovations. Talent development is prioritized through the launch of the Quantum Talent Initiative, which aims to retrain IT professionals and reform university curricula to include Quantum Information Science (QIS). Early access to quantum resources is secured via quantum-as-a-service (QaaS) contracts, and pilot-scale post-quantum cryptography

(PQC) is deployed on noncritical smart city subsystems to test the security protocols.

- Phase II: Pilot and Integration (3–7 years). This phase emphasizes hybrid system validation and integration with Urban Digital Twins (UDTs). Quantum-classical pilots are launched in high-impact domains, such as smart grid optimization and traffic control, leveraging algorithms such as Quantum Reinforcement Learning (QRL). A middleware is developed to abstract the UDT variables into the QUBO format, enabling compatibility with quantum solvers. Cyber resilience is enhanced by mandating post-quantum cryptography (PQC) across IoT and blockchain frameworks within pilot zones to ensure secure data flows and infrastructure integrity.
- Phase III: Deployment and Leadership (7+ years). The final phase focuses on full-scale operationalization and positioning Saudi Arabia as a global leader in quantum-smart-city innovation. Proven hybrid quantum algorithms are integrated into core operational systems in major cities. A National Quantum Hardware Center has been set up to provide local optimization tools, like quantum annealers, to enhance the country's computing power. By hosting international forums and advancing research on next-generation concepts, such as quantum digital twins, Saudi Arabia further solidifies its leadership.

Table IV summarizes the detailed milestones, duration, and strategic objectives for each phase of the quantum computing roadmap.

Phases	PHASE 1 Foundation & Preparation			PHASE 2 Pilot & Integration			PHASE 3 Deployment & Leadership		
Focus	Capacity Building & Governance			Hybrid System Proving & UDT Integration			Full Operationalization & Sovereign Capability		
Pillars	Strategy & Policy	Access & Security	Talent Development	Cyber Resilience	UDT Integration	Hybrid Pilots	Full Deployment	Sovereign Hardware	Global Leadership
Requirement Category	Regulatory Ethical Legal	Technical Security	Social Human Capital	Organizational Regulatory Security	Technical	Technical	Technical	Financial Technical	Organizational Social Regulatory
Key Milestones	Publish National Quantum Strategy	Deploy PQC on two non-critical smart city subsystems	Train 50 QIS graduate students; certify 200 IT professionals	Achieve 15% efficiency gain over classical benchmarks	Integrate QC into NEOM's digital twin module	Finalize PQC across NEOM transport and energy layers	Quantum algorithms drive 10% of optimization decisions	Launch first sovereign quantum computer in KSA	Host Global Forum on Urban Quantum Applications
Timeline	Year 1	Year 2	Year 3	Year 5	Year 15	Year 15	Year 15	Year 15	Year 15

Fig. 5. A proposed strategic three-phased roadmap for QC adoption for smart cities within Saudi Arabian environments.

TABLE IV. QUANTUM COMPUTING ROADMAP FOR SAUDI SMART CITIES

Phase	Duration	Primary Focus	Key Pillars	Requirement Category	Strategic Objectives / Milestones
I. Foundation & Preparation	0–3 Years	Capacity Building & Governance	Strategy & Policy (Governance, ELSI)	Regulatory Ethical Legal	Year 1: Publish the National Quantum Strategy and ELSI framework.
			Talent Development (Human Capital)	Social Human Capital	Year 3: Train 50 QIS graduate students; certify 200 IT professionals in QC/PQC.
			Access & Security (QaaS, PQC)	Technical Security	Year 2: Deploy PQC on two non-critical smart city subsystems.
II. Pilot & Integration	3–7 Years	Hybrid System Proving & UDT Integration	Hybrid Pilots (Smart Grid, Traffic)	Technical	Year 7: Achieve a 15% efficiency gain over classical benchmarks.
			UDT Integration (QUBO Middleware)	Technical	Year 5: Integrate QC into NEOM's digital twin module.
			Cyber Resilience (PQC in IoT/Blockchain)	Organizational Regulatory Security	Year 5: Finalize PQC across NEOM transport and energy layers.
III. Deployment & Leadership	7+ Years	Full Operationalization & Sovereign Capability	Full Deployment (Citywide QC Integration)	Technical	Year 10: Quantum algorithms drive 10% of optimization decisions.
			Sovereign Hardware (National QC Center)	Financial Technical	Year 12: Launch the first sovereign quantum computer in KSA.
			Global Leadership (Research & Policy)	Organizational Social Regulatory	Year 15: Host Global Forum on Urban Quantum Applications.

E. Holistic Technical Quantum–Smart City Integration Strategy

To ensure a cohesive execution plan, a holistic integration strategy is necessary to synchronize the architectural elements of urban infrastructure with relevant quantum capabilities along the national roadmap. This section delineates a detailed structure that correlates each smart city domain with its quantum computing equivalent, situated within the strategic priorities and Greenfield advantages of Saudi Arabia.

The framework has eleven architectural levels, starting with fundamental infrastructure and progressing through data systems, decision-making platforms, and governance structures. Each layer corresponds to a distinct quantum capability and is associated with one of three roadmap phases. This matrix allows technologists, urban designers, and policymakers to visualize the incremental integration of quantum technologies into the urban framework.

The integration strategy is governed by the following phase objectives:

- Phase I (Foundational Exploration): Focuses on foundational exploration, including cloud-based quantum-as-a-service (QaaS) access, feasibility studies for localized quantum hardware, and early pilot deployments in sensing and simulation, often leveraging quantum-inspired classical methods.
- Phase II (Hybrid Integration): Emphasizes hybrid integration, deploying genuine quantum-enhanced algorithms in high-impact areas like traffic, energy, and

logistics systems, and embedding middleware for Urban Digital Twin (UDT) compatibility.

- Phase III (Governance Maturity): Targets infrastructure maturity and governance, including the Post-Quantum Cryptography (PQC) rollout, quantum-secure identity systems, and the establishment of national ethics and regulatory frameworks.

Saudi Arabia's greenfield advantage enables the integration of quantum technologies without the limitations of legacy infrastructure. This strategic positioning supports the Kingdom's ambition to lead quantum-enhanced urban innovation. Table V details the holistic integration strategy, mapping specific smart city components and their corresponding quantum technologies to the strategic phases of the Saudi Adoption Roadmap, ensuring all components are properly addressed.

TABLE V. HOLISTIC INTEGRATION STRATEGY FOR QUANTUM-SMART CITY MAPPED TO THE SAUDI ADOPTION ROADMAP

Layer	Smart City Component	Quantum Computing Component	Saudi Roadmap Phase
1. Physical Infrastructure	Roads, buildings, transport systems, and energy grids.	Quantum hardware environments (cryogenics, superconducting circuits).	Phase I: QaaS access, feasibility studies.

2. Sensor & IoT Layer	Real-time data from traffic, environment, and public safety.	Quantum sensors for ultra-precise measurements.	Phase I-II: Research partnerships, pilot deployments.
3. Network & Connectivity	5G, fiber optics, and edge/cloud infrastructure.	Quantum communication channels (QKD, entanglement networks).	Phase III: Municipal QKD pilots, infrastructure planning.
4. Data Management Layer	Urban digital twins, data lakes, and analytics platforms.	Quantum simulation engines, quantum-enhanced data processing.	Phase II: Middleware integration, QDT pilots.
5. Urban AI & Decision Systems	Predictive analytics, autonomous agents.	Quantum machine learning (QML) and quantum reinforcement learning (QRL).	Phase II: Deploy QML/QRL in traffic, energy, and emergency systems.
6. Service Orchestration	Intelligent service delivery, multi-agent coordination.	Quantum algorithms (QAOA, QML, QRL) for optimization and autonomy.	Phase II: Hybrid deployments in traffic, energy, and logistics.
7. Resilience & Simulation	Climate modeling, disaster response planning.	Quantum simulation for multivariable urban systems.	Phase II-III: QDTs for resilience planning.
8. Digital Identity & Trust	Identity management, authentication, and trust frameworks.	Quantum-resistant protocols, zero-knowledge proofs.	Phase III: PQC integration, quantum trust models.
9. Governance & Security	Policy, privacy, cybersecurity, ethical oversight.	PQC, quantum-safe protocols, ethical governance.	Phase III: National policy, PQC rollout, ethics board.
10. Ethics & Regulatory Layer	Data governance, algorithmic transparency, citizen rights.	Quantum ethics frameworks, algorithmic accountability.	Phase III: Ethics board, global standards alignment.
11. Talent & Innovation Ecosystem	Education, R&D, startups, and academic partnerships.	Quantum education programs, research centers, and innovation clusters.	Phase I-III: Talent Initiative, regional innovation hubs.

Fig. 6 shows the sequential integration of quantum computing capabilities with smart city elements in Saudi Arabia's national roadmap. A specific quantum technology and deployment stage align with every urban domain, from infrastructure and IoT to governance and innovation. The central roadmap column guides the sequence from fundamental exploration (Phase I) to hybrid integration (Phase II) and governance maturity (Phase III).

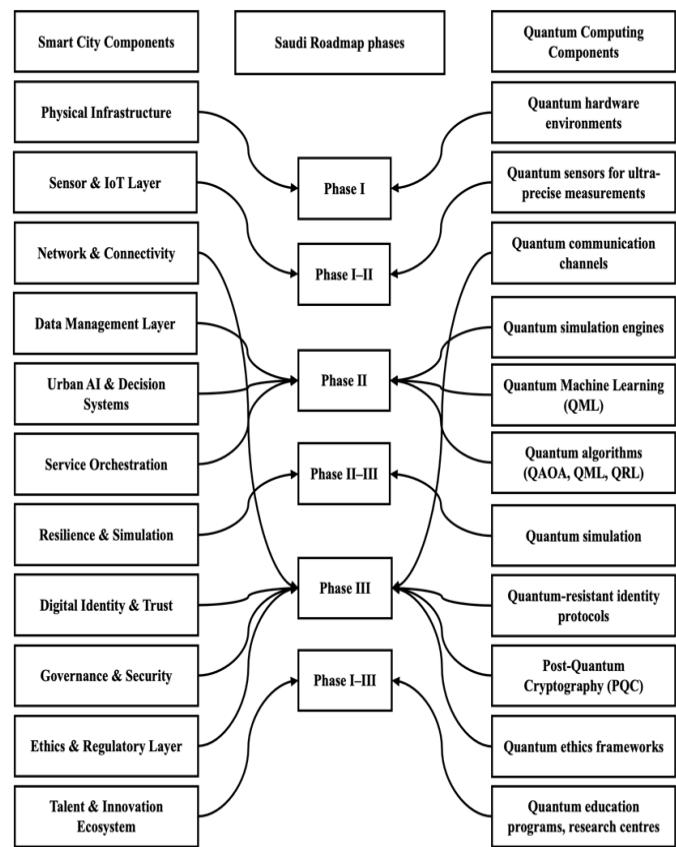


Fig. 6. Holistic integration strategy for a quantum-smart city mapped to the Saudi adoption roadmap.

F. Hybrid Quantum-Classical Software Architecture (HQCA)

The Hybrid Quantum-Classical Software Architecture (HQCA) offers a secure, closed-loop operational framework for integrating specialized quantum computing resources into the Smart City technology stack. HQCA is engineered to solve computationally intractable optimization kernels recognized by traditional modeling engines, ensuring that quantum resources are utilized judiciously—exclusively in areas where they provide a true computational benefit—whereas the classical infrastructure handles most of the sensing, modeling, and control tasks. The design is systematically organized into three interrelated zones: the Classical Smart City Stack, the Hybrid Orchestration Layer, and the Quantum Computing Stack.

1) *Classical smart city stack: data ingestion and control:* Based on high-performance computing (HPC) and graphics processing unit (GPU) acceleration, this zone represents the traditional software environment of smart cities. It comprises five layers:

- Layer 1: Data, Sensing, and Streaming. Stream-processing engines, such as Kafka and Spark, ingest real-time data from IoT sensors, edge gateways, and infrastructure via stream-processing engines (e.g., Kafka and Spark). Data integrity is verified using blockchain or Distributed Ledger Technologies (DLT).

- Layer 2: Context and Modeling (Urban Digital Twin). The Urban Digital Twin (UDT) maintains a high-fidelity real-time model of the city. Classical AI/ML engines perform predictive modeling and anomaly detection, supported by Explainable Artificial Intelligence (XAI) components to ensure transparency. The UDT identifies optimization kernels, such as traffic scheduling and energy balancing, which require quantum acceleration.
- Layer 3: Classical Pre-Processing. HPC/GPU resources are used to clean, normalize, and reduce problem data (e.g., via Principal Component Analysis) and prepare them for quantum translation.
- Layer 4: Classical Post-Processing. The raw quantum outputs are validated and converted into actionable, classical commands.
- Layer 5: Infrastructure Control. City control systems (e.g., SCADA, Traffic Management System (TMS), and Distribution Management System (DMS)) execute optimized commands and provide feedback to the sensing layer, completing the operational cycle.

2) *Hybrid orchestration layer: The Secure, Iterative Bridge*

This middleware layer enables seamless, secure, and low-latency interactions between classical and quantum domains. It includes:

- Problem Abstraction and Software Toolchain. A Quantum Software Development Kit (SDK) and compiler suite translate classical optimization problems into quantum-native formats (e.g., QUBO and Ising). A quantum kernel generator encodes classical data into quantum states for quantum machine learning (QML) tasks.
- Resource Management and Execution Control. Jobs are directed to the optimal backend, that is, quantum-as-a-service (QaaS) or sovereign QC hardware, through a low-latency interconnect. The orchestration layer manages job queues and execution scheduling and incorporates a Quantum Error Mitigation (QEM) module to enhance the result fidelity.
- Security Gateway. Post-Quantum Cryptography (PQC) secures data in transit, whereas Quantum Key Distribution (QKD) ensures ultra-secure communication across the classical-quantum interface.
- Quantum Computing Stack: Specialized Acceleration and Solution Output
- This zone functions as a dedicated accelerator that solves the optimization kernels identified by UDT. It includes:
- Execution Backend. Quantum solvers (e.g., annealers, gate-based systems) execute algorithms such as QAOA, QML, and QRL. A hardware-specific transpiler optimizes quantum circuits for physical qubit topologies.
- Physical Control Interface. Qubit control electronics and cryogenics handle basic tasks by changing logical gates into microwave pulses and laser controls.

- Solution Output and Validation. The quantum system produces an optimal bit string that represents resource assignments or scheduling variables. These results are securely transmitted back to the classical stack, where they are validated and refined through iterative feedback until convergence is achieved. The final outputs were translated into actionable infrastructure commands, closing the loop via the sensing layer.

3) *HQCA operational flow:* Fig. 7 presents a modular three-layer architecture designed to integrate quantum computing into smart city operations. The system comprises the following components:

- Layer 1: Classical SmartCity Stack. Responsible for data ingestion, modeling, and control, this layer includes IoT-based edge processing, blockchain-secured data streams, and Urban Digital Twin (UDT) platforms powered by classical AI/ML engines. HPC/GPU accelerators handle the initial data processing, whereas post-processing modules check the results from quantum computing and convert them into useful information for smart city services, such as improving traffic flow and managing infrastructure.
- Layer 2: Hybrid Orchestration Layer. Serving as an intelligent bridge, this layer manages problem decomposition, algorithm selection (e.g., QAOA and VQE), and resource allocation across quantum and classical domains. It includes a quantum software development kit/compiler suite, real-time pre/post-processing accelerators, and a secure job submission system. The Physical Control Electronics interface directly with the quantum hardware, whereas the Security Gateway ensures encrypted communication via PQC and QKD protocols.
- Layer 3: Quantum Computing Software Stack. This layer functions as a dedicated accelerator for solving intractable computational issues. It includes quantum solvers (annealers and gate-based systems), execution-dispatch modules, and hardware-specific transpilers. The red dashed feedback loop illustrates the iterative optimization process typical of Variational Quantum Algorithms (VQAs), where quantum outputs are measured, refined, and re-executed until convergence is achieved.

Together, these layers form a secure closed-loop system capable of translating complex urban challenges into quantum-native formats, executing them on specialized hardware, and reintegrating optimized solutions into real-world Smart City operations.

4) *Clarifying the quantum-classical divide and the HQCA role:* To ensure technical clarity and address the potential overstatement of near-term relevance, it is crucial to explicitly distinguish between genuinely quantum-accelerated methods and quantum-inspired classical techniques within the HQCA framework:

- **Genuine Quantum Acceleration:** This refers exclusively to algorithms (e.g., QAOA, VQE, HHL) executed on a dedicated Quantum Processing Unit (QPU) that leverage superposition and entanglement. These methods offer the potential for exponential or polynomial speedups over the best-known classical algorithms for specific problem classes. Our long-term strategic goal (Phase III) is predicated on this capability.
- **Quantum-Inspired Techniques:** These are classical, hardware-accelerated optimization and simulation algorithms (e.g., Digital Annealing (DA), Simulated

Annealing, and coherence-based methods) that are inspired by quantum principles but run entirely on conventional or specialized classical hardware (like FPGAs or specialized CMOS). While highly effective for near-term NP-hard optimization, they are not quantum computing. The HQCA explicitly allows for the incorporation of quantum-inspired algorithms in the initial phases (Readiness/Pilot) to build computational maturity and realize immediate-term optimization gains, thereby serving as a critical bridge and an essential component of the classical side of the hybrid architecture.

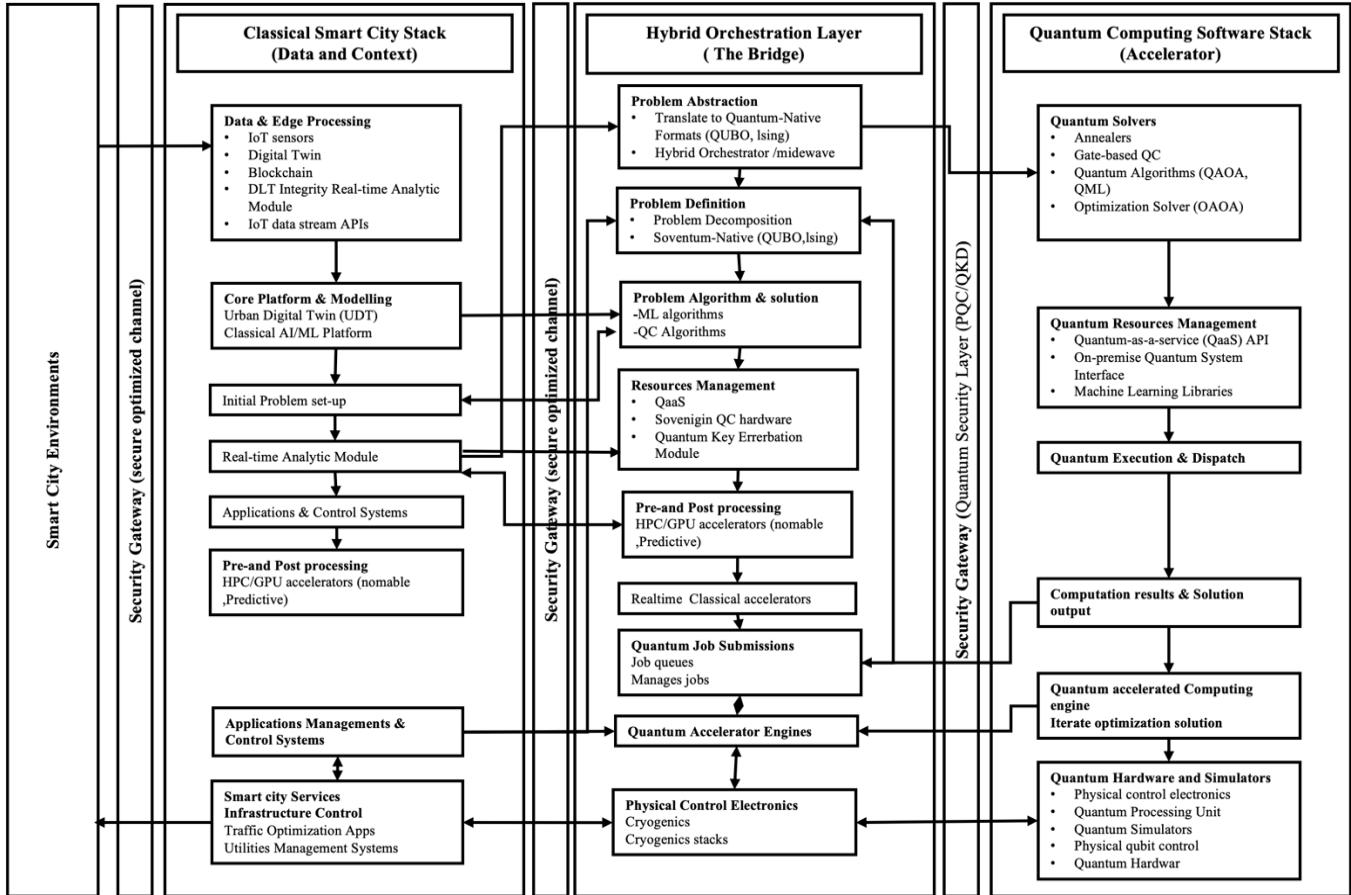


Fig. 7. Hybrid Quantum-Classical Architecture for smart city optimization.

G. Benefits and Challenges of QC Adoption in Smart Cities

Quantum computing presents a fundamentally different computational paradigm that offers significant benefits for smart cities in terms of optimization, simulation, cybersecurity, and strategic competitiveness. Its ability to address large-scale combinatorial problems facilitates exceptional performance in areas such as traffic management, logistics, and resource distribution. Quantum algorithms, particularly those tailored for near-optimal real-time decision-making, surpass conventional systems in urban mobility and energy balance, where complexity and latency are significant limitations.

In simulations, quantum methods offer high-fidelity modeling of intricate urban systems, encompassing climate dynamics, infrastructure stress testing, and materials science for

sustainable construction. These capabilities boost planning accuracy and resilience, especially in megaprojects such as NEOM and The Line. Quantum technologies enhance cybersecurity. Quantum-safe cryptography and Quantum Key Distribution (QKD) provide robust protection for critical infrastructure, IoT networks, and municipal data systems, reducing their vulnerability to quantum-enabled attacks.

Quantum optimization enhances energy systems by augmenting smart grid efficiency and optimizing the incorporation of renewable sources such as solar and wind. This aligns with the sustainability objectives of Saudi Arabia outlined in Vision 2030. The strategic deployment of quantum technology has established the kingdom as a regional leader in innovation. By aligning quantum projects with national

priorities, Saudi Arabia may attract international investment, expertise, and collaborations, thereby enhancing its competitive advantage.

Despite its potential, quantum computing faces several challenges in smart-city environments. Technologically, quantum hardware functions inside the Noisy Intermediate-Scale Quantum (NISQ) era, which is defined by constrained qubit numbers and vulnerability to decoherence. Fault-tolerant systems are several years away from realization. The worldwide shortage of quantum scientists, engineers, and programmers further limits adoption, particularly in emerging ecosystems such as Saudi Arabia.

Cost and accessibility are also major hurdles. Quantum hardware is costly and is generally accessed through cloud services, which constrain experimentation and implementation. Establishing a definitive return on investment (ROI) for early-stage pilot projects remains challenging. The development of algorithms is complicated, necessitating specific knowledge to transform classical issues into quantum-native representations of the problem.

Integrating current Smart City platforms, such as Urban Digital Twins (UDTs), sensor networks, and control systems, necessitates the development of new middleware, standards, and hybrid quantum-classical architectures (HQCA). Concerns regarding governance and security continue to revolve around data privacy, regulatory frameworks, and secure communications. Financial and infrastructure costs, including chilled environments and quantum-safe channels, add further complications. Table VI summarizes the benefits and challenges of adopting quantum computing in smart cities.

TABLE VI. SUMMARY OF BENEFITS AND CHALLENGES OF QC ADOPTION IN SMART CITIES

Benefits	Challenges
• Superior optimization.	• Technological maturity (NISQ era).
• Advanced simulation fidelity.	• Talent shortage in quantum fields.
• Enhanced cybersecurity (QKD, PQC).	• High cost and limited hardware accessibility.
• Smart grid energy efficiency.	• Algorithmic complexity and reformulation.
• Strategic competitiveness (Vision 2030).	• Integration complexity with legacy systems.
• Real-time resource allocation.	• Governance, privacy, and regulatory concerns.
• Climate and infrastructure modelling.	• Financial and ROI uncertainty.

V. DISCUSSION

The shift to quantum-ready smart cities in Saudi Arabia is not simply a technology enhancement; it is a strategic cornerstone of the Kingdom's economic diversification initiative under Vision 2030. As urban systems become more intricate and data-driven, traditional computational architectures encounter constraints in addressing large-scale optimization, simulation, and security problems. Quantum computing (QC), which leverages superposition and entanglement, presents a transformative solution to these challenges [4], [5].

Saudi Arabia's most significant megaprojects, NEOM, The Line, and the Red Sea Project, offer greenfield potential for the integration of quantum capabilities from the outset. These projects are intended to function at an unprecedented scale and complexity, necessitating computing systems that surpass classic thresholds [12], [59]. The aspiration to create cognitive cities characterized by real-time responsiveness and predictive intelligence immediately corresponds to the capabilities of quantum-enhanced optimization and simulation [10].

The establishment of a quantum-ready smart city is not merely a singular technology implementation but rather a whole, interconnected ecosystem propelled by strategic coherence and continuous advancement. As illustrated in Fig. 8, the central goal of achieving a quantum-ready smart city, a core pillar of the Saudi Vision 2030 megaprojects, is supported by several critical and interdependent components.

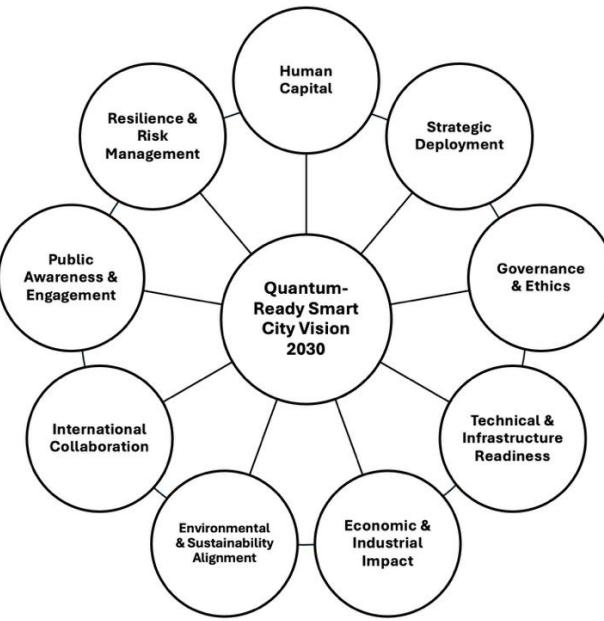


Fig. 8. Interconnected ecosystem of a quantum-ready smart city.

These range from foundational efforts, such as cultivating human capital and establishing robust technical and infrastructure readiness, to strategic oversight elements, such as governance, ethics, and international collaboration. The framework's arrows demonstrate the interconnectedness of these dimensions, establishing crucial feedback loops. Successful strategic deployment influences the economic impact, supported by continuous resilience and risk management, thereby ensuring a secure and sustainable transition that aligns with national environmental and economic objectives.

A. Human Capital as the Strategic Bottleneck

Despite substantial government investment capabilities, the foremost challenge is human capital. The acknowledged global deficiency of quantum-fluent engineers and scientists necessitates that Saudi Arabia swiftly develops a homegrown talent pool. This includes the initiation of the Quantum Talent Initiative, modification of university curricula to incorporate Quantum Information Science (QIS), and the establishment of

collaborative research centers with international quantum leaders [21]. The localization of quantum education through Arabic-language resources is crucial for guaranteeing accessibility and long-term sustainability [22].

B. Strategic Deployment and Intermediate Steps

Considering the existing limitations of quantum technology in the Noisy Intermediate-Scale Quantum (NISQ) era, Saudi Arabia should implement a gradual deployment approach. In the short term, utilizing quantum-as-a-service (QaaS) platforms through cloud access facilitates experimentation without infrastructure overheads. The Kingdom should simultaneously invest in hybrid quantum-classical algorithms designed for urban optimization challenges, middleware for Urban Digital Twin (UDT) integration, and pilot initiatives in areas where quantum advantage is anticipated [20].

Energy grid optimization is a promising area in which quantum algorithms have demonstrated efficacy in unit commitment and load balancing [60]. Quantum annealing has been employed to enhance traffic signal optimization in Sendai, Japan, and to improve port logistics in Hamburg, Germany [61], [62]. Secure communications provide a strategic opportunity, as demonstrated by the Quantum Key Distribution (QKD) pilots in [63], which serve as examples of protecting municipal networks. These fields provide quantifiable benefits and evident Return on Investment (ROI), facilitating the justification of long-term R&D commitments and infrastructure investments.

C. Governance, Ethics, and Strategic Alignment

Quantum deployment requires guidance through coordinated governance frameworks that synchronize cross-agency agendas and guarantee ethical and secure implementation. The World Economic Forum [64] emphasizes the significance of ethical governance, transparency, and stakeholder engagement in quantum innovation. Saudi Arabia should formulate a national quantum policy, create a Quantum Ethics Board, enforce PQC compliance in IoT and blockchain systems, and engage with international standards organizations such as the ISO/IEC and ETSI [18].

D. Technical and Infrastructure Readiness

The adoption of quantum computing depends on the advancement of hardware and software systems. Saudi Arabia must assess its readiness to meet various technical requirements. Initially, it is essential to develop hardware infrastructure, including cryogenic environments, quantum laboratories, and secure data centers capable of accommodating quantum processors or interfacing with cloud-based quantum-as-a-service (QaaS) platforms [60]. Second, middleware and integration layers must be created to convert smart city variables into quantum-compatible representations, including QUBO and Hamiltonians [20]. Third, interoperability with current urban platforms must be guaranteed via standardized APIs and modular architecture to facilitate easy integration with digital twins, IoT networks, and AI systems [18].

E. Economic and Industrial Impact

The adoption of quantum technology may anticipate a sectoral revolution in industries such as logistics, energy, construction, and cybersecurity, which will benefit from

quantum-enhanced modeling and optimization. To facilitate this shift, Saudi Arabia should encourage quantum startups, incubators, and collaborations with international entities to expedite the development of its domestic capabilities [21]. Moreover, quantum-related roles, which vary from algorithm development to hardware engineering, facilitate the objectives of Vision 2030 concerning advanced employment and less reliance on oil [59].

F. Environmental and Sustainability Alignment

Quantum computing supports Saudi Arabia's climate initiatives and sustainability goals through various channels. Quantum algorithms can enhance smart grid operations, minimize energy waste, and facilitate the integration of renewable sources such as solar and wind [16]. High-fidelity quantum simulations facilitate predictive planning for climate resilience, water management, and infrastructure stress testing [10]. Moreover, quantum-enhanced materials science may accelerate the advancement of sustainable construction materials and energy-storage technologies, fostering low-carbon innovations.

G. Ethical, Legal, and Cultural Dimensions

In addition to governance, more profound ethical and cultural considerations require further attention. Data sovereignty is essential for ensuring that quantum data processing meets national privacy regulations and upholds citizens' rights. Cultural localization is crucial, necessitating the adaptation of quantum education, interfaces, and policy frameworks to align with Saudi cultural norms and language [22]. Saudi Arabia must engage in international quantum ethics discussions to influence the standards of transparency, accountability, and equal access [64].

H. International Collaboration and Geopolitical Positioning

Quantum technologies are becoming essential resources for global innovation and security purposes. Saudi Arabia's engagement in global quantum research collaborations, standards organizations, and bilateral partnerships may accelerate knowledge transfer and access to advanced quantum computing platforms. This position allows the Kingdom to serve as a regional leader in quantum diplomacy and reduces the risk of technological isolation by conforming to global standards and protocols [64].

I. Public Awareness and Citizen Engagement

Quantum computing is complex and is frequently misinterpreted. Public trust and comprehension are important for the successful implementation of smart cities in the GCC. Saudi Arabia should initiate public education campaigns to elucidate quantum technology and advocate citizen-oriented applications such as secure identity management and traffic optimization to showcase concrete advantages. Transparency in data utilization, particularly in quantum-enhanced surveillance or decision-making systems, will cultivate a culture of informed participation and diminish opposition to technology development.

J. Resilience and Risk Management

Quantum systems present novel operational concerns that require proactive management. Hardware fragility is a

significant issue because qubits are susceptible to noise, temperature fluctuations, and electromagnetic interference. Transition risks in cybersecurity emerge during the migration to post-quantum cryptography (PQC) and quantum key distribution (QKD), necessitating meticulous phasing to prevent these vulnerabilities. Moreover, quantum hardware frequently depends on specialized components and global suppliers, resulting in supply chain dependencies. Saudi Arabia must formulate contingency plans, establish redundancy mechanisms, and conduct risk audits to guarantee resilience in quantum-enabled infrastructure (QEI) systems.

VI. CONCLUSION AND FUTURE RESEARCH

As cities worldwide pursue unprecedented levels of efficiency, resilience, and sustainability, Saudi Arabia's Vision 2030 megaprojects, such as NEOM, The Line, and the Red Sea Project, are at the forefront of this transformation. These projects are large and ambitious, and they aim to develop cities from the ground up that are both smart and carbon-free. However, the computational demands of these environments, particularly when solving NP-hard issues related to energy management, traffic routing, and Urban Digital Twin (UDT) simulation, are rapidly outpacing the capabilities of classical systems. Heuristic approximations and traditional algorithms fall short of delivering real-time, scalable solutions, which could put advanced urban designs at risk in the long run.

This study establishes Quantum Computing (QC) as a fundamental technology for next-generation smart cities. QC is not just a future upgrade, but a strategic necessity that enables the development of hyper-efficient urban intelligence systems by overcoming classical bottlenecks. This study's core contribution is the establishment of the Hybrid Quantum-Classical Architecture (HQCA) and a methodologically grounded strategic roadmap, which together serve as the foundational blueprint for this transition. Two key contributions support this proposition: First, mapping core Smart City challenges to quantum algorithmic strengths: energy grid load balancing aligns with QAOA and VQE, dynamic traffic routing with quantum annealing, and UDT simulation with quantum machine learning. These mappings provide a clear technical rationale for the targeted deployment of quantum technologies. Second, this study proposes a phased adoption framework tailored to Saudi Arabia's strategic context. The framework is grounded in four pillars: talent development, infrastructure readiness, governance and ethics, and targeted pilots. The roadmap offers a structured pathway for embedding QC into the national innovation ecosystem in the next decade.

Several research directions are critical for realizing the full potential of quantum-accelerated smart cities (QASCs), building directly upon the strategic framework proposed here. Specifically addressing the need for evidence-based analysis, the immediate technical priorities are defined in two key areas. The first is formal problem formulation, which involves developing precise mathematical (e.g., QUBO or Hamiltonian) formulations for the key urban optimization problems identified (e.g., large-scale dynamic vehicle routing and real-time energy dispatch). This transition from problem class to formal quantum-compatible model is the essential next technical step. The second is Initial Benchmarking and Comparative Studies, where

empirical benchmarking of hybrid quantum-classical algorithms must evaluate the performance of these models against state-of-the-art classical supercomputing solutions using realistic urban datasets, such as traffic networks with millions of nodes and energy grids with thousands of dynamic variables.

These benchmarks will endorse quantum advantage claims and guide the selection of algorithms for deployment in the future. Another area of focus is the mitigation of decoherence in quantum systems that operate in Internet of Things (IoT)-rich environments. Devices from the NISQ era are highly sensitive to noise, and urban sensor networks generate vast and volatile data streams. A robust middleware that can manage these interactions while preserving fidelity and minimizing latency is essential for the practical integration of these technologies.

Future research should investigate the socioeconomic aspects of quantum computing adoption. In addition to computational measures, it is essential to evaluate the comprehensive return on investment (ROI), which encompasses the effects on the quality of life, environmental sustainability, and long-term infrastructure expenses. Measuring these advantages will facilitate the justification of ongoing investments and connect quantum activities to national development objectives. Strategically addressing these difficulties will position Saudi Arabia to surpass traditional computational paradigms and establish itself as a global leader in quantum-enhanced urban innovation.

REFERENCES

- [1] S. E. Bibri and J. Krogstie, "The emerging data–driven Smart City and its innovative applied solutions for sustainability: the cases of London and Barcelona," 2020. doi: 10.1186/s42162-020-00108-6.
- [2] M. Batty et al., "Smart cities of the future," 2012. doi: 10.1140/epjst/e2012-01703-3.
- [3] V. Albino, U. Berardi, and R. M. Dangelico, "Smart cities: Definitions, dimensions, performance, and initiatives," *Journal of Urban Technology*, vol. 22, no. 1, pp. 3–21, 2015, doi: 10.1080/10630732.2014.942092.
- [4] J. Preskill, "Quantum computing in the NISQ era and beyond," 2018. doi: 10.22331/q-2018-08-06-79.
- [5] A. K. B. R. et al. Arute F., "Quantum supremacy using a programmable superconducting processor. *Nature* 574, 505–510 (2019)," *Nature*, vol. 574, no. August, pp. 505–510, 2019.
- [6] E. Farhi, J. Goldstone, and S. Gutmann, "A Quantum Approximate Optimization Algorithm. arXiv e-prints, Article," arXiv preprint arXiv:1411.4028, 2014, [Online]. Available: <http://arxiv.org/abs/1411.4028>
- [7] M. Schuld and F. Petruccione, "Supervised Learning with Quantum Computers," *Quantum Sci Technol*, vol. 17, p. 287, 2019, [Online]. Available: <https://link.springer.com/10.1007/978-3-030-83098-4%0Ahttps://link.springer.com/content/pdf/10.1007/978-3-319-96424-9.pdf%0Ahttp://www.worldcat.org/oclc/1076208411>
- [8] A. Montanaro, "Quantum algorithms: an overview," *npj Quantum Inf*, vol. 2, no. 1, pp. 1–8, 2016.
- [9] T. McCausland, "Digital Twins," 2021, Sage Publications Sage UK: London, England. doi: 10.1080/08956308.2022.1999637.
- [10] A. Bashirpour Bonab, M. Fedele, V. Formisano, and I. Rudko, "Quantum Technologies for Smart Cities: A Comprehensive Review and Analysis," 2022. doi: 10.2139/ssm.4231189.
- [11] A. EL Azzaoui, T. Arif, H. Park, H. Chen, D. Camacho, and J. H. Park, "A Comprehensive Study on Quantum Computing Technologies in Smart City: Review and Future Directions," *Human-centric Computing and Information Sciences*, vol. 14, p. 65, 2024, doi: 10.22967/HCIS.2024.14.064.

[12] NEOM, "Reimagining Urban Living," NEOM. Accessed: Oct. 21, 2025. [Online]. Available: <https://www.neom.com/en-us>

[13] Conure, "Top 5 Quantum Computing Applications in Smart City Planning," Conure. Accessed: Oct. 21, 2025. [Online]. Available: <https://www.conurets.com/top-5-quantum-computing-applications-in-smart-city-planning>

[14] D. Venturelli, S. Mandrà, S. Knysh, B. O'Gorman, R. Biswas, and V. Smelyanskiy, "Quantum optimization of fully connected spin glasses," 2015. doi: 10.1103/PhysRevX.5.031040.

[15] J. Alcock and S. Zhang, "Quantum machine learning," *Natl Sci Rev*, vol. 6, no. 1, pp. 26–28, 2019, doi: 10.1093/nsr/nwy149.

[16] I. M. Georgescu, S. Ashhab, and F. Nori, "Quantum simulation," 2014. doi: 10.1103/RevModPhys.86.153.

[17] M. Mosca, "Cybersecurity in an era with quantum computers: Will we be ready?," *IEEE Secur Priv*, vol. 16, no. 5, pp. 38–41, 2018, doi: 10.1109/MSP.2018.3761723.

[18] V. S. Barletta, D. Caivano, A. Lako, and A. Pal, "Quantum as a Service Architecture for Security in a Smart City," 2023, Springer. doi: 10.1007/978-3-031-43703-8_6.

[19] K. Bhartia et al., "Noisy intermediate-scale quantum algorithms," *Rev Mod Phys*, vol. 94, no. 1, p. 15004, Feb. 2022, doi: 10.1103/RevModPhys.94.015004.

[20] A. A. Khan et al., "Software architecture for quantum computing systems — A systematic review," *Journal of Systems and Software*, vol. 201, p. 111682, 2023, doi: 10.1016/j.jss.2023.111682.

[21] C4IR, "Quantum Economy Landscape in Saudi Arabia. [pdf] Centre for the Fourth Industrial Revolution," C4IR Saudi Arabia. Accessed: Oct. 21, 2025. [Online]. Available: [https://www.c4irsaudiarabia.org/docs/Quantum%20Economy%20Landscape%20in%20Saudi%20Arabia%20\(23\).pdf](https://www.c4irsaudiarabia.org/docs/Quantum%20Economy%20Landscape%20in%20Saudi%20Arabia%20(23).pdf)

[22] M. Swayne, "Saudi Arabia Lays Out Its Strategic Vision For The Quantum Era," The Quantum Insider. Accessed: Oct. 21, 2025. [Online]. Available: <https://thequantuminsider.com/2025/01/06/saudi-arabia-lays-out-its-strategic-vision-for-the-quantum-era>

[23] H. Hussain, M. Bin Javaid, F. S. Khan, A. Dalal, and A. Khalique, "Optimal control of traffic signals using quantum annealing," *Quantum Inf Process*, vol. 19, no. 9, 2020.

[24] R. Shikanai, M. Ohzeki, and K. Tanaka, "Quadratic Unconstrained Binary Formulation for Traffic Signal Optimization on Real-World Maps," *J Physical Soc Japan*, vol. 94, no. 2, p. 24001, Jan. 2025, doi: 10.7566/JPSJ.94.024001.

[25] F. Neukart, G. Compostella, C. Seidel, D. Von Dollen, S. Yarkoni, and B. Parney, "Traffic flow optimization using a quantum annealer," *Frontiers in ICT*, vol. 4, p. 29, 2017.

[26] H. Min, "Developing a smart port architecture and essential elements in the era of Industry 4.0," *Maritime Economics & Logistics*, vol. 24, no. 2, pp. 189–207, 2022, doi: 10.1057/s41278-022-00211-3.

[27] A. Ciacco, F. Guerriero, and G. Macrina, "Review of quantum algorithms for medicine, finance and logistics," *Soft comput*, vol. 29, no. 4, pp. 2129–2170, 2025, doi: 10.1007/s00500-025-10540-z.

[28] S. Vijayalakshmi, S. Dahiya, and S. P. Gayathri, "Smart Intelligence Aided Power and Energy Management BT - Smart Power Systems: Grid Modernization Using AI and IoT-Based Applications," S. Vijayalakshmi, L. J. L. Jacob, S. Dahiya, and R. Gunavathi, Eds., Cham: Springer Nature Switzerland, 2025, pp. 185–196. doi: 10.1007/978-3-031-89459-6_10.

[29] Y. Hirayama, "Diversity of Hybrid Quantum Systems," in *Quantum Hybrid Electronics and Materials*, Springer, 2022, pp. 1–14. doi: 10.1007/978-981-19-1201-6_1.

[30] J. Bandopadhyay and P. K. Roy, "Implementation of a novel enhanced hybrid multi-objective osprey optimization algorithm for off-grid hybrid system sizing," *Evol Intell*, vol. 18, no. 5, p. 103, 2025, doi: 10.1007/s12065-025-01083-1.

[31] Claudio. Conti, Quantum machine learning : thinking and exploration in neural network models for quantum science and quantum computing Springer Nature, 2024.

[32] M. A. Rivera-Ruiz, A. Mendez-Vazquez, and J. M. López-Romero, "Time Series Forecasting with Quantum Machine Learning Architectures BT - Advances in Computational Intelligence," O. Pichardo Lagunas, J. Martínez-Miranda, and B. Martínez Seis, Eds., Cham: Springer Nature Switzerland, 2022, pp. 66–82.

[33] K. Kang, M. M. Y. Kuo, and W. Li, "STMMoE: A Spatio-Temporal Multimodal Mixture-of-Experts Model for Urban Traffic Prediction BT - Knowledge Management and Acquisition for Intelligent Systems," S. Wu, W. Li, X. Xu, and Y. Liu, Eds., Singapore: Springer Nature Singapore, 2025, pp. 49–64.

[34] J. Brence, D. Mihailović, V. V Kabanov, L. Todorovski, S. Džeroski, and J. Vodeb, "Boosting the performance of quantum annealers using machine learning," *Quantum Mach Intell*, vol. 5, no. 1, p. 4, 2023, doi: 10.1007/s42484-022-00092-y.

[35] B. Tasseff et al., "On the emerging potential of quantum annealing hardware for combinatorial optimization," *Journal of Heuristics*, vol. 30, no. 5, pp. 325–358, 2024, doi: 10.1007/s10732-024-09530-5.

[36] K. Sarker, "Harnessing Quantum Computing and AI for Enhanced Optimization in Renewable Energy-Driven Smart Grid Systems," *Iranian Journal of Science and Technology, Transactions of Electrical Engineering*, 2025, doi: 10.1007/s40998-025-00943-x.

[37] J. Blenninger et al., "Q-GRID: Quantum Optimization for the Future Energy Grid," *KI - Künstliche Intelligenz*, vol. 38, no. 4, pp. 339–349, 2024, doi: 10.1007/s13218-024-00866-5.

[38] I. Priyadarshini, "Swarm-intelligence-based quantum-inspired optimization techniques for enhancing algorithmic efficiency and empirical assessment," *Quantum Mach Intell*, vol. 6, no. 2, p. 69, 2024, doi: 10.1007/s42484-024-00201-z.

[39] E. Soleimanian, A. Afshar, A. Molajou, and M. Ghasemi, "Development of a Comprehensive Water Simulation Model for Water, Food, and Energy Nexus Analysis in Basin Scale," *Water Resources Management*, vol. 37, no. 12, pp. 4589–4621, 2023, doi: 10.1007/s11269-023-03558-1.

[40] A. Wicaksono, G. Jeong, and D. Kang, "WEFSiM: A Model for Water-Energy-Food Nexus Simulation and Optimization BT - Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability," V. Naddeo, M. Balakrishnan, and K.-H. Choo, Eds., Cham: Springer International Publishing, 2020, pp. 55–58.

[41] V. Naddeo, K.-H. Choo, and M. Ksibi, Water-Energy-Nexus in the Ecological Transition: Natural-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability. Springer, 2022. [Online]. Available: <https://doi.org/10.1007/978-3-031-00808-5>

[42] F. Barrett-danes and F. Ahmad, "Quantum computing and cybersecurity: a rigorous systematic review of emerging threats, post-quantum solutions, and research directions (2019–2024)," *Discover Applied Sciences*, vol. 7, no. 10, p. 1083, 2025, doi: 10.1007/s42452-025-07322-5.

[43] M. Singh, S. K. Sood, and M. Bhatia, "Post-quantum Cryptography: A Review on Cryptographic Solutions for the Era of Quantum Computing" *Archives of Computational Methods in Engineering*, 2025, doi: 10.1007/s11831-025-10412-7.

[44] K. S. Rawat, P. Patel, and T. Sharma, "Heart diseases prediction system using quantum technology," *Network Modeling Analysis in Health Informatics and Bioinformatics*, vol. 14, no. 1, p. 123, 2025, doi: 10.1007/s13721-025-00623-0.

[45] V. K. Bukkaryasamudram et al., "Quantum computing revolution in healthcare: a systematic review of applications, issues and future directions," *Artif Intell Rev*, vol. 58, no. 12, p. 389, 2025, doi: 10.1007/s10462-025-11381-w.

[46] K. R. Bissett, J. Cadena, M. Khan, and C. J. Kuhlman, "Agent-Based Computational Epidemiological Modeling," *J Indian Inst Sci*, vol. 101, no. 3, pp. 303–327, 2021, doi: 10.1007/s41745-021-00260-2.

[47] P. B. Upama et al., "Quantum Machine Learning in Disease Detection and Prediction: a survey of applications and future possibilities," in 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC), 2023, pp. 1545–1551. doi: 10.1109/COMPSAC57700.2023.00238.

[48] S. S. Bhoi, A. Saini, A. Diro, S. Kaisar, and A. Rao, "Future Digital Identity Management with Quantum Secure Blockchain," *IEEE Communications Surveys & Tutorials*, p. 1, 2025, doi: 10.1109/COMST.2025.3608794.

[49] Z.-Z. Sun et al., "Quantum Blockchain Relying on Quantum Secure Direct Communication Network," *IEEE Internet Things J*, vol. 12, no. 10, pp. 14375–14385, 2025, doi: 10.1109/JIOT.2025.3526443.

[50] P. Chandre, H. Hingoliwala, A. Uttarkar, B. D. Shendkar, D. Lokare, and P. Sontakke, "Post-Quantum Cryptography: Securing Critical Infrastructure Against Emerging Quantum Threats," in 2024 IEEE 4th International Conference on ICT in Business Industry & Government (ICTBIG), 2024, pp. 1–7, doi: 10.1109/ICTBIG64922.2024.10911612.

[51] H. Zhang, K. Zhang, D. Rios Insua, and M. Gen, "Multi-objective capacitated location-routing problems with stochastic demands and time windows with applications to household solid waste management," *Fuzzy Optimization and Decision Making*, 2025, doi: 10.1007/s10700-025-09465-x.

[52] V. B. Pusuluri, M. J. Motam, P. V. R. Jitendra, P. Vetsa, and M. S. S. Vasana, "Shaping the Future of Logistics: Quantum-Inspired Optimization for Autonomous Deliveries," in 2025 6th International Conference on Control, Communication and Computing (ICCC), 2025, pp. 1–6, doi: 10.1109/ICCC64910.2025.11077310.

[53] Hariyanto, F. X. D. Kristianingsih, and R. Maharani, "Artificial intelligence in adaptive education: a systematic review of techniques for personalized learning," *Discover Education*, vol. 4, no. 1, p. 458, 2025, doi: 10.1007/s44217-025-00908-6.

[54] P. Lamichhane and D. B. Rawat, "Quantum Machine Learning: Recent Advances, Challenges, and Perspectives," *IEEE Access*, vol. 13, pp. 94057–94105, 2025, doi: 10.1109/ACCESS.2025.3573244.

[55] D. M. Braga and B. S. Rawal, "Quantum and AI-Enhanced Digital Twin Systems," in 2024 15th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2024, 2024, pp. 1–8, doi: 10.1109/ICCCNT61001.2024.10724642.

[56] A. Cheshmehzangi, "Living Models: Digital Twins for Climate-Responsive Urban Futures BT - AI Agency in Climate Emergency," A. Cheshmehzangi, Ed., Singapore: Springer Nature Singapore, 2025, pp. 83–92, doi: 10.1007/978-981-95-4192-8_8.

[57] M. Alhaddar and H. R. Kummitha, "Digitalization and sustainable branding in tourism destinations from a systematic review perspective," *Discover Sustainability*, vol. 6, no. 1, p. 1167, 2025, doi: 10.1007/s43621-025-01751-3.

[58] F. Dalipi, Z. Kastrati, and T. Öberg, "The Impact of Artificial Intelligence on Tourism Sustainability: A Systematic Mapping Review," in 2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), 2023, pp. 119–125, doi: 10.1109/ICCIKE58312.2023.10131818.

[59] I. Bahreldin, H. Samir, R. Maddah, H. Hammad, and I. Hegazy, "Leveraging advanced digital technologies for smart city development in Saudi Arabia: Opportunities, challenges, and strategic pathways," 2025, doi: 10.1093/ijlct/ctaf044.

[60] A. Arruabarrena, "Quantum-enhanced battery placement for smart grids."

[61] M. Sakurai and J. Kokuryo, "Fujisawa sustainable smart town: Panasonic's challenge in building a sustainable society," *Communications of the Association for Information Systems*, vol. 42, no. 1, pp. 508–525, 2018, doi: 10.17705/1CAIS.04219.

[62] Fujitsu, "Fujitsu Quantum-Inspired Optimization Services Cut Traffic Jams and CO₂ Emissions at Hamburg Port," Fujitsu Global. Accessed: Oct. 21, 2025. [Online]. Available: <https://www.fujitsu.com/emeia/about/resources/news/press-releases/2021/emeia-08122021-fujitsu-quantum-inspired-optimization-services-cut-traffic-jams-and-co2-emissions-at-hamburg-port.html>

[63] W. Grice, M. Olama, A. Lee, and P. G. Evans, "Quantum Key Distribution Applicability to Smart Grid Cybersecurity Systems," *IEEE Access*, vol. 13, pp. 17398–17413, 2025, doi: 10.1109/ACCESS.2025.3533942.

[64] R. Coates, R. Dayal, T. Gagliardoni, E. Greplová, T. Humble, and R. Krauthamer, "World Economic Forum, 2022. Quantum Computing Governance Principles," 2022.