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Abstract—Wireless Sensor Networks (WSNs) play an
increasingly important role in Industry 5.0 cyber—physical
systems, where resilience, trust, and energy efficiency are
essential under dynamic operating conditions. However, their
limited resources, scattered deployment, and continuous
operation make these networks highly susceptible to unusual
behavior and cyberattacks. Such issues can compromise data
quality, disrupt network reliability, and shorten the overall
lifespan of the system. To address these challenges, this study
examines WSN resilience as a combined problem of anomaly
detection accuracy, fault isolation latency, and network lifetime
under realistic fault and energy constraints. At the core of the
framework is a Model Context Protocol (MCP), which combines
a supervised LightGBM classifier with an unsupervised LSTM
autoencoder to capture both event-driven and temporal
anomalies in sensor data. Complementing this is a compact
“Micro-Ledger” system that updates trust values for each node
by monitoring behavior and using streamlined consensus rules.
Together, they create a continuous feedback mechanism that
isolates suspicious nodes while keeping energy consumption in
check. The framework is evaluated using a set of resilience-
oriented metrics, including fault detection latency, Mean Time
To Failure (MTTF), reputation convergence behavior, and
overall network lifetime. Experiments conducted in a Digital
Twin simulation environment report an F1-score of 0.997, an
18.7% improvement in network lifetime, and a Micro-Ledger
storage overhead of approximately 98 KB. While the current
validation is simulation-based, the proposed design can be
extended to physical deployments through adaptive trust
weighting, cluster-head redundancy, and probation-based node
reintegration.
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I.  INTRODUCTION

Industry 5.0, or the fifth industrial revolution, ushers in an
altogether new paradigm that seeks to make production
systems more human-centered and focus on sustainability and
resilience [1]. At the heart of Industry 5.0 will be IoE,
encompassing the interlinking of cyber-physical spaces
through Wireless Sensor Networks or WSNs, which will be
able to connect the two environments of physical and digital. A
typical WSN contains thousands of spatially distributed sensor
nodes that capture data and transport information continuously.
This decentralized approach has its own merits—the intelligent
automation, the adaptive control—but at the same time, it gives

rise to important vulnerabilities because of the energy-
constrained and distributed nodes [2].

Outliers or anomalous data points caused by malicious
intrusions, hardware failures, or environmental interference
degrade network performance, data integrity, and energy
efficiency [3]. These anomalies increase communication
overhead and maintenance costs and, hence, reduce network
lifetime. In such environments, resilience is no longer limited
to fault tolerance alone but also includes timely anomaly
recognition, trust-aware decision-making, and sustained
operation under resource constraints.

While anomaly detection, trust management, and
blockchain-based integrity have each been studied in isolation,
their joint role in sustaining long-term resilience and network
lifetime in Industry 5.0 WSNs remains underexplored. In
particular, existing approaches often lack adaptive trust
evolution driven by real-time anomaly evidence. Industry 5.0
extends earlier industrial paradigms by emphasizing resilience,
sustainability, and human-centric cyber—physical systems [23].
ML approaches to anomaly detection show promise; however,
applications in dynamic IoT and WSN often struggle to
generalize across heterogeneous anomaly types and
dynamically changing operating conditions. [4]. Similarly,
single-model classifiers, such as Support Vector Machines and
Decision Trees, have lower performance while dealing with
heterogeneous sensor data [5]. Beyond detection accuracy,
system-level resilience metrics such as fault detection latency,
recovery behavior, and network lifetime are equally critical in
practical WSN deployments.

Recent research in deep leaming has enhanced detection
accuracy through the temporal dependencies modeled on
sequential data. For example, LSTM-based networks have
achieved high performance in detecting time-series anomalies
in WSNs [6]. However, these networks still suffer from some
limitations when used in isolation, as they cannot detect event-
based and time-series anomalies in dynamic environmental
conditions [7].

While blockchain mechanisms have been extensively
explored to ensure data integrity and auditability in WSNs, the
consensus protocols commonly adopted are computationally
expensive, such as PoW, thus being infeasible for energy-
constrained sensor nodes. Lightweight blockchain designs have
recently been proposed, although they are often passive data
storage rather than active adaptive trust systems. Besides, most
of the earlier studies fail to address changing behavior of
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network nodes, an essential factor in accurate and dynamic
trust levels. However, when used purely as a passive data store,
blockchain mechanisms offer limited support for adapting to
evolving node behavior or mitigating energy drain caused by
unreliable sensors.

Addressing these challenges calls for an integrated
multilayer resilience framework, coherent with the principles
of Industry 5.0. The key contributions of this work can be
summarized as follows:

e Hybrid Anomaly Detection (Model Context Protocol -
MCP): A hybrid architecture combining LightGBM and
LSTM Autoencoder models aims to improve detection
accuracy across multiple anomaly types [12].

e Lightweight "Micro-Ledger" for Dynamic Trust
Management: A blockchain-based reputation system for
resource-constrained WSNs, which improves node trust
evaluation and energy efficiency [13].

e C(Closed-loop feedback mechanism: Integration of
anomaly detection results with the Micro-Ledger to
support automated isolation of persistently unreliable
nodes [14].

e Digital Twin Validation: Simulation and testing on a
Digital Twin environment to assess resilience under
induced network noise and channel interference
conditions [15].

The present study focuses on simulation-based validation
within a Digital Twin environment to analyze resilience
behavior under controlled fault conditions. Extensions to
physical deployments, more complex attack models, and
adaptive trust policies are discussed as part of future research
directions.

II. RELATED WORK

The security, reliability, and longevity of WSNs have been
recognized as key challenges in the evolution of both Industry
5.0 and the IoT [16]. Accordingly, resultant topics related to
these areas have been actively reviewed across a wide variety
of domains, with particular attention given to anomaly
detection, blockchain-enabled trust management, and energy-
efficient network design. Despite these active developments,
there is still a dire need for integrated frameworks that bring
these components together into a cohesive, resilient
architecture.

A. Anomaly Detection in WSNs and loT Systems

ML and DL have emerged as the key technologies for
anomaly detection in WSNs/IoT systems in recent times [17].
For instance, Al-Qatf et al. showed that ML classifiers such as
Support Vector Machines and Decision Trees could efficiently
detect intrusions in sensor networks [18].
Further research by Otoum et al. applied Random Forests,
presenting enhancements in the detection performance of loT-
based intrusion detection systems.

Deep Leaming improved the detection capabilities by
learning complex temporal and nonlinear patterns present in
time series data. Malhotra et al. introduced the concept of
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LSTM Autoencoders, which perform anomaly detection by
learning normal system behavior and subsequently finding
deviations from it [20].

Similarly, Lee et al. have also demonstrated effectiveness
in fault detection in vibration-based cyber-physical systems
using LSTM Autoencoders [21]. Despite these advances,
single-model approaches remain limited in detecting multiple
types of anomalies in heterogeneous WSN environments [22].
Hybrid or ensemble architectures combining different models
have also been proposed to overcome this limitation and offer
increased robustness. For example, Khairullah and Alsenani
showed that hybrid frameworks that integrate both gradient
boosting and deep learning improved the consistency of
anomaly detection. This idea directly inspired the Model
Context Protocol (MCP) proposed in this research, which
integrated both LightGBM and LSTM Autoencoder to perform
high-precision, multi-type anomaly detection.

B. Blockchain-Based Trust Management for WSNs

Immutability, decentralization, and tamper resistance
properties of blockchain technology have made it attractive for
securing IoT and WSN data [25].
The early frameworks rely on blockchain primarily for data
integrity, where sensor readings are stored in an immutable
ledger to avoid unauthorized changes [26].
Later, other works extended the blockchain use to
authentication and access control for IoT networks, improving
data confidentiality and accountability [24].

However, most of such systems relied on the resource-
intensive consensus algorithms like Proof-of-Work (PoW),
which is impractical for energy-limited sensor nodes [22].
To alleviate this, Deng et al. presented a lightweight Proof-of-
Authority—based trust mechanism that has been proposed to
reduce consensus overhead in resource-constrained Wireless
Sensor Networks [8]. This Scheme with the help of Proof-of-
Authority consensus, reduced the computational overhead
significantly without compromising the integrity of trust [25].

Stefanescu et al. have also highlighted the importance of
lightweight blockchain architectures for IoT, showing how
customized consensus models can increase scalability [26]. In
addition, Sahraoui and Bachir proposed adaptive
“Blockchained Things,” presenting blockchain models which
dynamically adapt node trust over time [19]. Several studies
have shown that blockchain architectures can be adapted for
IoT environments, although scalability and storage overhead
remain open challenges [9]. However, few of them really
integrate behavioral trust evaluation with blockchain
mechanisms, which is the gap that this study tries to address
through its Micro-Ledger. The latter continuously updates node
reputation based on behavioral evidence.

Despite these advances, many blockchain-based solutions
remain largely passive, focusing on secure storage or
authentication rather than actively adapting trust in response to
node behavior. Moreover, assumptions of static trust or
reliance on a single validating authority may limit resilience in
long-running, large-scale WSN deployments. Blockchain-
enabled trust frameworks for heterogeneous IoT devices have
been explored to provide decentralized accountability without
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centralized authorities [10]. Trust-based mechanisms have also
been applied to mitigate malicious or unreliable node behavior
in distributed sensor networks [11].

C. Resilience and Network Lifetime in Industry 5.0 WSNs

The operational lifetime of WSNs has long been a focal
point of optimization efforts. Classic approaches, including
energy-aware routing, node clustering, and sleep scheduling,
which reduce communication overhead, generally do not take
long-term effects caused by security and trust into
consideration [21].

Untrusted or malfunctioning nodes may continuously
transmit incorrect data that would cause redundant
communication and energy wastage [21].

To counter this, the contributions of Han et al. have
stressed the importance of combining trust management with
energy optimization and have proposed frameworks capable of
isolating or quarantining unreliable nodes [21]. Recent works
extend this concept by integrating security, trust, and energy
efficiency for better robustness of the network [14]. The
framework now extends this fundamental idea by integrating
Al-based anomaly detection with blockchain-based trust
management to realize a self-regulating, energy-aware, and
adaptive WSN suitable for Industry 5.0 ecosystems [20]. In the
context of Industry 5.0, resilience is increasingly viewed as a
system-level property that encompasses fault tolerance, trust
evolution, and sustained energy efficiency, rather than isolated
security or routing optimizations.

In summary, existing research provides valuable insights
into anomaly detection, blockchain-enabled trust, and energy-
aware WSN design. However, an integrated framework that
tightly couples hybrid Al-based anomaly detection with
adaptive, lightweight trust management—while explicitly
targeting network lifetime and resilience in Industry 5.0
settings—remains limited. This gap motivates the framework
proposed in this study.

III. THE PROPOSED FRAMEWORK

This section presents the proposed resilience framework
designed to enhance security, trust, and network lifetime in
Wireless Sensor Networks operating under Industry 5.0
conditions. The framework is conceived as a modular, multi-
layer system in which anomaly detection, trust evaluation, and
energy-aware decision-making are tightly coupled through a
closed feedback loop. Rather than treating these components
independently, the design emphasizes their interaction over
time as sensor behavior and network conditions evolve. Each
component of the framework is formally defined in terms of its
role, inputs, and outputs, and is later supported by
mathematical modeling and algorithmic descriptions to ensure
reproducibility. The framework is evaluated within a Digital
Twin simulation environment, which enables controlled fault
injection and repeatable analysis of resilience behavior prior to
physical deployment. While the framework leverages edge-
based coordination at the cluster level, its design allows for
extensions such as role rotation and redundancy to mitigate
centralized failure risks. The remainder of this section details
the high-level architecture, operational methodology, edge
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intelligence module, and lightweight reputation ledger that
together realize the proposed framework.

Resilience-Oriented Secure Framework for
Wireless Sensor Networks in 5.0
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Fig. 1. High-level architecture of the proposed WSN resilience framework.

A. System Architecture

The proposed architecture consists of three interdependent
layers, conceptually illustrated in Fig. 1. The architecture is
designed to support decentralized sensing, edge-level
intelligence, and trust-aware coordination while maintaining
low computational and communication overhead.

Formally, the wireless sensor network is modeled as a
graph G = (V,E), where V = {v,,v,, ..., vy Jrepresents the set
of sensor nodes and Edenotes wireless communication links.
Nodes are organized into clusters, each coordinated by a cluster
head responsible for local inference and trust management.

e [oE Layer (Perception Layer): This layer represents
distributed sensor nodes deployed in physical
environments. Each of these nodes collects multivariate
data on phenomena such as temperature, motion, and
GPS coordinates, which are transmitted to cluster heads
for aggregation and analysis. To reduce redundant
communication, raw sensor readings are locally
aggregated before transmission to the cluster head.

e Edge Intelligence Layer: At the cluster head level, local
inference is performed using a hybrid Al detection
mechanism that balances detection accuracy with edge-
level resource constraints, called the Model Context
Protocol (MCP). MCP fuses a LightGBM Classifier and
an LSTM Autoencoder to identify both event-based and
temporal anomalies efficiently. This keeps bandwidth
utilization low and also enhances security by processing
data at the network edge.

e Secure Management Layer: This layer introduces a
Lightweight  Reputation  Ledger—the  “Micro-
Ledger”—that keeps track of the reputation status of
each node based on blockchain principles. The ledger
records node behavior in a verifiable and tamper-
resistant format to enable dynamic trust adjustments
and isolate unreliable nodes. Reputation updates are
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triggered by observed node behavior rather than static
assumptions, allowing trust to evolve over time.

Although the cluster head coordinates local inference and
ledger updates, the architecture does not assume permanent
leadership. Backup cluster heads may be selected based on
residual energy and reputation, enabling role rotation in the
event of failure or compromise.

B. Framework Methodology

The proposed framework operates as an event-driven
process executed at the cluster-head level. Incoming sensor
data are processed sequentially, enabling timely anomaly
detection, trust updates, and adaptive responses to evolving
network conditions. The layered architecture of the proposed
resilience framework, including the IoE layer, edge intelligence
layer, and secure management layer, is illustrated in Fig. 2.
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Fig.2. Methodology flowchart of the anomaly detection and reputation
management process.

e Data Preprocessing: At each time step t, the cluster
head receives a multivariate sensor vector X, =

[x(l) (2), xgd)], where d denotes the number of

monltored features. Normalization of raw sensor inputs
is done in order to maintain consistency across
heterogeneous devices and ensure fair weighting in
anomaly detection.

e Packet Loss and Fault Modeling: To reflect realistic
operating conditions, the framework accounts for
communication impairments and sensor faults. Packet
loss is modeled as a Bernoulli process with loss
probability p; , while sensor faults are introduced
probabilistically to simulate intermittent and persistent
deviations in sensor behavior.

e Parallel Anomaly Detection: The LightGBM classifier
and LSTM Autoencoder process input data in parallel.
Their outputs are fused by a soft-voting fusion rule,
such that an anomaly is declared when either model
detects an anomalous pattern. This design maximizes
recall while maintaining high precision.
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Detected anomalies are not treated uniformly. Each
anomaly is associated with a severity score derived from model
confidence and temporal persistence, allowing the framework
to distinguish transient sensor noise from sustained or
potentially malicious behavior.

e Reputation Update Procedure: In case of anomaly
detection, the framework evaluates whether the detected
anomaly reflects persistent abnormal behavior or a
benign, transient deviation based on validation within
the Digital Twin environment. Reputation adjustments
are based on behavioral assessment rather than model
error attribution, ensuring that nodes are not penalized
solely due to transient detection uncertainty.

e Blockchain Transaction Logging: Every reputation
adjustment generates an entry in the Micro-Ledger,
including node ID, event type, timestamp, and
reputation change. This immutable record provides a
transparent audit trail and  supports future
accountability.

The time elapsed between the onset of abnormal behavior
and its identification is recorded as fault detection latency,
serving as a key indicator of the framework’s responsiveness.
Validation within the Digital Twin enables controlled injection
of noise, packet loss, and faulty node behavior, providing
repeatable conditions for evaluating detection accuracy and
trust adaptation.

C. The Edge Intelligence Module (MCP)

The Edge Intelligence Module, referred to as the Model
Context Protocol (MCP), serves as the decision-making core of
the proposed framework. It is designed to identify
heterogeneous anomalies at the network edge while balancing
detection accuracy with computational and energy constraints.

Relying on a single detection model often limits robustness
in dynamic WSN environments, where anomalies may appear
as isolated events or evolve gradually over time. To address
this, MCP combines complementary leaming paradigms that
capture both instantaneous deviations and longer-term
temporal patterns.

1) LightGBM for event-based anomaly detection:
LightGBM is an efficient gradient-boosted decision tree
framework that is well-suited for structured telemetry data
commonly produced by sensor nodes. It does an excellent job
of catching discrete or event-based anomalies without much
computational overhead at the edge. Within MCP, Light GBM
primarily contributes to detecting event-driven anomalies,
such as sudden threshold violations or abnormal feature
combinations.

2) LSTM autoencoder for sequential anomaly detection:
The LSTM Autoencoder proposed by Malhotra et al. models
sequential dependencies in the time series, thereby detecting
anomalies based on temporal reconstruction errors. Several
improved variants, including that, have demonstrated that the
LSTM Autoencoder maintains good resistance to noise in
dynamic environments. While effective in modeling normal
temporal behavior, the autoencoder alone may overlook
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abrupt, non-sequential anomalies, motivating its integration
with a complementary model.

3) MCP fusion logic: The outputs of the LightGBM
classifier and the LSTM autoencoder are combined using a
soft-voting strategy. An observation is flagged as anomalous
when either model reports abnormal behavior, prioritizing
anomaly recall while maintaining high precision. In which the
final decision denotes computationally as:

A(Xt) = max(yLGBM, yLSTM)

In addition to the binary anomaly decision, MCP retains
model confidence and reconstruction error information. These
signals are later used to estimate anomaly severity and
temporal persistence, enabling differentiated trust responses
rather than uniform penalization. By performing inference at
the cluster head, MCP reduces unnecessary data transmission
and supports timely detection without imposing continuous
computational load on individual sensor nodes.

D. The Lightweight Reputation Ledger

The Lightweight Reputation Ledger, referred to as the
Micro-Ledger, provides a decentralized yet energy-aware
mechanism for tracking node behavior over time. Its primary
objective is to translate anomaly evidence into adaptive trust
decisions without imposing the computational overhead of
conventional blockchain systems.

The Micro-Ledger acts as the trust management backbone
of the framework. Unlike other traditional blockchains, which
implement consensus based on mining, such as Proof-of-Work,
the underlying model followed by the Micro-Ledger is a form
of Proof-of-Authority. This minimizes computational overhead
and energy consumption in resource-constrained WSNSs.
Although Proof-of-Authority is employed to minimize energy
consumption, the framework does not assume unconditional
trust in a single validator. Reputation consistency checks and
periodic leadership rotation can be incorporated to mitigate
validator compromise.

1) Energy-efficient consensus: Proof-of-Authority (PoA):
This is because the PoA model minimizes most overhead by
eliminating energy-intensive computational puzzles while
guaranteeing the immutability and verifiability of blocks. Such
architectures result in high trust assurance with minimal
energy use in IoT networks.

The proposed framework integrates hybrid Al detection
with adaptive blockchain trust management, enabling a
resilient, self-healing WSN architecture that can operate for an
extended period under the extreme constraints of Industry 5.0
ecosystems.

2) The reputation management algorithm: Reputation
updates are driven by observed behavioral patterns rather than
model errors. When sustained or high-severity anomalous
behavior is identified, the corresponding node’s reputation is
reduced proportionally, whereas stable and reliable behavior
results in gradual reputation reinforcement.

Let s, € [0,1] denote the anomaly severity score at time t,
derived from detection confidence and temporal persistence.
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The reputation score R;of node iis updated incrementally as a
function of s;, allowing minor transient deviations to have
limited impact while penalizing persistent abnormal behavior
more strongly.

e Automatic Quarantine: If any node's reputation
degrades below the threshold Rth = 50, it is
automatically quarantined, and any related data will not
be included in any future analysis to conserve energy.

e Nodes whose reputation falls below the quarantine
threshold are temporarily isolated from active
participation. A probation mechanism allows
quarantined nodes to be re-evaluated after a cooling-off
period, during which limited observation data may be
collected to assess behavioral recovery before potential
reintegration.

To bound storage overhead over extended operation, the
Micro-Ledger can employ sliding-window retention or periodic
summarization of historical entries, ensuring scalability on
resource-constrained cluster heads.

IV. EXPERIMENTAL SETUP AND EVALUATION

This section describes the experimental design used to
evaluate the proposed framework in terms of detection
performance, resilience, and energy efficiency. The evaluation
is conducted within a controlled Digital Twin simulation
environment, enabling repeatable analysis under varying fault,
noise, and communication impairment conditions. Both
component-level metrics and system-level resilience indicators
are considered to provide a comprehensive assessment.

A. Dataset

The experiments made use of the ToN-lIoT dataset. The
dataset contains labeled telemetry and network traffic traces
collected from heterogeneous IoT devices under both normal
and attack conditions, making it suitable for anomaly detection
and resilience evaluation. It was one of the most adopted
benchmarks related to the evaluation of intrusion and anomaly
detection models within the IoT and WSN context.

Extensive preprocessing was done before training and
evaluation on the raw data. Telemetry streams were combined
into one multivariate time series, indexed by timestamps.
Based on the correlation and leakage analysis, missing values,
duplicates, and non-informative features were removed. The
selected features included temperature, motion, GPS latitude,
pressure, and humidity; Feature selection was guided by
correlation analysis and information leakage checks to remove
redundant and non-informative attributes. Normalization
ensures that features with different physical units contribute
proportionally to the learning process.

This final dataset was then divided into 70% training and
30% testing subsets, as done in standard best practices for
anomaly detection studies. The split was performed
chronologically to preserve temporal dependencies in the
sensor streams and to avoid information leakage between
training and testing phases.  This approach guarantees
sufficient diversity for both the supervised and unsupervised
model components within the MCP.
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While the ToN-IoT dataset provides a diverse and widely
used benchmark, it is employed here to support controlled
evaluation rather than to claim exhaustive coverage of all real-
world failure scenarios.

B. The Digital Twin Simulation Environment

The framework was implemented on a custom-made
Digital Twin built in Streamlit that mirrored a virtual replica of
the WSN to analyze system behavior in real-time. The Digital
Twin serves as a pre-deployment validation tool, allowing
controlled experimentation and systematic observation of
system behavior under reproducible conditions.

The simulated network consists of multiple sensor nodes
organized into clusters, with configurable parameters such as
node count, communication reliability, and fault injection
intensity. Simulation runs are executed over extended event
sequences to capture long-term trust evolution and energy
trends.

Notable interactive features of the environment included
composable features to facilitate investigatory inquiry,
including, but not limited to, the following:

e Live Simulation Dashboard: An environment that
monitors exhibited model performance metrics and
current metrics for model accuracy, precision, and
recall, as well as the most recent state of the Reputation
Ledger.

e Noise Injection Control: The capability to introduce
Gaussian noise to sensor readings in order to represent
environmental interference and evaluate the overall
robustness of the detection models. Noise intensity is
varied across simulation runs to evaluate detection
robustness under increasing environmental interference.

o Packet Loss Simulator: A proportion of sensor packets
was randomly omitted as a representation of channel
impairments and connectivity loss. Packet loss is
modeled probabilistically to reflect unstable wireless
links commonly observed in real-world WSN
deployments.

e Faulty Sensor Selector: Faulty nodes are configured to
exhibit persistent or intermittent abnormal behavior,
enabling evaluation of the framework’s ability to
distinguish transient deviations from sustained faults.

e Manual Data Interface: Novel sliders for each sensor
with user-defined sender values, which served as an
opportunity for near real-time anomaly assessment.

The simulated nature of this assessment allows for a
repeatable experimental scenario while enabling a fine-grained
observation regarding detection efficacy and trust management
operations within dynamic environments. This simulation-
based setup enables detailed resilience analysis while avoiding
hardware-dependent variability, thereby supporting fair and
repeatable evaluation.

C. Evaluation Metrics

In order to thoroughly evaluate the performance of the
framework, the selected metrics are grouped into model-level
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performance indicators and system-level resilience indicators
to reflect both detection accuracy and long-term network
behavior.

1) Model performance metrics: The Al model
performance was evaluated using four standard classification
measures: Accuracy, Precision, Recall, and F1-Score:

e Accuracy: The proportion of instances that were
correctly classified.

e Precision: The fraction of instances classified as
anomalies that were, in fact, true anomalies, which
reveals the effectiveness of the model in terms of false
alarms.

e Recall: The fraction of true anomalies that were
classified as anomalies by the model.

e F1-Score: The harmonic mean of precision and recall,
which indicates the overall detection ability of the
detection model.

These metrics together reflect the model’s ability to
identify anomalies reliably while minimizing benign or non-

malicious anomalies essential for energy-efficient operation in
WSNs [6].

2) Framework evaluation metrics: To quantify system-
level resilience, the following metrics are defined:

e Fault Detection Latency (FDL): The time difference
between the onset of abnormal node behavior and its
detection by the framework.

e Mean Time To Failure (MTTF): The expected
operational time before a node or cluster enters a failure
state due to sustained faults.

e Mean Time To Recovery (MTTR): The average
duration required for the system to isolate or mitigate a
faulty node after detection.

e Reliability Index: A measure of the probability that the
network remains operational over time under fault
conditions.

Formally, fault detection latency is computed as:
FDL = tdetect — tfault

where, tg, denotes the time of fault onset and t 4. denotes
the detection time.

In order to assess system-level resilience and efficiency,
three metrics were developed:

e Time to Quarantine (TTQ): The count of events taken
for the system to recognize and quarantine a reliably
faulty sensor node. TTQ serves as a discrete
approximation of recovery responsiveness and
complements MTTR in event-driven simulations. Low
TTQ is indicative of a faster adaptive response and
stronger resilience of the network.

e Network Lifetime Improvement: The percentage
improvement in total energy consumption compared to

478 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

what would have happened without the proposed trust
mechanism. Network lifetime is inferred from
cumulative energy consumption across nodes over the
simulation horizon. This metric is easily interpretable,
as it represents energy savings directly due to the
quarantine of unreliable nodes.

e Blockchain Storage Overhead: The final size (in
kilobytes) of the Micro-Ledger object at the end of a
complete simulation, indicating the success of the
lightweight blockchain design given the resource
constraints of the underlying architecture. This metric
reflects the scalability of the trust mechanism under
prolonged operation.

When taken together, these evaluation metrics provide a
comprehensive assessment of Al accuracy, adaptive trust
performance, and computational efficiency.

D. Mathematical Formulation of the Framework

The wireless sensor network is modeled as a set of Nsensor
nodes represented by a graph G = (V,E), where V =
{vi,v,, ..., vy} denotes the nodes and E represents wireless
communication links between them.

At the discrete time step t, the cluster head receives an
aggregated feature vector:

xt = [xt(1),xt(2), ..., xt(d)]

where, d is the number of monitored features.

1) Al-based anomaly detection: The Model Context
Protocol (MCP) combines a supervised classifier and an
unsupervised reconstruction-based model.

e LightGBM produces binary predictions: y; ;5. € {0,1}

e while the LSTM autoencoder computes a reconstruction
error: e, =l X, — X, II.

An anomaly is detected by the autoencoder when e t > 0,
where 0 is a predefined threshold learned from normal
behavior.

The final anomaly decision A t is obtained using a soft-
voting fusion rule:

At = y t"GB Vv 1(e_t > 6),

where, ¥ denotes the logical OR operation and 1() is the
indicator function.

To differentiate transient deviations from persistent
abnormal behavior, an anomaly severity score s t € [0,1] is
defined as a function of detection confidence and temporal
persistence. Higher values of s t indicate sustained or high-
confidence anomalies, while lower values correspond to minor
or short-lived deviations.

2) Reputation update rule: Each node v_i maintains a
dynamic reputation score R _i(t). When an anomaly is detected
at time t, the reputation score is updated as:
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Ri(t+1) = R_i(t) — a - s_t,

where, a > 0 is a scaling factor controlling penalty strength.
In the absence of anomalies, reputation is gradually reinforced:

R_i(t+1) = R.i(t) + B,
where, > 0 is a small reinforcement constant.

If R _i(t) falls below a predefined threshold R th, the node
is placed into a quarantine state, and its data are excluded from
further analysis until re-evaluation conditions are satisfied.

This mathematical formulation links anomaly detection
outcomes with trust evolution, providing a formal basis for
analyzing resilience and network lifetime within the proposed
framework.

Through the integration of a robust data-driven modeling
approach, a mathematical trust formulation, and simulation-
based validation of both modeling and trust framework results,
this study establishes a reproducible basis for authoring a
trustworthy WSN integrated with Al-blockchain technology.
The study and replicable data considered Industry 5.0
conditions to assess the Al-blockchain-integrated WSN's
resilience.

V. RESULTS AND DISCUSSION

This section discusses the experimental results obtained
from the Digital Twin simulations, focusing on anomaly
detection performance, resilience under adverse conditions,
and the impact of trust-aware mechanisms on network lifetime.
The results are interpreted in relation to baseline approaches
commonly used in WSN and IoT security literature.

The proposed resilient framework of WSNs is assessed
using the Digital Twin environment in respect of:

1) the accuracy of anomaly detection,

2) the system's resilience under
conditions, and

3) its impact on the network lifetime and energy
efficiency.

adverse network

A. Experiment 1: A Model Performance Evaluation

The first experiment was to check the base performance of
LightGBM and LSTM Autoencoder along with their hybrid
fusion, which is called the Model Context Protocol (MCP),
using the ToN-IoT dataset. As represented in Table I, the
hybrid MCP architecture was able to outperform both its model
components in anomaly detection.

Compared to traditional single-model approaches such as
standalone tree-based classifiers or reconstruction-based
detectors, the hybrid MCP demonstrates a clear advantage in
balancing precision and recall. Similar trends have been
reported in recent hybrid intrusion detection studies, where
combining complementary models improves robustness under
heterogeneous data distributions.
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TABLEI. PERFORMANCE COMPARISON OF DETECTION MODELS ON THE
CLEAN TEST SET

Model Accuracy Precision Recall F1-Score
LightGBM 0.985 0.992 0.991 0.991
LST™M 0913 0.985 0914 0.948
Autoencoder
yCP (Soft 0.996 0.995 0.999 0.997

ote)

Thus, the MCP achieved an Fl-score of 0.997 and near-
perfect recall (0.999), demonstrating that the hybrid fusion
detects almost all real anomalies with very few false negatives.
The LightGBM model had been excellent in detecting discrete,
event-based anomalies, while the LSTM Autoencoder provided
strong temporal sensitivity. Integration of these two models
into the MCP led to a robust mechanism of anomaly detection,
which is further consistent with findings from other hybrid
intrusion detection studies.

B. Experiment 2: Framework Resilience to Network Faults

The second experiment tested the robustness of the MCP
against simulated network disturbances through Gaussian noise
and packet loss in the Digital Twin environment. According to
Fig. 3, at 20% total fault levels (10% noise and 10% packet
loss), the MCP still had an F1-score above 0.94; thus, graceful
degradation rather than failure took place. This gradual
degradation indicates graceful performance decay rather than
abrupt failure, which is a desirable property for resilient WSN
deployments operating in unstable environments.

In this way, hybrid detection methods demonstrate their
resilience compared with single models regarding
environmental instability or data loss. This is the required
robustness for sensors in Industry 5.0 scenarios operating under
uncertain conditions.

MCP Anomaly Detection Performance in Industry
Improved F1-Score During Increased Fault Intensity

1.0
0.9 1
0.5 1

0.8

0.5

MCP F1 Score

Rising F1-Score as MCP

0.7 4 Adapts to Higher Fault Levels

0.5

0.0 — r T T T
0 10 20 20 30 40 80 50
Combined Fault Intensity (%)

T T 1

Industry 5.0 Wireless Sensor Network (WSN)

Fig.3. MCP F1-Score degradation under injected noise and channel faults.
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C. Experiment 3: Reputation System and Quarantine
Validation

The third experiment focused on the trust adaptation of the
Micro-Ledger with a designated faulty sensor node that always
sent anomalous readings. Fig. 4 shows the degradation of the
reputation score for the faulty sensor node over time until it
reached the quarantine threshold (R < 50); eventually, the node
automatically got isolated from the network.

Dynamic Reputation Tracking of WSN Node

Reputation Decline Due to Sustained Anomalous Behavior

110

Quarantine Threshold

R quar-50

Reputation Score

4

Decreasing Reputation
Score After Anomalous Events

Node Quarantined
0 50 100 150 200 200 300 350

Event Number

Industry 5.0 Wireless Sensor Network (WSN)

Fig. 4. Reputation score of the designated faulty sensor over time.

As the simulation unfolded, the node’s reputation score
gradually decreased due to sustained abnormal behavior,
eventually crossing the quarantine threshold of 50. The node
was launched into quarantine and demoted from active
engagement with the network after 312 events. This was
illustrated in Fig. 4, allowing us to conclude that the
behaviorally driven reputation algorithm is effective, and its
real-time action was also effective. The observed convergence
toward quarantine reflects the effect of sustained abnormal
behavior rather than isolated transient deviations. This time-to-
quarantine (TTQ) value highlights the framework’s ability to
isolate unreliable nodes within a bounded number of
observations, contributing to faster recovery and reduced
energy waste.

The experiment demonstrated the validation of the metric
TTQ and showed that, through the reputation-based system,
unreliable nodes are effectively identified and isolated,
preserving data integrity and energy efficiency. An adaptive
reputation model in WSN environments can be designed with
an improvement in the performance of self-healing networks.

D. Experiment 4: Network Lifetime and Efficiency Assessment

The observed network lifetime improvement is consistent
with prior trust-aware WSN studies, where early isolation of
unreliable nodes reduces redundant communication and
unnecessary energy expenditure. Unlike approaches that rely
solely on routing optimization, the proposed framework
achieves energy savings through behavior-driven trust
adaptation. A quantitative comparison of total energy
consumption, network lifetime improvement, and Micro-
Ledger storage overhead is summarized in Table IL
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TABLE I1. QUANTITATIVE COMPARISON OF TOTAL ENERGY
CONSUMPTION, NETWORK LIFETIME IMPROVEMENT, AND MICRO-LEDGER
STORAGE OVERHEAD

Metric Value
Total Energy (Baseline System) 1465.7 Units
Total Energy (Our Framework) 1191.6 Units

Network Lifetime Improvement 18.7% Energy Saved

Blockchain Storage Overhead 98 KB

Using the framework improved network lifetime by 18.7%
due early detection and quarantine of faulty nodes, which
limited the number of redundancies. The Micro-Ledger even
when being multi-sourced, is still very lightweight and minimal
needed storage was approximately 98KB, which is in line with
the design goals of energy-constrained WSN applications.

These indications support that a systems-based approach
utilizing an aspect of hybrid Al detection integrated with
context-based behavior-driven blockchain trust management
framework has improved resilience and energy efficiency in
practical WSN applications.

E. Discussion

The combined results of the experiments demonstrate both
the effectiveness and scalability of the proposed framework.
The hybrid MCP indicated statistical significance in detecting
improvements compared to the other models, while the Micro-
Ledger provides a lightweight, effective mechanism for
evolving trust in decentralized WSN context.

The experimental findings outline three key benefits of the
proposed framework:

e Detection Robustness: The hybrid MCP exhibits
superior event-based and temporal anomaly detection
when compared to existing individual ML and DL
models. This characteristic of dual detection impacts a
significant shortcoming of existing individual models.

e Autonomous Trust Management: The Micro-Ledger
becomes capable of evolving trust continuously and
autonomously. When it evolves and develops trust
autonomously, the network can adapt and self-manage
without human operation. This sets a stage for a
substantial development in systems that are self-
managing toward Industry 5.0.

e Energy Efficiency: The feedback between the MCP and
the Micro-Ledger reduces redundancy of transmissions
and optimizes battery resources, leading to observable
lifetime improvements.

While the results demonstrate strong performance within
the simulated environment, it is acknowledged that real-world
deployments may introduce additional variability, such as
hardware-induced noise or coordinated adversarial behavior.
Nevertheless, the controlled evaluation provides valuable
insight into the framework’s resilience properties and
establishes a solid foundation for future physical validation.
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VI. CONCLUSION AND FUTURE WORK

A. Conclusion

This study presented a resilience-oriented framework for
Wireless Sensor Networks that integrates hybrid Al-based
anomaly detection with lightweight, behavior-driven trust
management to address reliability and energy efficiency
challenges in Industry 5.0 environments. Unlike traditional
systems that analyze anomaly detection, data integrity, and
trust management in isolation, the framework merges these
properties into a seamless adaptive framework consisting of
two primary elements:

e A Hybrid AI Anomaly Detection Engine — the Model
Context Protocol (MCP) — that utilizes LightGBM and
LSTM Autoencoder models to detect both event-based
and sequential anomalies.

e A Lightweight Blockchain-Based Reputation Ledger
(Micro-Ledger) that manages dynamic node trust

through a Proof-of-Authority (PoA) consensus
algorithm that optimizes security and energy
consumption.

Through Digital Twin-based evaluation, the proposed
framework achieved an anomaly detection F1-score of 0.997,
isolated persistently unreliable nodes within a bounded number
of events, and improved overall network lifetime by 18.7%
compared to a baseline system without trust management. The
associated Micro-Ledger maintained a low storage overhead of
approximately 98 KB, demonstrating suitability for resource-
constrained WSN deployments.

These results indicate that combining complementary
detection models with adaptive trust evolution can yield
system-level benefits beyond detection accuracy alone. By
linking anomaly evidence to trust-aware isolation decisions,
the framework reduces redundant communication and
mitigates long-term energy drain caused by unreliable nodes.

From an Industry 5.0 perspective, the proposed framework
aligns with the emphasis on resilient, human-centric, and
sustainable cyber—physical systems by enabling autonomous
monitoring and adaptive response without continuous human
intervention. These directions aim to further enhance
adaptability and robustness while preserving the lightweight
nature of the proposed design.

This hybridized design also demonstrated that behavioral
reputation tracking and Al based anomaly detection are not
competing paradigms but rather complementary pillars of
secure, sustainable IoT infrastructure.

B. Future Work

While the proposed framework demonstrates strong
performance under controlled simulation conditions, several
extensions can further improve adaptability and real-world
applicability, many opportunities remain for future research
and real-life implementation:
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e Deployment on physical hardware: Future work
includes deploying the framework on physical hardware
platforms, such as Raspberry Pi or ESP32-based sensor
clusters, to evaluate latency, power consumption, and
operational robustness under real-world conditions.

e Adaptive algorithms for reputations: The present model
uses fixed reward and penalty values for trust update
calculations. Incorporating context-aware or decay-
based reputation updates may allow the system to better
distinguish transient faults from sustained abnormal
behavior.

e Reintroduction of quarantined nodes: In the present
implementation, quarantined nodes are isolated
temporarily, and future work will further refine
probation-based  reintegration =~ mechanisms. A
revalidation phase of probation could allow quarantined
nodes that have been rehabilitated to be reinstated back
into the network after a period of observation based on
recovery. Such mechanisms would support self-healing
behavior without compromising long-term network
integrity.

e Inter-cluster trust fabric: The micro-ledger can also be
expanded to provide a secure communication pathway
between clusters, allowing accordingly distributed
action across multiple WSN clusters, which forms the
basis for building a trust fabric collaboratively. This
direction also opens opportunities for managing trust
scalability in large-scale, multi-cluster ~WSN
deployments.

e Cross-domain application: In addition to WSNs, the
proposed hybrid Al-blockchain framework could be
considered for other applications like industrial
robotics, smart grids, or autonomous vehicle networks,
where trust is critical for detecting anomalies in real-
time.

These extensions aim to enhance robustness and scalability
while preserving the lightweight and energy-aware nature of
the proposed framework.

C. Closing Remarks

This work demonstrates that resilience in Wireless Sensor
Networks can be effectively achieved by tightly coupling
intelligent anomaly detection with adaptive, lightweight trust
management.

Rather than treating security, reliability, and energy
efficiency as isolated objectives, the proposed framework
highlights the benefits of addressing them jointly through a
feedback-driven design. This perspective is particularly
relevant for emerging Industry 5.0 systems, where long-term
sustainability and autonomous operation are key
considerations.

The combination of interpretable learning components and
transparent trust records also supports accountability and
auditability in distributed sensing environments. Overall, the
findings suggest that hybrid Al and trust-aware architectures
provide a practical and extensible foundation for building
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resilient and sustainable sensor networks in future cyber—
physical ecosystems.
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