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Abstract—The deployment of anomaly detection systems
across heterogeneous edge computing environments faces
significant challenges due to varying computational constraints
and resource limitations. Existing approaches typically employ
static model selection strategies that fail to adapt to diverse
hardware capabilities, resulting in suboptimal detection
performance and inefficient resource utilization. To address this,
we propose MetaEdge, a novel hardware-aware framework that
intelligently selects and deploys anomaly detection models based
on specific device characteristics and hardware constraints. The
MetaEdge framework introduces a systematic methodology that
leverages meta-learning in the first stage to train a machine
learning model to predict the top-k anomaly detectors by
considering dataset characteristics. These candidates are then put
through hardware-aware optimization that incorporates the
hardware constraints of edge devices to ensure deployment
feasibility. The framework evaluates 11 candidate anomaly
detection algorithms spanning traditional machine learning and
deep learning methods across four representative computing
architectures ranging from ultra-constrained edge devices to
GPU-accelerated cloud instances. Model conversion through
ONNX standardization enables cross-platform deployment while
maintaining detection capabilities. Experimental evaluation
demonstrates the framework's effectiveness in achieving superior
anomaly detection performance across diverse hardware
configurations. The hardware-aware stage successfully identifies
optimal model-hardware pairings, with the deployed models
achieving up to 96.6% accuracy and 90.4% precision on edge
devices. The framework demonstrates high accuracy in model
selection decisions, with confidence scores providing meaningful
hardware compatibility assessments that guide deployment.
MetaEdge introduces a novel paradigm for hardware-aware
anomaly detection in edge computing, demonstrating that meta-
learning—driven model selection can deliver superior detection
performance while adhering to stringent hardware constraints. By
integrating automatic model selection with hardware-aware
optimization, the proposed approach enables anomaly detection
systems to intelligently adapt to diverse computing environments
and maximize performance under resource constraints.

Keywords—Anomaly detection; edge computing; hardware-
aware optimization; machine learning; meta-learning; model
selection; ONNX

I.  INTRODUCTION

The rapid expansion of the Internet of Things (IoT) has
produced an extraordinary volume of data at the network edge.

Billions of heterogeneous devices ranging from industrial
sensors and autonomous vehicles to wearable health monitors
generate continuous, high-velocity data streams. Real-time
analysis of these data streams is crucial for extracting value and
supporting intelligent applications. To meet this latency and
bandwidth demands while strengthening data privacy,
computation is increasingly migrating from centralized cloud
infrastructures to distributed edge nodes. This architectural shift
is necessary for applications that demand low latency, high
bandwidth, and stronger data privacy; however, it also poses
substantial challenges, especially for deploying advanced
machine learning models on resource-constrained edge devices.
Addressing this capability—constraint trade-off has become a
central challenge for next-generation IoT systems [1], [2].

Anomaly detection, which involves identifying rare events
or observations that deviate significantly from normal behavior,
is one of the most critical tasks performed at the edge. Its
importance spans domains: it supports predictive maintenance
and fault avoidance in industrial systems, enables real-time
patient monitoring and alerts in healthcare, and identifies
intrusion and malware detection in cybersecurity [3]. However,
deploying anomaly detection models on edge devices remains
highly challenging. These devices operate under stringent
constraintson computation, memory, and energy [4]. Offloading
raw data to the cloud is often impractical given strict real-time
requirements, privacy considerations, and communication costs
[1].Consequently, performinganomalydetection directly on the
device, i.e., edge inference, has become increasingly necessary.
Selecting an effective anomaly detection model further
complicates edge deployment. Model performance depends
strongly on datacharacteristics andanomalytypes,andno single
model is universally optimal [5]. Consequently, manual model
selection becomes time-consuming and expertise-intensive,
rendering it impractical for large-scale, heterogeneous edge
environments. These limitations have motivated the
development of automatic model selection tools that automate
the end-to-end process from model choice to tuning. Within this
paradigm, meta-learning approaches are particularly promising.
Meta-leaming leverages performance evidence from diverse
prior tasks to recommend effective models for new, unseen
tasks. It improves the performance on similar tasks and reduces
costly, time-consuming retraining [6].

Even when a meta-learning system recommends an optimal
model, it may still be infeasible if it exceeds the hardware

447 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

capabilities of the target edge device. A performance-optimized
deep learning model, for instance, may demand more memory
or computational resources than the device can supply [4]. This
necessitates hardware-aware model selection in which device
constraints are a primary consideration. The selected model
must strike an appropriate balance between predictive
performance and computational efficiency. This imperative has
driven extensive work on model optimization techniques, such
as quantization, pruning, and hardware-aware architecture
design, as well as deployment-friendly runtimes such as
TensorFlow Lite, to fit powerful models onto constrained
platforms [7].

This study presents MetaEdge, a framework for automatic,
hardware-aware selection of anomaly detection models for edge
inference. This framework optimizes the trade-off between
model accuracy and resource efficiency in a fully automated
manner. First, a meta-leaming-based model selection engine
utilizes the meta-features of a given streaming dataset to
generate a ranked list of promising anomaly detection models
from a predefined candidate pool. Second, a hardware-aware
selection module filters the ranked list using the specified
hardware constraints of the target edge device, such as available
memory, processor capabilities, and latency requirements,
returning the best model that maximizes performance while
remaining within those operational limits. Where applicable, the
selected model is compiled into a lightweight deployment
artifact (e.g., TFLite and ONNX) to ensure efficient on-device
inference. Together, this end-to-end approach yields modelsthat
are not only accurate but also practical for real-world edge
deployment.

The novelty of MetaEdge lies in three key aspects that
distinguish it from prior work. First, while meta-learning
approaches (e.g., AMLBID [6], MetaOOD [12]) have been
applied to model selection and hardware-aware optimization
techniques (e.g., LightESD [16], EdgeML [11]), they have been
developed for edge deployment. MetaEdge is the first to
systematically integrate both paradigms into a unified end-to-
end framework specifically designed for anomaly detection on
heterogeneous edge devices. Second, MetaEdge introduces a
comprehensive synthetic hardware-leaming dataset (254
configurations, 2,794 training samples) that explicitly captures
the relationships between hardware constraints (memory,
latency, energy) and model deployment characteristics. This
dataset enables the hardware-aware module to learn realistic
constraint-performance trade-offs, a capability absent in prior
frameworks that rely on heuristic or rule-based hardware
filtering. Third, MetaEdge provides empirical validation across
real physical edge devices (Raspberry Pi 5, Orange Pi Zero 2W)
combined with simulated cloud-edge profiles (AWS EC2
t2.micro, g4dn.xlarge), demonstrating practical deployment
feasibility. Thisreal-world validation, coupled with detailed per-
device performance analysis, goes beyond the simulated or
cloud-based evaluations common in prior work. Together, these
contributions establish MetaEdge as a comprehensive, data-
driven, and practically validated framework that advances the
state-of-the-art in hardware-aware anomaly detection for edge
computing.

The main contributions of this work are summarized as
follows:
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e Introduce MetaEdge, a framework that couples meta-
learning-based model selection with hardware-aware
selection for edge anomaly detection, narrowing the gap
between theoretical performance and deployment on
resource-constrained devices. The meta-learningmodule
recommends the top-k models based on dataset
characteristics, and the hardware-aware module
evaluates these k candidates against target hardware
specifications to select the model that best balances
performance and deployment feasibility.

e Construct a hardware-learning dataset comprising 254
synthetic hardware configurations and comprehensive
profiling of 11 candidate models, yielding 2,794 training
samples. This dataset captures relationships between
hardware constraints and model deployment
characteristics across diverse scenarios.

e Design an efficient hardware-aware module that
translates performance-based recommendations from the
meta-learning module into deployment-ready selections
under real-world hardware constraints. The module turns
the hardware-learning dataset into a practical decision-
making tool and outputs a probability distribution over
all models (confidence scores), where each probability
reflects the likelihood that a given model is the best
choice for the specified hardware.

e Provide an empirical evaluation across a variety of
practical edges, including two real devices (Raspberry Pi
5 and Orange PiZero 2W )using Amazon Web Services
(AWS) Greengrass V2 and two simulated devices
(gd4dn.xlarge and a t2.micro) on AWS EC2. We also
experiment with different streaming buffer sizes under
various data-processing settings, giving us a well-
rounded, deployment-ready assessment.

MetaEdge is evaluated along four dimensions: meta-
learning-based model selection, hardware-aware model
selection, model conversion effectiveness, and deployment
feasibility. We first examined how available data volume affects
model selection by varying the buffer size (500 vs. 1,000
samples). For each condition, the meta-learning module ranked
candidate anomaly detectors and returned the top k models.
Providing more buffered data makes the meta-learner both more
confident and more accurate in its recommendations. Second,
we tested the model conversion effectiveness by converting the
models to lightweight deployment versions and comparing them
with its original counterparts on two metrics: model file size and
accuracy. The accuracy losses were minimal with only 0-3.8%
degradation, and the size reductions were substantial of 55-70%
across all models. Third, we validated the hardware-aware
module by executing it in live deployments across four edge
targets. Two were physical devices, a Raspberry Pi 5 (higher-
end) and an Orange Pi Zero 2W (resource-constrained) and two
were emulated edge profiles on AWS EC2: a t2.micro to
represent alow-resource CPU environmentand a g4dn.xlarge to
represent a GPU-enabled, Jetson-like setting. For each device,
we assess both the real-time feasibility and the anomaly
detection performance of the selected model. This evaluation
confirmed that MetaEdge consistently identified optimal
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model-hardware pairings, with edge implementations achieving
up to 96.6% accuracy and 90.4% precision.

The remainder of this study is organized as follows:
Section Il reviews related work and identifies the research gap.
Section III details the architecture and methodology of our
proposed MetaEdge framework. Section IV presents the
experimental setup and a comprehensive evaluation. Finally,
Section V concludes the study and discusses future research
directions.

II. RELATED WORK

This section provides a structured survey of the literature
relevant to our automated, hardware-aware model selection
framework for edge anomaly detection. We organize the
discussion around three strands that collectively motivate our
approach. First, we examine anomaly detection at the edge, with
an emphasis on the distinctive constraints of resource-
constrained devices and real-time processing, to establish the
problem setting and the computational limits that necessitate
intelligent model selection. Second, we review automated
model selection and meta-leaming approaches, evaluating how
current frameworks leverage historical performance and meta-
features to streamline decision-making while exposing gaps in
device-level considerations. Third, we investigate hardware-
aware optimization techniques for resource-constrained
platforms, clarifying how current approaches address resource
constraints and deployment challenges on edge devices. This
analysis highlights the importance ofincorporating device-level
constraints directly into the model selection process. It also
reveals critical gaps in existing work that fail to address the end-
to-end path from model selection to hardware-constrained
deployment, which motivates the comprehensive framework
introduced in this study.

A. Lightweight Anomaly Detection for Edge Devices

Research on edge anomaly detection has gained significant
attention with the proliferation of IoT devices and the attendant
need for real-time decisions. Chatterjee and Ahmed [8] present
an extensive survey of IoT anomaly detection methods,
highlighting key challenges including limited computational
resources, evolvingnormalbehaviorpatterns,and thescarcity of
labeled data. Their examination of 64 recent studies reveals a
notable deficit of approaches for multi-sensor integration and
concept drift management on constrained devices.
Complementing this perspective, Jadhav and Kulkarni [4]
examine anomaly detection within edge-computing networks,
with particular attention to deep learning methods. Their survey
underscores that anomalies at the edge pose substantial risks to
enterprise networks and that monitoring and identifying
abnormal behavior grow increasingly difficult as
interconnections increase. Whiledeep models appear promising,
the authors underscore the difficulty of fitting such models
within the memory and latency budgets of edge devices. Recent
practical implementations have demonstrated both the strengths
and the limitations of edge anomaly detection. Reis et al. [10]
combine Isolation Forests with LSTM autoencoders within an
edge Al framework for smart-home applications, achieving
respectable accuracy but only with careful optimization for
resource-constrained devices. Similarly, Patrikar and Parate [9]
demonstrate video-surveillance anomaly detection at the edge,
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reporting substantial latency reductions while highlighting the
inherent trade-off between model complexity and inference
speed. Das et al. [12] propose LightESD, a fully automated,
lightweight anomaly-detection method based on statistical
learning. LightESD runs on-device without transferring data
between the edge and the server and is designed for low latency,
memory usage, and energy consumption, making it suitable for
low-end edge hardware. The framework maintains competitive
detection accuracy while consuming extremely low resources,
enabling deployment on low-end edge devices. However,
LightESD does not address hardware-aware model selection
across heterogeneous devices and lacks explicit mechanisms for
handling streaming concept driftin long-running deployments.
It also focuses exclusively on statistical methods and does not
incorporate meta-leamning approaches for intelligent model
selection, limiting its adaptability across diverse data
characteristics. Collectively, these works frame the problem and
underscore that effective solutions must balance detection
quality with stringent resource constraints. The next subsection
considers automated model selection and meta-learning as
means to streamline selection.

B. Automated Model Selection for Edge Computing

The challenge of selecting appropriate machine leaming
models has motivated the development of automated model
selection frameworks. Ying et al. [10] propose an automated
model-selection framework for time-series anomaly detection
that identifies suitable models and hyperparameters via an
extensible selection layer and customized tuning. However, the
design targets cloud-based deployments and leaves device
constraints out of scope. In contrast, EdgeML [11] is an
AutoML framework purpose-built for real-time deep-learning
applications on edge devices. It addresses practical obstacles
such as limited CPU resources and energy budgets and
automates model selection and hyperparameter tuning to enable
efficient on-device deployment and real-time inference without
reliance on cloud resources. It additionally adapts to runtime
conditions such as communication bandwidth fluctuations and
varying computational loads. However, EdgeML focuses
exclusively on deep neural network optimization and does not
address the broader challenge of selecting appropriate anomaly
detection algorithms based on data characteristics. Additionally,
it lacks meta-learning capabilities for algorithm
recommendation and is limited to neural network architectures
rather than providing a comprehensive model selection
framework. Meta-learninghas emerged as an effective approach
to automated model selection. Garouani et al. [6] introduce
AMLBID, a meta-learning tool for industrial big data that
achieves near O(1) complexity for model selection. The
framework maintains a meta-knowledge base of algorithm
performance across datasets and exploits meta-features to
recommend optimal pipelines. Although effective in
conventional computing settings, it does not address the
distinctive constraints of edge deployments. Most recently,
MetaOOD by Qin et al. [12] advances meta-learning for
anomaly detection by introducing the first zero-shot,
unsupervised framework for selecting out-of-distribution
(OOD) detectors. Using language-model embeddings to
represent datasets and models, it reports superior performance
across 24 dataset pairs and 11 detectors. Nevertheless, the
framework operates under effectively unconstrained compute
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budgets and omits hardware-aware deployment considerations.
These limitations motivate a shift toward hardware-aware
machine learning, which explicitly incorporates device-level
constraints into model design and deployment. The next
subsection reviews this body of literature.

C. Hardware-Adaptive Model Optimization

The constraints of edge devices make hardware-aware
optimization indispensable for the deployment of machine
learning models. Shuvo et al. [2] present techniques for
accelerating deep-learning inference on edge devices, outlining
four major directions: novel architectures, optimization of
existing methods, algorithm—hardware co-design, and efficient
accelerator development. Their findings highlight the necessity
of simultaneous hardware- and software-level optimization.
Murshed et al. [1] review machine learning deployment at the
network edge, outlining the core trade-offs between cloud
processing and edge inference. Whereas the cloud offers vast
compute capacity, edge deployment directly addresses latency,
communication overhead, and privacy. The survey underscores
the need for compression techniques, specialized tooling, and
hardware-aware frameworks to make edge deployment
practical. Researchers have explored multiple approaches to
address the challenges of rapidly deploying machine-learning
models on edge devices. One effective strategy is to design
lightweight architectures specifically for edge deployment. Such
architectures employ techniques such as depthwise-separable
convolutions, low-rank factorization, and network pruning to
improve efficiency without sacrificing accuracy [13]. In this
context, MobileNet and ShuffleNet have emerged as popular
choices for on-device image classification due to their compact
designs and favorable accuracy—latency trade-offs on resource-
limited hardware [14]. However, these architectures are mostly
vision-centric and often must be retrained for each task and
dataset; moreover, without optimized kemnels, theirspeedups are
hard to realize, especially for non-vision workloads or devices
lackingappropriate operators. Another area of research is model
compression for reducing the size and computation of neural
networks. Techniques such as quantization and knowledge
distillation have shown strong potential to shrink models while
preserving accuracy. Pruning and structured sparsity further
remove redundant parameters and, when supported by the
runtime or hardware, can deliver real latency and energy
savings, making them attractive for edge deployment [13].
However, compression can make models less robust when the
data changes, hurt calibration, and miss rare events. The gains
also depend on hardware/runtime support for low-precision or
sparse operations (ops), and distillation needs a strong teacher,
complicating use in streaming edge anomaly detection.
Hardware-aware neural architecture search has become a
promising strategy for tailoring models to specific deployment
targets. Lee et al. [15] introduce HELP, a Hardware-adaptive
Efficient Latency Predictor formulated via meta-learning to
estimate device-specific performance. While compelling for
neuralarchitecturesearch, itaddresses architecture design rather
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than model selection foranomaly detection and does not engage
streaming constraints. Collectively, these studies underscore the
necessity of embedding device constraints across the entire
pipeline. Thenextsubsection offers a research gap analysis that
integratesthese insights and motivates our proposed framework.

D. Research GAP

Table 1 presents a comparative analysis of existing
approaches across deployment-relevant dimensions for edge-
oriented anomaly detection model selection. The evaluation
criteria include: Meta-Learning (whether the approach uses
meta-learning techniques to automatically select models),
Hardware-Aware (explicit consideration of computational and
memory constraints during model selection), Edge-Specific
(design tailored for edge computing environments with their
unique limitations), Anomaly Detection (focus on anomaly
detection tasks rather than general machine learning), Streaming
Data (capability to handle real-time data streams), and Real
Device Validation (empirical evaluation on real physical edge
devicesrather than simulations). As shown in Table I, existing
work reveals several gaps for edge-based anomaly detection.
Although automated model selection for anomaly detection
exists [10] and meta-learning has been explored for general
machine learning [6], [12], yet none of them combine meta-
learning with hardware-aware selection tailored to edge-specific
constraints.

Recent edge-specific frameworks such as LightESD
[16] and EdgeML [11] demonstrate significant progress in
addressing hardware constraints and edge deployment
challenges, but both lack meta-learming capabilities for
intelligent model selection. LightESD focuses exclusively on
statistical methods without the ability to adapt to diverse data
characteristics, while EdgeML is limited to deep neural network
optimization and does not address the broader spectrum of
anomaly detection algorithms. Hardware-aware approaches
either concentrate on neural architecture search (e.g., HELP
[15]) orofferad hoc solutions for specific applications [9], [17],
leaving the field without a rigorous, constraint-driven model
selection strategy that explicitly optimizes under device-level
constraints. Moreover, commonly used meta-learning
paradigms implicitly assume ample computation and fail to
address thereal-time, streaming nature of edge workloads and
their stringent resource budgets. Evaluation practices likewise
rely on simulated environments or cloud-based deployments,
with limited validation on real devices, despite the well-known
divergence between reported metrics and performance on
constrained hardware. These limitations motivate a unified
framework that couples meta-learning-based recommendation
with hardware-aware model selection for streaming anomaly
detection at the edge. This study proposed the MetaEdge
framework that spans the entire pipeline, from characterizing
streaming data to selecting a deployment-ready model, while
explicitly accounting for the practical constraints of real-world
edge deployments.
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TABLEI. COMPARATIVE SUMMARY OF RELATED APPROACHES ACROSS DEPLOYMENT-RELEVANT DIMENSIONS
Approach L:;If'::;lg Hz:'v(\i;v:ere- Edge-Specific g:;?t?;}l; Strf)zltr;mg Real-Device Validation
Ying et al. [10] X X X v v X
AMLBID [6] v X X X X X
MetaOOD [12] v X X v X X
HELP [15] v v v X X X
Edge Al frameworks [9], [17] X v N4 v N4 N4
LightESD [16] X X v v v v
EdgeML [11] X v v X v v
This work v v v v v v

The novelty of MetaEdge lies in how it bridges the gap
between data-driven model recommendation and hardware-
aware deployment. A pure meta-learning approach (e.g.,
AMLBID [6]) would recommend models based solely on data
characteristics, ignoring hardware constraints and potentially
selecting models that are not deployable on the target device.
Conversely, a pure hardware-aware selection approach would
select the most efficient model that fits within the hardware
budget, but such a model may exhibit poor detection
performance for the given data. Existing tools, such as EdgeML
[11], focus on hardware-aware optimization for deep learning
models yet lack a meta-learning component for recommending
the most suitable model class based on data characteristics.
LightESD[16] provideslightweight statistical methods but does
not incorporate meta-leaming or hardware-aware model
selection across heterogeneous devices. MetaEdge, in contrast,
integrates these two dimensions, using meta-learning to identify
a shortlist of high-performing models for the data and then
applying a hardware-aware module to select the model that best
satisfies device constraints while maintaining strong detection
performance. This two-stage approach provides a more holistic
solution than existing methods by balancing data-driven
accuracy and hardware-driven feasibility.

III. METHODOLOGY AND DESIGN

This section presents MetaEdge, an automated, hardware-
aware model selection framework for anomaly detection at the
edge. MetaEdge couples meta-learning—driven performance
prediction with device-constrained selection to identify a single
model that delivers high detection performance while meeting
the computational, memory, and latency budgets of the target
device. To maintain simplicity and reproducibility, the process
is organized into a two-stage pipeline: meta-learning-based
selection followed by hardware-aware selection. We first
provide a comprehensive overview of the MetaEdge
architecture, then present detailed descriptions of each
component.

A. Framework Overview

Fig. 1 illustrates a two-stage pipeline for the MetaEdge
framework. In the offline training (cloud) stage, training datasets
and candidate ML/DL models are applied to meta-feature
extraction and model evaluation to build a meta-knowledge
dataset, which is transformed into a meta-learning dataset for
training a meta-leaming module (based on ASAD). In parallel,
model profiling combined with hardware datasets produces a
hardware-learning dataset, which is used to train a hardware-

aware module. These two trained modules constitute the core of
the MetaEdge engine. In the online selection (edge) stage, an
edge device provides streaming data and hardware
specifications; meta-features are extracted and fed into the
MetaEdge, which selects and deploys the most suitable,
hardware-optimized model for the device. Deployment
outcomes and anomaly-detection signals form a feedback loop
that enables the engine to adaptively select models on-device,
guided by both data characteristics and hardware constraints.

;1. Offline Training (Cloud)

/

Training datasets

ML/DL models

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Hardware datasets
|

module

N module “ /

Streaming data >

Hardware specs »

MetaEdge integrates its meta-learning and hardware-aware
components to select and deploy a hardware-optimized model
on the device, demonstrating how historical performance data
and hardware constraints can be systematically combined to
deliver intelligent, deployment-ready model selection for edge
environments, bridging the gap between theoretical model
effectiveness and real-world applicability.

B. Meta-Learning Selection Module

The meta-learning engine forms the first stage of our
framework, building upon our previous work, ASAD (Auto-
Selective Anomaly Detection) [18]. We follow the same meta-
learning logic and methodology established in ASAD, which
leverages historical performance data across diverse datasets to
recommend the most promising anomaly detection models for
new, unseen data. The meta-learning stage operates offline to
construct a large meta-knowledge dataset for model
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recommendation. A diverse benchmark of labeled anomaly
detection datasets (139 datasets derived from 60 bases across 11
domains) is assembled, and a broad set of candidate models is
evaluated under a unified protocol and seven standard
effectiveness metrics. In parallel, an extensive bank of 300
dataset-level meta-features is computed spanning six families:
simple, statistical, information-theoretic, model-based,
landmarking, and data-complexity to capture dataset size/shape,
distributional behavior, and structural dependencies. These
meta-features reliably characterize new datasets and guide
accurate model selection. The result is a models-by-datasets
performance matrix paired with per-dataset meta-feature
vectors. This dataset is then transformed into a meta-learning
dataset in which each instance contains dataset meta-features
and a learning target that encodes the identity of the best-
performing model. A supervised meta-learner is trained to map
meta-features to predict performance using standard train-
validation splits to avoid leakage across datasets. At inference
time, the same meta-features are extracted from the incoming
unseen dataset, and the meta-learner returns a ranked list of
anomaly detectors, enabling fast, trial-free recommendation for
new datasets.

In this edge-focused framework, we restrict the candidate
model pool to eleven models (AE, MLP, GRU, LSTM,
DeepSVDD, GAN, LOF, OCSVM, KMeans, GMM, and PCA)
instead of the 80 ML/DL models used in the original ASAD
approach. This restriction is specifically designed to prioritize
models thatare suitable for edge deployment while maintaining
the proven effectiveness of the ASAD meta-learning
methodology. To ensure deployability, each candidate must be
convertible into a tiny, edge-ready artifact via TensorFlow Lite
(TFLite) or Open Neural Network Exchange (ONNX) runtime,
with support for quantization and lightweight inference. This
toolchain requirement is precisely why we do notreuse the
broader PyOD-based model list from ASAD: many of those
implementations lack reliable TFLite/ONNX export paths and
therefore do not meet strict latency/memory targets. Instead, we
focus on a curated set that preserves coverage across
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reconstruction, sequence modeling, clustering, margin-based
one-class classification, and local-density detection, chosen for
their practical convertibility, stable runtime support, and
compatibility with post-training optimizations, thereby
preserving methodological rigor while guaranteeing real-world
deployability. The current system is positioned as a proof-of-
concept, demonstrating end-to-end feasibility under these
toolchain constraints; the candidate pool can be expanded as
TensorFlow Lite (TFLite) or ONNX support improves without
altering the selection logic.

C. Hardware-Aware Selection Module

The hardware-aware selection module represents the second
stage of our framework and constitutes our primary novel
contribution. This module addresses the critical challenge of
translating performance-based model recommendations from
the meta-learning module into deployment-ready selections that
satisfy real-world hardware constraints. The module operates
through a systematic four-step process: synthetic dataset
generation, model profiling, hardware learning dataset
construction, and hardware-aware model training.

1) Hardware dataset generation: The foundation of
hardware-aware model selection begins with the creation of a
comprehensive synthetic dataset that represents the diversity of
edge computing environments. This step is crucial because it
establishes the training basis for learning hardware-
performance relationships across  different device
configurations. We generated 254 synthetic samples, each
representing a unique hardware configuration encountered in
edge scenarios. The sample size was chosen to provide
sufficient coverage of the space of deployment scenarios while
maintaining computational tractability for training. Each
scenario represents a unique combination of hardware
constraints and deployment requirements and is characterized
by seven critical features that directly impact model
deployment feasibility. The seven features used in the hardware
dataset are presented in Table IL

TABLE II. THE SEVEN FEATURES USED IN THE HARDWARE DATASET
Hardware Constraint Features
Feature Definition Importance
Max_Ram Maximum available RAM in megabytes Represent device memory capacity limits

Max_Inference

Maximum acceptable inference latency in milliseconds

Capture real-time performance requirements

Max_Size Maximum allowable model size in megabytes Reflect storage and bandwidth constraints
Maximum energy consumption per inference in T
Max_Energy i 24 P P Address battery-powered device limitations
- millijoules
Deployment Requirement Features
Feature Definition Importance

Requires_Tflite

A binary indicator (1/0) for TensorFlow Lite format

Essential for mobile deployment optimization

Requires_Onnx A binary indicator (1/0) for ONNX format

Support cross-platform compatibility

GPU_Available A binary indicator (1/0) for GPU availability

Enabling hardware-specific optimization

The deployment scenarios were generated using an equal
distribution approach with balanced representation across
distinct deployment contexts. The process reflects realistic
combinations observed in commercial edge devices, ensuring
comprehensive coverage of the deployment space. These
synthetic hardware configurations serve as the foundation for
constructing diverse deployment scenarios. Each configuration

represents a distinct set of device capabilities and constraints
that will later be used to determine optimal model selection
based on constraint satisfaction and deployment requirements.

2) Comprehensive model profiling: Model profiling is the
bridge between algorithmic performance and deployment
reality. It extracts deployment-specific characteristics that are
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essential for hardware-aware decision making but are often
overlooked by traditional model selection. During training, all
11 candidate models are comprehensively profiled so that the
hardware-aware selector learns a complete mapping from
hardware constraints to deployment feasibility across the entire
model space. This comprehensive approachis essential because
the selector must understand the deployment characteristics of
every possible model choice to make informed, hardware-
aware decisions.

Profiling spans the memory and storage footprint, runtime
efficiency, and format compatibility. On the memory side,
runtime RAM during inference ranges from 0.02 MB for PCA
to 0.98 MB for LSTM, while on-disk model size ranges from
0.001 MB for KMeans and PCA to 0.113 MB for LSTM. For
hardware-accelerated inference, GPU memory requirements
vary from 0 MB for traditional ML models to 90 MB for GANS.
Efficiency metrics include single-inference latency from 0.68
ms (PCA) to 527.63 ms (LSTM) and energy on MCUs, from
0.04 mJ (PCA) to 29.02 mJ (LSTM). Format compatibility is
captured through TFLite and ONNX: deep learning models
support TFLite conversion, typically yielding a 10—15% size
reductionrelative to the original model, whereas traditional ML
models are exported to ONNX for cross-platform deployment;
corresponding TFLite and ONNX sizes are logged for each
model.

The profiling reveals distinct deployment characteristics
across model categories. Deep learmning models, AutoEncoder,
MLP, GRU, LSTM, DeepSVDD, and GAN, support TFLite
optimization for mobile targets, benefit from GPU acceleration
(30-90 MB GPU RAM), and generally require higher resource
usage (0.77-0.98 MB RAM, 11.54-29.02 mJ per inference)
with moderate-to-high latency (209.79-527.63 ms).
Traditional machine-leaming models, LOF, OCSVM, KMeans,
GMM, and PCA, export cleanly to ONNX, require minimal
resources (0.02-0.07 MB RAM, 0.04-0.17 mJ per inference),
deliver ultra-low latency (=0.68-3.11 ms), and do not require
GPU acceleration. For computational efficiency, the strategy
differs between training and inference. Training profilesall 11
models to cover the full deployment characteristic space. At
inference time, only the top K recommended models from the
meta-learning stage are profiled, which reduces profiling
overhead by around 64% on average when k=4 (from 11 to 4
models) while preserving selection quality within the
constrained candidate set.

3) Hardware-learning  dataset  construction:  The
hardware-learming dataset construction represents the critical
integration phase that combines the synthetic hardware
configurations from Step 1 (Hardware Dataset Generation) with
the comprehensive model profiling results from Step 2
(Comprehensive Model Profiling). This step produces the final
training dataset with ground truth labels that are determined
through a hardware-focused scoring algorithm. It captures the
complex relationships between hardware constraints and model
deployment characteristics across diverse deployment
scenarios.
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The hardware-learning dataset construction process expands
the 254 synthetic hardware configurations from Step 1 into a
comprehensive training dataset. Using an equal distribution
approach, each of the 254 hardware configurations is combined
with all 11 candidate models, resulting in 2,794 total training
samples (254 configurations x 11 models). This balanced
distribution ensures that the meta-selector receives equal
learning exposure to each model's deployment characteristics,
preventing bias toward any algorithm. The integration with
model profiling data enables the selection of the optimal model
for each scenario through systematic constraint evaluation.

FinalScore = Ef fscore + Formatg, s + Deviceg, (1)

The ground truth label assignment employs a hardware-
aware scoring algorithm that determines the best-fitting model
foreach deployment scenario. Each candidate model is assigned
a composite suitability score computed as the sum of an
efficiency-based score ( Efficore ) and deployment-specific
bonuses ( ormatyyy,s and Deviceg,,,s ). The final score is defined
as in Eq. (1). The efficiency score is calculated as a weighted
linear combination of normalized resource metrics, given by

Eq. (2):
Effscore = 03 - RAMypp +0.3 - Speed,, . + 0.2 - Size, +

0.2-Energyess 2)

The hardware-aware scoring algorithm prioritizes multiple
factors, including memory efficiency, speed, format
compatibility, and device-specific constraints, in a weighted
evaluation. It first applies hard constraints to filter candidates:
any model that violates critical limits on Max_ Ram,
Max_Inference, Max_Size, or Max_Energy is eliminated;
models incompatible with required formats (Requires_Tflite,
Requires_Onnx) are filtered out; and GPU needs must match
device capabilities (Gpu_Available). Among the remaining
models, those with lower RAM requirements receive higher
scores in memory-constrained scenarios, while faster inference
is favored for latency-sensitive deployments. Support for the
required format (TFLite or ONNX) earns a compatibility bonus,
and GPU availability together with energy limits further adjust
each model’s overall suitability score. For each of the 2,794
scenarios, the algorithm evaluates all 11 candidate models
against the scenario's specific constraints. After constraint
filtering and priority-weighted scoring, the model with the
highest composite score becomes the ground truth label
(BestModel) for that scenario. This approach ensures that the
hardware-aware selector learns realistic deployment decisions
that reflect both technical constraints and deployment priorities.

4) Hardware-aware model training and optimization: The
final step involves training a classifier to predict the optimal
model given the integrated hardware and deployment features.
This step transforms the comprehensive dataset into a practical
decision-making tool for hardware-aware model selection. A
Random Forest was selected as the hardware-aware selection
algorithm due to its ability to handle mixed feature types,
robustness to feature scaling differences, and interpretability
through feature importance analysis [19]. The training process
starts with data preprocessing, including standardization and
label encoding to ensure consistent feature scaling and proper
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handling of categorical variables. An 80/20 stratified train-test
split maintains balanced class representation across all 11
anomaly detection models. The training step produces a
classifier that predicts the optimal model selection amongall 11
candidate anomaly detection algorithms based on hardware
constraint features. It also outputs a probability distribution
(confidence scores) over all models, where each probability
indicatesthe likelihood that a particular model is the best choice
for the specified hardware.

(b) Confusion Matrix (Normalized)

(a) Classification Report
class precision recall fl-score  support p—

AutoEncoder 0.5833 0.5556 0.5691 63
DeepSVDD 0.6780 0.6250 0.6504 64
GAN 0.9130 0.6667 0.7706 63
G 0.9423 0.7656 0.8448 64
GRU 0.6522 0.7031 0.6767 64
KiMeans 0.8980 0.6984 0.7857 63
LOF 0.8438 0.8438 0.8438 64
LSTH 0.6707 0.8594 0.7534 64
MLP 0.3661 0.6406 0.4659 64
ocsvM 0.8621 0.7937 0.8264 63
PCA 0.9167 0.6984 0.7928 63

aaaaaa cy 0.7139 699
macro avg 0.7569  0.7137 0.7254 699
weighted avg ~ 0.7564  0.7139 0.7253 699

Fig.2. Performance of the hardware-aware classifier: (a) Classification
report; (b) Normalized confusion matrix.

Fig. 2 shows strong, class-consistent performance across 11
categories. The multi-class model achieved 71.4% overall
accuracy (699 samples), with macro-averaged precision 0.7569,
recall 0.7137, and Fl-score0.7254, indicating balanced
performance across classes. The row-normalized confusion
matrix shows a clear, dominant diagonal where most classes (7
out of 11) achieve> 0.70 recall, with particularly strong
performance for LSTM (0.86), LOF (0.84),0CSVM (0.79), and
GMM (0.77). Off-diagonal entries are low and diffuse,
indicating minimal systematic confusion and confirming the
model’s ability to reliably discriminate among the competing
approaches. These results represent a significant improvement
over random selection and validatethe effectiveness
of constraint-driven feature-engineering and hardware-focused
scoring.

Feature Importance in Hardware-Aware Model Selection
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Fig. 3. Feature importance analysis of the hardware-aware model selection.

The Random Forest feature importance analysis reveals the
relative contribution of each input feature to the selection
decision,asillustratedin Fig. 3. The feature-importanceanalysis
indicates that deployment constraints tied to latency and
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footprint dominate model selection: Max_Inference contributes
the mostat 17.09%, followedby Max_Size at 16.85%. Resource
limits are next with Max RAM (14.12%) and Max_Energy
(13.94%), highlighting the importance of running efficiently on
devices with limited memory and power. Platform compatibility
matters but is secondary, with Requires Tflite (12.50%)
and Requires Onnx (11.00%). GPU Availability has the lowest
but still meaningful impact (10.50%), suggesting decisions are
driven more by edge-device constraints than by access to
accelerators.

D. MetaEdge Engine Construction

The MetaEdge engine is constructed by seamless integration
of the hardware-aware selection module and the meta-learning
module through a two-stage decision process. During inference,
the meta-learning module first generates top-k model
recommendations based on dataset characteristics. The
hardware-aware module then evaluates these k candidates
against the target hardware specifications to select the best
candidate model that balances performance potential with
deployment feasibility. A key design decision in MetaEdge is
this two-stage architecture: by first filtering with meta-learning
and then applying hardware-aware optimization, the system
constrains the hardware-aware module to the top-K models
while gaining important practical advantages, including
computational efficiency by reducing the candidate pool,
interpretability through a clear separation of data-driven and
hardware-driven decisions, and proven effectiveness across
diverse deployment scenarios. This design prioritizes data-
driven model selection as the primary driver, using hardware
constraints as a secondary refinement filter, reflecting a
deliberate trade-off between optimality and deployment
efficiency.

MetaEdge Engine

- { e RS
extraction L ™)
=+ Hardweresp i“, ‘
I | |
Model Deployment Model conversion | ¢ Selected model 5 Hardware-aware

(TFLite/ONNX) (hardware-optimized) module

Fig. 4. Workflow of the MetaEdge engine.

Fig. 4 illustrates the detailed workflow of MetaEdge.
First, the incoming streaming data is buffered, and the buffered
data is sent along with the target hardware specifications to the
MetaEdge engine. Then, at the MetaEdge, a two-stage decision
process is performedto select the best deployable anomaly-
detectionmodel. In the first stage, the meta-leaming module
extractsthe meta-features of the buffered streaming data
and recommends the top-k anomaly detectors based only on the
data characteristics. In the second stage, the hardware-
aware module uses the hardware specifications and converts
them into a standardized feature vector to generate probability
predictions (confidence scores) for every model in the candidate
pool, not just the top-k from the meta-learning module. The
confidence score represents the hardware-aware estimate of the
probability that a given model is the most suitable option for a
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given hardware specification. Despite having complete
probability information for all 11 models, the system restricts
the selection to only the top-k models identified by the meta-
learning selection module. Therefore, the hardware-aware
selection module selects the model with the highest probability
among the filtered top-k. The selected model is then trained on
the buffered data and converted to compact models using the
required format (TFLite or ONNX). Algorithm 1 presents the
integrated two-stage selection process of MetaEdge.

Algorithm 1 Two-Stage Model Selection of MetaEdge.

Input: Dataset meta-features M; device specifications D; meta-learner
module ML; hardware-aware module HM; K (default K=3)
Output: Selected model M, a1, confidence score conf

// Stage 1: Meta-learning recommendation
Top_K models «~ML.recommend (M,K=3)

// Stage 2: Hardware-aware selection

D.max;

Device_features < [D.max inferencems

rammp’ 'D'maxsizembl

D.max ,D.require Stfiite D.require s, D. 90 Ugvaitabie)

energym;

Device_features scaled «<— Scaler.transform (Device_features)
Prob_all —HM.predict_proba (Device _features _scaled)
All_predictions «Map (All_candidate _models, Prob_all)
Filtered predictions «—Filter (All_predictions,Top_K_models)
(M, psimarr conf) < arg max (filtered_predictions)

Return M,

optimal’ conf

IV. EXPERIMENTAL RESULTS

This section reports a comprehensive evaluation of the
MetaEdge framework along four dimensions: meta-learning-
based model selection, hardware-aware model selection, model
conversion effectiveness, and deployment feasibility. All
experiments were executed on AWS. We used Amazon
SageMaker notebook instances to provide a scalable,
reproducible setup, and stored models, training data, and results
in Amazon S3 for reliable persistence and access. The stream-
processing pipeline consumed the skin dataset and implemented
a buffer abstraction to emulate cold-start and warm-buffer
conditions, enabling a realistic assessment under varied
operating scenarios. We tested MetaEdge on four representative
edge platforms spanning a wide compute range from a
constrained Orange Pi Zero to a high-performance EC2
g4dn.xlarge with a GPU. The two higher-end platforms were
instantiated as AWS EC2 instances to reflect practical cloud—
edge deployments. The overarching goal is to show that
MetaEdge can adapt model selection to device constraints while
maintaining acceptable anomaly-detection performance, and to
quantify the benefits of its two-stage selection strategy in real-
world edge settings.
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Model Recommendation Comparison
Across Different Buffer Sizes
Buffer Size 1000
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Fig.5. Model recommendation comparison across different buffer sizes.

We examined how available data volume affects model
selection by varying the buffer size (500 vs. 1,000 samples). For
each condition, the meta-learning module ranked candidate
anomaly detectors and returned thetop three. With a 500-sample
buffer, it favored LOF, GMM, and PCA; with a 1,000-sample
buffer, it favored LOF, GRU, and PCA. As illustrated in Fig, 5,
increasing the buffer from 500 to 1,000 samples yielded a 76%
average gain in the meta-learner’s prediction score. Confidence
in LOF rose from 0.527 to 0.926, with corresponding
improvements for GRU and PCA. Overall, providing more
buffered data makes the meta-learner both more confident and
more accurate in its recommendations.

Model Performance Comparison: Original vs. Converted

Model Accuracy Model Size

32036

Size (KB}

W em
LOE GRU PCA LOF GRU PCA

Models Madels

Fig. 6. Model performance comparison (Original vs. Converted).

To evaluate anomaly detection capability, we trained the top
three models recommended by the meta-learner: LOF, GRU,
and PCA on a 1,000-sample buffer from the skin dataset. We
then produced lightweight deployment versions. Where
supported, TensorFlow models were exported to .tflite using the
official TensorFlow Lite converter; scikit-learn models were
converted to ONNX with skl2onnx. In our case, LOF and PCA
(scikit-learn) were converted to ONNX, and the GRU model
was exported to ONNX via tf2onnx as a fallback
mechanism. To validate the effectiveness of these conversions,
we compared each converted model with its original counterpart
on two metrics: model file size and accuracy (see Fig. 6).
Accuracy losses were minimal: LOF decreased from 0.87 to
0.85 (—2.3%), GRU was unchanged at 0.81, and PCA declined
from 0.80 to 0.77 (—3.8%). All converted models remained
above 75% accuracy. Size compression was substantial: LOF
shrank from 484.04 KB to 217.29 KB (—55%), GRU from
324.56 KBt099.24 KB (—69%),and PCA from 1.07 KB to 0.32
KB (—=70%). These reductions, ranging from 55% to 70% make
the models well-suited for resource-constrained edge
deployments.
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TABLE III. THE SPECIFICATIONS OF EDGE DEVICES
. Real/ . . .
Edge Device Simulated Device Specifications
T2.Micro
1 vCPU, 1 GB RAM, no GPU; Low-
E Simulated | to-moderate network performance
20].
Amazon (201
EC2
G4dn.Xlarge
4 vCPUs, 16 GB RAM, 1x NVIDIA
B . T4 (16 GB VRAM), 125 GB
Simulated NVMe local storage, up to 25
Amazon Gbps networking [21].
EC2
Raspberry Pi 5 Quad-core Arm Cortex-A76, 2.4
GHz, VideoCore VII GPU;
Real LPDDR4X-4267 RAM 8 GB; dual
~ 4Kp60 micro-HDMI; Wi-Fi 5 and
Bluetooth 5.0 [22].
Orange Pi ero 2‘W quad-core Cortex-A53 (up to 1.5
® w15 A Real GHz), Mali-G31 MP2 GPU; 1 GB
| ca LPDDR4 ; Wi-Fi 5 and Bluetooth
5.0 [23].

We validated the hardware-aware module by executing it in
live deployments across four edge targets. Two were physical
devices,a Raspberry Pi 5 (higher-end) and an Orange Pi Zero
2W (resource-constrained), provisioned with AWS IoT
Greengrass v2 and packaged via Amazon SageMaker Edge
Manager. To widen the hardware spectrum, we also emulated
edge profiles on AWS EC2: a t2.micro to represent a low-
resource CPU environment and a g4dn.xlarge to represent a
GPU-enabled, Jetson-like setting. Device specifications are
summarized in Tablelll. The hardware-aware module leverages
each device’s specifications to choose the best model from the
meta-learner’s candidates (LOF, GRU, and PCA), assigning a
confidence score to each. Detailed per-device confidence scores
for all models are presented in the following subsections.

A. Edge Device 1: Orange Pi Zero

The Orange Pi Zero is one of the resource-constrained
platforms, and its confidence scores reflect the framework’s
ability to adaptto severe hardware limits. LOF is the preferred
optionat45% confidence (see Fig. 7), indicating that classical
algorithms are best suited to resource-limited devices. PCA is a
strong alternative at 25%, underscoring the preference for
lightweight, classical approaches. By contrast,the GRUreceives
0% confidence, consistent with the view that neural networks
are impractical on this class of hardware. Overall, the
distribution shows hardware-aware reasoning: traditional ML
models dominate the shortlist (LOF 45%, PCA 25%, KMeans
15%), appropriately prioritizing resource-efficient choices for
reliable deployment under tight constraints.
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Fig. 7. Confidence scores of the Orange Pi Zero device.

To assess real-time feasibility, we deployed the selected
LOF model on the Orange Pi Zero. The inference traces (see
Fig. 8) remained stable across 6,000 samples with no anomalous
spikes. Latency was tightly centered at 17.36 ms and
consistently under 20 ms per sample, meeting real-time
requirements for lightweight devices. Chunk-level analysis over
120 windows showed steady performance with only minor
fluctuations. While not the fastest platform, the Orange Pi Zero
ran LOF inference reliably, confirming that on-device anomaly
detection is feasible even on microcontroller-class hardware.

LOF Analysis on Orange Pi Zero
Inference Scores Inference Time

Fig. 8. Inference performance of the Orange Pi Zero device.

Running LOF on the Orange Pi Zero shows that simple,
lightweight methods can work well on limited hardware, with
81.0% accuracy, as shown in Fig. 9. Precision is 294%,
meaning one in three alerts corresponds to a true anomaly, a
trade-off that favors responsiveness over selectivity on low-
power devices. Recall is 79.1%, so the system catches most of
the anomalies useful in settings where missing an event such as
equipment faults and security issues is worse than raising extra
alerts. Specificity is 81.2%, indicatingreasonable discrimination
of normal behavior given the algorithm’s simplicity and small
computational footprint. Overall, the F1 score is 42.8%, and the
average precision (AP) is 0.456, reflecting moderate separation
between classes under tight resource limits. The confusion
matrix (TN=4,434;FP=1,026; FN=113; TP=427) confirms
this profile: more false alarms than some higher-powered
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platforms, but strong sensitivity that is well suited to
applications where missing an anomaly is costlier than
investigating extra alerts. Taken together, these results make the
Orange Pi Zero and LOF combination a practical fit for
distributed sensor networks, remote monitoring, and other IoT
deployments where power, cost, and connectivity limitations
demand efficient local processing.

LOF Anamaly Detection Model Performance Analysis.
(Orange Pi Zero)
Performance Metrics

Canfusion Matrix
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Fig. 9. Performance of a LOF model on Orange Pi Zero: (a) Confusion
matrix; (b) Metrics summary; (c) Precision—recall curve; (d) Score
distributions by class.

B. Edge Device 2: EC2 T2.Micro

The EC2 t2.micro serves as another resource-constrained
target, with limited RAM and tight latency budgets. LOF
remains the leading choice at 35% confidence, down from 45%
onthe Orange PiZero, suggesting that the different resourceson
t2.micro allow closer competition (as shownin Fig. 10). GAN
reaches 20% confidence but is excluded because it was not
selected by the meta-learning module. Overall, classical options
still dominate the viable set PCA at 15% while non-selected
candidates such as KMeans (12%) and AutoEncoder (8%)
register only moderate confidence.
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Fig. 10. Confidence scores of T2.micro.

To assess the real-time viability ofthe chosen LOF model,
we deployed it on AWS EC2 t2.micro instances using AWS loT
Greengrass v2. Fig. 11 summarizes the edge-side inference
results. The line plot tracks raw anomaly scores across 6,000
streaming samples; scores are normalized to the [0, 1] range and
exhibit steady behavior without abrupt spikes. The
accompanying histogram reports per-sample latency: the mean
inference time was 2.58 ms, with most samples completing
under 3 ms. Latencies ranged from 2.34 ms to 12.68 ms
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indicating efficient and comparatively stable performance on
constrained hardware. A chunk-level view (CHUNK SIZE =
50) further showed uniform throughput across 120 chunks, with
no evident degradation or drift. Despite limited CPU and
memory, the LOF model sustained stable throughput and
accuracy, supporting its suitability for lightweight deployment
on t2.micro edge device.

LOF Edge Deployment Inference on t2.micro
™ inference Time Distribution

Inference Scor
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Fig. 11. Inference performance of the T2.micro device.

On an AWS T2.micro instance, the LOF model
achieves 76.5% accuracy (see Fig. 12), demonstrating that
useful anomaly detection can be achieved on a very low-cost
instance. Precision is 23.9%, so about one in four alerts is a real
issue, a reflection of the limited CPU and memory on this class
of VM, which caps model complexity. Recall comes in
at 73.9%, meaning the system catches the most important
anomalies, which is valuable when the cost of missing an event
could outweigh savings on infrastructure. Specificity is 76.8%,
areasonable level of “normal vs. abnormal” separation for such
a constrained setup. Overall, the F1 scoreis 36.1% and the AP
is 0.403, consistent with moderate discriminative power for
cost-sensitive use cases. The confusion matrix (TN=4,191;
FP=1,269; FN=141; TP=399) shows a higher false-alarm rate,
but acceptable recall, which is ideal for cost-sensitive
environments thatuse alerts to prompt lightweight verification.

LOF Anomaly Detection Model Performance Analysis
(AWS T2.micro)
Performance Metrics.

Confusion Matrix

Secore Distribution by True Class

Raca Score

Fig. 12. Performance of a LOF model on T2.micro: (a) Confusion matrix;
(b) Metrics summary; (c) Precision—recall curve; (d) Score distributions by
class.
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C. Edge Device 3: Raspberry Pi 5

The Raspberry Pi 5 marks a clear inflection point where the
framework begins to favor deep learning and adapts to support
neural models. On this device, a GRU is selected with 28%
confidence (see Fig. 13), indicating the system’s capacity to
accommodate more advanced algorithms as resources increase.
This choice supports the framework’s principle of scaling model
complexity with available compute, enabling neural network—
based methods when they become practical and advantageous
for anomaly detection. Notably, an LSTM registers 42%
confidence among the models that were filtered out. This
suggests the hardware-aware selector would have preferred
LSTM over GRU for this configuration, but the upstream meta-
learning stage, driven by data characteristics, did not choose it.
This rigid two-stage pipeline can therefore constrain optimal
hardware-awaredecisions when themeta-learning and hardware
signals diverge.

Confidence Score of All Models
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Fig. 13. Confidence scores of the Raspberry Pi 5.

To verify the GRU model’s real-time viability, we deployed
it on a Raspberry Pi 5. Fig. 14 summarizes the edge-side
inference results. Outputs remain stable across all 6,000
samples, with scores confined to the [0, 1] range. Latency is
extremely low, an average of 0.076 ms, with the vast majority
of inferences finishing under 0.1 ms. A chunk-level analysis
over 120 chunks shows flat, highly consistent throughput with
no signs of drift or degradation. Overall, the Raspberry Pi 5
executes the GRU model with ultra-low latency and negligible
variance, confirming its suitability for real-time anomaly
detection at the edge.

Raspberry Pi 5 Streaming Inference Performance
seores Inerence Tome Datributon

Fig. 14. Inference performance of the Raspberry Pi 5 device.
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As showninFig. 15, runninga GRU model on the Raspberry
Pi 5 delivers standoutanomaly detection, topping all platforms
in our test with 96.6% accuracy. Precision reaches 90.4%,
meaning 9 out of 10 alerts are real, which significantly reduces
the cost of chasing false alarms. The model’s 69.7%
recall reflects a deliberate tilt toward accuracy over sensitivity,
which is useful in settings where false positives are more costly
than the occasional miss. Specificity is an exceptional 99.3%,
indicating the system almost never flags normal behavior.
Overall performanceis strong, with an F1 scoreof78.7% and an
AP of 0.818. The confusion matrix shows 5,420 correctly
identified normal events and 376 correctly identified anomalies,
with only 40 false alarms and 164 missed anomalies, evidence
of tight control over false positives while capturing a substantial
share of true anomalies. These results demonstrate the model's
ability to achieve high-performance anomaly detection on edge
computing hardware with minimal computational overhead.

GRU Anomaly Detection Model Performance Analysis
(Raspberry Pi 5)
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Fig. 15. Performance of a GRU model on Raspberry Pi5: (a) Confusion
matrix; (b) Metrics summary; (c) Precision—recall curve; (d) Score
distributions by class.

D. Edge Device 4: EC2 G4dn.Xlarge

The EC2 g4dn.xlarge evaluation shows how the framework
performs in a resource-rich, GPU-accelerated setting. As shown
in Fig. 16, with ample compute, the system elevates deep
learning and selects a GRU with 18% confidence, illustrating its
abilityto take advantage ofadvanced hardware. This aligns with
the framework’s scaling strategy: as constraints ease, more
sophisticated neural architectures become preferable. While
GRU was prioritized as a top 3 meta-learning choice, LSTM
attained 55% confidence, exceeding the GRU by more than
threefold, suggesting substantial promise under different dataset
conditions. As expected on this class of hardware, traditional
ML methods receive negligible confidence (mostly under 5%),
avoiding underutilization of the platform. Overall, the high-
performance scenario confirms that the framework adjusts
model complexity to match available resources, enabling
efficient use of advanced edge infrastructure.
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Fig. 16. Confidence scores of G4dn.Xlarge.

To validate the real-time operational feasibility of the
selected LOF model, deployments were executed on AWS EC2
instances G4dn.Xlarge using AWS IoT Greengrass V2. The
GRU edge deployment inference results for EC2 instance
G4dn.Xlarge are shownin Fig. 17. The line chart shows GRU’s
raw sequence modelingoutputs across 6,000 streaming samples,
boundedbetween 0 and 1. The scores remained stable without
spikes, reflecting consistent prediction quality. The histogram
confirms ultra-stable latency, with most samples completing
near 0.07ms. The narrowrange (0.066—0.298 ms) and extremely
low variance (std: 0.0053 ms) validate the predictability of GPU
execution. Chunk-level latency (120 chunks, 50 samples each)
was nearly flat, with no systematic drift, confirming sustained
throughput. The GRU model leveraged G4dn.Xlarge’s GPU
capabilities to deliver extremely consistent, ultra-low-variance
inference performance, ideal for precision-critical deployments.

GRU Edge Deployment Inference Performance Analysis on gddn.xlarge
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Fig. 17. Inference performance of G4dn.xlarge device.

Running a GRU model on an AWS G4dn.xlarge delivers
solid anomaly detection with 89.0% accuracy, highlighting how
high-performance hardware helps with complex pattern
recognition. Precision is 43.2%, about two of every five alerts
are true, a clear step up from our statistical baselines, while
keeping throughput high thanks to GPU acceleration. Recall
18 69.6%, so the system catchesnearly 70% of real anomalies,
and specificity is 90.9%, showing it is strong at recognizing
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normal behavior. Overall, the model posts an F1 of 53.3% and
an AP of 0.512, indicating good discrimination across
thresholds, as shown in Fig. 18. The confusion matrix
shows TN=4,965, FP=495, FN=164, and TP=376, reflecting a
balanced trade-off between detection and false alarms. In
practice, this GPU-accelerated setup is well-suited to production
workloads thatneed both high performance and straightforward
scalability.

GRU Anomaly Detection Model Performance Analysis
(AWS G4DN.xlarge)

Performance Metrics

Confusion Matrix

Fig. 18. Performance ofa GRU modelon G4dn.Xlarge: (a) Confusion matrix;
(b) Metrics summary; (c) Precision—recall curve; (d) Score distributions by
class.

E. Results Summary

MetaEdge showsstronghardware-aware model selection: its
confidence score distributions adapt to the computational limits
of the four evaluated devices. The Random Forest meta-selector
produces probabilitiesranging from 0% for clearly incompatible
choicesto 55% for the best hardware-model pairs. Concretely,
LOF scores 45% confidence on the Orange Pi Zero and 35% on
EC2 t2.micro, while GRU reaches 28% on the Raspberry Pi 5
and becomes viable on EC2 g4dn.xlarge, evidence that the
framework scales model complexity progressively with
available resources. The model conversion process through
ONNX standardization achieves remarkable success with only
0-3.8% degradation, while delivering substantial size reductions
0f 55-70% across all models. These reductions enable practical
edge deployment without sacrificing detection capability,
effectively bridging the gap between theoretical performance
and real-world deployment constraints.

Across deployments, the models deliver strong anomaly
detection and validate MetaEdge’s two-stage selection strategy.
The Raspberry Pi 5 leads all platforms with 96.6% accuracy and
90.4% precision, surpassing all other configurations in this
study. The AWS G4dn.xlarge follows with 89.0% accuracy
using GPU acceleration, while the LOF model maintains
consistent recall on constrained devices (79.1% and 73.9% on
the Orange Pi Zero and EC2 t2.micro, respectively). MetaEdge
balances performance and deploy ability by first using meta-
learning to shortlisthigh-performing candidates, then applying
hardware-aware constraints to ensure each model fits device
resources. This produces sensible adaptations: traditional ML is
selected for tight edge environments, and deep learning is
enabled where hardware permits. The result is superior anomaly
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detection across diverse edge settings without sacrificing
computational efficiency or deployment reliability.

V. CONCLUSION

This study presents MetaEdge, a hardware-aware framework
for model selection that tackles the challenge of deploying
effective anomaly detection across heterogeneous edge devices.
It combines meta-learning with hardware-aware optimization to
enable practical deployment without compromising detection
quality. The framework makes high-accuracy model-selection
decisions, with confidence scores that provide meaningful
assessments of hardware compatibility to guide deployment
strategies. MetaEdge uses ONNX standardization for model
conversion to enable cross-platform deployment while
minimizing accuracy loss, yielding 0—3.8% degradation and a
55-70% reduction in model size.

Experimental results demonstrate superior anomaly-
detection performance across diverse hardware configurations.
The hardware-aware stage consistently identifies optimal
model-hardware pairings, and the deployed models exhibit
strong detection performance. On a Raspberry Pi 5, MetaEdge
achieves 96.6% accuracy and 90.4% precision under strict
computational constraints, outperforming the other tested
implementations. On an AWS g4dn.xlarge instance, GPU
acceleration yields 89.0% accuracy. The LOF model maintains
stable recall on resource-constrained devices (79.1% and
73.9%), providing a reliable baseline for such deployments.

MetaEdge demonstrates that automated, hardware-aware
model selection can jointly identify models from data meta-
features and align them with device constraints. The framework
operates across heterogeneous platforms from ultra-constrained
edge nodes to GPU-accelerated systems, enhancing on-device
anomaly detection while adhering to strict resource budgets.
Beyond empirical gains, MetaEdge offers methodological
guidance for distributed anomaly detection and clarifies the
trade-offs inherent in hardware-aware optimization. It
establishes a robust foundation for future adaptive edge
computing systems, capable of intelligently adjusting their
performance based on available computational resources and
deployment constraints.

In practice, MetaEdge supports real-world deployment by
providing a systematic workflow for selecting accurate models
that satisfy explicit resource budgets across diverse devices,
reducing trial-and-error when transitioning from experimental
evaluation to on-device operation. As with any deployment-
oriented framework, MetaEdge operates within the assumptions
of the profiled model space and observed device conditions;
however, its modular design allows these profiles to be
incrementally expanded and updated as deployment scale,
anomaly characteristics, and hardware diversity evolve. To
further strengthen applicability at scale, future work will extend
the profiling process and model registry to broader model
familiesanda widerrange of devices, support lightweight online
learning to maintain performance under concept drift and
changing anomaly patterns, enable model personalization to
device- and context-specific conditions, and explore cross-
device collaborative learning to improve robustness across
heterogeneous edge deployments, while reducing runtime
overhead through offline profiling and caching.
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