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Abstract—Wireless Sensor Networks (WSNs) play an 

increasingly important role in Industry 5.0 cyber–physical 

systems, where resilience, trust, and energy efficiency are 

essential under dynamic operating conditions. However, their 

limited resources, scattered deployment, and continuous 

operation make these networks highly susceptible to unusual 

behavior and cyberattacks. Such issues can compromise data 

quality, disrupt network reliability, and shorten the overall 

lifespan of the system. To address these challenges, this study 

examines WSN resilience as a combined problem of anomaly 

detection accuracy, fault isolation latency, and network lifetime 

under realistic fault and energy constraints. At the core of the 

framework is a Model Context Protocol (MCP), which combines 

a supervised LightGBM classifier with an unsupervised LSTM 

autoencoder to capture both event-driven and temporal 

anomalies in sensor data. Complementing this is a compact 

“Micro-Ledger” system that updates trust values for each node 

by monitoring behavior and using streamlined consensus rules. 

Together, they create a continuous feedback mechanism that 

isolates suspicious nodes while keeping energy consumption in 

check. The framework is evaluated using a set of resilience-

oriented metrics, including fault detection latency, Mean Time 

To Failure (MTTF), reputation convergence behavior, and 

overall network lifetime. Experiments conducted in a Digital 

Twin simulation environment report an F1-score of 0.997, an 

18.7% improvement in network lifetime, and a Micro-Ledger 

storage overhead of approximately 98 KB. While the current 

validation is simulation-based, the proposed design can be 

extended to physical deployments through adaptive trust 

weighting, cluster-head redundancy, and probation-based node 

reintegration. 
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I. INTRODUCTION 

Industry 5.0, or the fifth industrial revolution, ushers in an 
altogether new paradigm that seeks to make production 
systems more human-centered and focus on sustainability and 
resilience [1]. At the heart of Industry 5.0 will be IoE, 
encompassing the interlinking of cyber-physical spaces 
through Wireless Sensor Networks or WSNs, which will be 
able to connect the two environments of physical and digital. A 
typical WSN contains thousands of spatially distributed sensor 
nodes that capture data and transport information continuously. 
This decentralized approach has its own merits—the intelligent 
automation, the adaptive control—but at the same time, it gives 

rise to important vulnerabilities because of the energy-
constrained and distributed nodes [2]. 

Outliers or anomalous data points caused by malicious 
intrusions, hardware failures, or environmental interference 
degrade network performance, data integrity, and energy 
efficiency [3]. These anomalies increase communication 
overhead and maintenance costs and, hence, reduce network 
lifetime. In such environments, resilience is no longer limited 
to fault tolerance alone but also includes timely anomaly 
recognition, trust-aware decision-making, and sustained 
operation under resource constraints. 

While anomaly detection, trust management, and 
blockchain-based integrity have each been studied in isolation, 
their joint role in sustaining long-term resilience and network 
lifetime in Industry 5.0 WSNs remains underexplored. In 
particular, existing approaches often lack adaptive trust 
evolution driven by real-time anomaly evidence. Industry 5.0 
extends earlier industrial paradigms by emphasizing resilience, 
sustainability, and human-centric cyber–physical systems [23]. 
ML approaches to anomaly detection show promise; however, 
applications in dynamic IoT and WSN often struggle to 
generalize across heterogeneous anomaly types and 
dynamically changing operating conditions. [4]. Similarly, 
single-model classifiers, such as Support Vector Machines and 
Decision Trees, have lower performance while dealing with 
heterogeneous sensor data [5]. Beyond detection accuracy, 
system-level resilience metrics such as fault detection latency, 
recovery behavior, and network lifetime are equally critical in 
practical WSN deployments. 

Recent research in deep learning has enhanced detection 
accuracy through the temporal dependencies modeled on 
sequential data. For example, LSTM-based networks have 
achieved high performance in detecting time-series anomalies 
in WSNs [6]. However, these networks still suffer from some 
limitations when used in isolation, as they cannot detect event-
based and time-series anomalies in dynamic environmental 
conditions [7]. 

While blockchain mechanisms have been extensively 
explored to ensure data integrity and auditability in WSNs, the 
consensus protocols commonly adopted are computationally 
expensive, such as PoW, thus being infeasible for energy-
constrained sensor nodes. Lightweight blockchain designs have 
recently been proposed, although they are often passive data 
storage rather than active adaptive trust systems. Besides, most 
of the earlier studies fail to address changing behavior of 
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network nodes, an essential factor in accurate and dynamic 
trust levels. However, when used purely as a passive data store, 
blockchain mechanisms offer limited support for adapting to 
evolving node behavior or mitigating energy drain caused by 
unreliable sensors. 

Addressing these challenges calls for an integrated 
multilayer resilience framework, coherent with the principles 
of Industry 5.0. The key contributions of this work can be 
summarized as follows: 

• Hybrid Anomaly Detection (Model Context Protocol - 
MCP): A hybrid architecture combining LightGBM and 
LSTM Autoencoder models aims to improve detection 
accuracy across multiple anomaly types [12]. 

• Lightweight "Micro-Ledger" for Dynamic Trust 
Management: A blockchain-based reputation system for 
resource-constrained WSNs, which improves node trust 
evaluation and energy efficiency [13]. 

• Closed-loop feedback mechanism: Integration of 
anomaly detection results with the Micro-Ledger to 
support automated isolation of persistently unreliable 
nodes [14]. 

• Digital Twin Validation: Simulation and testing on a 
Digital Twin environment to assess resilience under 
induced network noise and channel interference 
conditions [15]. 

The present study focuses on simulation-based validation 
within a Digital Twin environment to analyze resilience 
behavior under controlled fault conditions. Extensions to 
physical deployments, more complex attack models, and 
adaptive trust policies are discussed as part of future research 
directions. 

II. RELATED WORK 

The security, reliability, and longevity of WSNs have been 
recognized as key challenges in the evolution of both Industry 
5.0 and the IoT [16]. Accordingly, resultant topics related to 
these areas have been actively reviewed across a wide variety 
of domains, with particular attention given to anomaly 
detection, blockchain-enabled trust management, and energy-
efficient network design. Despite these active developments, 
there is still a dire need for integrated frameworks that bring 
these components together into a cohesive, resilient 
architecture. 

A. Anomaly Detection in WSNs and IoT Systems 

ML and DL have emerged as the key technologies for 
anomaly detection in WSNs/IoT systems in recent times [17]. 
For instance, Al-Qatf et al. showed that ML classifiers such as 
Support Vector Machines and Decision Trees could efficiently 
detect intrusions in sensor networks [18]. 
Further research by Otoum et al. applied Random Forests, 
presenting enhancements in the detection performance of IoT-
based intrusion detection systems. 

Deep Learning improved the detection capabilities by 
learning complex temporal and nonlinear patterns present in 
time series data. Malhotra et al. introduced the concept of 

LSTM Autoencoders, which perform anomaly detection by 
learning normal system behavior and subsequently finding 
deviations from it [20]. 

 Similarly, Lee et al. have also demonstrated effectiveness 
in fault detection in vibration-based cyber-physical systems 
using LSTM Autoencoders [21]. Despite these advances, 
single-model approaches remain limited in detecting multiple 
types of anomalies in heterogeneous WSN environments [22]. 
Hybrid or ensemble architectures combining different models 
have also been proposed to overcome this limitation and offer 
increased robustness. For example, Khairullah and Alsenani 
showed that hybrid frameworks that integrate both gradient 
boosting and deep learning improved the consistency of 
anomaly detection. This idea directly inspired the Model 
Context Protocol (MCP) proposed in this research, which 
integrated both LightGBM and LSTM Autoencoder to perform 
high-precision, multi-type anomaly detection. 

B. Blockchain-Based Trust Management for WSNs 

Immutability, decentralization, and tamper resistance 
properties of blockchain technology have made it attractive for 
securing IoT and WSN data [25]. 
The early frameworks rely on blockchain primarily for data 
integrity, where sensor readings are stored in an immutable 
ledger to avoid unauthorized changes [26]. 
Later, other works extended the blockchain use to 
authentication and access control for IoT networks, improving 
data confidentiality and accountability [24]. 

However, most of such systems relied on the resource-
intensive consensus algorithms like Proof-of-Work (PoW), 
which is impractical for energy-limited sensor nodes [22]. 
To alleviate this, Deng et al. presented a lightweight Proof-of-
Authority–based trust mechanism that has been proposed to 
reduce consensus overhead in resource-constrained Wireless 
Sensor Networks [8]. This Scheme with the help of Proof-of-
Authority consensus, reduced the computational overhead 
significantly without compromising the integrity of trust [25]. 

Stefanescu et al. have also highlighted the importance of 
lightweight blockchain architectures for IoT, showing how 
customized consensus models can increase scalability [26]. In 
addition, Sahraoui and Bachir proposed adaptive 
“Blockchained Things,” presenting blockchain models which 
dynamically adapt node trust over time [19]. Several studies 
have shown that blockchain architectures can be adapted for 
IoT environments, although scalability and storage overhead 
remain open challenges [9]. However, few of them really 
integrate behavioral trust evaluation with blockchain 
mechanisms, which is the gap that this study tries to address 
through its Micro-Ledger. The latter continuously updates node 
reputation based on behavioral evidence. 

Despite these advances, many blockchain-based solutions 
remain largely passive, focusing on secure storage or 
authentication rather than actively adapting trust in response to 
node behavior. Moreover, assumptions of static trust or 
reliance on a single validating authority may limit resilience in 
long-running, large-scale WSN deployments. Blockchain-
enabled trust frameworks for heterogeneous IoT devices have 
been explored to provide decentralized accountability without 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

475 | P a g e  
www.ijacsa.thesai.org 

centralized authorities [10]. Trust-based mechanisms have also 
been applied to mitigate malicious or unreliable node behavior 
in distributed sensor networks [11]. 

C. Resilience and Network Lifetime in Industry 5.0 WSNs 

The operational lifetime of WSNs has long been a focal 
point of optimization efforts. Classic approaches, including 
energy-aware routing, node clustering, and sleep scheduling, 
which reduce communication overhead, generally do not take 
long-term effects caused by security and trust into 
consideration [21]. 

Untrusted or malfunctioning nodes may continuously 
transmit incorrect data that would cause redundant 
communication and energy wastage [21]. 

To counter this, the contributions of Han et al. have 
stressed the importance of combining trust management with 
energy optimization and have proposed frameworks capable of 
isolating or quarantining unreliable nodes [21]. Recent works 
extend this concept by integrating security, trust, and energy 
efficiency for better robustness of the network [14]. The 
framework now extends this fundamental idea by integrating 
AI-based anomaly detection with blockchain-based trust 
management to realize a self-regulating, energy-aware, and 
adaptive WSN suitable for Industry 5.0 ecosystems [20]. In the 
context of Industry 5.0, resilience is increasingly viewed as a 
system-level property that encompasses fault tolerance, trust 
evolution, and sustained energy efficiency, rather than isolated 
security or routing optimizations. 

In summary, existing research provides valuable insights 
into anomaly detection, blockchain-enabled trust, and energy-
aware WSN design. However, an integrated framework that 
tightly couples hybrid AI-based anomaly detection with 
adaptive, lightweight trust management—while explicitly 
targeting network lifetime and resilience in Industry 5.0 
settings—remains limited. This gap motivates the framework 
proposed in this study. 

III. THE PROPOSED FRAMEWORK 

This section presents the proposed resilience framework 
designed to enhance security, trust, and network lifetime in 
Wireless Sensor Networks operating under Industry 5.0 
conditions. The framework is conceived as a modular, multi-
layer system in which anomaly detection, trust evaluation, and 
energy-aware decision-making are tightly coupled through a 
closed feedback loop. Rather than treating these components 
independently, the design emphasizes their interaction over 
time as sensor behavior and network conditions evolve. Each 
component of the framework is formally defined in terms of its 
role, inputs, and outputs, and is later supported by 
mathematical modeling and algorithmic descriptions to ensure 
reproducibility. The framework is evaluated within a Digital 
Twin simulation environment, which enables controlled fault 
injection and repeatable analysis of resilience behavior prior to 
physical deployment. While the framework leverages edge-
based coordination at the cluster level, its design allows for 
extensions such as role rotation and redundancy to mitigate 
centralized failure risks. The remainder of this section details 
the high-level architecture, operational methodology, edge 

intelligence module, and lightweight reputation ledger that 
together realize the proposed framework. 

 

Fig. 1. High-level architecture of the proposed WSN resilience framework. 

A. System Architecture 

The proposed architecture consists of three interdependent 
layers, conceptually illustrated in Fig. 1. The architecture is 
designed to support decentralized sensing, edge-level 
intelligence, and trust-aware coordination while maintaining 
low computational and communication overhead. 

Formally, the wireless sensor network is modeled as a 
graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣1 ,𝑣2 , … , 𝑣𝑁 }represents the set 
of sensor nodes and 𝐸denotes wireless communication links. 
Nodes are organized into clusters, each coordinated by a cluster 
head responsible for local inference and trust management. 

• IoE Layer (Perception Layer): This layer represents 
distributed sensor nodes deployed in physical 
environments. Each of these nodes collects multivariate 
data on phenomena such as temperature, motion, and 
GPS coordinates, which are transmitted to cluster heads 
for aggregation and analysis. To reduce redundant 
communication, raw sensor readings are locally 
aggregated before transmission to the cluster head. 

• Edge Intelligence Layer: At the cluster head level, local 
inference is performed using a hybrid AI detection 
mechanism that balances detection accuracy with edge-
level resource constraints, called the Model Context 
Protocol (MCP). MCP fuses a LightGBM Classifier and 
an LSTM Autoencoder to identify both event-based and 
temporal anomalies efficiently. This keeps bandwidth 
utilization low and also enhances security by processing 
data at the network edge. 

• Secure Management Layer: This layer introduces a 
Lightweight Reputation Ledger—the “Micro-
Ledger”—that keeps track of the reputation status of 
each node based on blockchain principles. The ledger 
records node behavior in a verifiable and tamper-
resistant format to enable dynamic trust adjustments 
and isolate unreliable nodes. Reputation updates are 
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triggered by observed node behavior rather than static 
assumptions, allowing trust to evolve over time. 

Although the cluster head coordinates local inference and 
ledger updates, the architecture does not assume permanent 
leadership. Backup cluster heads may be selected based on 
residual energy and reputation, enabling role rotation in the 
event of failure or compromise. 

B. Framework Methodology 

The proposed framework operates as an event-driven 
process executed at the cluster-head level. Incoming sensor 
data are processed sequentially, enabling timely anomaly 
detection, trust updates, and adaptive responses to evolving 
network conditions. The layered architecture of the proposed 
resilience framework, including the IoE layer, edge intelligence 
layer, and secure management layer, is illustrated in Fig. 2. 

 

Fig. 2. Methodology flowchart of the anomaly detection and reputation 

management process. 

• Data Preprocessing: At each time step 𝑡 , the cluster 
head receives a multivariate sensor vector 𝐱𝑡 =

[𝑥𝑡
(1)

,𝑥𝑡
(2)

,… , 𝑥𝑡
(𝑑)

], where 𝑑 denotes the number of 
monitored features. Normalization of raw sensor inputs 
is done in order to maintain consistency across 
heterogeneous devices and ensure fair weighting in 
anomaly detection.  

• Packet Loss and Fault Modeling: To reflect realistic 
operating conditions, the framework accounts for 
communication impairments and sensor faults. Packet 
loss is modeled as a Bernoulli process with loss 
probability 𝑝𝑙 , while sensor faults are introduced 
probabilistically to simulate intermittent and persistent 
deviations in sensor behavior. 

• Parallel Anomaly Detection: The LightGBM classifier 
and LSTM Autoencoder process input data in parallel. 
Their outputs are fused by a soft-voting fusion rule, 
such that an anomaly is declared when either model 
detects an anomalous pattern. This design maximizes 
recall while maintaining high precision. 

Detected anomalies are not treated uniformly. Each 
anomaly is associated with a severity score derived from model 
confidence and temporal persistence, allowing the framework 
to distinguish transient sensor noise from sustained or 
potentially malicious behavior. 

• Reputation Update Procedure: In case of anomaly 
detection, the framework evaluates whether the detected 
anomaly reflects persistent abnormal behavior or a 
benign, transient deviation based on validation within 
the Digital Twin environment. Reputation adjustments 
are based on behavioral assessment rather than model 
error attribution, ensuring that nodes are not penalized 
solely due to transient detection uncertainty. 

• Blockchain Transaction Logging: Every reputation 
adjustment generates an entry in the Micro-Ledger, 
including node ID, event type, timestamp, and 
reputation change. This immutable record provides a 
transparent audit trail and supports future 
accountability. 

The time elapsed between the onset of abnormal behavior 
and its identification is recorded as fault detection latency, 
serving as a key indicator of the framework’s responsiveness. 
Validation within the Digital Twin enables controlled injection 
of noise, packet loss, and faulty node behavior, providing 
repeatable conditions for evaluating detection accuracy and 
trust adaptation. 

C. The Edge Intelligence Module (MCP) 

The Edge Intelligence Module, referred to as the Model 
Context Protocol (MCP), serves as the decision-making core of 
the proposed framework. It is designed to identify 
heterogeneous anomalies at the network edge while balancing 
detection accuracy with computational and energy constraints. 

Relying on a single detection model often limits robustness 
in dynamic WSN environments, where anomalies may appear 
as isolated events or evolve gradually over time. To address 
this, MCP combines complementary learning paradigms that 
capture both instantaneous deviations and longer-term 
temporal patterns. 

1) LightGBM for event-based anomaly detection: 

LightGBM is an efficient gradient-boosted decision tree 

framework that is well-suited for structured telemetry data 

commonly produced by sensor nodes. It does an excellent job 

of catching discrete or event-based anomalies without much 

computational overhead at the edge. Within MCP, LightGBM 

primarily contributes to detecting event-driven anomalies, 

such as sudden threshold violations or abnormal feature 

combinations. 

2) LSTM autoencoder for sequential anomaly detection: 

The LSTM Autoencoder proposed by Malhotra et al. models 

sequential dependencies in the time series, thereby detecting 

anomalies based on temporal reconstruction errors. Several 

improved variants, including that, have demonstrated that the 

LSTM Autoencoder maintains good resistance to noise in 

dynamic environments. While effective in modeling normal 

temporal behavior, the autoencoder alone may overlook 
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abrupt, non-sequential anomalies, motivating its integration 

with a complementary model. 

3) MCP fusion logic: The outputs of the LightGBM 

classifier and the LSTM autoencoder are combined using a 

soft-voting strategy. An observation is flagged as anomalous 

when either model reports abnormal behavior, prioritizing 

anomaly recall while maintaining high precision. In which the 

final decision denotes computationally as: 

𝐴(𝑋𝑡) = max(𝑦𝐿𝐺𝐵𝑀, 𝑦𝐿𝑆𝑇𝑀)   

In addition to the binary anomaly decision, MCP retains 
model confidence and reconstruction error information. These 
signals are later used to estimate anomaly severity and 
temporal persistence, enabling differentiated trust responses 
rather than uniform penalization. By performing inference at 
the cluster head, MCP reduces unnecessary data transmission 
and supports timely detection without imposing continuous 
computational load on individual sensor nodes. 

D. The Lightweight Reputation Ledger 

The Lightweight Reputation Ledger, referred to as the 
Micro-Ledger, provides a decentralized yet energy-aware 
mechanism for tracking node behavior over time. Its primary 
objective is to translate anomaly evidence into adaptive trust 
decisions without imposing the computational overhead of 
conventional blockchain systems. 

The Micro-Ledger acts as the trust management backbone 
of the framework. Unlike other traditional blockchains, which 
implement consensus based on mining, such as Proof-of-Work, 
the underlying model followed by the Micro-Ledger is a form 
of Proof-of-Authority. This minimizes computational overhead 
and energy consumption in resource-constrained WSNs. 
Although Proof-of-Authority is employed to minimize energy 
consumption, the framework does not assume unconditional 
trust in a single validator. Reputation consistency checks and 
periodic leadership rotation can be incorporated to mitigate 
validator compromise. 

1) Energy-efficient consensus: Proof-of-Authority (PoA): 

This is because the PoA model minimizes most overhead by 

eliminating energy-intensive computational puzzles while 

guaranteeing the immutability and verifiability of blocks. Such 

architectures result in high trust assurance with minimal 

energy use in IoT networks. 

The proposed framework integrates hybrid AI detection 
with adaptive blockchain trust management, enabling a 
resilient, self-healing WSN architecture that can operate for an 
extended period under the extreme constraints of Industry 5.0 
ecosystems. 

2) The reputation management algorithm: Reputation 

updates are driven by observed behavioral patterns rather than 

model errors. When sustained or high-severity anomalous 

behavior is identified, the corresponding node’s reputation is 

reduced proportionally, whereas stable and reliable behavior 

results in gradual reputation reinforcement. 

Let 𝑠𝑡 ∈ [0,1] denote the anomaly severity score at time 𝑡, 
derived from detection confidence and temporal persistence. 

The reputation score 𝑅𝑖of node 𝑖is updated incrementally as a 
function of 𝑠𝑡 , allowing minor transient deviations to have 
limited impact while penalizing persistent abnormal behavior 
more strongly. 

• Automatic Quarantine: If any node's reputation 
degrades below the threshold Rth = 50, it is 
automatically quarantined, and any related data will not 
be included in any future analysis to conserve energy. 

• Nodes whose reputation falls below the quarantine 
threshold are temporarily isolated from active 
participation. A probation mechanism allows 
quarantined nodes to be re-evaluated after a cooling-off 
period, during which limited observation data may be 
collected to assess behavioral recovery before potential 
reintegration. 

To bound storage overhead over extended operation, the 
Micro-Ledger can employ sliding-window retention or periodic 
summarization of historical entries, ensuring scalability on 
resource-constrained cluster heads. 

IV. EXPERIMENTAL SETUP AND EVALUATION 

This section describes the experimental design used to 
evaluate the proposed framework in terms of detection 
performance, resilience, and energy efficiency. The evaluation 
is conducted within a controlled Digital Twin simulation 
environment, enabling repeatable analysis under varying fault, 
noise, and communication impairment conditions. Both 
component-level metrics and system-level resilience indicators 
are considered to provide a comprehensive assessment. 

A. Dataset 

The experiments made use of the ToN-IoT dataset. The 
dataset contains labeled telemetry and network traffic traces 
collected from heterogeneous IoT devices under both normal 
and attack conditions, making it suitable for anomaly detection 
and resilience evaluation. It was one of the most adopted 
benchmarks related to the evaluation of intrusion and anomaly 
detection models within the IoT and WSN context. 

Extensive preprocessing was done before training and 
evaluation on the raw data. Telemetry streams were combined 
into one multivariate time series, indexed by timestamps. 
Based on the correlation and leakage analysis, missing values, 
duplicates, and non-informative features were removed. The 
selected features included temperature, motion, GPS latitude, 
pressure, and humidity; Feature selection was guided by 
correlation analysis and information leakage checks to remove 
redundant and non-informative attributes. Normalization 
ensures that features with different physical units contribute 
proportionally to the learning process. 

This final dataset was then divided into 70% training and 
30% testing subsets, as done in standard best practices for 
anomaly detection studies. The split was performed 
chronologically to preserve temporal dependencies in the 
sensor streams and to avoid information leakage between 
training and testing phases.  This approach guarantees 
sufficient diversity for both the supervised and unsupervised 
model components within the MCP. 
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While the ToN-IoT dataset provides a diverse and widely 
used benchmark, it is employed here to support controlled 
evaluation rather than to claim exhaustive coverage of all real-
world failure scenarios. 

B. The Digital Twin Simulation Environment 

The framework was implemented on a custom-made 
Digital Twin built in Streamlit that mirrored a virtual replica of 
the WSN to analyze system behavior in real-time. The Digital 
Twin serves as a pre-deployment validation tool, allowing 
controlled experimentation and systematic observation of 
system behavior under reproducible conditions. 

The simulated network consists of multiple sensor nodes 
organized into clusters, with configurable parameters such as 
node count, communication reliability, and fault injection 
intensity. Simulation runs are executed over extended event 
sequences to capture long-term trust evolution and energy 
trends. 

Notable interactive features of the environment included 
composable features to facilitate investigatory inquiry, 
including, but not limited to, the following: 

• Live Simulation Dashboard: An environment that 
monitors exhibited model performance metrics and 
current metrics for model accuracy, precision, and 
recall, as well as the most recent state of the Reputation 
Ledger. 

• Noise Injection Control: The capability to introduce 
Gaussian noise to sensor readings in order to represent 
environmental interference and evaluate the overall 
robustness of the detection models. Noise intensity is 
varied across simulation runs to evaluate detection 
robustness under increasing environmental interference. 

• Packet Loss Simulator: A proportion of sensor packets 
was randomly omitted as a representation of channel 
impairments and connectivity loss. Packet loss is 
modeled probabilistically to reflect unstable wireless 
links commonly observed in real-world WSN 
deployments. 

• Faulty Sensor Selector: Faulty nodes are configured to 
exhibit persistent or intermittent abnormal behavior, 
enabling evaluation of the framework’s ability to 
distinguish transient deviations from sustained faults. 

• Manual Data Interface: Novel sliders for each sensor 
with user-defined sender values, which served as an 
opportunity for near real-time anomaly assessment. 

The simulated nature of this assessment allows for a 
repeatable experimental scenario while enabling a fine-grained 
observation regarding detection efficacy and trust management 
operations within dynamic environments. This simulation-
based setup enables detailed resilience analysis while avoiding 
hardware-dependent variability, thereby supporting fair and 
repeatable evaluation. 

C. Evaluation Metrics 

In order to thoroughly evaluate the performance of the 
framework, the selected metrics are grouped into model-level 

performance indicators and system-level resilience indicators 
to reflect both detection accuracy and long-term network 
behavior. 

1) Model performance metrics: The AI model 

performance was evaluated using four standard classification 

measures: Accuracy, Precision, Recall, and F1-Score: 

• Accuracy: The proportion of instances that were 
correctly classified. 

• Precision: The fraction of instances classified as 
anomalies that were, in fact, true anomalies, which 
reveals the effectiveness of the model in terms of false 
alarms. 

• Recall: The fraction of true anomalies that were 
classified as anomalies by the model. 

• F1-Score: The harmonic mean of precision and recall, 
which indicates the overall detection ability of the 
detection model. 

These metrics together reflect the model’s ability to 
identify anomalies reliably while minimizing benign or non-
malicious anomalies essential for energy-efficient operation in 
WSNs [6]. 

2) Framework evaluation metrics: To quantify system-

level resilience, the following metrics are defined: 

• Fault Detection Latency (FDL): The time difference 
between the onset of abnormal node behavior and its 
detection by the framework. 

• Mean Time To Failure (MTTF): The expected 
operational time before a node or cluster enters a failure 
state due to sustained faults. 

• Mean Time To Recovery (MTTR): The average 
duration required for the system to isolate or mitigate a 
faulty node after detection. 

• Reliability Index: A measure of the probability that the 
network remains operational over time under fault 
conditions. 

Formally, fault detection latency is computed as: 

𝐹𝐷𝐿 = 𝑡𝑑𝑒𝑡𝑒𝑐𝑡 − 𝑡𝑓𝑎𝑢𝑙𝑡 

where, 𝑡faultdenotes the time of fault onset and 𝑡detectdenotes 
the detection time. 

In order to assess system-level resilience and efficiency, 
three metrics were developed: 

• Time to Quarantine (TTQ): The count of events taken 
for the system to recognize and quarantine a reliably 
faulty sensor node. TTQ serves as a discrete 
approximation of recovery responsiveness and 
complements MTTR in event-driven simulations. Low 
TTQ is indicative of a faster adaptive response and 
stronger resilience of the network. 

• Network Lifetime Improvement: The percentage 
improvement in total energy consumption compared to 
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what would have happened without the proposed trust 
mechanism. Network lifetime is inferred from 
cumulative energy consumption across nodes over the 
simulation horizon. This metric is easily interpretable, 
as it represents energy savings directly due to the 
quarantine of unreliable nodes. 

• Blockchain Storage Overhead: The final size (in 
kilobytes) of the Micro-Ledger object at the end of a 
complete simulation, indicating the success of the 
lightweight blockchain design given the resource 
constraints of the underlying architecture. This metric 
reflects the scalability of the trust mechanism under 
prolonged operation. 

When taken together, these evaluation metrics provide a 
comprehensive assessment of AI accuracy, adaptive trust 
performance, and computational efficiency. 

D. Mathematical Formulation of the Framework 

The wireless sensor network is modeled as a set of 𝑁sensor 
nodes represented by a graph 𝐺 = (𝑉, 𝐸) , where 𝑉 =
{𝑣1 , 𝑣2 , … , 𝑣𝑁} denotes the nodes and 𝐸 represents wireless 
communication links between them. 

At the discrete time step 𝑡, the cluster head receives an 
aggregated feature vector: 

𝑥𝑡 = [𝑥𝑡(1), 𝑥𝑡(2), … , 𝑥𝑡(𝑑)] 

where, 𝑑 is the number of monitored features. 

1) AI-based anomaly detection: The Model Context 

Protocol (MCP) combines a supervised classifier and an 

unsupervised reconstruction-based model. 

• LightGBM produces binary predictions: 𝑦𝐿𝐺𝐵𝑀 ∈ {0,1} 

• while the LSTM autoencoder computes a reconstruction 
error: 𝑒𝑡 =∥ 𝑋𝑡 − 𝑋̂𝑡 ∥.  

An anomaly is detected by the autoencoder when e_t > θ, 
where θ is a predefined threshold learned from normal 
behavior. 

The final anomaly decision A_t is obtained using a soft-
voting fusion rule: 

𝐴_𝑡 =  𝑦_𝑡^𝐺𝐵 ∨  𝟙(𝑒_𝑡 >  𝜃), 

where,  denotes the logical OR operation and 𝟙(·) is the 
indicator function. 

To differentiate transient deviations from persistent 
abnormal behavior, an anomaly severity score s_t ∈ [0,1] is 
defined as a function of detection confidence and temporal 
persistence. Higher values of s_t indicate sustained or high-
confidence anomalies, while lower values correspond to minor 
or short-lived deviations. 

2) Reputation update rule: Each node v_i maintains a 

dynamic reputation score R_i(t). When an anomaly is detected 

at time t, the reputation score is updated as: 

𝑅_𝑖(𝑡 + 1)  =  𝑅_𝑖(𝑡)  −  𝛼 ·  𝑠_𝑡, 

where, α > 0 is a scaling factor controlling penalty strength. 
In the absence of anomalies, reputation is gradually reinforced: 

𝑅_𝑖(𝑡 + 1)  =  𝑅_𝑖(𝑡)  +  𝛽,  

where, β > 0 is a small reinforcement constant. 

If R_i(t) falls below a predefined threshold R_th, the node 
is placed into a quarantine state, and its data are excluded from 
further analysis until re-evaluation conditions are satisfied. 

This mathematical formulation links anomaly detection 
outcomes with trust evolution, providing a formal basis for 
analyzing resilience and network lifetime within the proposed 
framework. 

Through the integration of a robust data-driven modeling 
approach, a mathematical trust formulation, and simulation-
based validation of both modeling and trust framework results, 
this study establishes a reproducible basis for authoring a 
trustworthy WSN integrated with AI–blockchain technology. 
The study and replicable data considered Industry 5.0 
conditions to assess the AI–blockchain-integrated WSN's 
resilience. 

V. RESULTS AND DISCUSSION 

This section discusses the experimental results obtained 
from the Digital Twin simulations, focusing on anomaly 
detection performance, resilience under adverse conditions, 
and the impact of trust-aware mechanisms on network lifetime. 
The results are interpreted in relation to baseline approaches 
commonly used in WSN and IoT security literature. 

The proposed resilient framework of WSNs is assessed 
using the Digital Twin environment in respect of: 

1) the accuracy of anomaly detection, 

2) the system's resilience under adverse network 

conditions, and 

3) its impact on the network lifetime and energy 

efficiency. 

A. Experiment 1: AI Model Performance Evaluation 

The first experiment was to check the base performance of 
LightGBM and LSTM Autoencoder along with their hybrid 
fusion, which is called the Model Context Protocol (MCP), 
using the ToN-IoT dataset. As represented in Table I, the 
hybrid MCP architecture was able to outperform both its model 
components in anomaly detection. 

Compared to traditional single-model approaches such as 
standalone tree-based classifiers or reconstruction-based 
detectors, the hybrid MCP demonstrates a clear advantage in 
balancing precision and recall. Similar trends have been 
reported in recent hybrid intrusion detection studies, where 
combining complementary models improves robustness under 
heterogeneous data distributions. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

480 | P a g e  
www.ijacsa.thesai.org 

TABLE I.  PERFORMANCE COMPARISON OF DETECTION MODELS ON THE 

CLEAN TEST SET 

Model Accuracy Precision Recall F1-Score 

LightGBM 0.985 0.992 0.991 0.991 

LSTM 

Autoencoder 
0.913 0.985 0.914 0.948 

MCP (Soft 

Vote) 
0.996 0.995 0.999 0.997 

Thus, the MCP achieved an F1-score of 0.997 and near-
perfect recall (0.999), demonstrating that the hybrid fusion 
detects almost all real anomalies with very few false negatives. 
The LightGBM model had been excellent in detecting discrete, 
event-based anomalies, while the LSTM Autoencoder provided 
strong temporal sensitivity. Integration of these two models 
into the MCP led to a robust mechanism of anomaly detection, 
which is further consistent with findings from other hybrid 
intrusion detection studies. 

B. Experiment 2: Framework Resilience to Network Faults 

The second experiment tested the robustness of the MCP 
against simulated network disturbances through Gaussian noise 
and packet loss in the Digital Twin environment. According to 
Fig. 3, at 20% total fault levels (10% noise and 10% packet 
loss), the MCP still had an F1-score above 0.94; thus, graceful 
degradation rather than failure took place. This gradual 
degradation indicates graceful performance decay rather than 
abrupt failure, which is a desirable property for resilient WSN 
deployments operating in unstable environments. 

In this way, hybrid detection methods demonstrate their 
resilience compared with single models regarding 
environmental instability or data loss. This is the required 
robustness for sensors in Industry 5.0 scenarios operating under 
uncertain conditions. 

 

Fig. 3. MCP F1-Score degradation under injected noise and channel faults. 

C. Experiment 3: Reputation System and Quarantine 

Validation 

The third experiment focused on the trust adaptation of the 
Micro-Ledger with a designated faulty sensor node that always 
sent anomalous readings. Fig. 4 shows the degradation of the 
reputation score for the faulty sensor node over time until it 
reached the quarantine threshold (R < 50); eventually, the node 
automatically got isolated from the network. 

 

Fig. 4. Reputation score of the designated faulty sensor over time. 

As the simulation unfolded, the node’s reputation score 
gradually decreased due to sustained abnormal behavior, 
eventually crossing the quarantine threshold of 50. The node 
was launched into quarantine and demoted from active 
engagement with the network after 312 events. This was 
illustrated in Fig. 4, allowing us to conclude that the 
behaviorally driven reputation algorithm is effective, and its 
real-time action was also effective. The observed convergence 
toward quarantine reflects the effect of sustained abnormal 
behavior rather than isolated transient deviations. This time-to-
quarantine (TTQ) value highlights the framework’s ability to 
isolate unreliable nodes within a bounded number of 
observations, contributing to faster recovery and reduced 
energy waste. 

The experiment demonstrated the validation of the metric 
TTQ and showed that, through the reputation-based system, 
unreliable nodes are effectively identified and isolated, 
preserving data integrity and energy efficiency. An adaptive 
reputation model in WSN environments can be designed with 
an improvement in the performance of self-healing networks. 

D. Experiment 4: Network Lifetime and Efficiency Assessment 

The observed network lifetime improvement is consistent 
with prior trust-aware WSN studies, where early isolation of 
unreliable nodes reduces redundant communication and 
unnecessary energy expenditure. Unlike approaches that rely 
solely on routing optimization, the proposed framework 
achieves energy savings through behavior-driven trust 
adaptation. A quantitative comparison of total energy 
consumption, network lifetime improvement, and Micro-
Ledger storage overhead is summarized in Table II. 
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TABLE II.  QUANTITATIVE COMPARISON OF TOTAL ENERGY 

CONSUMPTION, NETWORK LIFETIME IMPROVEMENT, AND MICRO-LEDGER 

STORAGE OVERHEAD 

Metric Value 

Total Energy (Baseline System) 1465.7 Units 

Total Energy (Our Framework) 1191.6 Units 

Network Lifetime Improvement 18.7% Energy Saved 

Blockchain Storage Overhead 98 KB 

Using the framework improved network lifetime by 18.7% 
due early detection and quarantine of faulty nodes, which 
limited the number of redundancies. The Micro-Ledger even 
when being multi-sourced, is still very lightweight and minimal 
needed storage was approximately 98KB, which is in line with 
the design goals of energy-constrained WSN applications. 

  These indications support that a systems-based approach 
utilizing an aspect of hybrid AI detection integrated with 
context-based behavior-driven blockchain trust management 
framework has improved resilience and energy efficiency in 
practical WSN applications. 

E. Discussion 

The combined results of the experiments demonstrate both 
the effectiveness and scalability of the proposed framework. 
The hybrid MCP indicated statistical significance in detecting 
improvements compared to the other models, while the Micro-
Ledger provides a lightweight, effective mechanism for 
evolving trust in decentralized WSN context. 

The experimental findings outline three key benefits of the 
proposed framework: 

• Detection Robustness: The hybrid MCP exhibits 
superior event-based and temporal anomaly detection 
when compared to existing individual ML and DL 
models. This characteristic of dual detection impacts a 
significant shortcoming of existing individual models. 

• Autonomous Trust Management: The Micro-Ledger 
becomes capable of evolving trust continuously and 
autonomously. When it evolves and develops trust 
autonomously, the network can adapt and self-manage 
without human operation. This sets a stage for a 
substantial development in systems that are self-
managing toward Industry 5.0. 

• Energy Efficiency: The feedback between the MCP and 
the Micro-Ledger reduces redundancy of transmissions 
and optimizes battery resources, leading to observable 
lifetime improvements. 

While the results demonstrate strong performance within 
the simulated environment, it is acknowledged that real-world 
deployments may introduce additional variability, such as 
hardware-induced noise or coordinated adversarial behavior. 
Nevertheless, the controlled evaluation provides valuable 
insight into the framework’s resilience properties and 
establishes a solid foundation for future physical validation. 

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 

This study presented a resilience-oriented framework for 
Wireless Sensor Networks that integrates hybrid AI-based 
anomaly detection with lightweight, behavior-driven trust 
management to address reliability and energy efficiency 
challenges in Industry 5.0 environments. Unlike traditional 
systems that analyze anomaly detection, data integrity, and 
trust management in isolation, the framework merges these 
properties into a seamless adaptive framework consisting of 
two primary elements: 

• A Hybrid AI Anomaly Detection Engine — the Model 
Context Protocol (MCP) — that utilizes LightGBM and 
LSTM Autoencoder models to detect both event-based 
and sequential anomalies. 

• A Lightweight Blockchain-Based Reputation Ledger 
(Micro-Ledger) that manages dynamic node trust 
through a Proof-of-Authority (PoA) consensus 
algorithm that optimizes security and energy 
consumption. 

Through Digital Twin–based evaluation, the proposed 
framework achieved an anomaly detection F1-score of 0.997, 
isolated persistently unreliable nodes within a bounded number 
of events, and improved overall network lifetime by 18.7% 
compared to a baseline system without trust management. The 
associated Micro-Ledger maintained a low storage overhead of 
approximately 98 KB, demonstrating suitability for resource-
constrained WSN deployments. 

These results indicate that combining complementary 
detection models with adaptive trust evolution can yield 
system-level benefits beyond detection accuracy alone. By 
linking anomaly evidence to trust-aware isolation decisions, 
the framework reduces redundant communication and 
mitigates long-term energy drain caused by unreliable nodes. 

From an Industry 5.0 perspective, the proposed framework 
aligns with the emphasis on resilient, human-centric, and 
sustainable cyber–physical systems by enabling autonomous 
monitoring and adaptive response without continuous human 
intervention. These directions aim to further enhance 
adaptability and robustness while preserving the lightweight 
nature of the proposed design. 

This hybridized design also demonstrated that behavioral 
reputation tracking and AI based anomaly detection are not 
competing paradigms but rather complementary pillars of 
secure, sustainable IoT infrastructure. 

B. Future Work 

While the proposed framework demonstrates strong 
performance under controlled simulation conditions, several 
extensions can further improve adaptability and real-world 
applicability, many opportunities remain for future research 
and real-life implementation: 
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• Deployment on physical hardware: Future work 
includes deploying the framework on physical hardware 
platforms, such as Raspberry Pi or ESP32-based sensor 
clusters, to evaluate latency, power consumption, and 
operational robustness under real-world conditions. 

• Adaptive algorithms for reputations: The present model 
uses fixed reward and penalty values for trust update 
calculations. Incorporating context-aware or decay-
based reputation updates may allow the system to better 
distinguish transient faults from sustained abnormal 
behavior. 

• Reintroduction of quarantined nodes: In the present 
implementation, quarantined nodes are isolated 
temporarily, and future work will further refine 
probation-based reintegration mechanisms. A 
revalidation phase of probation could allow quarantined 
nodes that have been rehabilitated to be reinstated back 
into the network after a period of observation based on 
recovery. Such mechanisms would support self-healing 
behavior without compromising long-term network 
integrity. 

• Inter-cluster trust fabric: The micro-ledger can also be 
expanded to provide a secure communication pathway 
between clusters, allowing accordingly distributed 
action across multiple WSN clusters, which forms the 
basis for building a trust fabric collaboratively. This 
direction also opens opportunities for managing trust 
scalability in large-scale, multi-cluster WSN 
deployments. 

• Cross-domain application: In addition to WSNs, the 
proposed hybrid AI–blockchain framework could be 
considered for other applications like industrial 
robotics, smart grids, or autonomous vehicle networks, 
where trust is critical for detecting anomalies in real-
time. 

These extensions aim to enhance robustness and scalability 
while preserving the lightweight and energy-aware nature of 
the proposed framework. 

C. Closing Remarks 

This work demonstrates that resilience in Wireless Sensor 
Networks can be effectively achieved by tightly coupling 
intelligent anomaly detection with adaptive, lightweight trust 
management. 

Rather than treating security, reliability, and energy 
efficiency as isolated objectives, the proposed framework 
highlights the benefits of addressing them jointly through a 
feedback-driven design. This perspective is particularly 
relevant for emerging Industry 5.0 systems, where long-term 
sustainability and autonomous operation are key 
considerations. 

The combination of interpretable learning components and 
transparent trust records also supports accountability and 
auditability in distributed sensing environments. Overall, the 
findings suggest that hybrid AI and trust-aware architectures 
provide a practical and extensible foundation for building 

resilient and sustainable sensor networks in future cyber–
physical ecosystems. 
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