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Abstract—With the popularity of mobile intelligent devices, 

the mobile crowdsensing (MCS) network based on wireless 

sensor networks and crowdsourcing technology came into being. 

There is more and more research on MCS, and it has been 

applied in many scenarios. Due to the increase in data volume of 

the MCS platform, the task shows exponential growth. Among 

them, there will be irreplaceable tasks that belong to the same 

category, that is, tasks with correlation. If the related tasks can 

be allocated to the same person for execution, the overhead will 

be greatly reduced, and the success probability of task allocation 

will be improved. Firstly, the spatio-temporal distribution of 

tasks and users is predicted by fuzzy logic to divide spatio-

temporal scenarios in this study, and a more suitable multi-task 

allocation algorithm is selected. Then, when allocating multi-

tasks, considering the correlation of tasks, the greedy algorithm 

is used to allocate multi-tasks according to different scenarios. 

The experimental results show that compared with the 

benchmark scheme, the proposed related multi-task allocation 

scheme based on the greedy algorithm improves the task 

allocation completion rate by 25.2%, and significantly improves 

the task allocation success rate in MCS. 
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I. INTRODUCTION 

With the emergence of intelligent mobile devices and the 
Internet of Things, mobile crowdsensing (MCS) using wireless 
sensor networks and crowdsourcing technology has gained a 
lot of attention. MCS uses mobile devices to collect and 
process all kinds of sensing data to complete a variety of 
complex sensing tasks. By using the intelligent mobile terminal 
as the basic sensing unit, MCS can build a large-scale sensing 
system that transcends time and space, and complete 
complicated sensing tasks compared with the traditional 
sensing technology that relies heavily on professionals and 
testing tools. As a result, MCS has become a popular new way 
of sensing. In recent years, MCS has been widely used in 
environmental monitoring [1],[2], intelligent transportation [3], 
public safety [4] and health services [5],[6]. 

The life cycle of MCS can be divided into three parts, 
namely task allocation, data collection and data aggregation. 
As the first step in the life cycle of MCS, task allocation is the 
basis for the successful completion of the whole sensing 
system. Due to the complexity and diversity of sensing tasks, 
the completion of a sensing task usually requires the 
participation of many participants. However, among many 
participants, each participant has different willingness and 
proficiency in different sensing tasks, so it is necessary to 
select the right participant to better complete the task. If the 

task allocation is unreasonable, it will lead to the poor quality 
of sensing data or users will refuse to perform sensing tasks, 
resulting in the wastage of sensing costs and the failure of task 
sensing. With the in-depth use of the sensing platform, the 
number of tasks published by the platform has increased 
rapidly. If the tasks cannot be allocated quickly and reasonably, 
it will lead to the accumulation of tasks on the platform, low 
processing efficiency and high task cost, but at the same time, 
it is difficult for users to obtain matching tasks to execute. 
Therefore, the quality of task allocation has a significant 
impact on the quality and cost of sensing task completion. 

First, the two cores of task allocation are to consider the 
order of task allocation and how to choose the executor. The 
specific implementation of both is related to the temporal and 
spatial distribution of tasks and related participants. Therefore, 
the temporal and spatial distribution of tasks and participants is 
an important factor affecting task allocation. For example, in a 
time and space, if the distribution of tasks and participants is 
dense or sparse, it is less difficult to allocate tasks and the 
completion rate of task allocation is high; in a time and space, 
if tasks are sparsely distributed and participants are densely 
distributed, or tasks are densely distributed, and participants are 
sparsely distributed. In both cases, if the traditional task 
allocation method is followed, it will lead to unreasonable task 
allocation and prolong the task allocation period, which will 
make the allocated tasks unable to be completed within the 
time constraint and reduce the task completion rate of the 
whole platform. Therefore, it is very important to determine the 
temporal and spatial distribution of tasks and participants for 
the platform to successfully allocate tasks. 

Existing research usually uses quantitative statistical 
methods to count the temporal and spatial distribution of tasks 
or participants (Citation). Specifically, the spatio-temporal 
distribution statistics of tasks can be analyzed according to the 
data collected by the platform most intuitively. However, 
because the task publishers are free to move, the number of 
tasks counted by the platform at a certain time point cannot 
represent the task distribution in a time period. At the same 
time, in view of the temporal and spatial distribution of 
participants, the traditional method can realize statistics by 
asking participants to provide their location information when 
collecting sensing data. However, this method will not only 
lead to the leakage of sensing data privacy but also increase the 
platform overhead. Therefore, how to reasonably determine the 
temporal and spatial distribution of tasks and participants in 
MCS is very important. Secondly, the correlation between 
multiple tasks is also crucial to the success rate of task 
allocation. We define correlation as that two tasks belong to the 
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same category, but they can't replace each other, so we think 
they are related. If two tasks belong to the same category or 
time and space are mutually exclusive, they are considered not 
relevant. For example, U is a user who cares about his own 
health. After we allocated task A (collecting exercise data) to 
user U, task B appeared to collect diet data. Because task B and 
task A belong to the personal health category, they are related. 
If task B is also allocated to user U, user U will probably 
execute task B while executing task A, which will improve the 
completion rate of task A and task B. Therefore, when 
allocating multiple tasks, if we can consider the correlation of 
tasks and allocate related tasks to the same user for execution, 
it will greatly improve the completion rate of tasks and reduce 
extra expenses. 

At present, with the increase of tasks, multi-task allocation 
[10]-[16] has become the mainstream research trend of task 
allocation. However, when allocating multiple tasks, the 
existing work not only ignores the correlation between the 
above tasks but also fails to take into account the prediction of 
the temporal and spatial distribution of users and tasks, which 
makes it difficult to implement the optimal allocation method 
in various scenarios and leads to the failure of task allocation. 

Aiming at the above problems, this study proposes a related 
multi-task allocation scheme based on a greedy algorithm. In 
multi-task allocation, the proposed scheme can determine the 
temporal and spatial distribution of tasks and users, and based 
on this, use the correlation between tasks to achieve as many 
task allocations as possible. The main contributions of this 
study are summarized as follows: 

1) In this study, a task-participant spatio-temporal 

distribution prediction algorithm based on fuzzy logic is 

proposed. The uncertain input is processed by fuzzy logic, and 

the accurate spatio-temporal distribution of tasks and users is 

obtained, which provides reliable parameter support for 

subsequent allocation algorithms. 

2) Based on the calculated time-space distribution values 

of tasks and users, combined with the task correlation, we 

design a related multi-task allocation scheme based on a 

greedy algorithm, and propose two allocation algorithms for 

different time-space distributions of tasks and participants in 

the scheme. Aiming at the situation that the distribution of 

tasks and participants is balanced or there are enough 

participants, Algorithm 1 is proposed, which uses correlation 

allocation to improve the task allocation rate as much as 

possible; Aiming at the shortage of participants' distribution, 

Algorithm 2 is proposed. In Algorithm 2, the completion rate 

of task allocation is improved as much as possible with the 

help of correlation allocation and the incentive provided by 

the cost saved by Algorithm 1. 

3) Experimental results show that compared with the 

benchmark scheme, the proposed related multi-task allocation 

scheme based on a greedy algorithm improves the task 

allocation completion rate by 25.2%, which significantly 

improves the task allocation success rate in MCS. 

The remainder of this study is organized as follows: 
Section II introduces the related work of multi-task allocation 

in MCS. Section III presents the proposed related multi-task 
allocation scheme based on greedy algorithm. Section IV 
reports and analyzes the experimental results. Section V 
concludes the study and discusses directions for future work. 

II. RELATED WORK 

The core of task allocation is to allocate as many tasks as 
possible through certain strategies under the condition of 
satisfying relevant constraints, to obtain sensing data that meets 
quality requirements. 

At present, researchers have put forward a series of task 
allocation schemes. Among them, the single task allocation is 
simple, and the key problem at this stage is to find a suitable 
executor for the task. For example, Zhang et al. [7] propose a 
blockchain-based hybrid reliable user selection and task 
allocation scheme for MCS, which achieves decentralized task 
management through blockchain and smart contracts to 
enhance system performance. From the user's point of view, 
An et al. [8] proposed a privacy-preserving scheme for high-
quality user recruitment in mobile crowdsensing, which 
evaluates sensing quality based on data deviation and variance 
under differential privacy and employs a combinatorial multi-
armed bandit to achieve budget-constrained user selection. 
Wang et al. [9] propose a user recruitment method for sparse 
mobile crowdsensing that leverages deep nonnegative matrix 
factorization based on social relationships to identify 
communities and combines community collaboration with task 
matching to achieve high-quality sensing data collection and 
accurate sensing map reconstruction using a small number of 
users under budget constraints. 

With the in-depth study of MCS, it has been applied to 
more and more fields, which leads to the further expansion of 
the MCS platform and carries more and more tasks. Therefore, 
single task allocation can no longer meet the growing sensing 
needs, and then multi-task allocation appears. 

In the task allocation scenario, there are two scenarios: 
offline task allocation and online task allocation. Different 
from offline task allocation, online task allocation can't 
determine the number of participants, so it will affect the 
distribution quality. Therefore, Yang et al. [10] first predicted 
the number of participants, and then distributed the platform 
tasks by using the online task allocation method based on the 
improved genetic algorithm, to maximize the platform utility 
and minimize the moving cost of participants. In task 
allocation, the study of individual task allocation will ignore 
the characteristics between tasks, such as task distance, task 
similarity, and task priority level, resulting in poor quality of 
task allocation. Yin et al. [11] studied a new task allocation and 
path planning problem in MCS. By considering the routing 
distance, task similarity, and task priority, a group of task 
locations is allocated to suitable workers, and the location 
access order of individual workers is determined to realize the 
overall rationality of the maximum location sequence. Previous 
studies paid more attention to the completion rate of task 
allocation or the minimum cost of task allocation, while 
ignoring the individual situation of platform staff. Because 
each participant's sensing willingness, knowledge level, and 
credibility are different, Rahman et al. [12] put forward a new 
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quality-aware personalized task matching framework, which 
can better match tasks with participants. 

For multi-task allocation, the sensing will of the participant 
is also very important. Because of the difference in users' 
sensing ability, the sensing result will be inaccurate. To 
overcome these problems, Ji et al. [13] proposed a 
comprehensive multi-task allocation model. Based on the three 
constraints of the total task budget, perceiving the quality and 
workload of a single task, the proposed large-scale 
evolutionary algorithm, a specific problem-solving strategy, 
and a new genetic operator, multi-task allocation can get as 
many feasible tasks as possible. In order to recruit suitable 
users for heterogeneous tasks, Ma et al. [14] proposed three 
user recruitment algorithms based on greed to solve the 
problem of heterogeneous user recruitment for multi-
heterogeneous tasks, thus minimizing the total platform 
payment and maximizing the task coverage. In task allocation, 
users will also be unwilling, or objective conditions will not 
allow them to move to the task area. Gao et al. [15] proposed a 
UAV-assisted multi-task allocation method. This method uses 
drones to verify the data collected by users and uses drones to 
collect data in data areas not covered by human participants to 
optimize the sensing coverage and data quality of multi-task 
allocation. When MCS is applied in an energy transportation 
system, there are some challenges, such as a single point of 
failure, low efficiency of independent task allocation, and 
inability to deal with safety emergency tasks in time. In order 
to solve these problems, Li et al. [16] defined a decentralized 
ITS architecture based on blockchain and proposed a 
concurrent task and safety emergency task allocation method 
based on reinforcement learning, which can maximize the 
utility of concurrent tasks on the basis of meeting the 
requirements of safety emergency tasks. 

At present, the focus of multi-task allocation is on multi-
task allocation under time constraints [17]-[21]. Li & Zhang 
[17] studied the multi-task allocation under time constraints, 
mainly considering the leisure time owned by users and the due 
time of each task. Huang et al. [18] focus on the execution time 
of tasks, which solves the problem that mobile users with a 
limited time budget undertake multiple sensing tasks. Under 
the limited time limit, the optimal solution can be obtained 
through the multi-task framework by selecting the participants 
who have completed the tasks the most times and the shortest 
total travel distance. In time-limited multi-task allocation, 
existing research tends to assign most tasks to users with high 
reputation, which is unfair to new users and leads to low 
efficiency of task execution. To overcome these problems, 
Shen et al. [19] proposed a constrained multi-objective 
optimization model for variable-speed multi-task allocation. 
Through the three-stage multi-objective mixed shuffling frog 
leading algorithm, the user returns to the maximum extent and 
the task completion time is minimized. 

In addition, with the complexity of sensing scenes and the 
diversification of time constraints, taking time constraints as a 
single auxiliary constraint can no longer achieve a good task 
allocation scheme. Wei et al. [20] proposed a semi-conditional 
moving sensation (SO-MTTA) scheme to solve the task 
allocation problem with multiple time constraints, to maximize 
the sensing value obtained by the platform. Meitei & Marchang 

[21] proposed a greedy task allocation method based on 
interval partition to maximize the profit of the platform in a 
time-dependent sensing environment. 

With the deepening of research, spatial constraints have 
also become an important research point. Most scholars 
consider the overall distribution effect when considering the 
meaning of multitasking. Although the constraints of overall 
execution time or overall sharing are minimized or met, 
respectively, according to the distribution results, it is possible 
that the tasks published are not effectively executed for each 
task publisher. Wang et al. [22] conducted extensive research 
on this issue and suggested using the task framework to define 
the threshold for measuring effective task execution. Only 
tasks that exceed the threshold are considered as valid tasks. 
Specifically, the system uses space-time coverage to measure 
tasks. The task is regarded as a low-quality execution, and if 
the coverage of time and space is below the threshold, it will 
not improve the overall task execution quality. The framework 
can effectively identify tasks suitable for workers and ensure 
the best performance of each task through the above methods. 
Liu et al. [23] proposed a privacy-preserving task allocation 
method for mobile crowdsensing that protects users’ temporal 
and spatial information while maximizing worker income. Ye 
et al. [24] studied a new task allocation problem in a multi-
center supply chain environment with multiple distribution 
centers. In order to solve this problem, a task allocation 
framework based on geographical division is proposed. The 
first stage is the geographical division stage, and the second 
stage is the task allocation stage. This method can effectively 
maximize the total number of allocated tasks and minimize the 
difference in the average number of allocated tasks. To solve 
the problem of interruption in the task allocation process, wang 
et al. [25] proposed a method based on the allocation graph to 
solve the problem of RoBust task allocation (RBTA), which 
can reduce the cost of workers' detour and minimize the 
robustness of the allocation scheme. 

Fuzzy logic has been applied to the field of mathematics in 
theory. With the development of computer science and 
artificial intelligence, it needs to be applied to industrial control 
systems. Such progress requires computers to perform based on 
human cognition. Fuzzy logic has been widely incorporated 
into the computer field. 

For example, by extending the standard Mamdani fuzzy 
logic controller, an expert system based on fuzzy logic to 
diagnose patients with possible heart disease was established 
[26]. With regard to bringing fuzzy logic into the proofreading 
system, some dough was made under the supervision of a fuzzy 
control system. According to different initial temperatures, 
different amounts of yeast were added to the dough. The 
controller will make judgments and adjustments in the whole 
process to control the volume of dough. In this case, the fuzzy 
logic controller provides optimal control and improved 
interference suppression characteristics without a mathematical 
model [27]. Wang et al. [28] put forward a spatio-temporal 
model based on a transformer, which uses spatio-temporal 
relationships to infer and predict sparse sensing data. By using 
short-term perceived data to predict long-term data, not only is 
the data cost reduced, but also the data trend can be identified, 
which effectively improves the working effect of the model. 
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Yang et al. [29] used fuzzy logic to predict the distribution of 
users and solved the multi-task allocation problem under time 
and space constraints through a hybrid greedy algorithm. 
Zhang et al. [30] put forward a multi-task allocation method 
based on liquidity prediction, which uses fuzzy logic to analyze 
historical data to predict the movement of workers, so that 
workers can better match tasks and complete tasks as much as 
possible. 

Although the above technologies show superior 
performance in some aspects, they only consider some 
temporal or spatial characteristics of tasks and participants, and 
also lack comprehensive analysis and modeling of participant 
density in time and space. Moreover, the above research did 
not consider the correlation between multiple tasks. If two 
related tasks are allocated to the same participant, it will 
greatly save time of task execution. On the contrary, if the 
related tasks are allocated to different executors, it will lead to 
a waste of time and resources. The existing research on multi-
task allocation does not consider the correlation between tasks, 

which may lead to the failure of task allocation or the difficulty 
of matching tasks with the most suitable participants, resulting 
in waste of resources and low task completion rate. 

Therefore, this study fully considers and analyzes the 
influence of task distribution and participant distribution on 
task allocation through the fuzzy logic control method and 
studies the task correlation in multi-task allocation under time 
and space constraints in order to achieve the maximum task 
completion rate. 

III. METHODS 

A. System Model 

The realization of MCS is based on the sensing platform, 
on which task publishers and task participants complete the 
corresponding cooperation according to their own wishes and 
the task allocation strategy of the platform, as shown in Fig. 1. 
Specifically, there are the following steps: 

 
Fig. 1. The illustration of task allocation. 

First, the task publisher will publish the task according to 
its own needs and hand it over to the platform. The submitted 
data contains the specific information on the task and the 
rewards that the participants are willing to pay after completing 
it. Secondly, after receiving the task information, the platform 
will sort it out and publish it for the participants to check; 
subsequently, the participants will release their willingness to 
execute to the platform. The platform will select the 
appropriate participants to perform the task according to the 
execution time, implementation place and user's willingness to 
perform the task. The selected participants will choose whether 
to perform the task according to their own situation and the 
task reward. Finally, participants who perform tasks are 
selected to collect sensing data and upload them to the sensing 
platform. Thus, a complete sensing task is completed. 

The scheme of this study mainly includes two parts. The 
first part is to determine the temporal and spatial distribution of 
tasks and participants. The second part is to allocate tasks 
according to the temporal and spatial distribution of tasks and 
participants, combined with the correlation between multiple 
tasks. 

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the 
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, 
and rms do not have to be defined. Do not use abbreviations in 
the title or headings unless they are unavoidable. 

B. Fuzzy Logic 

In the traditional description of temporal and spatial 
distribution, some non-quantitative words are usually used to 

describe the distribution of tasks or participants, such as 
"more", "a little less" and "sparse". In daily communication, 
because it is only necessary to express the meaning correctly, 
such a description can make the two sides understand each 
other's meaning. But in the computer world, machines can't 
understand these non-quantitative words, and what computers 
can understand must be a specific and accurate numerical 
value. Therefore, we need to introduce fuzzy logic to solve the 
problem of semantic uncertainty. 

Fuzzy logic mainly includes the following three steps, 
namely fuzzification, fuzzy reasoning and defuzzification. The 
so-called fuzzification is to process our specific inputs and get 
a fuzzy set of inputs. Secondly, according to the fuzzy set 
output in the first step, combined with fuzzy rules, an output 
fuzzy set can be obtained, which is fuzzy reasoning. The third 
step is defuzzification, and the fuzzy conclusions are 
transformed into concrete and clear output values. 

1) Fuzzy set: The definition of a fuzzy set can decompose 

an input into the membership degree of each part in the set. 

For example, we define the fuzzy set of rain sizes as "heavy 

rain, moderate rain and light rain". Then, for 20 ml of rainfall, 

the membership degree of light rain is 0.3, the membership 

degree of moderate rain is 0.5, and the membership degree of 

heavy rain is 0.2. 

2) Membership function: The most used membership 

functions are rectangular and (semi) trapezoidal functions, 

which are divided into small, large and intermediate types. 

The specific membership function expressions are shown in 

Fig. 2. 
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(a) Rectangular type. 

  
(b) Trapezoidal type. 

Fig. 2. Common membership function diagram. 

3) Fuzzy rules: After fuzzy input, we need to construct 

rules and use the operation of fuzzy logic to combine the 

obtained membership degrees as the basis for decision-

making. The decision rules of fuzzy logic are sets containing a 

series of logical statements, which have the following 

structure: 

IF <antecedents> THEN <consequent> 

4) Defuzzification: In fuzzy logic, we convert input values 

into membership degrees of each set through fuzzification and 

then get some effective output values through fuzzy rules. 

However, having only a few output values is not helpful for 

problem analysis, so we need to transform some fuzzy output 

values. Therefore, the process of converting some fuzzy 

output values into accurate values is called defuzzification. 

C. Temporal and Spatial Distribution of Tasks and 

Participants 

For the definition of the temporal and spatial distribution of 
tasks and participants, the two core influencing factors are time 
and space. For example, during working hours and in densely 
populated areas, the amount of task release is relatively large. 
However, in the rest time and sparsely populated areas, the 
amount of task publishing is relatively rare. Therefore, with the 
help of fuzzy logic, we define the input as time and space. In 
view of time, this scheme divides 24 hours a day into l parts, 
which are recorded as TL = {T1，...，Tn，...，Tl}. For space, 

this scheme divides a region into p sub-regions, which are 
denoted as  SP = {S1，...，Sm，...，Sp}. Therefore, we can 

use time and space as the input of fuzzy logic to calculate the 
temporal and spatial distribution of tasks and participants. As 
the output of fuzzy logic, we define the spatio-temporal 
distribution parameters of tasks as DT and the spatio-temporal 
distribution parameters of participants as DP. 

First, we need to determine the fuzzy set of the spatio-
temporal distribution of tasks and the spatio-temporal 
distribution of participants. We define the fuzzy set of task 
release and participants' participation time periods as early 
trough (ET), early wave peak (EWP), balance period (BP), late 
wave peak (LWP) and late trough (LT). Then, the fuzzy sets of 
the sub-regions where the tasks and participants are located are 

defined as small (S), normal (NO) and big (B). As for the 
output variables, the fuzzy set of the spatio-temporal 
distribution of tasks and participants is defined as sparse (SP), 
less (L), medium (ME), more (M) and dense (DE). 

          
                  (a) Task release time                  (b) Participant time distribution 

            
               (c) Task release area                         (d) Participant distribution area  

          
               (e) Distribution of tasks                       (f) Distribution of participants 

Fig. 3. Membership function diagram. 

Referring to common models, we divide a day into 24 
equal parts, so l=24, TL = {T1，...，Tn，...，T24 }. Divide an 

area into 12 sub-areas, p=12, SP  = {S1，...，Sm，...，S12 }. 

According to experience, we can get the membership function 
curve in Fig. 3. 

Because the input conditions of this scheme are time and 
space, and the output is a time-space distribution, the rules can 
be defined by fuzzy reasoning. Specifically, the rules defined 
in this scheme are shown in the following table: 

TABLE I.  FUZZY LOGIC RULE TABLE 

Tn             
   Dt /Dp 

Sm 

ET EWP BP LWP LT 

S SP ME L ME SP 

NO L M ME M L 

B ME DE M DE ME 

According to the rules in Table I, if the task release period 
is in the early trough and its area is a partition with few tasks, it 
can be obtained that the temporal and spatial distribution of 
tasks is sparse. Through the IF-THEN rule, we can express this 
rule as: IF ( Tn = ET) and ( Sm = S)，THEN ( DT  = SP). 

Similarly, if the movement period of participants is at the late 
wave peak, and the area where they are located is a partition 
with many tasks, it can be obtained that the spatial and 
temporal distribution of participants is dense. The above rules 
can be expressed as: IF (Tn=LWP) and (Sm= B), THEN (DP = 
DE). For the calculation rule "and" in the above fuzzy logic, 
this study adopts the principle of minimum membership. 
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Based on the above work, this study uses the weighted 
average method to achieve defuzzification, and the specific 
formula is as follows: 

OT=
∑ u(Di) * OWi

i
1

∑ u(Di) i
1

                                () 

Among them, u(Di) represents the value of the membership 
function D and the weight OWi, usually taking the middle 
value of each set. Through Formula (1), we can convert some 
fuzzy outputs into a usable, accurate output value. 

We will illustrate it with examples. Assume that the two 
input values of the task fuzzy logic method are time point 7.5 
and sub-area 4. Firstly, we can get IF (Tn= ET) and (Sm= S), 
THEN (DT= SP), IF (Tn= EWP) and (Sm= S), THEN (DT = 
ME) by consulting the rule diagram. Then the fuzzy set is 
calculated by using the membership function of these two 
inputs. It can be obtained that the value of the early trough 
Tn(ET [7.5])= 0.25, the value of the early wave peak Tn(EWP 
[7.5])=0.75, and the value of the member function of the small 
amount Sm (S [4])= 1. Because the conditional parts of two 
fuzzy logic rules are connected by the AND method, the value 
of the membership function will be calculated by the minimum 
value of the corresponding membership functions. For the rules 
IF(Tn= ET)and(Sm= S), THEN(DT= SP), the value ofDT= SP 
can be calculated as min( 0.25, 1)= 0.25 by the minimum 
membership rule, and for the same rules IF(Tn= EWP)and(Sm= 
S), THEN(DT= ME), the value of DT= ME can be calculated as 
min(0.75, 1)=0.75 by the minimum membership rule. Then the 
clear value is 35.625 by defuzzification with the weighted 
average method. 

Similarly, we assume that the two input values of the 
participant’s fuzzy logic method are time point 5.5 and sub-
region 2. Firstly, we can get IF (Tn= ET) and (Sm = NO), 
THEN (DP= L), IF (Tn= EWP) and (Sm= NO), THEN (DP = 
M) by consulting the rule diagram. Then the fuzzy set is 
calculated by using the membership function of these two 
inputs. It can be obtained that the value of early trough Tn(ET 
[5.5]) = 0.75, the value of early wave peak Tn(EWP [5.5]) = 
0.25, and the value of normal (NO) member function Sm(NO 
[2]) =1. Because the conditional parts of two fuzzy logic rules 
are connected by the AND method, the value of the 
membership function will be calculated by the minimum value 
of the corresponding membership functions. For the rules IF 
(Tn= ET) and (Sm = NO), THEN (DP= L), the value of the 
membership function DP= L can be calculated as min (0.75, 1) 
= 0.75 through the minimum membership rule. Similarly, for 
IF (Tn= EWP) and (Sm=NO), THEN (DP= M), the value of 
membership function DP=M can be calculated as min (0.25, 1) 
= 0.25 through the minimum membership degree rule. Then 
the clear value is 40 by defuzzification with the weighted 
average method. 

D. Multi-Task Allocation Scheme 

To facilitate the following description, we first explain the 
parameters used: 

In time Tn and space Sm, this scheme defines task sets as 

Task={t1，t2，...，t i}, participant sets as Part ={p1，p2，...

，pj}, and the compensation that the task publisher is willing 

to pay for task sets is Bi={b1，b2，...，bi} respectively, and 

the cost of participant for each task  is ci,j [see Formula (2)]: 

 𝐶𝑖,𝑗=[

𝑐1,1 . . . 𝑐1,𝑗
. . .  . . .
𝑐𝑖,1 . . . 𝑐𝑖,𝑗

]                            () 

To describe the participants' willingness to perform tasks, 
this scheme defines PWi,j as the sensing willingness of 

participant pj  to perform task t i , and the parameter PWi,j  is 

binary. When PWi,j=1, the participant is willing to perform the 

sensing task; otherwise, PWi,j=0, the participant is unwilling to 

perform the task. 

In addition, we define the parameter TC(t i , t j) to describe 

the correlation between tasks. In detail, if task t iand task t j 

belong to the same category and time-space, and the 
participants can perform task t j while performing task t i, it is 

considered that they are related, and TC (t i，t j) = 1; on the 

other hand, it is considered that tasks t i and t j are irrelevant, 

and the correlation coefficient TC (t i，t j) = 0. For example, 

task 1 is to collect automobile acceleration data, and task 2 is to 
collect automobile driving recorder data. Task 1 and task 2 
belong to automobile data and can be executed in the same 
time and space, but they are irreplaceable, so task 1 and task 2 
are related. 

When performing sensing tasks, because the participants 
have moved to a certain time-space area when performing task 
t i , if task t j  is related to task t i , at this time, for users, 

performing task t j does not need additional space movement, 

so compared with simply performing task t j , it can save a 

certain time-space cost. At the same time, because task t j and 

task t i  belong to the same kind of tasks, participants can 
perform them at the same time without secondary learning, so 
the execution cost of participants will be further reduced and 
the willingness to perform will be enhanced. We define the 
coefficient as a way to calculate the cost saved by users in 
performing related tasks. If a user has already allocated a task 
t i and then allocated a related task t j, the user's execution cost 

will be reduced from cj to a*cj(0<a<1). At this time, because of 

the correlation allocation, we define the funds saved by the 
correlation allocation as the balance expenditure, which is 
expressed by R. 

In addition, in the process of allocating tasks, some tasks 
are urgent, and some tasks are not so urgent. To distinguish the 
urgency of the task, we define the parameter ε to describe the 
urgency of the task. The greater the parameter ε, the more 
urgent the task is, and it needs to be allocated to the 
participants as soon as possible. On the contrary, it means that 
the urgency of the task is average and can be allocated later. 

1) Multi-task allocation algorithm: Based on the fuzzy 

logic calculation before, we can get the time and space 

distribution of tasks and participants in a certain time and 

space interval. In a time Tn  and space Sm , if the spatio-

temporal distribution  DTof tasks is greater than or equal to the 

threshold βP , and the spatio-temporal distribution DP  of 

participants is greater than or equal to the threshold βT, or the 
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spatio-temporal distribution DT  of tasks is less than the 

threshold βT , then we think that the resources of tasks and 

participants can match in this area, which is defined as case 1. 

If the spatio-temporal distribution DT of tasks is greater than 

or equal to the threshold βT , and the spatio-temporal 

distribution DP of participants is less than the threshold βT, it 

means that there are more tasks and fewer participants in this 

spatio-temporal area, and it is necessary to provide some 

incentives for participants to encourage them to complete 

tasks as much as possible, which is defined as case 2. 

However, if the temporal and spatial distribution DT of tasks is 

less than the threshold βT , and the temporal and spatial 

distribution DP of participants is greater than or equal to the 

threshold βP , it means that there are few tasks and many 

participants in this area, and there is no need to provide 

additional incentives for participants, which is defined as case 

3. 

It can be observed that for the above cases 1 and 3, either 
the number of participants and the number of tasks are 
balanced, or the number of tasks is large and the number of 
participants is small. In both cases, we can adopt a general 
distribution strategy and do not need additional incentives to 
motivate users to perform tasks. Therefore, we classify cases 1 
and 3 into the first situation. In case 2, there are more tasks and 
fewer participants. To enable users to complete tasks as much 
as possible, extra incentives should be given to users. 
Therefore, we regard case 2 as the second kind of situation. 
The task allocation strategy in each case is as follows: 

We divide the Task set into the first kind of case, task set 
Task1 and the second kind of situation, task set Task2. The 
allocated task set is defined as TA, and the initial value is ta = 
∅. 

For the first kind of situation: firstly, we sort the tasks 
Task1 according to the urgency from high to low and find out 
the task t i1  with the highest urgency. Among all users, we 
screen out the users who are willing to sense the task t i1, and 
among these willing users, we find out the user pj1 who has the 

lowest sensing cost of t i1. If the cost of executing task t i1 by 
user pj1 is less than or equal to the offer that task t i1 is willing 

to pay, task t i1 is allocated to user pj1  for execution. Then, 

firstly, the tasks that user pj1is willing to perform are screened 

out from the task list, and among these tasks, the related task 
t i2 of task t i1 is found according to the urgency from high to 
low. At this time, if the cost a*ci2,j1 of allocating the task t i2 to 

the user pj1  is less than or equal to the minimum cost 

Minci2=min(ci2,1,...,ci2,j) of the task t i2 being executed by all 

users, and a*ci2,j1 is less than or equal to the cost that the 

corresponding publisher is willing to pay for the task t i2, then 
the related task is allocated and the task t i2 is allocated to the 
user pj1 to be executed together. 

In the process of allocation, we define R as the saving cost 
of task allocation in the first case, then R=∑ （1 − a） ∗ ci,j

n
1 , 

where n is the number of times to complete the related task 
allocation. 

Algorithm 1 gives the task allocation process in the first 
situation. 

Algorithm 1: Related multi-task allocation algorithm in the 

first situation based on the greedy algorithm. 

Input: Task, Part, Bi, Ci,j, PWi,j, TC（ti，tj）,ε,a 

Output: TA, R 

1. //In the first case, assigning Task1  to participants.  

2.  R=0 

3.  Rank tasks in Task1  by ε 

4.  Repeat   

5.  for ti ∈ Task1 , i from 1 to i , do 

6.      the max(ε) task ti from Task1  call ti1 

7.      select all pj when PWi1,j=1 call P 

8.      find min(Ci1,j) pj from P call pj1  

9.      if min(Ci1,j1) ≤ Bi1  then 

10.        task ti1 is allocated to participant pj1  

11.          Task1 =Task1 -ti1, TA=TA+ti1 

12.          select all task ti  from Task1 when  PWi,j1=1 call T 

13.          find the max(ε)task ti from T when TC（ti1，ti）=1 call 

ti2 

14.          If a*Ci2,j1 ≤ min(Ci2,j) & a*Ci2,j1  ≤ Bi2 then 

15.          task ti2 is allocated to participant pj1  

16.          Task1 =Task1 -ti2, TA=TA+ti2 

17.          R=R+(1-a)*Ci2,j1 

18.          else   

19.             continue   

20.       else   

21.           Continue   

22.     return  TA, R  

For the second kind of situation: firstly, find out the task t i3 
with the highest urgency in the task set Task2, screen out the 
users who are willing to sense the task t i3, and find out the user 
pj2 who has the lowest sensing cost for the task t i3  among 

these willing sensing users, and if the cost for the user pj2 to 

execute the task t i3 is less than or equal to the reward paid for 
the task t i3, allocate the task t i3 to the user pj2 for execution; If 

the cost Ci3,j2 of user pj2 executing task t i3 is greater than the 

offer bi3  that task t i3  is willing to pay, and it still needs 
R i3=Ci3,j2-bi3 funds to distribute the task, then the remaining 

balance cost R′=R-R i3 at this time, if R′ ≥0, incentive R i3 is 
carried out to distribute task t i3 to user pj2 for execution. 

When the task t i3 is allocated to the user pj2 for execution, 

the tasks that the user pj2 is willing to execute are first screened 

out in the task list, and then the related task t i4 of the task t i3 is 
found in the order of urgency. At this time, if the cost a*ci4,j2 

of allocating task t i4 to user pj2 is less than or equal to the 

minimum cost of task t j4  being executed by all users 

Minci4=min(ci4,1,...,ci4,j), and a*ci4,j2 is less than or equal to 

the cost paid by the task publisher to task t i4, relevant tasks are 
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allocated, and task t i4 is allocated to user pj2 to be executed 

together. At this time, the remaining cost is R′=R′ + （1 − a）
∗ ci4,j2 ; if the cost a*ci4,j2 of allocating task t i4 to user pj2 at 

this time is less than the minimum cost of task t i4  being 
executed by all users Minci4=min(ci4,1,...,ci4,j), and a*ci4,j2 is 

greater than the cost bi4 that task publisher is willing to pay for 
executing task t i4, the extra incentive required at this time is 

R i4=a*ci4,j2-bi4, and the saving cost is R"=R′-R i4. If R" ≥0, the 

incentive is carried out and task t i4 is allocated to user pj2 for 

execution. 

Repeat the above process until all tasks are allocated or the 
number of users is exhausted. 

Algorithm 2 gives the task allocation process in the second 
situation. 

Algorithm2: Related multi-task allocation algorithm in the 

second situation based on the greedy algorithm. 

Input: Task, Part, Bi, Ci,j, PWi,j, TC（ti，tj）,ε,a,R 

Output: TA 

1. //In the second case, assigning Task2 to participants. 

2.  Rank tasks in Task2 by ε 

3.   Repeat 

4.   for ti ∈ Task2, i from 1 to i , do 

5.      the max(ε) task ti from Task2 call ti3 

6.      select all pj when PWi3,j=1 call P ′ 

7.      find min(Ci3,j) pj from P ′ call pj2  

8.      if min(Ci3,j2) ≤ Bi3  then 

9.        task ti3 is allocated to participant pj2  

10.           Task2=Task2-ti3, TA=TA+ti3 

11.      else 

12. Ri3=Ci3,j2 -bi3 

13. R′=R-Ri3 

14.    if R′ ≥0 then   

15.           provide incentive Ri3 for task ti3   

16.           task ti3 is allocated to participant pj2    

17.           Task2=Task2-ti3, TA=TA+ti3   

18.           R=R-Ri3 

19.          else   

20.             continue   

21.  if  task ti3 is allocated to participant pj2   then 

22.  select all task ti  from Task2 when  PWi,j2=1 call T′  

23.           find the max(ε)task ti from T′ when TC（ti3，ti）=1 call 

ti4 

24.           If a*Ci4,j2 ≤ min(Ci4,j) & a*Ci4,j2 ≤ Bi4 then 

25.           task ti4 is allocated to participant pj2  

26.           Task2=Task2-ti4, TA=TA+ti4 

27. R′=R′ + （1 − a） ∗ ci4,j2 

28.           else    

29.               Ri4=a*ci4,j2-bi4  

30.              R′’=R′-Ri4 

31.    if R′’ ≥0 then   

32. provide incentive Ri4 for task ti4  

33.               task ti4 is allocated to participant pj2    

34.               Task2=Task2-ti4, TA=TA+ti4 

35.               R′=R′-Ri4 

36.              else   

37.                continue   

38.            else   

39.              Continue   

40.    return  TA   

IV. RESULTS 

To illustrate the performance of the proposal, this section 
compares the proposed algorithms with the baseline algorithm 
derived from the existing work [29]. Note that the core idea of 
[29] is allocating sensing tasks by means of a greedy algorithm. 
Therefore, the classical greedy algorithm is adopted as the 
baseline for comparison. 

A. Task Allocation Rate 

We set the discount coefficient a=0.5, the urgency ε is 
randomly generated between 1 and 10, the participants' wishes 
PWi,j  and the correlation coefficient TC （ t i ， t j ）  are 

randomly assigned between 0 and 1, the compensation Bi that 
the task publisher is willing to pay for the task is randomly 
generated between 1 and 15, and the cost Ci,j that the user i 

needs to perform the task j is randomly generated between 5 
and 20. 

Task set of algorithm 1 contains 100 randomly generated 
Tasks, set Part contains 50 randomly generated participants, 
task set of algorithm 2 contains 100 randomly generated tasks, 
and set Part contains 20 randomly generated participants. In the 
process of testing, we tested two groups of data respectively. 
The first group of data was tested 10 times, each time, with five 
times. The second set of data is tested 100 times at a time, with 
five times. 

As can be seen from Fig. 4, in the first set of data, the 
average task allocation rate of Algorithm 1 is 74.24%, that of 
Algorithm 2 is 99.34%, and that of Algorithm 1 and 2 is 
86.77%. At the same time, the average algorithm allocation 
rates of baseline Algorithm 1 and baseline Algorithm 2 are 
62.3% and 60.84%, respectively, so the total average task 
allocation rate of the baseline algorithm is 61.57%. Compared 
with the baseline algorithm, Algorithm 1 improves the task 
allocation rate by 11.9% because of the use of related task 
allocation. Compared with the baseline algorithm, the average 
task allocation rate of Algorithm 2 is 99.34%, which is 38.5% 
higher than that of the baseline algorithm, which proves the 
superiority of the algorithm. 

By comparing the first group of data (10 times in each 
group) with the second group of data (100 times in each 
group), the fluctuation of the task allocation rate of the 
algorithm will decrease and the allocation completion rate will 
tend to be stable with the increase of task execution times. 
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(a) Algorithm1 

 
(b) Algorithm2 

 
(c) Algorithm1+Algorithm2 

Fig. 4. Algorithm task allocation rate result. 

B. Discount Coefficient 

We tested three sets of data, and set the discount 
coefficients a=0.3, a=0.5 and a=0.7, respectively. The urgency 
ε is randomly generated between 1 and 10, the participants' 
willingness PWi,j and the correlation coefficient TC（t i，t j） 

are randomly assigned between 0 and 1, the compensation Bi 
that the task publisher is willing to pay for the task is randomly 
generated between 1 and 15, and the cost Ci,j that the user i 

needs to perform the task j is randomly generated between 6 
and 20. Task set of Algorithm 1 contains 500 randomly 
generated Tasks, set Part contains 100 randomly generated 
participants, task set of Algorithm 2 contains 500 randomly 
generated tasks, and set Part contains 50 randomly generated 
participants. In the process of testing, each group of data is 
tested 10 times, and there are five groups. The test results are 
summarized in Fig. 5. 

When a=0.7, the average task allocation rate of 
Algorithm 1 is 72.072%, the average task allocation rate of 
Algorithm 2 is 86.088%, and the overall average task 
allocation rate of algorithm is 79.08%. When a=0.5, the 
average task allocation rate of algorithm 1 is 75.224%, the 
average task allocation rate of algorithm 2 is 97.768%, and the 
overall average task allocation rate of algorithm is 86.496%. 
When a=0.3, the average task allocation rate of Algorithm 1 is 
80.416%, the average task allocation rate of Algorithm 2 is 
100%, and the total average task allocation rate of algorithm is 

90.208%. From the comparison of three data, the smaller the 
coefficient a is, the greater the cost saved by related allocation, 
and the greater the incentive provided for the second allocation, 
the higher the average task allocation rate. 

 
(a) Algorithm 1 

 
(b) Algorithm 2 

 
(c) Algorithm1+Algorithm2 

Fig. 5. Under different A values, the task allocation rate. 

V. CONCLUSION 

In this study, a related multi-task allocation scheme based 
on a greedy algorithm is proposed. By quantifying the temporal 
and spatial distribution characteristics of tasks and participants, 
different application scenarios are distinguished, and two 
allocation algorithms suitable for scenarios with sufficient 
participants and limited resources are designed respectively. 
Experimental results show that, compared with the benchmark 
method, the proposed scheme can effectively improve the 
success rate of task allocation in the mobile crowd sensing 
(MCS) system in various temporal and spatial distribution 
scenarios. Especially in scenes with strong task correlation or 
limited participants' resources, this method shows more stable 
and consistent performance advantages through joint allocation 
of related tasks and optimization of incentive costs. Overall, 
the experimental results verify the effectiveness of the 
proposed algorithm in improving task allocation efficiency and 
completion rate from different scene levels. 
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Although the method in this study has achieved remarkable 
performance improvement in the experiment, there are still 
some research limitations. First of all, the task correlation 
modeling is coarse-grained, which is mainly measured from the 
perspective of overall correlation, and has not fully described 
the fine-grained correlation characteristics between users and 
tasks in terms of historical behavior and ability differences, 
which limits the applicability of the algorithm in complex 
practical scenarios to some extent. Secondly, the uncertainties 
of participants' behaviors, dynamic changes of tasks, 
communication and calculation overhead in real MCS system 
have not been fully considered, and the generalization ability of 
the results needs further evaluation. In addition, although the 
proposed greedy strategy has advantages in computational 
efficiency, it still has potential for improvement in global 
optimality. 

Future research will focus on the above limitations. On the 
one hand, the modeling of task correction and user correction 
will be further refined, and the multidimensional features and 
learning mechanism will be introduced to improve the 
accuracy of the allocation decision. On the other hand, the 
algorithm will be verified in more complex and real application 
scenarios, and the multi-task allocation strategy combined with 
intelligent optimization or learning method will be explored to 
achieve more efficient and robust MCS multi-task allocation. 
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