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Abstract—The deployment of anomaly detection systems 

across heterogeneous edge computing environments faces 

significant challenges due to varying computational constraints 

and resource limitations. Existing approaches typically employ 

static model selection strategies that fail to adapt to diverse 

hardware capabilities, resulting in suboptimal detection 

performance and inefficient resource utilization. To address this, 

we propose MetaEdge, a novel hardware-aware framework that 

intelligently selects and deploys anomaly detection models based 

on specific device characteristics and hardware constraints. The 

MetaEdge framework introduces a systematic methodology that 

leverages meta-learning in the first stage to train a machine 

learning model to predict the top-k anomaly detectors by 

considering dataset characteristics. These candidates are then put 

through hardware-aware optimization that incorporates the 

hardware constraints of edge devices to ensure deployment 

feasibility. The framework evaluates 11 candidate anomaly 

detection algorithms spanning traditional machine learning and 

deep learning methods across four representative computing 

architectures ranging from ultra-constrained edge devices to 

GPU-accelerated cloud instances. Model conversion through 

ONNX standardization enables cross-platform deployment while 

maintaining detection capabilities. Experimental evaluation 

demonstrates the framework's effectiveness in achieving superior 

anomaly detection performance across diverse hardware 

configurations. The hardware-aware stage successfully identifies 

optimal model-hardware pairings, with the deployed models 

achieving up to 96.6% accuracy and 90.4% precision on edge 

devices. The framework demonstrates high accuracy in model 

selection decisions, with confidence scores providing meaningful 

hardware compatibility assessments that guide deployment. 

MetaEdge introduces a novel paradigm for hardware-aware 

anomaly detection in edge computing, demonstrating that meta-

learning–driven model selection can deliver superior detection 

performance while adhering to stringent hardware constraints. By 

integrating automatic model selection with hardware-aware 

optimization, the proposed approach enables anomaly detection 

systems to intelligently adapt to diverse computing environments 

and maximize performance under resource constraints. 
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I. INTRODUCTION 

The rapid expansion of the Internet of Things (IoT) has 
produced an extraordinary volume of data at the network edge. 

Billions of heterogeneous devices ranging from industrial 
sensors and autonomous vehicles to wearable health monitors 
generate continuous, high-velocity data streams. Real-time 
analysis of these data streams is crucial for extracting value and 
supporting intelligent applications. To meet this latency and 
bandwidth demands while strengthening data privacy, 
computation is increasingly migrating from centralized cloud 
infrastructures to distributed edge nodes. This architectural shift 
is necessary for applications that demand low latency, high 
bandwidth, and stronger data privacy; however, it also poses 
substantial challenges, especially for deploying advanced 
machine learning models on resource-constrained edge devices. 
Addressing this capability–constraint trade-off has become a 
central challenge for next-generation IoT systems [1], [2]. 

Anomaly detection, which involves identifying rare events 
or observations that deviate significantly from normal behavior, 
is one of the most critical tasks performed at the edge. Its 
importance spans domains: it supports predictive maintenance 
and fault avoidance in industrial systems, enables real-time 
patient monitoring and alerts in healthcare, and identifies 
intrusion and malware detection in cybersecurity [3]. However, 
deploying anomaly detection models on edge devices remains 
highly challenging. These devices operate under stringent 
constraints on computation, memory, and energy [4]. Offloading 
raw data to the cloud is often impractical given strict real-time 
requirements, privacy considerations, and communication costs 
[1]. Consequently, performing anomaly detection directly on the 
device, i.e., edge inference, has become increasingly necessary. 
Selecting an effective anomaly detection model further 
complicates edge deployment. Model performance depends 
strongly on data characteristics and anomaly types, and no single 
model is universally optimal [5].  Consequently, manual model 
selection becomes time-consuming and expertise-intensive, 
rendering it impractical for large-scale, heterogeneous edge 
environments. These limitations have motivated the 
development of automatic model selection tools that automate 
the end-to-end process from model choice to tuning. Within this 
paradigm, meta-learning approaches are particularly promising. 
Meta-learning leverages performance evidence from diverse 
prior tasks to recommend effective models for new, unseen 
tasks. It improves the performance on similar tasks and reduces 
costly, time-consuming retraining [6]. 

Even when a meta-learning system recommends an optimal 
model, it may still be infeasible if it exceeds the hardware 
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capabilities of the target edge device. A performance-optimized 
deep learning model, for instance, may demand more memory 
or computational resources than the device can supply [4]. This 
necessitates hardware-aware model selection in which device 
constraints are a primary consideration. The selected model 
must strike an appropriate balance between predictive 
performance and computational efficiency. This imperative has 
driven extensive work on model optimization techniques, such 
as quantization, pruning, and hardware-aware architecture 
design, as well as deployment-friendly runtimes such as 
TensorFlow Lite, to fit powerful models onto constrained 
platforms [7]. 

This study presents MetaEdge, a framework for automatic, 
hardware-aware selection of anomaly detection models for edge 
inference. This framework optimizes the trade-off between 
model accuracy and resource efficiency in a fully automated 
manner. First, a meta-learning-based model selection engine 
utilizes the meta-features of a given streaming dataset to 
generate a ranked list of promising anomaly detection models 
from a predefined candidate pool. Second, a hardware-aware 
selection module filters the ranked list using the specified 
hardware constraints of the target edge device, such as available 
memory, processor capabilities, and latency requirements, 
returning the best model that maximizes performance while 
remaining within those operational limits. Where applicable, the 
selected model is compiled into a lightweight deployment 
artifact (e.g., TFLite and ONNX) to ensure efficient on-device 
inference. Together, this end-to-end approach yields models that 
are not only accurate but also practical for real-world edge 
deployment. 

The novelty of MetaEdge lies in three key aspects that 
distinguish it from prior work. First, while meta-learning 
approaches (e.g., AMLBID [6], MetaOOD [12]) have been 
applied to model selection and hardware-aware optimization 
techniques (e.g., LightESD [16], EdgeML [11]), they have been 
developed for edge deployment. MetaEdge is the first to 
systematically integrate both paradigms into a unified end-to-
end framework specifically designed for anomaly detection on 
heterogeneous edge devices. Second, MetaEdge introduces a 
comprehensive synthetic hardware-learning dataset (254 
configurations, 2,794 training samples) that explicitly captures 
the relationships between hardware constraints (memory, 
latency, energy) and model deployment characteristics. This 
dataset enables the hardware-aware module to learn realistic 
constraint-performance trade-offs, a capability absent in prior 
frameworks that rely on heuristic or rule-based hardware 
filtering. Third, MetaEdge provides empirical validation across 
real physical edge devices (Raspberry Pi 5, Orange Pi Zero 2W) 
combined with simulated cloud-edge profiles (AWS EC2 
t2.micro, g4dn.xlarge), demonstrating practical deployment 
feasibility. This real-world validation, coupled with detailed per-
device performance analysis, goes beyond the simulated or 
cloud-based evaluations common in prior work. Together, these 
contributions establish MetaEdge as a comprehensive, data-
driven, and practically validated framework that advances the 
state-of-the-art in hardware-aware anomaly detection for edge 
computing. 

The main contributions of this work are summarized as 
follows: 

• Introduce MetaEdge, a framework that couples meta-
learning-based model selection with hardware-aware 
selection for edge anomaly detection, narrowing the gap 
between theoretical performance and deployment on 
resource-constrained devices. The meta-learning module 
recommends the top-k models based on dataset 
characteristics, and the hardware-aware module 
evaluates these k candidates against target hardware 
specifications to select the model that best balances 
performance and deployment feasibility. 

• Construct a hardware-learning dataset comprising 254 
synthetic hardware configurations and comprehensive 
profiling of 11 candidate models, yielding 2,794 training 
samples. This dataset captures relationships between 
hardware constraints and model deployment 
characteristics across diverse scenarios. 

• Design an efficient hardware-aware module that 
translates performance-based recommendations from the 
meta-learning module into deployment-ready selections 
under real-world hardware constraints. The module turns 
the hardware-learning dataset into a practical decision-
making tool and outputs a probability distribution over 
all models (confidence scores), where each probability 
reflects the likelihood that a given model is the best 
choice for the specified hardware. 

• Provide an empirical evaluation across a variety of 
practical edges, including two real devices (Raspberry Pi 
5 and Orange Pi Zero 2W  ) using Amazon Web Services 
(AWS) Greengrass V2 and two simulated devices 
(g4dn.xlarge and a t2.micro) on AWS EC2. We also 
experiment with different streaming buffer sizes under 
various data-processing settings, giving us a well-
rounded, deployment-ready assessment. 

MetaEdge is evaluated along four dimensions: meta-
learning-based model selection, hardware-aware model 
selection, model conversion effectiveness, and deployment 
feasibility. We first examined how available data volume affects 
model selection by varying the buffer size (500 vs. 1,000 
samples). For each condition, the meta-learning module ranked 
candidate anomaly detectors and returned the top k models. 
Providing more buffered data makes the meta-learner both more 
confident and more accurate in its recommendations. Second, 
we tested the model conversion effectiveness by converting the 
models to lightweight deployment versions and comparing them 
with its original counterparts on two metrics: model file size and 
accuracy. The accuracy losses were minimal with only 0–3.8% 
degradation, and the size reductions were substantial of 55-70% 
across all models. Third, we validated the hardware-aware 
module by executing it in live deployments across four edge 
targets. Two were physical devices, a Raspberry Pi 5 (higher-
end) and an Orange Pi Zero 2W (resource-constrained) and two 
were emulated edge profiles on AWS EC2: a t2.micro to 
represent a low-resource CPU environment and a g4dn.xlarge to 
represent a GPU-enabled, Jetson-like setting. For each device, 
we assess both the real-time feasibility and the anomaly 
detection performance of the selected model. This evaluation 
confirmed that MetaEdge consistently identified optimal 
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model–hardware pairings, with edge implementations achieving 
up to 96.6% accuracy and 90.4% precision. 

The remainder of this study is organized as follows: 
Section II reviews related work and identifies the research gap. 
Section III details the architecture and methodology of our 
proposed MetaEdge framework. Section IV presents the 
experimental setup and a comprehensive evaluation. Finally, 
Section V concludes the study and discusses future research 
directions. 

II. RELATED WORK 

This section provides a structured survey of the literature 
relevant to our automated, hardware-aware model selection 
framework for edge anomaly detection. We organize the 
discussion around three strands that collectively motivate our 
approach. First, we examine anomaly detection at the edge, with 
an emphasis on the distinctive constraints of resource-
constrained devices and real-time processing, to establish the 
problem setting and the computational limits that necessitate 
intelligent model selection. Second, we review automated 
model selection and meta-learning approaches, evaluating how 
current frameworks leverage historical performance and meta-
features to streamline decision-making while exposing gaps in 
device-level considerations. Third, we investigate hardware-
aware optimization techniques for resource-constrained 
platforms, clarifying how current approaches address resource 
constraints and deployment challenges on edge devices. This 
analysis highlights the importance of incorporating device-level 
constraints directly into the model selection process. It also 
reveals critical gaps in existing work that fail to address the end-
to-end path from model selection to hardware-constrained 
deployment, which motivates the comprehensive framework 
introduced in this study. 

A. Lightweight Anomaly Detection for Edge Devices 

Research on edge anomaly detection has gained significant 
attention with the proliferation of IoT devices and the attendant 
need for real-time decisions. Chatterjee and Ahmed [8] present 
an extensive survey of IoT anomaly detection methods, 
highlighting key challenges including limited computational 
resources, evolving normal behavior patterns, and the scarcity of 
labeled data.  Their examination of 64 recent studies reveals a 
notable deficit of approaches for multi-sensor integration and 
concept drift management on constrained devices. 
Complementing this perspective, Jadhav and Kulkarni [4] 
examine anomaly detection within edge-computing networks, 
with particular attention to deep learning methods. Their survey 
underscores that anomalies at the edge pose substantial risks to 
enterprise networks and that monitoring and identifying 
abnormal behavior grow increasingly difficult as 
interconnections increase. While deep models appear promising, 
the authors underscore the difficulty of fitting such models 
within the memory and latency budgets of edge devices. Recent 
practical implementations have demonstrated both the strengths 
and the limitations of edge anomaly detection. Reis et al. [10] 
combine Isolation Forests with LSTM autoencoders within an 
edge AI framework for smart-home applications, achieving 
respectable accuracy but only with careful optimization for 
resource-constrained devices. Similarly, Patrikar and Parate [9] 
demonstrate video-surveillance anomaly detection at the edge, 

reporting substantial latency reductions while highlighting the 
inherent trade-off between model complexity and inference 
speed.  Das et al. [12] propose LightESD, a fully automated, 
lightweight anomaly-detection method based on statistical 
learning. LightESD runs on-device without transferring data 
between the edge and the server and is designed for low latency, 
memory usage, and energy consumption, making it suitable for 
low-end edge hardware. The framework maintains competitive 
detection accuracy while consuming extremely low resources, 
enabling deployment on low-end edge devices. However, 
LightESD does not address hardware-aware model selection 
across heterogeneous devices and lacks explicit mechanisms for 
handling streaming concept drift in long-running deployments. 
It also focuses exclusively on statistical methods and does not 
incorporate meta-learning approaches for intelligent model 
selection, limiting its adaptability across diverse data 
characteristics. Collectively, these works frame the problem and 
underscore that effective solutions must balance detection 
quality with stringent resource constraints. The next subsection 
considers automated model selection and meta-learning as 
means to streamline selection. 

B. Automated Model Selection for Edge Computing 

The challenge of selecting appropriate machine learning 
models has motivated the development of automated model 
selection frameworks. Ying et al. [10] propose an automated 
model-selection framework for time-series anomaly detection 
that identifies suitable models and hyperparameters via an 
extensible selection layer and customized tuning.  However, the 
design targets cloud-based deployments and leaves device 
constraints out of scope.  In contrast, EdgeML [11] is an 
AutoML framework purpose-built for real-time deep-learning 
applications on edge devices. It addresses practical obstacles 
such as limited CPU resources and energy budgets and 
automates model selection and hyperparameter tuning to enable 
efficient on-device deployment and real-time inference without 
reliance on cloud resources. It additionally adapts to runtime 
conditions such as communication bandwidth fluctuations and 
varying computational loads. However, EdgeML focuses 
exclusively on deep neural network optimization and does not 
address the broader challenge of selecting appropriate anomaly 
detection algorithms based on data characteristics. Additionally, 
it lacks meta-learning capabilities for algorithm 
recommendation and is limited to neural network architectures 
rather than providing a comprehensive model selection 
framework. Meta-learning has emerged as an effective approach 
to automated model selection. Garouani et al. [6] introduce 
AMLBID, a meta-learning tool for industrial big data that 
achieves near O(1) complexity for model selection. The 
framework maintains a meta-knowledge base of algorithm 
performance across datasets and exploits meta-features to 
recommend optimal pipelines. Although effective in 
conventional computing settings, it does not address the 
distinctive constraints of edge deployments. Most recently, 
MetaOOD by Qin et al. [12] advances meta-learning for 
anomaly detection by introducing the first zero-shot, 
unsupervised framework for selecting out-of-distribution 
(OOD) detectors. Using language-model embeddings to 
represent datasets and models, it reports superior performance 
across 24 dataset pairs and 11 detectors. Nevertheless, the 
framework operates under effectively unconstrained compute 
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budgets and omits hardware-aware deployment considerations. 
These limitations motivate a shift toward hardware-aware 
machine learning, which explicitly incorporates device-level 
constraints into model design and deployment.  The next 
subsection reviews this body of literature. 

C. Hardware-Adaptive Model Optimization 

The constraints of edge devices make hardware-aware 
optimization indispensable for the deployment of machine 
learning models. Shuvo et al. [2] present techniques for 
accelerating deep-learning inference on edge devices, outlining 
four major directions: novel architectures, optimization of 
existing methods, algorithm–hardware co-design, and efficient 
accelerator development. Their findings highlight the necessity 
of simultaneous hardware- and software-level optimization. 
Murshed et al. [1] review machine learning deployment at the 
network edge, outlining the core trade-offs between cloud 
processing and edge inference. Whereas the cloud offers vast 
compute capacity, edge deployment directly addresses latency, 
communication overhead, and privacy. The survey underscores 
the need for compression techniques, specialized tooling, and 
hardware-aware frameworks to make edge deployment 
practical.  Researchers have explored multiple approaches to 
address the challenges of rapidly deploying machine-learning 
models on edge devices. One effective strategy is to design 
lightweight architectures specifically for edge deployment. Such 
architectures employ techniques such as depthwise-separable 
convolutions, low-rank factorization, and network pruning to 
improve efficiency without sacrificing accuracy [13]. In this 
context, MobileNet and ShuffleNet have emerged as popular 
choices for on-device image classification due to their compact 
designs and favorable accuracy–latency trade-offs on resource-
limited hardware [14]. However, these architectures are mostly 
vision-centric and often must be retrained for each task and 
dataset; moreover, without optimized kernels, their speedups are 
hard to realize, especially for non-vision workloads or devices 
lacking appropriate operators. Another area of research is model 
compression for reducing the size and computation of neural 
networks. Techniques such as quantization and knowledge 
distillation have shown strong potential to shrink models while 
preserving accuracy. Pruning and structured sparsity further 
remove redundant parameters and, when supported by the 
runtime or hardware, can deliver real latency and energy 
savings, making them attractive for edge deployment [13]. 
However, compression can make models less robust when the 
data changes, hurt calibration, and miss rare events. The gains 
also depend on hardware/runtime support for low-precision or 
sparse operations (ops), and distillation needs a strong teacher, 
complicating use in streaming edge anomaly detection. 
Hardware-aware neural architecture search has become a 
promising strategy for tailoring models to specific deployment 
targets. Lee et al. [15] introduce HELP, a Hardware-adaptive 
Efficient Latency Predictor formulated via meta-learning to 
estimate device-specific performance.  While compelling for 
neural architecture search, it addresses architecture design rather 

than model selection for anomaly detection and does not engage 
streaming constraints. Collectively, these studies underscore the 
necessity of embedding device constraints across the entire 
pipeline.  The next subsection offers a research gap analysis that 
integrates these insights and motivates our proposed framework. 

D. Research GAP 

Table I presents a comparative analysis of existing 
approaches across deployment-relevant dimensions for edge-
oriented anomaly detection model selection. The evaluation 
criteria include: Meta-Learning (whether the approach uses 
meta-learning techniques to automatically select models), 
Hardware-Aware (explicit consideration of computational and 
memory constraints during model selection), Edge-Specific 
(design tailored for edge computing environments with their 
unique limitations), Anomaly Detection (focus on anomaly 
detection tasks rather than general machine learning), Streaming 
Data (capability to handle real-time data streams), and Real 
Device Validation (empirical evaluation on real physical edge 
devices rather than simulations). As shown in Table I, existing 
work reveals several gaps for edge-based anomaly detection. 
Although automated model selection for anomaly detection 
exists [10] and meta-learning has been explored for general 
machine learning [6], [12], yet none of them combine meta-
learning with hardware-aware selection tailored to edge-specific 
constraints. 

Recent edge-specific frameworks such as LightESD 
[16]  and EdgeML [11] demonstrate significant progress in 
addressing hardware constraints and edge deployment 
challenges, but both lack meta-learning capabilities for 
intelligent model selection. LightESD focuses exclusively on 
statistical methods without the ability to adapt to diverse data 
characteristics, while EdgeML is limited to deep neural network 
optimization and does not address the broader spectrum of 
anomaly detection algorithms. Hardware-aware approaches 
either concentrate on neural architecture search (e.g., HELP 
[15]) or offer ad hoc solutions for specific applications [9], [17], 
leaving the field without a rigorous, constraint-driven model 
selection strategy that explicitly optimizes under device-level 
constraints. Moreover, commonly used meta-learning 
paradigms implicitly assume ample computation and fail to 
address the real-time, streaming nature of edge workloads and 
their stringent resource budgets. Evaluation practices likewise 
rely on simulated environments or cloud-based deployments, 
with limited validation on real devices, despite the well-known 
divergence between reported metrics and performance on 
constrained hardware. These limitations motivate a unified 
framework that couples meta-learning-based recommendation 
with hardware-aware model selection for streaming anomaly 
detection at the edge. This study proposed the MetaEdge 
framework that spans the entire pipeline, from characterizing 
streaming data to selecting a deployment-ready model, while 
explicitly accounting for the practical constraints of real-world 
edge deployments. 
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TABLE I.  COMPARATIVE SUMMARY OF RELATED APPROACHES ACROSS DEPLOYMENT-RELEVANT DIMENSIONS 

Approach 
Meta-

Learning 

Hardware-

Aware 
Edge-Specific 

Anomaly 

Detection 

Streaming 

Data 
Real-Device Validation 

Ying et al. [10] ✗ ✗ ✗ ✓ ✓ ✗ 

AMLBID [6] ✓ ✗ ✗ ✗ ✗ ✗ 

MetaOOD [12] ✓ ✗ ✗ ✓ ✗ ✗ 

HELP [15] ✓ ✓ ✓ ✗ ✗ ✗ 

Edge AI frameworks [9], [17] ✗ ✓ ✓ ✓ ✓ ✓ 

LightESD [16] ✗ ✗ ✓ ✓ ✓ ✓ 

EdgeML [11] ✗ ✓ ✓ ✗ ✓ ✓ 

This work ✓ ✓ ✓ ✓ ✓ ✓ 

The novelty of MetaEdge lies in how it bridges the gap 
between data-driven model recommendation and hardware-
aware deployment. A pure meta-learning approach (e.g., 
AMLBID [6]) would recommend models based solely on data 
characteristics, ignoring hardware constraints and potentially 
selecting models that are not deployable on the target device. 
Conversely, a pure hardware-aware selection approach would 
select the most efficient model that fits within the hardware 
budget, but such a model may exhibit poor detection 
performance for the given data. Existing tools, such as EdgeML 
[11], focus on hardware-aware optimization for deep learning 
models yet lack a meta-learning component for recommending 
the most suitable model class based on data characteristics. 
LightESD [16] provides lightweight statistical methods but does 
not incorporate meta-learning or hardware-aware model 
selection across heterogeneous devices. MetaEdge, in contrast, 
integrates these two dimensions, using meta-learning to identify 
a shortlist of high-performing models for the data and then 
applying a hardware-aware module to select the model that best 
satisfies device constraints while maintaining strong detection 
performance. This two-stage approach provides a more holistic 
solution than existing methods by balancing data-driven 
accuracy and hardware-driven feasibility. 

III. METHODOLOGY AND DESIGN 

This section presents MetaEdge, an automated, hardware-
aware model selection framework for anomaly detection at the 
edge. MetaEdge couples meta-learning–driven performance 
prediction with device-constrained selection to identify a single 
model that delivers high detection performance while meeting 
the computational, memory, and latency budgets of the target 
device. To maintain simplicity and reproducibility, the process 
is organized into a two-stage pipeline: meta-learning-based 
selection followed by hardware-aware selection. We first 
provide a comprehensive overview of the MetaEdge 
architecture, then present detailed descriptions of each 
component. 

A. Framework Overview 

Fig. 1 illustrates a two-stage pipeline for the MetaEdge 
framework. In the offline training (cloud) stage, training datasets 
and candidate ML/DL models are applied to meta-feature 
extraction and model evaluation to build a meta-knowledge 
dataset, which is transformed into a meta-learning dataset for 
training a meta-learning module (based on ASAD). In parallel, 
model profiling combined with hardware datasets produces a 
hardware-learning dataset, which is used to train a hardware-

aware module. These two trained modules constitute the core of 
the MetaEdge engine. In the online selection (edge) stage, an 
edge device provides streaming data and hardware 
specifications; meta-features are extracted and fed into the 
MetaEdge, which selects and deploys the most suitable, 
hardware-optimized model for the device. Deployment 
outcomes and anomaly-detection signals form a feedback loop 
that enables the engine to adaptively select models on-device, 
guided by both data characteristics and hardware constraints. 

 

Fig. 1. The architecture of the MetaEdge framework. 

MetaEdge integrates its meta-learning and hardware-aware 
components to select and deploy a hardware-optimized model 
on the device, demonstrating how historical performance data 
and hardware constraints can be systematically combined to 
deliver intelligent, deployment-ready model selection for edge 
environments, bridging the gap between theoretical model 
effectiveness and real-world applicability. 

B. Meta-Learning Selection Module 

The meta-learning engine forms the first stage of our 
framework, building upon our previous work, ASAD (Auto-
Selective Anomaly Detection) [18].  We follow the same meta-
learning logic and methodology established in ASAD, which 
leverages historical performance data across diverse datasets to 
recommend the most promising anomaly detection models for 
new, unseen data.  The meta-learning stage operates offline to 
construct a large meta-knowledge dataset for model 
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recommendation. A diverse benchmark of labeled anomaly 
detection datasets (139 datasets derived from 60 bases across 11 
domains) is assembled, and a broad set of candidate models is 
evaluated under a unified protocol and seven standard 
effectiveness metrics. In parallel, an extensive bank of 300 
dataset-level meta-features is computed spanning six families: 
simple, statistical, information-theoretic, model-based, 
landmarking, and data-complexity to capture dataset size/shape, 
distributional behavior, and structural dependencies. These 
meta-features reliably characterize new datasets and guide 
accurate model selection. The result is a models-by-datasets 
performance matrix paired with per-dataset meta-feature 
vectors.  This dataset is then transformed into a meta-learning 
dataset in which each instance contains dataset meta-features 
and a learning target that encodes the identity of the best-
performing model. A supervised meta-learner is trained to map 
meta-features to predict performance using standard train-
validation splits to avoid leakage across datasets. At inference 
time, the same meta-features are extracted from the incoming 
unseen dataset, and the meta-learner returns a ranked list of 
anomaly detectors, enabling fast, trial-free recommendation for 
new datasets. 

In this edge-focused framework, we restrict the candidate 
model pool to eleven models (AE, MLP, GRU, LSTM, 
DeepSVDD, GAN, LOF, OCSVM, KMeans, GMM, and PCA) 
instead of the 80 ML/DL models used in the original ASAD 
approach. This restriction is specifically designed to prioritize 
models that are suitable for edge deployment while maintaining 
the proven effectiveness of the ASAD meta-learning 
methodology. To ensure deployability, each candidate must be 
convertible into a tiny, edge-ready artifact via TensorFlow Lite 
(TFLite) or Open Neural Network Exchange (ONNX) runtime, 
with support for quantization and lightweight inference. This 
toolchain requirement is precisely why we do not reuse the 
broader PyOD-based model list from ASAD: many of those 
implementations lack reliable TFLite/ONNX export paths and 
therefore do not meet strict latency/memory targets. Instead, we 
focus on a curated set that preserves coverage across 

reconstruction, sequence modeling, clustering, margin-based 
one-class classification, and local-density detection, chosen for 
their practical convertibility, stable runtime support, and 
compatibility with post-training optimizations, thereby 
preserving methodological rigor while guaranteeing real-world 
deployability. The current system is positioned as a proof-of-
concept, demonstrating end-to-end feasibility under these 
toolchain constraints; the candidate pool can be expanded as 
TensorFlow Lite (TFLite) or ONNX support improves without 
altering the selection logic. 

C. Hardware-Aware Selection Module 

The hardware-aware selection module represents the second 
stage of our framework and constitutes our primary novel 
contribution. This module addresses the critical challenge of 
translating performance-based model recommendations from 
the meta-learning module into deployment-ready selections that 
satisfy real-world hardware constraints. The module operates 
through a systematic four-step process: synthetic dataset 
generation, model profiling, hardware learning dataset 
construction, and hardware-aware model training. 

1) Hardware dataset generation: The foundation of 

hardware-aware model selection begins with the creation of a 

comprehensive synthetic dataset that represents the diversity of 

edge computing environments. This step is crucial because it 

establishes the training basis for learning hardware-

performance relationships across different device 

configurations. We generated 254 synthetic samples, each 

representing a unique hardware configuration encountered in 

edge scenarios. The sample size was chosen to provide 

sufficient coverage of the space of deployment scenarios while 

maintaining computational tractability for training. Each 

scenario represents a unique combination of hardware 

constraints and deployment requirements and is characterized 

by seven critical features that directly impact model 

deployment feasibility. The seven features used in the hardware 

dataset are presented in Table II. 

TABLE II.  THE SEVEN FEATURES USED IN THE HARDWARE DATASET 

Hardware Constraint Features 

Feature Definition Importance 

Max_Ram Maximum available RAM in megabytes Represent device memory capacity limits 

Max_Inference Maximum acceptable inference latency in milliseconds Capture real-time performance requirements 

Max_Size Maximum allowable model size in megabytes Reflect storage and bandwidth constraints 

Max_Energy 
Maximum energy consumption per inference in 

millijoules 
Address battery-powered device limitations 

Deployment Requirement Features 

Feature Definition Importance 

Requires_Tflite A binary indicator (1/0) for TensorFlow Lite format  Essential for mobile deployment optimization  

Requires_Onnx A binary indicator (1/0) for ONNX format  Support cross-platform compatibility 

GPU_Available A binary indicator (1/0) for GPU availability  Enabling hardware-specific optimization 

The deployment scenarios were generated using an equal 
distribution approach with balanced representation across 
distinct deployment contexts. The process reflects realistic 
combinations observed in commercial edge devices, ensuring 
comprehensive coverage of the deployment space. These 
synthetic hardware configurations serve as the foundation for 
constructing diverse deployment scenarios. Each configuration 

represents a distinct set of device capabilities and constraints 
that will later be used to determine optimal model selection 
based on constraint satisfaction and deployment requirements. 

2) Comprehensive model profiling: Model profiling is the 

bridge between algorithmic performance and deployment 

reality. It extracts deployment-specific characteristics that are 
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essential for hardware-aware decision making but are often 

overlooked by traditional model selection. During training, all 

11 candidate models are comprehensively profiled so that the 

hardware-aware selector learns a complete mapping from 

hardware constraints to deployment feasibility across the entire 

model space. This comprehensive approach is essential because 

the selector must understand the deployment characteristics of 

every possible model choice to make informed, hardware-

aware decisions. 

Profiling spans the memory and storage footprint, runtime 
efficiency, and format compatibility. On the memory side, 
runtime RAM during inference ranges from 0.02 MB for PCA 
to 0.98 MB for LSTM, while on-disk model size ranges from 
0.001 MB for KMeans and PCA to 0.113 MB for LSTM. For 
hardware-accelerated inference, GPU memory requirements 
vary from 0 MB for traditional ML models to 90 MB for GANs. 
Efficiency metrics include single-inference latency from 0.68 
ms (PCA) to 527.63 ms (LSTM) and energy on MCUs, from 
0.04 mJ (PCA) to 29.02 mJ (LSTM). Format compatibility is 
captured through TFLite and ONNX: deep learning models 
support TFLite conversion, typically yielding a 10–15% size 
reduction relative to the original model, whereas traditional ML 
models are exported to ONNX for cross-platform deployment; 
corresponding TFLite and ONNX sizes are logged for each 
model. 

The profiling reveals distinct deployment characteristics 
across model categories. Deep learning models, AutoEncoder, 
MLP, GRU, LSTM, DeepSVDD, and GAN, support TFLite 
optimization for mobile targets, benefit from GPU acceleration 
(30–90 MB GPU RAM), and generally require higher resource 
usage (0.77–0.98 MB RAM, 11.54–29.02 mJ per inference) 
with moderate-to-high latency (209.79–527.63 ms). 
Traditional machine-learning models, LOF, OCSVM, KMeans, 
GMM, and PCA, export cleanly to ONNX, require minimal 
resources (0.02–0.07 MB RAM, 0.04–0.17 mJ per inference), 
deliver ultra-low latency (≈0.68–3.11 ms), and do not require 
GPU acceleration. For computational efficiency, the strategy 
differs between training and inference. Training profiles all 11 
models to cover the full deployment characteristic space. At 
inference time, only the top K recommended models from the 
meta-learning stage are profiled, which reduces profiling 
overhead by around 64% on average when k=4 (from 11 to 4 
models) while preserving selection quality within the 
constrained candidate set. 

3) Hardware-learning dataset construction: The 

hardware-learning dataset construction represents the critical 

integration phase that combines the synthetic hardware 

configurations from Step 1 (Hardware Dataset Generation) with 

the comprehensive model profiling results from Step 2 

(Comprehensive Model Profiling). This step produces the final 

training dataset with ground truth labels that are determined 

through a hardware-focused scoring algorithm. It captures the 

complex relationships between hardware constraints and model 

deployment characteristics across diverse deployment 

scenarios. 

The hardware-learning dataset construction process expands 
the 254 synthetic hardware configurations from Step 1 into a 
comprehensive training dataset. Using an equal distribution 
approach, each of the 254 hardware configurations is combined 
with all 11 candidate models, resulting in 2,794 total training 
samples (254 configurations × 11 models). This balanced 
distribution ensures that the meta-selector receives equal 
learning exposure to each model's deployment characteristics, 
preventing bias toward any algorithm. The integration with 
model profiling data enables the selection of the optimal model 
for each scenario through systematic constraint evaluation. 

𝐹𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 = 𝐸𝑓𝑓𝑆𝑐𝑜𝑟𝑒 + 𝐹𝑜𝑟𝑚𝑎𝑡𝐵𝑜𝑛𝑢𝑠 + 𝐷𝑒𝑣𝑖𝑐𝑒𝐵𝑜𝑛𝑢𝑠(1) 

The ground truth label assignment employs a hardware-
aware scoring algorithm that determines the best-fitting model 
for each deployment scenario. Each candidate model is assigned 
a composite suitability score computed as the sum of an 
efficiency-based score ( 𝐸𝑓𝑓𝑆𝑐𝑜𝑟𝑒 ) and deployment-specific 
bonuses ( 𝑜𝑟𝑚𝑎𝑡𝐵𝑜𝑛𝑢𝑠  and  𝐷𝑒𝑣𝑖𝑐 𝑒𝐵𝑜𝑛𝑢𝑠  ). The final score is defined 
as in Eq. (1). The efficiency score is calculated as a weighted 
linear combination of normalized resource metrics, given by 
Eq. (2): 

𝐸𝑓𝑓𝑆𝑐𝑜𝑟𝑒 = 0.3 ⋅ 𝑅𝐴𝑀𝑒𝑓𝑓 + 0.3 ⋅ 𝑆𝑝𝑒𝑒𝑑
𝑒𝑓𝑓

+ 0.2 ⋅ 𝑆𝑖𝑧𝑒𝑒𝑓𝑓 + 

0.2 ⋅ 𝐸𝑛𝑒𝑟𝑔𝑦𝑒𝑓𝑓        (2) 

The hardware-aware scoring algorithm prioritizes multiple 
factors, including memory efficiency, speed, format 
compatibility, and device-specific constraints, in a weighted 
evaluation. It first applies hard constraints to filter candidates: 
any model that violates critical limits on Max_Ram, 
Max_Inference, Max_Size, or Max_Energy is eliminated; 
models incompatible with required formats (Requires_Tflite, 
Requires_Onnx) are filtered out; and GPU needs must match 
device capabilities (Gpu_Available). Among the remaining 
models, those with lower RAM requirements receive higher 
scores in memory-constrained scenarios, while faster inference 
is favored for latency-sensitive deployments. Support for the 
required format (TFLite or ONNX) earns a compatibility bonus, 
and GPU availability together with energy limits further adjust 
each model’s overall suitability score. For each of the 2,794 
scenarios, the algorithm evaluates all 11 candidate models 
against the scenario's specific constraints. After constraint 
filtering and priority-weighted scoring, the model with the 
highest composite score becomes the ground truth label 
(BestModel) for that scenario. This approach ensures that the 
hardware-aware selector learns realistic deployment decisions 
that reflect both technical constraints and deployment priorities. 

4) Hardware-aware model training and optimization: The 

final step involves training a classifier to predict the optimal 

model given the integrated hardware and deployment features. 

This step transforms the comprehensive dataset into a practical 

decision-making tool for hardware-aware model selection. A 

Random Forest was selected as the hardware-aware selection 

algorithm due to its ability to handle mixed feature types, 

robustness to feature scaling differences, and interpretability 

through feature importance analysis [19]. The training process 

starts with data preprocessing, including standardization and 

label encoding to ensure consistent feature scaling and proper 
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handling of categorical variables. An 80/20 stratified train-test 

split maintains balanced class representation across all 11 

anomaly detection models. The training step produces a 

classifier that predicts the optimal model selection among all 11 

candidate anomaly detection algorithms based on hardware 

constraint features. It also outputs a probability distribution 

(confidence scores) over all models, where each probability 

indicates the likelihood that a particular model is the best choice 

for the specified hardware. 

 

Fig. 2. Performance of the hardware-aware classifier: (a) Classification 

report; (b) Normalized confusion matrix. 

Fig. 2 shows strong, class-consistent performance across 11 
categories. The multi-class model achieved 71.4% overall 
accuracy (699 samples), with macro-averaged precision 0.7569, 
recall 0.7137, and F1-score 0.7254, indicating balanced 
performance across classes. The row-normalized confusion 
matrix shows a clear, dominant diagonal where most classes (7 
out of 11) achieve ≥ 0.70 recall, with particularly strong 
performance for LSTM (0.86), LOF (0.84), OCSVM (0.79), and 
GMM (0.77). Off-diagonal entries are low and diffuse, 
indicating minimal systematic confusion and confirming the 
model’s ability to reliably discriminate among the competing 
approaches. These results represent a significant improvement 
over random selection and validate the effectiveness 
of constraint-driven feature-engineering and hardware-focused 
scoring. 

 

Fig. 3. Feature importance analysis of the hardware-aware model selection. 

The Random Forest feature importance analysis reveals the 
relative contribution of each input feature to the selection 
decision, as illustrated in Fig. 3. The feature-importance analysis 
indicates that deployment constraints tied to latency and 

footprint dominate model selection: Max_Inference contributes 
the most at 17.09%, followed by Max_Size at 16.85%. Resource 
limits are next with Max_RAM (14.12%) and Max_Energy 
(13.94%), highlighting the importance of running efficiently on 
devices with limited memory and power. Platform compatibility 
matters but is secondary, with Requires_Tflite (12.50%) 
and Requires_Onnx (11.00%). GPU Availability has the lowest 
but still meaningful impact (10.50%), suggesting decisions are 
driven more by edge-device constraints than by access to 
accelerators. 

D. MetaEdge Engine Construction 

The MetaEdge engine is constructed by seamless integration 
of the hardware-aware selection module and the meta-learning 
module through a two-stage decision process. During inference, 
the meta-learning module first generates top-k model 
recommendations based on dataset characteristics. The 
hardware-aware module then evaluates these k candidates 
against the target hardware specifications to select the best 
candidate model that balances performance potential with 
deployment feasibility. A key design decision in MetaEdge is 
this two-stage architecture: by first filtering with meta-learning 
and then applying hardware-aware optimization, the system 
constrains the hardware-aware module to the top-K models 
while gaining important practical advantages, including 
computational efficiency by reducing the candidate pool, 
interpretability through a clear separation of data-driven and 
hardware-driven decisions, and proven effectiveness across 
diverse deployment scenarios. This design prioritizes data-
driven model selection as the primary driver, using hardware 
constraints as a secondary refinement filter, reflecting a 
deliberate trade-off between optimality and deployment 
efficiency. 

 

Fig. 4. Workflow of the MetaEdge engine. 

Fig. 4 illustrates the detailed workflow of MetaEdge. 
First, the incoming streaming data is buffered, and the buffered 
data is sent along with the target hardware specifications to the 
MetaEdge engine. Then, at the MetaEdge, a two-stage decision 
process is performed to select the best deployable anomaly-
detection model. In the first stage, the meta-learning module 
extracts the meta-features of the buffered streaming data 
and recommends the top-k anomaly detectors based only on the 
data characteristics. In the second stage, the hardware-
aware module uses the hardware specifications and converts 
them into a standardized feature vector to generate probability 
predictions (confidence scores) for every model in the candidate 
pool, not just the top-k from the meta-learning module. The 
confidence score represents the hardware-aware estimate of the 
probability that a given model is the most suitable option for a 
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given hardware specification. Despite having complete 
probability information for all 11 models, the system restricts 
the selection to only the top-k models identified by the meta-
learning selection module. Therefore, the hardware-aware 
selection module selects the model with the highest probability 
among the filtered top-k. The selected model is then trained on 
the buffered data and converted to compact models using the 
required format (TFLite or ONNX). Algorithm 1 presents the 
integrated two-stage selection process of MetaEdge. 

Algorithm 1 Two-Stage Model Selection of MetaEdge. 

Input: Dataset meta-features M; device specifications D; meta -learner 

module ML; hardware-aware module HM; K (default K=3) 

Output: Selected model 𝑀optimal, confidence score conf 

// Stage 1: Meta-learning recommendation 

Top_K_models ←ML.recommend (M,K=3) 

// Stage 2: Hardware-aware selection 

Device_features  ← [𝐷. 𝑚𝑎𝑥𝑟𝑎𝑚𝑚𝑏
, 𝐷. 𝑚𝑎𝑥 𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑚𝑠

,𝐷. 𝑚𝑎𝑥𝑠𝑖𝑧𝑒𝑚𝑏
,

𝐷. 𝑚𝑎𝑥𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑗
,𝐷. 𝑟𝑒𝑞𝑢𝑖𝑟𝑒 𝑠𝑡𝑓𝑙𝑖𝑡𝑒 , 𝐷. 𝑟𝑒𝑞𝑢𝑖𝑟𝑒 𝑠𝑜𝑛𝑛𝑥, 𝐷. 𝑔𝑝𝑢𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒] 

Device_features_scaled ← 𝑆𝑐𝑎𝑙𝑒𝑟 . 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 (𝐷𝑒𝑣𝑖𝑐𝑒 _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

Prob_all ←𝐻𝑀. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑝𝑟𝑜𝑏𝑎 (𝐷𝑒𝑣𝑖𝑐𝑒 _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 _𝑠𝑐𝑎𝑙𝑒𝑑 ) 

All_predictions ←𝑀𝑎𝑝 ( 𝐴𝑙𝑙 _𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 _𝑚𝑜𝑑𝑒𝑙𝑠,  𝑃𝑟𝑜𝑏_𝑎𝑙𝑙) 

Filtered_predictions ←𝐹𝑖𝑙𝑡𝑒𝑟 (𝐴𝑙𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑇𝑜𝑝_𝐾_𝑚𝑜𝑑𝑒𝑙𝑠) 

(𝑀optimal , conf) ← 𝑎𝑟𝑔 𝑚𝑎𝑥  (filtered_predictions) 

Return 𝑀optimal, conf 

IV. EXPERIMENTAL RESULTS 

This section reports a comprehensive evaluation of the 
MetaEdge framework along four dimensions: meta-learning-
based model selection, hardware-aware model selection, model 
conversion effectiveness, and deployment feasibility. All 
experiments were executed on AWS. We used Amazon 
SageMaker notebook instances to provide a scalable, 
reproducible setup, and stored models, training data, and results 
in Amazon S3 for reliable persistence and access. The stream-
processing pipeline consumed the skin dataset and implemented 
a buffer abstraction to emulate cold-start and warm-buffer 
conditions, enabling a realistic assessment under varied 
operating scenarios. We tested MetaEdge on four representative 
edge platforms spanning a wide compute range from a 
constrained Orange Pi Zero to a high-performance EC2 
g4dn.xlarge with a GPU. The two higher-end platforms were 
instantiated as AWS EC2 instances to reflect practical cloud–
edge deployments. The overarching goal is to show that 
MetaEdge can adapt model selection to device constraints while 
maintaining acceptable anomaly-detection performance, and to 
quantify the benefits of its two-stage selection strategy in real-
world edge settings. 

 

Fig. 5. Model recommendation comparison across different buffer sizes. 

We examined how available data volume affects model 
selection by varying the buffer size (500 vs. 1,000 samples). For 
each condition, the meta-learning module ranked candidate 
anomaly detectors and returned the top three. With a 500-sample 
buffer, it favored LOF, GMM, and PCA; with a 1,000-sample 
buffer, it favored LOF, GRU, and PCA. As illustrated in Fig. 5, 
increasing the buffer from 500 to 1,000 samples yielded a 76% 
average gain in the meta-learner’s prediction score. Confidence 
in LOF rose from 0.527 to 0.926, with corresponding 
improvements for GRU and PCA. Overall, providing more 
buffered data makes the meta-learner both more confident and 
more accurate in its recommendations. 

 

Fig. 6. Model performance comparison (Original vs. Converted). 

To evaluate anomaly detection capability, we trained the top 
three models recommended by the meta-learner: LOF, GRU, 
and PCA on a 1,000-sample buffer from the skin dataset. We 
then produced lightweight deployment versions. Where 
supported, TensorFlow models were exported to .tflite using the 
official TensorFlow Lite converter; scikit-learn models were 
converted to ONNX with skl2onnx. In our case, LOF and PCA 
(scikit-learn) were converted to ONNX, and the GRU model 
was exported to ONNX via tf2onnx as a fallback 
mechanism.  To validate the effectiveness of these conversions, 
we compared each converted model with its original counterpart 
on two metrics: model file size and accuracy (see Fig. 6). 
Accuracy losses were minimal: LOF decreased from 0.87 to 
0.85 (−2.3%), GRU was unchanged at 0.81, and PCA declined 
from 0.80 to 0.77 (−3.8%). All converted models remained 
above 75% accuracy. Size compression was substantial: LOF 
shrank from 484.04 KB to 217.29 KB (−55%), GRU from 
324.56 KB to 99.24 KB (−69%), and PCA from 1.07 KB to 0.32 
KB (−70%). These reductions, ranging from 55% to 70% make 
the models well-suited for resource-constrained edge 
deployments. 
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TABLE III.  THE SPECIFICATIONS OF EDGE DEVICES 

Edge Device 
Real/ 

Simulated 
Device Specifications 

T2.Micro 

 

Simulated 

1 vCPU, 1 GB RAM, no GPU; Low-

to-moderate network performance 

[20]. 

G4dn.Xlarge 

 

 Simulated 

4 vCPUs, 16 GB RAM, 1× NVIDIA 

T4 (16 GB VRAM), 125 GB 

NVMe local storage, up to 25 

Gbps networking [21]. 

Raspberry Pi 5 

 

Real 

Quad-core Arm Cortex-A76, 2.4 

GHz, VideoCore VII GPU; 

LPDDR4X-4267 RAM 8 GB; dual 

4Kp60 micro-HDMI; Wi-Fi 5 and 

Bluetooth 5.0 [22]. 

Orange Pi Zero 2W 

 

Real 

quad-core Cortex-A53 (up to 1.5 

GHz), Mali-G31 MP2 GPU; 1 GB 

LPDDR4 ; Wi-Fi 5 and Bluetooth 

5.0 [23]. 

We validated the hardware-aware module by executing it in 
live deployments across four edge targets. Two were physical 
devices, a Raspberry Pi 5 (higher-end) and an Orange Pi Zero 
2W (resource-constrained), provisioned with AWS IoT 
Greengrass v2 and packaged via Amazon SageMaker Edge 
Manager. To widen the hardware spectrum, we also emulated 
edge profiles on AWS EC2: a t2.micro to represent a low-
resource CPU environment and a g4dn.xlarge to represent a 
GPU-enabled, Jetson-like setting. Device specifications are 
summarized in Table III. The hardware-aware module leverages 
each device’s specifications to choose the best model from the 
meta-learner’s candidates (LOF, GRU, and PCA), assigning a 
confidence score to each. Detailed per-device confidence scores 
for all models are presented in the following subsections. 

A. Edge Device 1: Orange Pi Zero 

The Orange Pi Zero is one of the resource-constrained 
platforms, and its confidence scores reflect the framework’s 
ability to adapt to severe hardware limits. LOF is the preferred 
option at 45% confidence (see Fig. 7), indicating that classical 
algorithms are best suited to resource-limited devices. PCA is a 
strong alternative at 25%, underscoring the preference for 
lightweight, classical approaches. By contrast, the GRU receives 
0% confidence, consistent with the view that neural networks 
are impractical on this class of hardware. Overall, the 
distribution shows hardware-aware reasoning: traditional ML 
models dominate the shortlist (LOF 45%, PCA 25%, KMeans 
15%), appropriately prioritizing resource-efficient choices for 
reliable deployment under tight constraints. 

 

Fig. 7. Confidence scores of the Orange Pi Zero device. 

To assess real-time feasibility, we deployed the selected 
LOF model on the Orange Pi Zero. The inference traces (see 
Fig. 8) remained stable across 6,000 samples with no anomalous 
spikes. Latency was tightly centered at 17.36 ms and 
consistently under 20 ms per sample, meeting real-time 
requirements for lightweight devices. Chunk-level analysis over 
120 windows showed steady performance with only minor 
fluctuations. While not the fastest platform, the Orange Pi Zero 
ran LOF inference reliably, confirming that on-device anomaly 
detection is feasible even on microcontroller-class hardware. 

 

Fig. 8. Inference performance of the Orange Pi Zero device. 

Running LOF on the Orange Pi Zero shows that simple, 
lightweight methods can work well on limited hardware, with 
81.0% accuracy, as shown in Fig. 9. Precision is 29.4%, 
meaning one in three alerts corresponds to a true anomaly, a 
trade-off that favors responsiveness over selectivity on low-
power devices. Recall is 79.1%, so the system catches most of 
the anomalies useful in settings where missing an event such as 
equipment faults and security issues is worse than raising extra 
alerts. Specificity is 81.2%, indicating reasonable discrimination 
of normal behavior given the algorithm’s simplicity and small 
computational footprint. Overall, the F1 score is 42.8%, and the 
average precision (AP) is 0.456, reflecting moderate separation 
between classes under tight resource limits. The confusion 
matrix (TN = 4,434; FP = 1,026; FN = 113; TP = 427) confirms 
this profile: more false alarms than some higher-powered 
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platforms, but strong sensitivity that is well suited to 
applications where missing an anomaly is costlier than 
investigating extra alerts. Taken together, these results make the 
Orange Pi Zero and LOF combination a practical fit for 
distributed sensor networks, remote monitoring, and other IoT 
deployments where power, cost, and connectivity limitations 
demand efficient local processing. 

 

Fig. 9. Performance of a LOF model on Orange Pi Zero: (a) Confusion 

matrix; (b) Metrics summary; (c) Precision–recall curve; (d) Score 

distributions by class. 

B. Edge Device 2: EC2 T2.Micro 

The EC2 t2.micro serves as another resource-constrained 
target, with limited RAM and tight latency budgets. LOF 
remains the leading choice at 35% confidence, down from 45% 
on the Orange Pi Zero, suggesting that the different resources on 
t2.micro allow closer competition (as shown in Fig. 10). GAN 
reaches 20% confidence but is excluded because it was not 
selected by the meta-learning module. Overall, classical options 
still dominate the viable set PCA at 15% while non-selected 
candidates such as KMeans (12%) and AutoEncoder (8%) 
register only moderate confidence. 

 

Fig. 10. Confidence scores of T2.micro. 

To assess the real-time viability of the chosen LOF model, 
we deployed it on AWS EC2 t2.micro instances using AWS IoT 
Greengrass v2. Fig. 11 summarizes the edge-side inference 
results. The line plot tracks raw anomaly scores across 6,000 
streaming samples; scores are normalized to the [0, 1] range and 
exhibit steady behavior without abrupt spikes. The 
accompanying histogram reports per-sample latency: the mean 
inference time was 2.58 ms, with most samples completing 
under 3 ms. Latencies ranged from 2.34 ms to 12.68 ms 

indicating efficient and comparatively stable performance on 
constrained hardware. A chunk-level view (CHUNK_SIZE = 
50) further showed uniform throughput across 120 chunks, with 
no evident degradation or drift. Despite limited CPU and 
memory, the LOF model sustained stable throughput and 
accuracy, supporting its suitability for lightweight deployment 
on t2.micro edge device. 

 

Fig. 11. Inference performance of the T2.micro device. 

On an AWS T2.micro instance, the LOF model 
achieves 76.5% accuracy (see Fig. 12), demonstrating that 
useful anomaly detection can be achieved on a very low-cost 
instance. Precision is 23.9%, so about one in four alerts is a real 
issue, a reflection of the limited CPU and memory on this class 
of VM, which caps model complexity. Recall comes in 
at 73.9%, meaning the system catches the most important 
anomalies, which is valuable when the cost of missing an event 
could outweigh savings on infrastructure. Specificity is 76.8%, 
a reasonable level of “normal vs. abnormal” separation for such 
a constrained setup.  Overall, the F1 score is 36.1% and the AP 
is 0.403, consistent with moderate discriminative power for 
cost-sensitive use cases. The confusion matrix (TN=4,191; 
FP=1,269; FN=141; TP=399) shows a higher false-alarm rate, 
but acceptable recall, which is ideal for cost-sensitive 
environments that use alerts to prompt lightweight verification. 

 

Fig. 12. Performance of a LOF model on T2.micro: (a) Confusion matrix; 

(b) Metrics summary; (c) Precision–recall curve; (d) Score distributions by 

class. 
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C. Edge Device 3: Raspberry Pi 5 

The Raspberry Pi 5 marks a clear inflection point where the 
framework begins to favor deep learning and adapts to support 
neural models. On this device, a GRU is selected with 28% 
confidence (see Fig. 13), indicating the system’s capacity to 
accommodate more advanced algorithms as resources increase. 
This choice supports the framework’s principle of scaling model 
complexity with available compute, enabling neural network–
based methods when they become practical and advantageous 
for anomaly detection. Notably, an LSTM registers 42% 
confidence among the models that were filtered out. This 
suggests the hardware-aware selector would have preferred 
LSTM over GRU for this configuration, but the upstream meta-
learning stage, driven by data characteristics, did not choose it. 
This rigid two-stage pipeline can therefore constrain optimal 
hardware-aware decisions when the meta-learning and hardware 
signals diverge. 

 

Fig. 13. Confidence scores of the Raspberry Pi 5. 

To verify the GRU model’s real-time viability, we deployed 
it on a Raspberry Pi 5. Fig. 14 summarizes the edge-side 
inference results. Outputs remain stable across all 6,000 
samples, with scores confined to the [0, 1] range. Latency is 
extremely low, an average of 0.076 ms, with the vast majority 
of inferences finishing under 0.1 ms. A chunk-level analysis 
over 120 chunks shows flat, highly consistent throughput with 
no signs of drift or degradation. Overall, the Raspberry Pi 5 
executes the GRU model with ultra-low latency and negligible 
variance, confirming its suitability for real-time anomaly 
detection at the edge. 

 

Fig. 14. Inference performance of the Raspberry Pi 5 device. 

As shown in Fig. 15, running a GRU model on the Raspberry 
Pi 5 delivers standout anomaly detection, topping all platforms 
in our test with 96.6% accuracy. Precision reaches 90.4%, 
meaning 9 out of 10 alerts are real, which significantly reduces 
the cost of chasing false alarms. The model’s 69.7% 
recall reflects a deliberate tilt toward accuracy over sensitivity, 
which is useful in settings where false positives are more costly 
than the occasional miss. Specificity is an exceptional 99.3%, 
indicating the system almost never flags normal behavior. 
Overall performance is strong, with an F1 score of 78.7% and an 
AP of 0.818. The confusion matrix shows 5,420 correctly 
identified normal events and 376 correctly identified anomalies, 
with only 40 false alarms and 164 missed anomalies, evidence 
of tight control over false positives while capturing a substantial 
share of true anomalies. These results demonstrate the model's 
ability to achieve high-performance anomaly detection on edge 
computing hardware with minimal computational overhead. 

 

Fig. 15. Performance of a GRU model on Raspberry Pi 5: (a) Confusion 

matrix; (b) Metrics summary; (c) Precision–recall curve; (d) Score 

distributions by class. 

D. Edge Device 4: EC2 G4dn.Xlarge 

The EC2 g4dn.xlarge evaluation shows how the framework 
performs in a resource-rich, GPU-accelerated setting. As shown 
in Fig. 16, with ample compute, the system elevates deep 
learning and selects a GRU with 18% confidence, illustrating its 
ability to take advantage of advanced hardware. This aligns with 
the framework’s scaling strategy: as constraints ease, more 
sophisticated neural architectures become preferable. While 
GRU was prioritized as a top 3 meta-learning choice, LSTM 
attained 55% confidence, exceeding the GRU by more than 
threefold, suggesting substantial promise under different dataset 
conditions. As expected on this class of hardware, traditional 
ML methods receive negligible confidence (mostly under 5%), 
avoiding underutilization of the platform. Overall, the high-
performance scenario confirms that the framework adjusts 
model complexity to match available resources, enabling 
efficient use of advanced edge infrastructure. 
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Fig. 16. Confidence scores of  G4dn.Xlarge. 

To validate the real-time operational feasibility of the 
selected LOF model, deployments were executed on AWS EC2 
instances G4dn.Xlarge using AWS IoT Greengrass V2. The 
GRU edge deployment inference results for EC2 instance 
G4dn.Xlarge are shown in Fig. 17. The line chart shows GRU’s 
raw sequence modeling outputs across 6,000 streaming samples, 
bounded between 0 and 1. The scores remained stable without 
spikes, reflecting consistent prediction quality. The histogram 
confirms ultra-stable latency, with most samples completing 
near 0.07 ms. The narrow range (0.066–0.298 ms) and extremely 
low variance (std: 0.0053 ms) validate the predictability of GPU 
execution. Chunk-level latency (120 chunks, 50 samples each) 
was nearly flat, with no systematic drift, confirming sustained 
throughput. The GRU model leveraged G4dn.Xlarge’s GPU 
capabilities to deliver extremely consistent, ultra-low-variance 
inference performance, ideal for precision-critical deployments. 

 

Fig. 17. Inference performance of G4dn.xlarge device. 

Running a GRU model on an AWS G4dn.xlarge delivers 
solid anomaly detection with 89.0% accuracy, highlighting how 
high-performance hardware helps with complex pattern 
recognition. Precision is 43.2%, about two of every five alerts 
are true, a clear step up from our statistical baselines, while 
keeping throughput high thanks to GPU acceleration. Recall 
is 69.6%, so the system catches nearly 70% of real anomalies, 
and specificity is 90.9%, showing it is strong at recognizing 

normal behavior. Overall, the model posts an F1 of 53.3% and 
an AP of 0.512, indicating good discrimination across 
thresholds, as shown in Fig. 18. The confusion matrix 
shows TN=4,965, FP=495, FN=164, and TP=376, reflecting a 
balanced trade-off between detection and false alarms. In 
practice, this GPU-accelerated setup is well-suited to production 
workloads that need both high performance and straightforward 
scalability. 

 

Fig. 18. Performance of a GRU model on G4dn.Xlarge: (a) Confusion matrix; 

(b) Metrics summary; (c) Precision–recall curve; (d) Score distributions by 

class. 

E. Results Summary 

MetaEdge shows strong hardware-aware model selection: its 
confidence score distributions adapt to the computational limits 
of the four evaluated devices. The Random Forest meta-selector 
produces probabilities ranging from 0% for clearly incompatible 
choices to 55% for the best hardware–model pairs. Concretely, 
LOF scores 45% confidence on the Orange Pi Zero and 35% on 
EC2 t2.micro, while GRU reaches 28% on the Raspberry Pi 5 
and becomes viable on EC2 g4dn.xlarge, evidence that the 
framework scales model complexity progressively with 
available resources. The model conversion process through 
ONNX standardization achieves remarkable success with only 
0–3.8% degradation, while delivering substantial size reductions 
of 55-70% across all models. These reductions enable practical 
edge deployment without sacrificing detection capability, 
effectively bridging the gap between theoretical performance 
and real-world deployment constraints. 

Across deployments, the models deliver strong anomaly 
detection and validate MetaEdge’s two-stage selection strategy. 
The Raspberry Pi 5 leads all platforms with 96.6% accuracy and 
90.4% precision, surpassing all other configurations in this 
study. The AWS G4dn.xlarge follows with 89.0% accuracy 
using GPU acceleration, while the LOF model maintains 
consistent recall on constrained devices (79.1% and 73.9% on 
the Orange Pi Zero and EC2 t2.micro, respectively). MetaEdge 
balances performance and deploy ability by first using meta-
learning to shortlist high-performing candidates, then applying 
hardware-aware constraints to ensure each model fits device 
resources. This produces sensible adaptations: traditional ML is 
selected for tight edge environments, and deep learning is 
enabled where hardware permits. The result is superior anomaly 
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detection across diverse edge settings without sacrificing 
computational efficiency or deployment reliability. 

V. CONCLUSION 

This study presents MetaEdge, a hardware-aware framework 
for model selection that tackles the challenge of deploying 
effective anomaly detection across heterogeneous edge devices. 
It combines meta-learning with hardware-aware optimization to 
enable practical deployment without compromising detection 
quality. The framework makes high-accuracy model-selection 
decisions, with confidence scores that provide meaningful 
assessments of hardware compatibility to guide deployment 
strategies. MetaEdge uses ONNX standardization for model 
conversion to enable cross-platform deployment while 
minimizing accuracy loss, yielding 0–3.8% degradation and a 
55–70% reduction in model size. 

Experimental results demonstrate superior anomaly-
detection performance across diverse hardware configurations. 
The hardware-aware stage consistently identifies optimal 
model–hardware pairings, and the deployed models exhibit 
strong detection performance. On a Raspberry Pi 5, MetaEdge 
achieves 96.6% accuracy and 90.4% precision under strict 
computational constraints, outperforming the other tested 
implementations. On an AWS g4dn.xlarge instance, GPU 
acceleration yields 89.0% accuracy. The LOF model maintains 
stable recall on resource-constrained devices (79.1% and 
73.9%), providing a reliable baseline for such deployments. 

MetaEdge demonstrates that automated, hardware-aware 
model selection can jointly identify models from data meta-
features and align them with device constraints. The framework 
operates across heterogeneous platforms from ultra-constrained 
edge nodes to GPU-accelerated systems, enhancing on-device 
anomaly detection while adhering to strict resource budgets. 
Beyond empirical gains, MetaEdge offers methodological 
guidance for distributed anomaly detection and clarifies the 
trade-offs inherent in hardware-aware optimization. It 
establishes a robust foundation for future adaptive edge 
computing systems, capable of intelligently adjusting their 
performance based on available computational resources and 
deployment constraints. 

In practice, MetaEdge supports real-world deployment by 
providing a systematic workflow for selecting accurate models 
that satisfy explicit resource budgets across diverse devices, 
reducing trial-and-error when transitioning from experimental 
evaluation to on-device operation. As with any deployment-
oriented framework, MetaEdge operates within the assumptions 
of the profiled model space and observed device conditions; 
however, its modular design allows these profiles to be 
incrementally expanded and updated as deployment scale, 
anomaly characteristics, and hardware diversity evolve. To 
further strengthen applicability at scale, future work will extend 
the profiling process and model registry to broader model 
families and a wider range of devices, support lightweight online 
learning to maintain performance under concept drift and 
changing anomaly patterns, enable model personalization to 
device- and context-specific conditions, and explore cross-
device collaborative learning to improve robustness across 
heterogeneous edge deployments, while reducing runtime 
overhead through offline profiling and caching. 
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