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Abstract—The convergence of Artificial Intelligence (AI), the
Internet of Things (IoT), and Big Data is revolutionizing
healthcare by enabling predictive diagnostics, real-time
monitoring, and personalized treatment through data-driven
analytics and intelligent decision-making. Despite these
advancements, the effectiveness of such systems is significantly
hindered by poor data quality, including issues such as missing
values, noise, bias, and inconsistencies. This study presents a
systematic and comparative review of recent research at the
intersection of AL IoT, and Big Data in healthcare, highlighting
critical gaps in data quality that undermine model performance
and real-world reliability. In response, we introduce the Data-
Centric AI (DCAI) paradigm as a promising approach focused on
systematic data improvement rather than model complexity. We
examine the application of the METRIC framework for assessing
data quality dimensions such as completeness, consistency,
fairness, and timeliness. Furthermore, we propose future research
directions to improve scalability and trustworthiness in AI-driven
healthcare, integrating advanced Al techniques such as generative
Al and multimodal frameworks with DCAI principles for more
ethical AI applications. This work serves as both a comparative
synthesis of existing literature and a conceptual foundation for
future experimental validation through a case study integrating
context-aware data modeling and real-time decision support.
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I.  INTRODUCTION

The convergence of Artificial Intelligence (Al), Big Data,
and the Internetof Things (IoT) is reshaping modern healthcare
by enabling real-time monitoring, predictive diagnostics, and
personalized treatment pathways. These technologies promise
improved patient outcomes, operational efficiency, and data-
driven clinical decision-making. However, the performance and
reliability of such systems are not solely dependent on advanced
algorithms—they are fundamentally tied to the quality and
integrity of the underlying data.

Healthcare data, particularly from heterogeneous IoT
environments, is often plagued by issues such as missing values,
noise, demographic bias, and inconsistencies, which
compromise clinical accuracy and fairness [1]. Additionally,
challenges around interoperability, privacy, and regulatory
compliance continue to impede scalable Al adoption in real-
world healthcare settings [2], [3].

Traditional approaches have predominantly focused on
model-centric Al (MCAI), prioritizing algorithmic optimization
while assuming static, clean datasets. This focus has resulted in
unreliable predictions, biased treatment recommendations, and
limited generalizability across diverse patient populations [4]. In
healthcare—where errors can be life-threatening—this
paradigm is no longer sustainable. The increasing complexity of
multimodal healthcare data, combined with real-time demands
and stringent privacy constraints, requires a shift in focus: from
model optimization to systematic data enhancement. As recent
findings emphasize that improvements in data quality can often
outperform equivalent enhancements in model complexity,
especiallyin critical settings like clinical diagnostics or patient
monitoring [5], [6], and that poor data quality, like mislabeled
samples, can propagate errors throughout the Al lifecycle,
leading to unsafe or inequitable medical decisions[5], [7]. The
result is a growing consensus that high-quality, well-curated
data must be central to Al development.

Despite widespread research on Al and IoT integration in
healthcare, there remains no wunified framework that
systematically addresses how data quality, fairness, and
interoperability shouldbe prioritized to enable robust, ethical Al
systems. Data-Centric Al (DCAI) —a paradigm that prioritizes
the systematic curation, preprocessing, and contextual
enrichment of data to improve Al model performance and
fairness— has emerged as a promising approach to filling this
void [8],[9]. However, its application within healthcare remains
underexplored and unstandardized.

This study offers a conceptual and comparative synthesis of
existing Al-IoT-Healthcare literature through the lens of DCAL
While no experimental implementation is conducted, our aim is
to theoretically map how DCAlprinciplescan address persistent
data quality limitations in healthcare systems. We seek to bridge
that gap by comparing twenty-three Al-loT-Healthcare studies
and analyzing DCAI's theoretical and practical potential to
enhance data quality. We explore a structured conceptual
framework that maps DCAI principles to recurring healthcare
challenges—specifically related to data noise, bias, missing
values, and contextual inconsistency—, offering pathways
toward more scalable, interpretable, and trustworthy Al
solutions. Additionally, we identify future directions, including
emerging techniques such as generative Al, multimodal
integration, andadvanced datarecoverytechniques as promising
complements to DCALI in clinical contexts. This study sets the
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foundation for future empirical validation through real-world
case studies or clinical datasets.

Fig. 1 illustrates thelayered integration of [oT, Big Data, and
Al within smart healthcare systems. [oT devices serve as the
primary data acquisition layer, collecting real-time
physiological and behavioral data. This raw data is then
aggregated and processed through Big Data infrastructures,
which handle high-volume, high-velocity data streams for
storage, cleaning, and transformation. The processed data feeds
Al algorithms at the decision layer, where predictive models
generate insights for diagnostics, risk stratification, and
personalized care. This pipeline enables closed-loop feedback
mechanisms, supporting adaptive, context-aware healthcare
while ensuring scalability, data integrity, and privacy
compliance.
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Fig. 1. Integration of Al, IoT, and Big Data in smart healthcare systems.

The remainder of this study is organized as follows:
Section Il presents related work and the structured literature
review methodology. Section Il details the technological and
operational challenges in Al-driven healthcare. Section IV
introduces DCAI concepts and applications. Section V maps
DCAI to persistent data quality issues. Section VI outlines
relevant data quality metrics. Section VII discusses study
limitations. Section VIII explores future research directions, and
Section IX concludes with reflections on ethical, scalable Al in
healthcare.

II. BACKGROUND AND RELATED WORK

A. Literature Review and Methodology

Al, Big Data, and IoT have driven major advances in
healthcare, facilitating predictive diagnostics, real-time
monitoring, and data-driven decision-making. Despite the
technical sophistication of these systems, their real-world
effectiveness is frequently compromised by persistent
challenges—including poor data quality, heterogeneity, lack of
standardization, and privacy concerns. These issues threaten the
reliability, fairness, and scalability of AI applications in
healthcare environments.

Data-Centric AI (DCAI) has recently emerged as a
promising paradigm to tackle these challenges by emphasizing
the quality, structure, and contextual integrity of data over
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algorithmic complexity. Yet, dedicated review studies that
explore DCAI’s practical implications in healthcare settings are
scarce. This work addresses that gap by conducting a structured
review of both foundational DCALI literature and application-
oriented studies that highlight real-world limitations in Al, Big
Data, and IoT for healthcare.

To ensure scientific rigor, the review process followed a
structured literature selection methodology that allows our work
to reflect the contributions of priorresearch on IoT, Al, and Big
Datain healthcare, whilealsoincorporating foundational studies
on DCALI principles and data quality metrics. Our goal is to
highlight the ongoing shift from model-centric to data-centric
approaches and to underscore the growing relevance of DCAI-
based solutions in healthcare AL

1) Search strategy and data sources: The literature search
was conducted using a multi-database strategy to encompass a
broad range of both technical and medical research
publications, ensuring comprehensive coverage of both
theoretical AI/IoT research and practical healthcare
applications. The following academic databases were selected:

e [EEE Xplore

e Scopus

e Web of Science
e PubMed

e ScienceDirect
e Google Scholar

Our search queries combined key terms related to AL IoT,
Big Data,and healthcare, for the selection of the 23 articles such
as: “Artificial Intelligence”, “Machine Learning”, “Deep
Learning”, “Internet of Things”, “Healthcare loT”, “Big Data
Analytics”, “Context-Aware Systems”, and “Smart Healthcare”.

Boolean operators were applied to refine results [e.g.,
("Artificial Intelligence" OR "Machine Leaming" OR "Deep
Learning") AND ("Internet of Things" OR "Healthcare IoT")
AND ("Big Data Analytics" OR "Smart Healthcare" OR
"Real-time Monitoring") AND ("Context-Aware Systems" OR
"Privacy" OR "Interoperability" OR "Clinical Decision Support
Systems”)]. The search was limited to the 2016-2025
publication window. Manual adjustments were made to avoid
duplicated retrievals across platforms.

2) Eligibility criteria: The search was conducted on
publications between 2016 and 2025, and duplicates were
removed. The citation management tool Rayyan was used to
facilitate collaborative screening, inclusion/exclusion filtering,
and conflict resolution during selection. In Table I, our chosen
eligibility criteria that were applied to the various screening
steps of our selection process of thetwenty-three peer-reviewed
application-oriented studies are listed.

3) Selection and analysis process: An initial screening
based ontitles and abstracts was performed, followed by a full-
text review of eligible articles. Twenty-three studies were
ultimately selected as representative of prevailing practices and
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challenges in Al IoT, and Big Data-driven healthcare systems
for prediction, monitoring, and decision-making.

TABLEI. ELIGIBILITY CRITERIA APPLIED TO THE SCREENING AND FULL-

TEXT ASSESSMENT PROCESSES

Criterion

Peer-reviewed journal articles or chapter book or
conference papers

Publications between 2016 and 2025 published in
English

Studies addressing healthcare applications of Al, 10T,
and/or Big Data for predictions of diseases or
monitoring or real word application

Articles discussing at least one of the following:
challenges related to data quality, context awareness,
interoperability, scalability, privacy, Healthcare
diagnostics, monitoring, decision support using Al/IoT
or Real-time systems.

Inclusion

Non-peer-reviewed sources, editorials, or opinion
pieces

Studies unrelated to healthcare applications

Exclusion Works focused exclusively on algorithms without

consideration of data characteristics or system-level
integration

Redundant or overlapping publications

To bridge the gap between these practical challenges and the
conceptual framework of DCAL, the tool Rayyan was used to
facilitate collaborative screening, conflict resolution, and
exclusion tagging. This process resulted in the selection of:
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e Seven Foundational DCAI Publications outlining data-
centric concepts, lifecycle frameworks, data-centric
design principles, and metrics for evaluating data quality

e Twenty-Three Application-Oriented Studies
demonstrating real-world applications and challenges in
Al-IoT-Big Data healthcare systems.

A PRISMA-style flow diagram (Fig. 2) outlines the article
selection workflow, culminatingin the inclusion of twenty-three
peer-reviewed studies focused on Al and IoT applications in
healthcare. These articles were analyzed using a unified
comparison framework emphasizing data sources, modeling
techniques, evaluation outcomes, and reported limitations. This
methodology enabled a systematic comparative analysis and the
extraction of key limitations, forming a solid foundation for
identifying research gaps addressed by the Data-Centric Al
(DCAI) paradigm.

To enhance analytical depth and provide objective insights,
a quantitative content analysis was also performed. Each
selected study was reviewed to extract explicitly stated
limitations related to data quality, scalability, interoperability,
privacy, and integration. These issues were then categorized by
frequency, allowing the construction of a visual summary of
common challenges (see Fig. 3). This process not only
highlighted recurring barriers but also emphasized the relevance
of DCAI as a unifying approach to overcome these limitations.

Table Il presentsan organized summary of the core literature
reviewed in this study, categorized by focus and contribution.

= Records Identified Through Database Search
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B
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Fig.2. PRISMA-style flow diagram illustrating the article selection process. A total of 167 records were initially identified from six acad emic databases. After
removal of duplicates and exclusion based on titles and abstracts, 65 full-text articles were reviewed. Finally, 23 articles were selected as application-oriented
studies in healthcare Al, IoT, and Big Data and added to 7 foundational DCAI publications. Rayyan was used to manage and stre amline the screening process.
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TABLE II.
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SUMMARY OF KEY ARTICLES USED IN THIS STUDY

Category Article

Focus/Key Contribution

[4] Bhatt et al. (2024)

Techniques for data-centric deep learning improvement

[9] Malerba & Pasquadibisceglie (2024)

DCALI philosophy: prioritizing data refinement over model tuning

[1] Schwabe et al. (2024)

METRIC framework for healthcare data quality evaluation

Foundational Articles [15] Zha et al. (2023) - A Survey

Taxonomy and automation levels in DCAI

[5] Jin et al. (2024)

DCAI lifecycle: data operations across Al stages

[6] Nieberl et al. (2024)

DCAI implementation patterns and research gaps

[7] Zha et al. (2023) - Perspectives

Strategic challenges in DCAI for training, inference, and deployment

[16] Zonayed et al. (2025)

Narrative synthesis of AI models in chronic disease prediction; highlights key
trends and challenges in healthcare ML

[17] Sajnovié et al. (2024)

IoT and Big Data analytics in preventive healthcare; synthesizes enablers, gaps,
and interoperability issues

[18] Charfare et al. (2024)

Survey on Al-IoT integration in healthcare; identifies performance trends and
system-level limitations

[19] Alsabah et al. (2025)

Comprehensive review of smart healthcare IoT architectures; technical
challenges and future directions

[10] Zon et al. (2023)

Context-aware data optimization in healthcare systems

[11] Chunget al. (2020)

Deep learning for context-driven health risk prediction

[13] Saranya & Fatima (2022)

Context-aware data fusion for IoT patient monitoring.

[20] Kishor & Chakraborty (2021)

Al-loT integration for remote health monitoring

[21] Ghazalet al. (2021)

ML applications in smart city healthcare

[12] Kim & Chung (2020)

Adaptive health context prediction models

o . . [22] Kaur (2021)
Application-Oriented Articles

Heart disease prediction using ML and IoT

[2] Banerjee et al. (2020)

Big Data and IoT trends in healthcare

[3] Meraj et al. (2021)

IoT for monitoring infectious diseases

[23] Vijayalakshmiet al (2021)

Disease prediction using Big Data tools

[24] Verma et al. (2019)

Hybrid IoT-cloud architecture for diagnosis

[25] Aceto et al. (2020)

Personalization through Industry 4.0 healthcare IoT

[14] Aborokbah et al. (2018)

Context-aware decision systems for chronic diseases.

[26] Castro et al. (2017)

IoT wearables for activity recognition

[27] Chuiet al. (2019)

Behavior monitoring via Big Data and IoT

[28] Ngiam & Khor (2019)

ML applications for healthcare analytics

[29] Shah et al. (2018)

IoT-based systems for monitoring disorders

[30] Tian et al. (2019)

IoT-cloud platforms for smart healthcare

[31] Yin etal. (2016)

Overview of ToT use cases in healthcare

A. Comparative Analysis of Al, IoT, and Big Data Healthcare
Studies

To assess the state of healthcare applications involving Al,
IoT, and Big Data, we conducted a comparative analysis of the
23 peer-reviewed studies published between 2016 and 2025.
Based on the defined inclusion and exclusion criteria, these
studies were selected for their relevance to disease prediction,
patient monitoring, smart healthcare systems, and healthcare
infrastructure. Our objective was to extract common practices,
recurring challenges, and methodological gaps that inform the
need for a shift toward the emerging data-centric paradigm.

1) Categories of reviewed studies: To move beyond a
structured descriptive synthesis, the selected 23 articles were
classified into four primary domains based on their
methodological focus and healthcare application scope. Within

each category, we explicitly compare approaches, data
dependencies, and reported limitations to identify recurring
patterns and systemic gaps.

a) Context-aware systems and adaptive intelligence:
Several studies underscore the importance of integrating
environmental, behavioral, and physiological context for more
accurate and responsive healthcare interventions. In [10], Zon
et al underscored the lack of context-aware medical systems,
which limits adaptability to patient conditions, addressing the
difficulty of integrating context-aware medical systems due to
heterogeneous healthcare data, highlighted the lack of a
structured understanding of medical contexts, and identified
key medical contexts for Al adaptation. Similarly, in [11],
Chung et al. proposed an ambient context-based deep neural
network that leverages contextual health data for health risk
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assessment in patients with chronic diseases, improving
prediction accuracy but facing issues with heterogeneous and
noisy input [oT data. In [12], Kim & Chungadvanced this area
by developing a neural network-based adaptive context
prediction model for ambient intelligence, which enhanced
patient care personalization. Their approach demonstrated an
enhanced ability to predict and adaptto various patient states,
leading to better patient care, though the systems required
further validation due to data integration complexity. In [13],
Saranya & Fatima tackled data heterogeneity in IoT-based
patient monitoring by developing an improved context-aware
data fusion model that enhances security and optimizes data
integration from multiple sensors, achieving high precision in
real-time health monitoring. In [14], Aborokbah et al. proposed
an adaptive computing paradigm that utilizes machine learning
techniques, which improved chronic disease management but
required further validation for diverse populations.

While all studies acknowledge context as a critical factor,
most approaches treat context as an auxiliary feature rather than
a first-class data entity. None adopts a systematic data-centric
strategy to validate, curate, or standardize contextual
information, leading to scalability and robustness limitations.

b) Disease prediction and monitoring: loT-enabled
models for real-time monitoring and diagnosis are prominently
featured. In [13], Saranya & Fatima proposed a fusion model
for wearable data that achieved 97.9% accuracy in patient
monitoring but faced issues of sensor reliability and
cybersecurity. The need for real-time disease prediction was
explored by Kishor & Chakraborty in [20], who integrated loT
with machine learning classifiers, obtaining high accuracy but
encountering real-time processing constraints. Meanwhile, in
[22], Kaur investigated the increasing prevalence of heart
diseases and the need for predictive models that can provide
timely warnings and appliedloT and machine learning for heart
disease prediction, demonstrating high accuracy but struggling
with data privacy and completeness. Similarly, in [3], Meraj et
al reviewed IoT-based infectious disease detection,
emphasizing the need for real-time outbreak prediction, though
sensor noise and lack of data remained challenges. In [26],
Castro et al. focused on wearable-based human activity
recognitionusing IoT and developed a machine learning-based
system that classified physical activities, achieving improved
movement detection accuracy, but environmental noise
remained a limiting factor. In [29], Shah et al. conducted a case
study on IoT-based sensing for healthcare applications,
focusing on detecting narcolepsy episodes and implemented
machine learning classifiers to identify sleep disorder patterns,
demonstrating that IoT sensors could effectively improve sleep
disorder diagnosis and patient monitoring. Additionally, in
[28], Ngiam & Khor reviewed the challenges and opportunities
of applying machine learning algorithms in healthcare and
emphasized the importance of high-quality data preprocessing
and ethical considerations in Al-driven healthcare systems,
demonstrating that integrating Al could enhance prediction and
diagnostic accuracy while raisingconcerns about databias, data
labeling, annotation inconsistencies and privacy. The study[16]
is a more recent contribution by Zonayed et al. that
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comprehensively synthesizes the advancements, challenges,
and futuredirections of integratingMachine Learning (ML) and
the Internet of Things (IoT) in healthcare. This integration
facilitates real-time health monitoring and the analysis of
intricate medical datasets, yielding insights that support
evidence-based clinical decision-making. The review
highlights the high predictive accuracy (85%—95%) achieved
by models like CNNs and XGBoost, particularly in diagnostics
and chronic disease management. Challenges remain
concerning data security, interoperability, and ethical
transparency, scalability, and the need for explainable Al to
foster clinical trust and ethical transparency. Future direction
must prioritize robust security, standardization, and effective
human-AlI collaboration to fully realize the potential of
Healthcare 5.0. Finally, in [30], Tian et al. analyzed the
potential of smart healthcare technologies, including IoT, Al,
and Big Data, in making medical care more efficient and
personalized and identified key areas where smart healthcare
solutions could improve hospital management and patient
engagement, highlighting the necessity of integrating
intelligent systems for optimizing healthcare operations.

Across this category, models are predominantly model-
centric, focusing on algorithm selection and accuracy
optimization, while data quality issues are treated as secondary
concerns. This imbalance limits real-world generalization
despite strong experimental results.

¢) Big Data analytics and infrastructure challenges: In
[23], Vijayalakshmi et al. introduced a Big Data-driven model
to enhance disease forecasting using machine learning
techniques and leveraged Big Data analytics for chronic disease
prediction, improving classification accuracy but struggling
with data sparsity and labeling errors. Respectively, a broader
examination of IoT and Big Data analytics in biomedical
healthcare was conducted by Banerjee et al in the chapter [2],
who highlighted standardization challenges in wearable device
data processing, where latency remained a key limitation. Both
noted substantial improvements in data-driven decision-
making, but also highlighted latency issues, sparse data, and
infrastructural limitations. In [21], Ghazal et al. applied
machine learning for smart healthcare infrastructure,
optimizing medical resource allocation, but still faced data
quality issues. In [29], Sajnovié et al. conducted a large-scale
synthetic review that analyzes 2272 publications from the
Scopus database on the intersection of the Internet of Things
(IoT) and Big Data Analytics in preventive healthcare,
observing exponential literature growth since 2012, peaking in
2023. The study identifies eight key themes, including the role
of Al in personalized medicine (genetics/genomics) and risk
prediction, and the use of big data in public health and
epidemiology, alongside critical challenges concerning data
security, privacy, interoperability, ethical concerns, and the
high cost of the [oMT system. In the comprehensive survey
[18], Charfare et al. examine the integration of IoT and Al
technologies in healthcare applications. The study reviews 28
AI/ML models across diverse applications, including disease
detection (COVID-19, diabetes), patient monitoring, athletic
performancetracking,andelderly care. Top-performing models
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include LightGBM (99.23% accuracy for activity recognition)
and LSTM (99% for fall detection). Key challenges identified
include data security, computational constraints, energy
efficiency, and interoperability issues. The study emphasizes
future research directions in federated learning, adaptive
algorithms, and multi-modal data fusion for enhanced
healthcare delivery. In [19], Alsabah et al. conducted a
comprehensive analysis of [oT-based smart healthcare systems,
focusing on the interplay between edge computing, cloud
services, and data analytics. They examine AI/ML applications
in smart healthcare, analyzing studies covering disease
diagnosis (glaucoma, diabetic foot ulcers, skin diseases),
medical image encryption, and IoT security. Key technologies
include CNNs, deep learning, federated learning, and
blockchain-based privacy protection. Models demonstrate
enhanced diagnostic accuracy, early disease detection, and
secure data transmission. Applications span medical imaging,
remote health monitoring, and intrusion detection. Their review
highlights technical challenges such as system scalability,
latency, and real-time decision-making, particularly when
handling massive healthcare datasets. They also underscore the
need for high-throughput infrastructure capable of managing
heterogeneous medical data while ensuring interoperability and
low-latency processing. In [27], Chui et al. focused on patient
behavior monitoring using [oT and Big Data analytics and
developed a framework to analyze patient movement patterns
and predict potential health risks, providing valuable insights
for caregivers, improving patient safety, and reducing hospital
readmissions.

While Big Data enables broader population-level insights,
the absence of standardized data pipelines and quality control
mechanisms limits scalability and reproducibility—issues that
are not addressed by model improvements alone.

d) Privacy, security, and interoperability: The
integration of IoT and Al has exposed healthcare systems to
dataprivacy risks and interoperability hurdles. In [25], Aceto et
al. examined the role of IoT and Big Data in Healthcare 4.0,
improving data fusion for personalized medical services, while
highlighting privacy concerns. Similarly, in [31], Yin et al.
provided an overview of the Internet of Things in healthcare,
summarizing its applications, challenges, and future directions,
and discussed the importance of data security, interoperability,
and regulatory considerations in loT-based healthcare systems,
emphasizing the need for robust security frameworks to ensure
patientdata protection. In[24], Vermaetal. developed a hybrid
secure cloud IoT framework for disease prediction and
diagnosis, which improved data security and accuracy of
disease diagnosis but raised concerns regarding scalability and
privacy.

These studies clearly demonstrate that privacy and
interoperability are not peripheral concerms, but structural
constraints. However, they remain loosely coupled to Al model
design, reinforcing the need for an integrated data-centric
framework.

2) Key observations and emerging gaps: These studies
converge on a critical insight: while model-centric innovations
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have improved local accuracy, they often neglect systemic
issues related to data quality and governance. Few solutions
prioritize data refinement as a strategic goal, dataset
representativeness, noise reduction, or robust data
integration—gaps which DCAldirectly addresses. As shown in
Table III, the reviewed studies highlight recurring limitations
(e.g., noisy data, lack of standardization, sensor faults, and
unstructured inputs) that underscore the need for a paradigm
shift toward DCAI methodologies.

To consolidate the expanded comparative insights derived
from the 23 reviewed studies, we performed an updated
quantitative synthesis of the key limitations reported in Al-,
IoT-, and Big Data-driven healthcare systems. As illustrated in
Fig. 3, privacy concerns remain the most dominant challenge,
citedin 10 studies (43.5%), reflecting persistent issues related to
patient data protection, regulatory compliance, and trust in
large-scale digital health infrastructures. Data heterogeneity
follows closely, reportedin 9 studies (39.1%), highlighting the
ongoing difficulty of integrating heterogeneous data sources
such asloT sensors, EHRs,and unstructured clinical data. Noisy
data wasidentifiedin 6 studies(26.1%), underscoring the impact
of sensorinaccuracies, transmission errors, and real-world data
variability on model reliability. A second tier of limitations
includes security risks and integration challenges, same as noisy
data limitation eachreportedin 6 studies (26.1%), indicating that
secure data exchange and seamless system interoperability
remain unresolved barriers. Real-time processing constraints,
data sparsity, and scalability limitations were each mentioned in
five studies (21.7%), reflecting the computational and
infrastructural challenges of deploying Al systemsin dynamic
clinical environments. Missing values were cited in 4 studies
(17.4%), pointing to data incompleteness issues arising from
sensor failures and fragmented health records. Lower-frequency
yet significant concermns include standardization issues and
sensor faults (same as missing values limitation every four
studies, 17.4%), as well as contextual inconsistencies, bias,
ethical concems, and labeling errors (each reported in two to
three studies, ~8.7-13%). Collectively, these findings
demonstrate that many of the most critical obstacles are
fundamentally data-centric rather than model-centric,
reinforcingthe necessity of Data-Centric AI(DCAI) approaches
that prioritize data quality, governance, interoperability, and
scalability as prerequisites for trustworthy and effective
healthcare Al deployment.

€ Distribution of Key Limitations Across 23 Healthcare Al Studies
g1

Fig. 3. Distribution of key limitations mentioned across 23 reviewed
healthcare Al studies. Privacy, noise, and data heterogeneity emerge as the
most cited barriers, underscoring the need for robust data quality and
governance frameworks.

506 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

3) Summary of comparative insights

a) loT-based healthcare solutions: Many studies
emphasize real-time patient monitoring but lack context-aware
and adaptive Al models to dynamically adjust to patient
conditions [3], [10].

b) Al for predictive healthcare: Al models demonstrate
strongdisease prediction capabilities, but theiraccuracy is often
limited by poor data quality, missing values, and a lack of
contextual understanding [11], [23].

¢) Security and privacy concerns: loT-driven healthcare
systems are highly vulnerable to cyber threats, necessitating
secure data-sharing and privacy-preserving [13], [24].
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d) Interoperability issues: The absence of standardized
data formats and frameworks inhibits seamless integration
between healthcare systems and [oT devices, creating barriers
to efficient data exchange [25], [31].

These studies demonstrate the growing impact of IoT, Al
and Big Data in modern healthcare, particularly in areas such as
real-time monitoring, predictive diagnostics, and personalized
treatment. However, most adopt a model-centric approach that
prioritizes algorithm performance over data integrity. Persistent
data issues continue to undermine scalability, fairness, and
reliability. In response, this study advocates for the DCAI
paradigm, which prioritizes high-quality, standardized, and
context-aware datasets asthe foundation for trustworthy and
adaptive healthcare systems.

TABLE III. COMPARATIVE ANALYSIS OF HEALTHCARE AI-IOT STUDIES
Data T Metrics fi
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Electronic Medical
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III.  CHALLENGES IN INTEGRATING Al, BIG DATA, AND 10T
IN HEALTHCARE

Despite the transformative potential of Al, Big Data, and loT
in healthcare, their integration faces substantial barriers that
impact reliability, scalability, and ethical deployment. A
recurring limitation is data quality, particularly in real-time
environments driven by sensor-generated streams.

Challenges stem from noise, missing data, inconsistencies,
interoperability issues, privacy concerns, and bias, all of which
hinder Al reliability and scalability in healthcare. Sensor noise,
such as movement artifacts or calibration errors in ECG devices,
distorts predictions and triggers false alarms [ 13]. Missing data
further weakens Al models, leading to biased and unreliable
decision-making, as gaps in patient records degrade deep
learning performance [1]. Inconsistencies across IoT devices,
caused by variations in data formats and protocols, complicate
seamless integration, requiring standardized frameworks [21].
Without robust standardization, data fusion from disparate
sources remains a technical bottleneck. Bias in loT-generated
datasets, often due to demographic imbalances or inconsistent
labeling, results in inequitable Al predictions that
disproportionately impact underrepresented populations [12].
Additionally, privacy risks, such as data anonymity and
pseudonymization, affect dataset usability and Al predictive

accuracy, making privacy governance essential in Al
applications [1]. Scalability and real-time adaptability remain
obstacles, with many Al models struggling to dynamically
adjust to changing patient conditions [12]. Furthermore,
interoperability issues between loT devices, Al models, and
hospital systems create siloed environments that restrict data
sharing and hinder holistic patient care [30], [31].

Poor data quality in Al-driven healthcare systems can lead
to severe outcomes, including misdiagnosis, inequitable care
delivery, and loss of clinical trust. According to Jin et al. in [5],
imperfections such as incorrect labels, missing values, and
anomalies not only degrade model performance but risk
overfitting and undermine generalizability—particularly critical
in healthcare where model predictions influence life-altering
decisions. In [6], Nieberl et al. emphasize that data cascades,
which occur when initial quality issues propagate through the
pipeline, are a hidden yet profound threat to Al reliability.

Buildingon ourliterature-driven hypothesis, we propose that
Data-Centric AI (DCAI) offers a viable pathway to overcoming
these challenges by emphasizing data quality, fairness, security,
and standardization, ensuring morereliable Al-driven healthcare
outcomes [4], [9]. Fig. 4 illustrates the major data-related
challenges encountered in the integration of Al, Big Data, and
IoT for Healthcare.
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Fig. 4. Major data challenges in Al, Big Data, and IoT for healthcare.

IV. DATA-CENTRIC Al: A PARADIGM FOR ADDRESSING
DATA CHALLENGES IN HEALTHCARE

As highlighted in the previous section, the core contribution
of our study lies in positioning Data-Centric Artificial
Intelligence (DCAI) as a foundational paradigm for addressing
longstanding challenges in healthcare Al systems—specifically,
issues related to data quality, context-awareness,
standardization, and ethical scalability. Recent advances
highlight that high-quality, well-annotated, and context-rich
data can outperform more complex models trained on flawed
datasets, reshaping our understanding o f what drives Alsuccess.
Unlike traditional Al methodologies, which focus on
hyperparameter tuning and deep learning architectures, Data-
Centric Al (DCAI) enhances model reliability through
systematic data curation [4] (see Table IV).

Despitethisshift, few studieshave comprehensively mapped
how DCAI principles can be applied to healthcare-specific

TABLEIV.

challenges, particularly in the context of loT-generated data and
Big Dataanalytics. AsJinetal.in [5]argue,aunified, structured
synthesis of DCAI methodologies tailored to healthcare is
lacking, especially one that considers clinical interoperability,
fairness, and regulatory constraints. In healthcare, where the
stakes of predictive errors are high and datasets are often noisy,
incomplete, heterogenous or  biased, DCAI-driven
methodologies offer a critical corrective and provide robust
solutions to mitigate these challenges [9]. By ensuring high-
quality, well-labeled, and diverse datasets, DCAI enables Al
systems to generalize effectively across different populations
and healthcare environments. As Bhatt et al. in [4] demonstrate
that smaller models trained on high-quality datasets can
outperform larger models trained on flawed data. Similarly,
Malerbaetal. in [9] argue that DCAI methodologies—ranging
from noise filtering and imputation to data augmentation and
bias mitigation—are key to building scalable and ethical
healthcare AL

COMPARISON OF DATA-CENTRIC Al (DCAI) AND MODEL-CENTRIC Al IN HEALTHCARE Al

Aspect Model-Centric Al

Data-Centric Al (DCAI)

Primary Focus Optimizing Al models and algorithms [4]

Improving data quality, completeness, and fairness [1]

Approach to Al

Performance hyperparameters [4]

Improves performance by refining model architecture and

Enhances performance by refining datasets rather than just improving
models [1]

Data Handling insights [9]

Assumes data is fixed and optimizes models to extract

Systematic preprocessing, data augmentation, and bias mitigation [4]

retraining [9]

Model Requires complex models to compensate forsuboptimaldata | Simpler models trained on high-quality data perform as well as or better than
Complexity [1] complex models [4]
Scalability Limited scalability due to dependency on large models and Highly scalable as data improvements generalize across different models [1]

Bias Mitigation adjustments [1]

Bias correction is applied post hoc through model

Bias is addressed at the dataset level, ensuring fairerand more representative
Al outputs [4]

Challenges struggles with unreliable data [1]

Sensitive to data drift, requires frequent model updates,

Requires investment in systematic data collection, labeling, cleaning, and
augmentation [4]
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DCAL facilitates the standardization and structuring of loT-
generated health data, improving interoperability between Al
models, IoT devices, and hospital infrastructures to reduce
healthcare system fragmentation. High-quality data is essential
for accurate diagnostics, equitable treatment recommendations,
and compliance with ethical and regulatory standards. To
improve data integrity and to address persistent issues in
healthcare, DCAI integrates techniques such as bias detection,
noise filtering, and data augmentation [1]. By treatingdataasa
dynamic, evolving infrastructure, DCAI ensures Al systems
remain fair, trustworthy, and effective. As highlighted by Zha,
Bhat, Lai, Yang, Jiang, Zhong & Hu in [15], DCAI emphasizes
continuous data improvement throughout the Al lifecycle,
transforming data from a static input into a dynamic, strategic
asset. Additionally, real-time adaptive Al models leveraging
DCALI principles can dynamically adjust to context-aware
decision-making, enhancing patient monitoring and disease
prediction by utilizing high-quality labeled datasets thatreflect
dynamic changes in patient states.

Our study seeksto map recurring limitationsidentified in Al-
IoT healthcare studies we previously discussed, such as
inconsistency, bias, andlack of contextual adaptation, to specific
DCALI techniques and solutions. We emphasize thatissues like
heterogeneity, fairness, and reliability are not solely technical
but deeply tied to data design. By applying frameworks such as
the METRIC framework [ 1], developers canevaluate healthcare
datasets across dimensions like completeness, consistency,
timeliness, and contextual fit. This paradigm shift is particularly
critical in healthcare, where reliable Al-driven decisions directly
impact patient safety and system credibility. Furthermore, robust
decision-making relies on high-quality health data to generate
consistent and evidence-based insights. By shiftingthe emphasis
from algorithmic optimization to data integrity, interoperability,
and real-time adaptability, this study explores the theoretical
potential of Data-Centric Al (DCAI) to transform Al-driven
healthcare systems into more scalable, ethical, and efficient
solutions. Although our work does not empirically validate
DCAI interventions, we propose that its principles are
particularly well-suited for dynamic, context-aware, real-time
healthcare environments, such as remote monitoring or
emergency diagnostics. Crucially, DCAI supports the
development of adaptive, context-aware Al systems that can
respond dynamically to evolving patient conditions using
continuously curated and context-rich datasets. This is
particularly vital in applications such as remote monitoring and
emergency diagnostics, where decision-making must be both
rapid and reliable. By reframing the development pipeline
around data quality, our study positions DCAI as a catalyst for
building more ethical, transparent, scalable, and resilient Al
systems in healthcare.

V. ADDRESSING DATA QUALITY CHALLENGES THROUGH
DATA-CENTRIC AI(DCAI)

DCALI provides a structured framework for overcoming the
previously outlined persistent data quality issues in healthcare
Al systems. By prioritizing the curation, augmentation, and
governance of data over merely tuning models, DCAI supports
the development of more accurate, fair, and context-aware Al
tools. For instance, bias mitigation is achieved through dataset
audits,augmentation strategies, and synthetic data generation, as

Vol. 16, No. 12, 2025

seen in [4], where underrepresented populations were better
included in diseaseprediction models. Likewise, missing data—
often resulting from sensor failures or transmission gaps in loT-
based health monitoring—is addressed through statistical and
machine learning-based imputation techniques. In [9], Malerba
et al. showcased robust hybrid approaches for managing data
gaps, especially in critical use cases like glucose level
monitoring.

Furthermore, to tackle noise and inconsistency in
heterogeneous healthcare data, DCAI recommends pipelines for
standardization and noise filtering, as highlighted by Bhatt et al
in[4]. These processes enhance model robustness across diverse
data sources and clinicalsettings. While privacy and security are
not traditionally part of data quality metrics, they are integral to
data usability and regulatory compliance. In [ 1], Schwabe et al.
underscore that privacy should be treated as a governance
concern, though technical solutions like federated learning and
differential privacy can still support secure Al deployment.
Taken together, these DCAlmethods form a foundational toolkit
for building scalable, ethical, and effective Al systems in
healthcare—aligning datapractices withreal-world demands for
transparency, interoperability, and patient-centered decision-
making.

VI.  KEY METRICS FOR EVALUATING DATA QUALITY IN
HEALTHCARE Al

The foundational literature on Data-Centric Al (DCAI)
offers critical insights into data quality metrics and governance
dimensions essential for trustworthy Al systems in healthcare.
These include completeness, consistency, accuracy, bias
mitigation, and timeliness, alongside data management
principles such as privacy, documentation, and alignment with
Findable, Accessible, Interoperable, and Reusable (FAIR)
principles (see Fig. 5). These metrics are central to developing
reliable, ethical, and high-performing healthcare Al systems. In
[4], Bhatt et al. highlight the importance of data preprocessing
and augmentation in reducing bias and improving dataset
robustness. In [1], Schwabe et al. introduce the METRIC
framework, which formalizes the assessment of data quality in
medical Al applications, particularly in medical imaging and
electronic health records (EHRs). In [9], Malerba et al.
emphasize standardization, integration, and privacy-preserving
Al techniques as foundational to secure and reliable healthcare
Al models.

A. Core Data Quality Metrics

e Completeness ensures datasets are comprehensive,
preventingunreliable predictions due to missing vitals or
sensor gaps, with Schwabe etal. in [1] advocating for
imputation techniques to address these issues.

e Consistency focuses on standardizing data formats
across heterogeneous sources, as Malerba et al. in [9]
emphasize normalization techniques to improve
interoperability.

e Accuracy is critical in avoiding errors from faulty sensor
readings, with Bhatt et al. in [4] recommending noise
filtering methods like Kalman filters to enhance data
reliability.
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e Bias detection mitigates demographic imbalances in
datasets, where techniques such as GAN-based synthetic
data generation help improve fairness [4].

e Timeliness ensures real-time decision-making in critical
care scenarios, with Schwabe etal.in [1] promoting edge
computing to minimize delays.

B. Data Governance and Security Considerations

Though not typically framed as “quality” metrics, data
privacy, security, and documentation are crucial for regulatory
compliance and patient protection for ethical deployment of
healthcare AL In [9], Malerba et al. emphasize the need for:

e Federated learning to enable secure model training
without centralizing sensitive data.

e Differential privacy to ensure anonymity and protect
patient confidentiality during analysis and model
deployment.

Together, these factors shape trustworthy, high-performance
Al systems, ensuring data-driven healthcare solutions are
reliable, fair, and efficient. These governance mechanisms are

@E Timeliness

+ Description: Timeliness ensures that

data is available and updated at the right

moment to support real-time decision-
making in healthcare Al applications.

+ Issue: Delayed or outdated data can
lead to misinformed medical decisions,
timely and

In loT healthcare,
network latency
and data transfer
delays can hinder

the efficiency of Al
models. 5

+ Description: Completeness 1
refers to the extent to which
all required data fields are
populated, ensuring datasets
are comprehensive and
reliable for Al applications.

+ Issue: Missing patient
vitals or incomplete loT sensor
readings can undermine the
effectiveness of Al-driven
healthcare decisions.

Documentation
Metadata about the dataset.
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vy M Blaa

reusable.

ﬁllh. DATA
O“' QUALITY
Completeness METRICS IN

HEALTHCARE |

+ Description: Privacy and _* Issue: As Aland loT
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essential for legal compliance (e.g., GDPR, HIPAA), fostering
patient trust and ensuring ethical alignment of Al solutions.

C. Standardized Frameworks: The Role of METRIC

The METRIC framework, introduced by Schwabe et al. in
[1], provides a structured approach to evaluate medical datasets
across key dimensions—completeness, consistency, timeliness,
relevance, interoperability, and contextual fit. This framework is
particularly useful for multi-source, privacy-sensitive
environments like EHR systems and remote IoT monitoring
platforms.

Our study underscores the need for standardized,
interpretable, and scalable evaluation frameworks such as
METRIC, particularly in multi-source, privacy-sensitive
healthcare environments. They form the backbone of resilient
healthcare Al systems capable of delivering equitable,
transparent, and patient-centered outcomes. However,
deploying a DCAI Framework in clinical settings is not without
challenges—cost, data governance gaps, and system

interoperability all pose real-world implementation barriers (see
Section VIII (B).

Bias
Detection

Privacy & Security

expand in

ensure
that “ml:ze Tl,ﬂ?m dau': is healthcare, risks of data
protected, aligning wi
regulations like GDPRand  unauthorized access
HIPAA.

breaches and

increase.

Fig.5. Data quality metrics in healthcare Al (from the METRIC framework).
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D. Summary: Core Principles of DCAI in Healthcare
e Enhancing Data Completeness and Consistency

e Ensure no missing values in critical health datasets and
maintain consistency across diverse healthcare sources.

e Mitigating Bias and Ensuring Fairness.

e Promote diverse and well-balanced datasets and
eliminate demographic bias in Al-driven medical
decision-making.

e Standardizing Healthcare Data

Interoperability.

and  Enabling

e Harmonize heterogeneous data formats and support
seamless integration of multiple IoT sources and clinical
data to facilitate smooth data exchange.

e Strengthening Data Security and Privacy.

e Apply robust privacy-preserving mechanisms to protect
sensitive patient information to ensure confidentiality
and prevent unauthorized access or exposure of sensitive
medical information.

VII. CHALLENGES AND LIMITATIONS

Despite the potential of Data-Centric AI(DCAI) to improve
healthcare Al systems, several challenges and limitations must
be addressed to ensure scalability, fairness, and trustworthiness.
These issues stem from both technical and systemic barriers
within healthcare data ecosystems.

First, quantifying fairness in Al systems remains inherently
complex due to demographic disparities across global healthcare
environments. Biased training data can lead to inequitable
outcomes, particularly for underrepresented populations, and
current bias metrics often fail to capture these nuances
accurately.

Second, data variability and quality continue to pose
significant hurdles. Real-time data streams from IoT devices
require constant monitoring to ensure consistency, contextual
relevance, and timeliness. However, as Schwabe et al in [1]
highlight, pervasive data issues—including noise, missing
values, and inconsistency across heterogeneous sources—
complicate integration and reliability of Al models.

Third, privacy and regulatory constraints (e.g., HIPAA,
GDPR) restrict access to comprehensive patient data, hindering
bias detection and correction. While privacy-preserving
methods such as federated learning and differential privacy
provide alteratives [9], their implementation is still limited by
technical and legal challenges.

Fourth, computational overhead poses another challenge, as
evaluating data quality at scale demands significant resources,
especially in large IoT and Big Data systems [4].

Fifth, explainability and trust in Al-driven decisions remain
critical for clinical adoption, as healthcare professionals require
interpretable models and datasets with documentation,
annotation, and data provenance for decision support.
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Lastly, real-world deployment presents practical barriers.
Integrating Al systems with existing hospital IT infrastructure,
obtaining regulatory approvals, and ensuring seamless
interoperability across data sources all remain major
impediments to widespread adoption.

Importantly, while our study synthesizes findings from
foundational DCAlliterature and healthcare-focused research, it
does not incorporate empirical experimentation or advanced Al
techniques (e.g., generative Al, self-supervised learning,
explainable Al). These promisingareas are earmarked for future
exploration.

e Key Findings and Gaps

o Persistent Data Quality Issues: Noise, missing

values, and biasremain critical obstacles to reliable
healthcare Al

o Limited Implementation of DCAI: Although
promising, DCALI is rarely applied systematically in
healthcare settings.

o Lack of Standardized Evaluation Metrics:
Inconsistent metrics across studies hinder cross-
model comparisons and benchmarking.

o Interoperability Challenges: Diverse data sources
(e.g., EHRs, IoT, imaging) often lack harmonization,
limiting seamless Al integration.

o Difficulty Quantifying and Mitigating Bias:
Demographic disparities in data create systemic bias
that is difficult to measure and correct.

o Limited Multimodal Integration: Many current
models failto combine diverse healthcare data types
(e.g., clinical text, images, sensor streams), reducing
contextual awareness and diagnostic performance.

VIII. FUTURE WORK

As healthcare Al systems evolve, Data-Centric Al (DCAI)
practices—such as data augmentation, bias mitigation, and
context-aware preprocessing—are becoming essential for
developing ethical, interpretable, and adaptive solutions [6],
[15]. Whilethisreview providesa conceptual synthesis of DCAI
principles, bridging foundational literature and application
studies through a structured methodology, significant research
opportunities remain. These involve both enhancing core DCAI
practices and integrating emerging technologies to improve
scalability, fairness, real-time adaptability, and clinical
trustworthiness.

A. Key Future Research Directions
Below, we outline key futureresearch directions to extend

the impact and applicability of DCAI in Al-driven healthcare
systems:

1) Generative Al for data augmentation: Explore theuse of
generative models such as GANs (Generative Adversarial
Networks) and VAEs (Variational Autoencoders) to create
realistic synthetic healthcare data. This approach could reduce
data scarcity, correct demographic imbalances, and improve
model fairness and generalizability.
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2) Multimodal Al frameworks: Investigate the integration
of diverse data modalities—including EHRs, IoT sensor
streams, medical imaging, and genomics—to build
comprehensive and context-rich patient profiles. Evaluate their
impact on diagnostic accuracy, clinical decision support, and
patient stratification.

3) Advanced bias mitigation techniques: Develop and
validate fairness-aware training strategies and bias auditing
tools that operate across the entire Al pipeline. This includes
addressinghidden biases in datacollection, labeling,and model
inference stages.

4) Transformer-based and hybrid Al models: Assess the
role of cutting-edge architectures such as transformers and
graph neural networks (GNNs) in modeling relational and
temporal dependencies in complex healthcare environments,
particularly where patient data is sparse, noisy, or
interconnected.

5) Context-aware and self-adaptive Al systems: Design Al
systems capable of dynamically adjusting to patient-specific
contexts and environmental changes in real-time. Such models
could enhance remote patient monitoring, emergency
diagnostics, and chronic disease management by incorporating
adaptive decision logic.

6) Explainable and trustworthy Al (XAI): Integrate
explainability mechanisms into DCAI workflows to improve
clinical interpretability and transparency. This involves
applying interpretable models or post-hoc explanation tools
(e.g., SHAP, LIME) to enhance clinician trust and facilitate
regulatory approval.

7) Privacy-preserving Al methods: Implement and
empirically validate federated learning, homomorphic
encryption, and differential privacy to ensure regulatory
compliance (e.g., HIPAA, GDPR) while maintaining model
utility and protecting sensitive patient data.

8) Standardized IoT interoperability: Advance the
development of universal communication protocols and
interoperability standards for integrating heterogeneous loT
devices and healthcare platforms. This is essential for real-time
data sharing, multi-systemalignment, and scalable deployment.

B. Practical Considerations and Conclusion of the Section

While Data-Centric AI (DCAI) offers a promising path to
improving fairness, accuracy, and scalability in healthcare Al
its implementation is hindered by practical barriers such as high
resource requirements, lack of data governance structures, and
limited interoperability in clinical settings. Many hospitals
operate with fragmented IT systems, unstructured data silos, and
unclear data ownership, which complicate systematic data
curation and annotation workflows required for DCAI adoption
[1], [5]. Implementing privacy-preserving techniques like
federated learning or synthetic data generation demands not only
technical expertise but also legal and institutional coordination,
which may be lackingin resource-constrained environments [4],
[9]. Moreover, most DCAI frameworks are designed for static
datasets and are not easily adaptable to dynamic, real-time
healthcare scenarios where context, data quality, and ethical
oversight must constantly evolve. Addressing these challenges
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requires interdisciplinary collaboration, scalable governance
models, and cost-effective toolkits tailored for healthcare
infrastructure, ensuring that DCAI moves from conceptual
promise to real-world impact.

IX. CONCLUSION

This study positions Data-Centric Artificial Intelligence
(DCALI) as a transformative paradigm for advancing trustworthy,
scalable, and ethical Al-driven healthcare systems. Unlike
traditional model-centricapproaches that emphasize algorithmic
optimization, DCAI redirects focus toward systematic
improvements in data quality—enhancing completeness,
consistency, standardization, fairness, and interoperability.
Through our literature-based analysis of twenty-three Al-IoT
healthcare studies and foundational DCAI works, we identified
persistent challenges related to noise, missing values,
demographic bias, contextual inconsistency, and privacy
concerns. DCAI addresses these limitations by integrating
practical techniques such as data augmentation, noise filtering,
bias mitigation, and standardized preprocessing, while
frameworks like METRIC offer structured tools for evaluating
data quality across key dimensions. Although our study is
theoretical in nature, it establishes a foundational synthesis
linking DCALI principles to healthcare-specific data challenges.
Future directions should focus on integrating DCAI principles
with cutting-edge technologies such as explainable Al (XAI),
generative Al, and multimodal learning, while also advancing
real-time, context-aware Al-IoT convergence in smart
healthcare environments. Such integration will enable adaptive
systems capable of continuous learning, secure data handling,
and interpretable decision support—crucial for delivering
equitable and high-quality care at scale.
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