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Abstract—With the popularity of mobile intelligent devices,
the mobile crowdsensing (MCS) network based on wireless
sensor networks and crowdsourcing technology came into being.
There is more and more research on MCS, and it has been
applied in many scenarios. Due to the increase in data volume of
the MCS platform, the task shows exponential growth. Among
them, there will be irreplaceable tasks that belong to the same
category, that is, tasks with correlation. If the related tasks can
be allocated to the same person for execution, the overhead will
be greatly reduced, and the success probability of task allocation
will be improved. Firstly, the spatio-temporal distribution of
tasks and users is predicted by fuzzy logic to divide spatio-
temporal scenarios in this study, and a more suitable multi-task
allocation algorithm is selected. Then, when allocating multi-
tasks, considering the correlation of tasks, the greedy algorithm
is used to allocate multi-tasks according to different scenarios.
The experimental results show that compared with the
benchmark scheme, the proposed related multi-task allocation
scheme based on the greedy algorithm improves the task
allocation completion rate by 25.2%, and significantly improves
the task allocation success rate in MCS.

Keywords—Mobile crowdsensing; task allocation; fuzzy logic;
greedy algorithm

I.  INTRODUCTION

With the emergence of intelligent mobile devices and the
Internet of Things, mobile crowdsensing (MCS) using wireless
sensor networks and crowdsourcing technology has gained a
lot of attention. MCS uses mobile devices to collect and
process all kinds of sensing data to complete a variety of
complex sensing tasks. By using the intelligent mobile terminal
as the basic sensing unit, MCS can build a large-scale sensing
system that transcends time and space, and complete
complicated sensing tasks compared with the traditional
sensing technology that relies heavily on professionals and
testing tools. As a result, MCS has become a popular new way
of sensing. In recent years, MCS has been widely used in
environmental monitoring [1],[2], intelligent transportation [3],
public safety [4] and health services [5],[6].

The life cycle of MCS can be divided into three parts,
namely task allocation, data collection and data aggregation.
As the first step in the life cycle of MCS, task allocation is the
basis for the successful completion of the whole sensing
system. Due to the complexity and diversity of sensing tasks,
the completion of a sensing task usually requires the
participation of many participants. However, among many
participants, each participant has different willingness and
proficiency in different sensing tasks, so it is necessary to
select the right participant to better complete the task. If the

task allocation is unreasonable, it will lead to the poor quality
of sensing data or users will refuse to perform sensing tasks,
resulting in the wastage of sensing costs and the failure of task
sensing. With the in-depth use of the sensing platform, the
number of tasks published by the platform has increased
rapidly. If the tasks cannot be allocated quickly and reasonably,
it will lead to the accumulation of tasks on the platform, low
processing efficiency and high task cost, but at the same time,
it is difficult for users to obtain matching tasks to execute.
Therefore, the quality of task allocation has a significant
impact on the quality and cost of sensing task completion.

First, the two cores of task allocation are to consider the
order of task allocation and how to choose the executor. The
specific implementation of both is related to the temporal and
spatial distribution of tasks and related participants. Therefore,
the temporal and spatial distribution of tasks and participants is
an important factor affecting task allocation. For example, in a
time and space, if the distribution of tasks and participants is
dense or sparse, it is less difficult to allocate tasks and the
completion rate of task allocation is high; in a time and space,
if tasks are sparsely distributed and participants are densely
distributed, or tasks are densely distributed, and participants are
sparsely distributed. In both cases, if the traditional task
allocation method is followed, it will lead to unreasonable task
allocation and prolong the task allocation period, which will
make the allocated tasks unable to be completed within the
time constraint and reduce the task completion rate of the
whole platform. Therefore, it is very important to determine the
temporal and spatial distribution of tasks and participants for
the platform to successfully allocate tasks.

Existing research usually uses quantitative statistical
methods to count the temporal and spatial distribution of tasks
or participants (Citation). Specifically, the spatio-temporal
distribution statistics of tasks can be analyzed according to the
data collected by the platform most intuitively. However,
because the task publishers are free to move, the number of
tasks counted by the platform at a certain time point cannot
represent the task distribution in a time period. At the same
time, in view of the temporal and spatial distribution of
participants, the traditional method can realize statistics by
asking participants to provide their location information when
collecting sensing data. However, this method will not only
lead to the leakage of sensing data privacy but also increase the
platform overhead. Therefore, how to reasonably determine the
temporal and spatial distribution of tasks and participants in
MCS is very important. Secondly, the correlation between
multiple tasks is also crucial to the success rate of task
allocation. We define correlation as that two tasks belong to the
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same category, but they can't replace each other, so we think
they are related. If two tasks belong to the same category or
time and space are mutually exclusive, they are considered not
relevant. For example, U is a user who cares about his own
health. After we allocated task A (collecting exercise data) to
user U, task B appeared to collect diet data. Because task B and
task A belong to the personal health category, they are related.
If task B is also allocated to user U, user U will probably
execute task B while executing task A, which will improve the
completion rate of task A and task B. Therefore, when
allocating multiple tasks, if we can consider the correlation of
tasks and allocate related tasks to the same user for execution,
it will greatly improve the completion rate of tasks and reduce
extra expenses.

At present, with the increase of tasks, multi-task allocation
[10]-[16] has become the mainstream research trend of task
allocation. However, when allocating multiple tasks, the
existing work not only ignores the correlation between the
above tasks but also fails to take into account the prediction of
the temporal and spatial distribution of users and tasks, which
makes it difficult to implement the optimal allocation method
in various scenarios and leads to the failure of task allocation.

Aiming at the above problems, this study proposes a related
multi-task allocation scheme based on a greedy algorithm. In
multi-task allocation, the proposed scheme can determine the
temporal and spatial distribution of tasks and users, and based
on this, use the correlation between tasks to achieve as many
task allocations as possible. The main contributions of this
study are summarized as follows:

1) In this study, a task-participant spatio-temporal
distribution prediction algorithm based on fuzzy logic is
proposed. The uncertain input is processed by fuzzy logic, and
the accurate spatio-temporal distribution of tasks and users is
obtained, which provides reliable parameter support for
subsequent allocation algorithms.

2) Based on the calculated time-space distribution values
of tasks and users, combined with the task correlation, we
design a related multi-task allocation scheme based on a
greedy algorithm, and propose two allocation algorithms for
different time-space distributions of tasks and participants in
the scheme. Aiming at the situation that the distribution of
tasks and participants is balanced or there are enough
participants, Algorithm 1 is proposed, which uses correlation
allocation to improve the task allocation rate as much as
possible; Aiming at the shortage of participants' distribution,
Algorithm 2 is proposed. In Algorithm 2, the completion rate
of task allocation is improved as much as possible with the
help of correlation allocation and the incentive provided by
the cost saved by Algorithm 1.

3) Experimental results show that compared with the
benchmark scheme, the proposed related multi-task allocation
scheme based on a greedy algorithm improves the task
allocation completion rate by 252%, which significantly
improves the task allocation success rate in MCS.

The remainder of this study is organized as follows:
Section II introduces the related work of multi-task allocation
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in MCS. Section III presents the proposed related multi-task
allocation scheme based on greedy algorithm. Section IV
reports and analyzes the experimental results. Section V
concludes the study and discusses directions for future work.

II. RELATED WORK

The core of task allocation is to allocate as many tasks as
possible through certain strategies under the condition of
satisfying relevant constraints, to obtain sensing data that meets
quality requirements.

At present, researchers have put forward a series of task
allocation schemes. Among them, the single task allocation is
simple, and the key problem at this stage is to find a suitable
executor for the task. For example, Zhang et al. [7] propose a
blockchain-based hybrid reliable user selection and task
allocation scheme for MCS, which achieves decentralized task
management through blockchain and smart contracts to
enhance system performance. From the user's point of view,
An et al. [8] proposed a privacy-preserving scheme for high-
quality user recruitment in mobile crowdsensing, which
evaluates sensing quality based on data deviation and variance
under differential privacy and employs a combinatorial multi-
armed bandit to achieve budget-constrained user selection.
Wang et al. [9] propose a user recruitment method for sparse
mobile crowdsensing that leverages deep nonnegative matrix
factorization based on social relationships to identify
communities and combines community collaboration with task
matching to achieve high-quality sensing data collection and
accurate sensing map reconstruction using a small number of
users under budget constraints.

With the in-depth study of MCS, it has been applied to
more and more fields, which leads to the further expansion of
the MCS platform and carries more and more tasks. Therefore,
single task allocation can no longer meet the growing sensing
needs, and then multi-task allocation appears.

In the task allocation scenario, there are two scenarios:
offline task allocation and online task allocation. Different
from offline task allocation, online task allocation can't
determine the number of participants, so it will affect the
distribution quality. Therefore, Yang et al. [10] first predicted
the number of participants, and then distributed the platform
tasks by using the online task allocation method based on the
improved genetic algorithm, to maximize the platform utility
and minimize the moving cost of participants. In task
allocation, the study of individual task allocation will ignore
the characteristics between tasks, such as task distance, task
similarity, and task priority level, resulting in poor quality of
task allocation. Yin et al. [11] studied a new task allocation and
path planning problem in MCS. By considering the routing
distance, task similarity, and task priority, a group of task
locations is allocated to suitable workers, and the location
access order of individual workers is determined to realize the
overall rationality of the maximum location sequence. Previous
studies paid more attention to the completion rate of task
allocation or the minimum cost of task allocation, while
ignoring the individual situation of platform staff. Because
each participant's sensing willingness, knowledge level, and
credibility are different, Rahman et al. [12] put forward a new
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quality-aware personalized task matching framework, which
can better match tasks with participants.

For multi-task allocation, the sensing will of the participant
is also very important. Because of the difference in users'
sensing ability, the sensing result will be inaccurate. To
overcome these problems, Ji et al. [13] proposed a
comprehensive multi-task allocation model. Based on the three
constraints of the total task budget, perceiving the quality and
workload of a single task, the proposed large-scale
evolutionary algorithm, a specific problem-solving strategy,
and a new genetic operator, multi-task allocation can get as
many feasible tasks as possible. In order to recruit suitable
users for heterogeneous tasks, Ma et al. [14] proposed three
user recruitment algorithms based on greed to solve the
problem of heterogeneous user recruitment for multi-
heterogeneous tasks, thus minimizing the total platform
payment and maximizing the task coverage. In task allocation,
users will also be unwilling, or objective conditions will not
allow them to move to the task area. Gao et al. [15] proposed a
UAV-assisted multi-task allocation method. This method uses
drones to verify the data collected by users and uses drones to
collect data in data areas not covered by human participants to
optimize the sensing coverage and data quality of multi-task
allocation. When MCS is applied in an energy transportation
system, there are some challenges, such as a single point of
failure, low efficiency of independent task allocation, and
inability to deal with safety emergency tasks in time. In order
to solve these problems, Li et al. [16] defined a decentralized
ITS architecture based on blockchain and proposed a
concurrent task and safety emergency task allocation method
based on reinforcement learning, which can maximize the
utility of concurrent tasks on the basis of meeting the
requirements of safety emergency tasks.

At present, the focus of multi-task allocation is on multi-
task allocation under time constraints [17]-[21]. Li & Zhang
[17] studied the multi-task allocation under time constraints,
mainly considering the leisure time owned by users and the due
time of each task. Huang et al. [18] focus on the execution time
of tasks, which solves the problem that mobile users with a
limited time budget undertake multiple sensing tasks. Under
the limited time limit, the optimal solution can be obtained
through the multi-task framework by selecting the participants
who have completed the tasks the most times and the shortest
total travel distance. In time-limited multi-task allocation,
existing research tends to assign most tasks to users with high
reputation, which is unfair to new users and leads to low
efficiency of task execution. To overcome these problems,
Shen et al. [19] proposed a constrained multi-objective
optimization model for variable-speed multi-task allocation.
Through the three-stage multi-objective mixed shuffling frog
leading algorithm, the user returns to the maximum extent and
the task completion time is minimized.

In addition, with the complexity of sensing scenes and the
diversification of time constraints, taking time constraints as a
single auxiliary constraint can no longer achieve a good task
allocation scheme. Wei et al. [20] proposed a semi-conditional
moving sensation (SO-MTTA) scheme to solve the task
allocation problem with multiple time constraints, to maximize
the sensing value obtained by the platform. Meitei & Marchang

Vol. 16, No. 12, 2025

[21] proposed a greedy task allocation method based on
interval partition to maximize the profit of the platform in a
time-dependent sensing environment.

With the deepening of research, spatial constraints have
also become an important research point. Most scholars
consider the overall distribution effect when considering the
meaning of multitasking. Although the constraints of overall
execution time or overall sharing are minimized or met,
respectively, according to the distribution results, it is possible
that the tasks published are not effectively executed for each
task publisher. Wang et al. [22] conducted extensive research
on this issue and suggested using the task framework to define
the threshold for measuring effective task execution. Only
tasks that exceed the threshold are considered as valid tasks.
Specifically, the system uses space-time coverage to measure
tasks. The task is regarded as a low-quality execution, and if
the coverage of time and space is below the threshold, it will
not improve the overall task execution quality. The framework
can effectively identify tasks suitable for workers and ensure
the best performance of each task through the above methods.
Liu et al. [23] proposed a privacy-preserving task allocation
method for mobile crowdsensing that protects users’ temporal
and spatial information while maximizing worker income. Ye
et al. [24] studied a new task allocation problem in a multi-
center supply chain environment with multiple distribution
centers. In order to solve this problem, a task allocation
framework based on geographical division is proposed. The
first stage is the geographical division stage, and the second
stage is the task allocation stage. This method can effectively
maximize the total number of allocated tasks and minimize the
difference in the average number of allocated tasks. To solve
the problem of interruption in the task allocation process, wang
et al. [25] proposed a method based on the allocation graph to
solve the problem of RoBust task allocation (RBTA), which
can reduce the cost of workers' detour and minimize the
robustness of the allocation scheme.

Fuzzy logic has been applied to the field of mathematics in
theory. With the development of computer science and
artificial intelligence, it needs to be applied to industrial control
systems. Such progress requires computers to perform based on
human cognition. Fuzzy logic has been widely incorporated
into the computer field.

For example, by extending the standard Mamdani fuzzy
logic controller, an expert system based on fuzzy logic to
diagnose patients with possible heart disease was established
[26]. With regard to bringing fuzzy logic into the proofreading
system, some dough was made under the supervision of a fuzzy
control system. According to different initial temperatures,
different amounts of yeast were added to the dough. The
controller will make judgments and adjustments in the whole
process to control the volume of dough. In this case, the fuzzy
logic controller provides optimal control and improved
interference suppression characteristics without a mathematical
model [27]. Wang et al. [28] put forward a spatio-temporal
model based on a transformer, which uses spatio-temporal
relationships to infer and predict sparse sensing data. By using
short-term perceived data to predict long-term data, not only is
the data cost reduced, but also the data trend can be identified,
which effectively improves the working effect of the model.

532 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Yang et al. [29] used fuzzy logic to predict the distribution of
users and solved the multi-task allocation problem under time
and space constraints through a hybrid greedy algorithm.
Zhang et al. [30] put forward a multi-task allocation method
based on liquidity prediction, which uses fuzzy logic to analyze
historical data to predict the movement of workers, so that
workers can better match tasks and complete tasks as much as
possible.

Although the above technologies show superior
performance in some aspects, they only consider some
temporal or spatial characteristics of tasks and participants, and
also lack comprehensive analysis and modeling of participant
density in time and space. Moreover, the above research did
not consider the correlation between multiple tasks. If two
related tasks are allocated to the same participant, it will
greatly save time of task execution. On the contrary, if the
related tasks are allocated to different executors, it will lead to
a waste of time and resources. The existing research on multi-
task allocation does not consider the correlation between tasks,
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which may lead to the failure of task allocation or the difficulty
of matching tasks with the most suitable participants, resulting
in waste of resources and low task completion rate.

Therefore, this study fully considers and analyzes the
influence of task distribution and participant distribution on
task allocation through the fuzzy logic control method and
studies the task correlation in multi-task allocation under time
and space constraints in order to achieve the maximum task
completion rate.

III. METHODS

A. System Model

The realization of MCS is based on the sensing platform,
on which task publishers and task participants complete the
corresponding cooperation according to their own wishes and
the task allocation strategy of the platform, as shown in Fig. 1.
Specifically, there are the following steps:

»
' .9

11y

Participants

Uploaded Data

TaskstRewards

Fig. 1. The illustration of task allocation.

First, the task publisher will publish the task according to
its own needs and hand it over to the platform. The submitted
data contains the specific information on the task and the
rewards that the participants are willing to pay after completing
it. Secondly, after receiving the task information, the platform
will sort it out and publish it for the participants to check;
subsequently, the participants will release their willingness to
execute to the platform. The platform will select the
appropriate participants to perform the task according to the
execution time, implementation place and user's willingness to
perform the task. The selected participants will choose whether
to perform the task according to their own situation and the
task reward. Finally, participants who perform tasks are
selected to collect sensing data and upload them to the sensing
platform. Thus, a complete sensing task is completed.

The scheme of this study mainly includes two parts. The
first part is to determine the temporal and spatial distribution of
tasks and participants. The second part is to allocate tasks
according to the temporal and spatial distribution of tasks and
participants, combined with the correlation between multiple
tasks.

Define abbreviations and acronyms the first time they are
used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc,
and rms do not have to be defined. Do not use abbreviations in
the title or headings unless they are unavoidable.

B. Fuzzy Logic

In the traditional description of temporal and spatial
distribution, some non-quantitative words are usually used to

describe the distribution of tasks or participants, such as
"more", "a little less" and "sparse". In daily communication,
because it is only necessary to express the meaning correctly,
such a description can make the two sides understand each
other's meaning. But in the computer world, machines can't
understand these non-quantitative words, and what computers
can understand must be a specific and accurate numerical
value. Therefore, we need to introduce fuzzy logic to solve the
problem of semantic uncertainty.

Fuzzy logic mainly includes the following three steps,
namely fuzzification, fuzzy reasoning and defuzzification. The
so-called fuzzification is to process our specific inputs and get
a fuzzy set of inputs. Secondly, according to the fuzzy set
output in the first step, combined with fuzzy rules, an output
fuzzy set can be obtained, which is fuzzy reasoning. The third
step is defuzzification, and the fuzzy conclusions are
transformed into concrete and clear output values.

1) Fuzzy set: The definition of a fuzzy set can decompose
an input into the membership degree of each part in the set.
For example, we define the fuzzy set of rain sizes as "heavy
rain, moderate rain and light rain". Then, for 20 ml of rainfall,
the membership degree of light rain is 0.3, the membership
degree of moderate rain is 0.5, and the membership degree of
heavy rain is 0.2.

2) Membership function. The most used membership
functions are rectangular and (semi) trapezoidal functions,
which are divided into small, large and intermediate types.
The specific membership function expressions are shown in
Fig. 2.
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Fig.2. Common membership function diagram.

3) Fuzzy rules: After fuzzy input, we need to construct
rules and use the operation of fuzzy logic to combine the
obtained membership degrees as the basis for decision-
making. The decision rules of fuzzy logic are sets containing a
series of logical statements, which have the following
structure:

IF <antecedents> THEN <consequent>

4) Defuzzification: In fuzzy logic, we convert input values
into membership degrees of each set through fuzzification and
then get some effective output values through fuzzy rules.
However, having only a few output values is not helpful for
problem analysis, so we need to transform some fuzzy output
values. Therefore, the process of converting some fuzzy
output values into accurate values is called defuzzification.

C. Temporal and Spatial Distribution of Tasks and
Participants

For the definition of the temporal and spatial distribution of
tasks and participants, the two core influencing factors are time
and space. For example, during working hours and in densely
populated areas, the amount of task release is relatively large.
However, in the rest time and sparsely populated areas, the
amount of task publishing is relatively rare. Therefore, with the
help of fuzzy logic, we define the input as time and space. In
view of time, this scheme divides 24 hours a day into 1 parts,
which are recorded as Ty, = {T;, ..., T,» .., T}. For space,
this scheme divides a region into p sub-regions, which are
denoted as Sp= {S;, .., Sy, .., Sp}. Therefore, we can
use time and space as the input of fuzzy logic to calculate the
temporal and spatial distribution of tasks and participants. As
the output of fuzzy logic, we define the spatio-temporal
distribution parameters of tasks as D and the spatio-temporal
distribution parameters of participants as Dp.

First, we need to determine the fuzzy set of the spatio-
temporal distribution of tasks and the spatio-temporal
distribution of participants. We define the fuzzy set of task
release and participants' participation time periods as early
trough (ET), early wave peak (EWP), balance period (BP), late
wave peak (LWP) and late trough (LT). Then, the fuzzy sets of
the sub-regions where the tasks and participants are located are
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defined as small (S), normal (NO) and big (B). As for the
output variables, the fuzzy set of the spatio-temporal
distribution of tasks and participants is defined as sparse (SP),
less (L), medium (ME), more (M) and dense (DE).
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Fig.3. Membership function diagram.

Referring to common models, we divide a day into 24
equal parts, so 1=24, T, = {T}, .., Ty» .., T,,}. Divide an
area into 12 sub-areas, p=12,Sp = {S;, ..., S,» ..» S}
According to experience, we can get the membership function
curve in Fig. 3.

Because the input conditions of this scheme are time and
space, and the output is a time-space distribution, the rules can
be defined by fuzzy reasoning. Specifically, the rules defined
in this scheme are shown in the following table:

TABLE L. Fuzzy LOGIC RULE TABLE
Tn
D, /D, ET EWP BP LWP LT
Sin
S SP ME L ME SP
NO L M ME M L
B ME DE M DE ME

According to the rules in Table I, if the task release period
is in the early trough and its area is a partition with few tasks, it
can be obtained that the temporal and spatial distribution of
tasks is sparse. Through the IF-THEN rule, we can express this
rule as: IF (T,= ET) and (S,,= S), THEN (D; = SP).
Similarly, if the movement period of participants is at the late
wave peak, and the area where they are located is a partition
with many tasks, it can be obtained that the spatial and
temporal distribution of participants is dense. The above rules
can be expressed as: IF (T,=LWP) and (S,,= B), THEN (Dp =
DE). For the calculation rule "and" in the above fuzzy logic,
this study adopts the principle of minimum membership.
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Based on the above work, this study uses the weighted
average method to achieve defuzzification, and the specific
formula is as follows:

_Ziu(d) *ow,
- ilu(Di) (M

Among them, u(D;) represents the value of the membership
function D and the weight OW;, usually taking the middle
value of each set. Through Formula (1), we can convert some
fuzzy outputs into a usable, accurate output value.

oT

We will illustrate it with examples. Assume that the two
input values of the task fuzzy logic method are time point 7.5
and sub-area 4. Firstly, we can get IF (T,= ET) and (S,,= S),
THEN (D= SP), IF (T,= EWP) and (S,,= S), THEN (D =
ME) by consulting the rule diagram. Then the fuzzy set is
calculated by using the membership function of these two
inputs. It can be obtained that the value of the early trough
T,(ET [7.5])= 025, the value of the early wave peak T,(EWP
[7.51)=0.75, and the value of the member function of the small
amount S, (S [4])= 1. Because the conditional parts of two
fuzzy logic rules are connected by the AND method, the value
of the membership function will be calculated by the minimum
value of the corresponding membership functions. For the rules
IF(T,= ET)and(S,,= S), THEN(D= SP), the value ofD= SP
can be calculated as min( 025, 1)= 025 by the minimum
membership rule, and for the same rules IF(T,= EWP)and(S,=
S), THEN(D;= ME), the value of D= ME can be calculated as
min(0.75, 1)=0.75 by the minimum membership rule. Then the
clear value is 35.625 by defuzzification with the weighted
average method.

Similarly, we assume that the two input values of the
participant’s fuzzy logic method are time point 5.5 and sub-
region 2. Firstly, we can get IF (T,= ET) and (S,= NO),
THEN (Dp= L), IF (T,= EWP) and (5,,= NO), THEN (Dp =
M) by consulting the rule diagram. Then the fuzzy set is
calculated by using the membership function of these two
inputs. It can be obtained that the value of early trough T,(ET
[5.5]) = 0.75, the value of early wave peak T,(EWP [55]) =
0.25, and the value of normal (NO) member function S,,(NO
[2]) =1. Because the conditional parts of two fuzzy logic rules
are connected by the AND method, the value of the
membership function will be calculated by the minimum value
of the corresponding membership functions. For the rules IF
(T,= ET) and (S,= NO), THEN (Dp= L), the value of the
membership function Dp= L can be calculated as min (0.75, 1)
= 0.75 through the minimum membership rule. Similarly, for
IF (T,= EWP) and (S,,=NO), THEN (Dp= M), the value of
membership function Dp=M can be calculated as min (0.25, 1)
= 0.25 through the minimum membership degree rule. Then
the clear value is 40 by defuzzification with the weighted
average method.

D. Multi-Task Allocation Scheme

To facilitate the following description, we first explain the
parameters used:

In time T,, and space S, this scheme defines task sets as
Task={t;» t,, .., t;}, participant sets as Part ={p;, p,s ...
» Ppj}, and the compensation that the task publisher is willing
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to pay for task sets is B;={b;, b,, ..., b;} respectively, and
the cost of participant for each task is ¢;; [see Formula (2)]:
Cl,l ) Cl,j
Coj=| )
Ci,l e Ci,j

To describe the participants' willingness to perform tasks,
this scheme defines PW;; as the sensing willingness of
participant p; to perform task t;, and the parameter PW;; is
binary. When PW;;=1, the participant is willing to perform the
sensing task; otherwise, PW;=0, the participant is unwilling to
perform the task.

In addition, we define the parameter TC(t;,t;) to describe
the correlation between tasks. In detail, if task tjand taskt;
belong to the same category and time-space, and the
participants can perform task t; while performing task t;, it is
considered that they are related, and TC (t;, t;) = I; on the
other hand, it is considered that tasks t; and t; are irrelevant,
and the correlation coefficient TC (t;, t;) = 0. For example,
task 1 is to collect automobile acceleration data, and task 2 is to
collect automobile driving recorder data. Task 1 and task 2
belong to automobile data and can be executed in the same
time and space, but they are irreplaceable, so task 1 and task 2
are related.

When performing sensing tasks, because the participants
have moved to a certain time-space area when performing task
t;, if task t; is related to task t;, at this time, for users,
performing task t; does not need additional space movement,
so compared with simply performing task t;, it can save a
certain time-space cost. At the same time, because task t; and
task t; belong to the same kind of tasks, participants can
perform them at the same time without secondary learing, so
the execution cost of participants will be further reduced and
the willingness to perform will be enhanced. We define the
coefficient as a way to calculate the cost saved by users in
performing related tasks. If a user has already allocated a task
t; and then allocated a related task t;, the user's execution cost
will be reduced from ¢ to a*c;(0<a<l). At this time, because of
the correlation allocation, we define the funds saved by the
correlation allocation as the balance expenditure, which is
expressed by R.

In addition, in the process of allocating tasks, some tasks
are urgent, and some tasks are not so urgent. To distinguish the
urgency of the task, we define the parameter € to describe the
urgency of the task. The greater the parameter €, the more
urgent the task is, and it needs to be allocated to the
participants as soon as possible. On the contrary, it means that
the urgency of the task is average and can be allocated later.

1) Multi-task allocation algorithm: Based on the fuzzy
logic calculation before, we can get the time and space
distribution of tasks and participants in a certain time and
space interval. In a time T, and space S,,, if the spatio-
temporal distribution Djof tasks is greater than or equal to the
threshold Bp, and the spatio-temporal distribution Dp of
participants is greater than or equal to the threshold fr, or the
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spatio-temporal distribution D of tasks is less than the
threshold By, then we think that the resources of tasks and
participants can match in this area, which is defined as case 1.
If the spatio-temporal distribution D of tasks is greater than
or equal to the threshold By, and the spatio-temporal
distribution Dy of participants is less than the threshold B, it
means that there are more tasks and fewer participants in this
spatio-temporal area, and it is necessary to provide some
incentives for participants to encourage them to complete
tasks as much as possible, which is defined as case 2.
However, if the temporal and spatial distribution D of tasks is
less than the threshold Br, and the temporal and spatial
distribution Dp of participants is greater than or equal to the
threshold Bp, it means that there are few tasks and many
participants in this area, and there is no need to provide
additional incentives for participants, which is defined as case
3.

It can be observed that for the above cases 1 and 3, either
the number of participants and the number of tasks are
balanced, or the number of tasks is large and the number of
participants is small. In both cases, we can adopt a general
distribution strategy and do not need additional incentives to
motivate users to perform tasks. Therefore, we classify cases 1
and 3 into the first situation. In case 2, there are more tasks and
fewer participants. To enable users to complete tasks as much
as possible, extra incentives should be given to users.
Therefore, we regard case 2 as the second kind of situation.
The task allocation strategy in each case is as follows:

We divide the Task set into the first kind of case, task set
Task, and the second kind of situation, task set Task,. The
allocated task set is defined as TA, and the initial value is ta =
?.

For the first kind of situation: firstly, we sort the tasks
Task, according to the urgency from high to low and find out
the task t;; with the highest urgency. Among all users, we
screen out the users who are willing to sense the task t;;, and
among these willing users, we find out the user p;; who has the
lowest sensing cost of t;;. If the cost of executing task t;; by
user pj; is less than or equal to the offer that task t;; is willing
to pay, task t;; is allocated to user pj; for execution. Then,
firstly, the tasks that user p;,is willing to perform are screened
out from the task list, and among these tasks, the related task
t;, of task t;; is found according to the urgency from high to
low. At this time, if the cost a*c;, j; of allocating the task t;, to
the user pj; is less than or equal to the minimum cost
Minc;;=min(¢iz 1,.--,Cjpj) Of the task t;, being executed by all
users, and a*cj,j; is less than or equal to the cost that the
corresponding publisher is willing to pay for the task t;,, then
the related task is allocated and the task t;, is allocated to the
user pj; to be executed together.

In the process of allocation, we define R as the saving cost
of task allocation in the first case, then R=}7 (1 —a) =,
where n is the number of times to complete the related task
allocation.
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Algorithm 1 gives the task allocation process in the first
situation.

Algorithm 1: Related multi-task allocation algorithm in the
first situation based on the greedy algorithm.

Input: Task, Part, B;, C;, PW;j, TC (t;, tj) ,ea
Output: TA, R

1. /In the first case, assigning Task; to participants.
2. R=0

3. Rank tasks in Task; by €

4. Repeat

5. fort; € Tasky,ifrom 1 toi, do

6 the max(g) task t; from Task, call tj;

7 select all p; when PWj ;=1 call P

8 find min(Ciy ) pj from P call pj;

9. if min(Cjyj1) < Bjy then

10. task tj, is allocated to participant pj;

11. Task; =Taskj -tj;, TA=TA+t;;

12. select all task t; from Task; when PWjj;=1 call T
13. find the max(g)task t; from T when TC (tj1, t;) =1 call
tiz

14. If a*Cizj; < min(Cjyj) & a*Cjzj1 < Bj; then

15. task t;; is allocated to participant pj;

16. Task,=Task; -tj,, TA=TA+t;,

17. R=R+(1-a)*Cjj;

18. else

19. continue

20. else

21. Continue

22. return TA, R

For the second kind of situation: firstly, find out the task t;;
with the highest urgency in the task set Task,, screen out the
users who are willing to sense the task t;5, and find out the user
pj> who has the lowest sensing cost for the task t;; among

these willing sensing users, and if the cost for the user p;, to

execute the task t;5 is less than or equal to the reward paid for
the task t;s, allocate the task t;5 to the user pj, for execution; If

the cost Cj3 5, of user pj, executing task ty5 is greater than the
offer b;; that task t;; is willing to pay, and it still needs
R;5=Ci3j2-bj; funds to distribute the task, then the remaining
balance cost R'=R-R;; at this time, if R’ >0, incentive R;; is
carried out to distribute task t;5 to user p;, for execution.

When the task t;5 is allocated to the user pj, for execution,
the tasks that the user pj, is willing to execute are first screened
out in the task list, and then the related task t;, of the task t;5 is
found in the order of urgency. At this time, if the cost a*cy,
of allocating task t;, to user pj, is less than or equal to the
minimum cost of task tj, being executed by all users
Minc;,=min(Cig 1,---,Ciaj), and a*ciy j, is less than or equal to
the cost paid by the task publisher to task t;,, relevant tasks are
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allocated, and task t;, is allocated to user pj, to be executed
together. At this time, the remaining cost is R'=R’ + (1 —a)
* Cigj 5 If the cost a*cyy j, of allocating task tj, to user pj, at
this time is less than the minimum cost of task t;, being
executed by all users Minc;,=min(Ciy 1 ,---,Cig j)> and a*ciyj, is
greater than the cost b, that task publisher is willing to pay for
executing task t;,, the extra incentive required at this time is
R;4=a%C;yj,-bi4, and the saving cost is R'=R"-R;,. If R" 20, the
incentive is carried out and task t;, is allocated to user p;, for
execution.

Repeat the above process until all tasks are allocated or the
number of users is exhausted.

Algorithm 2 gives the task allocation process in the second
situation.

Vol. 16, No. 12, 2025

30. R"=R’-Ri,
31. if R” =0 then

32. provide incentive R;, for task t;,

Algorithm2: Related multi-task allocation algorithm in the
second situation based on the greedy algorithm.

Input: Task, Part, B;, C;j, PWj;, TC (t;, t;) ,ea,R
Output: TA
1. //In the second case, assigning Task, to participants.
2. Rank tasks in Task, by &
3. Repeat
4. fort; € Task,,ifrom1toi,do

the max(g) task t; from Task, call t;3

5

6.  selectall p; when PW;3;=1 call P’
7 find min(Ci3 ;) pj from P’ call pj,
8

if min(Cj3j;) < Bjz then

9. task tj3 is allocated to participant pj,

10. Task,=Task,-tj3, TA=TA+t;;3
11. else

12. Ri3:Ci3,j2 -bj3

13.R'=R-Rj3

14. if R’ =0 then

15. provide incentive Rj3 for task tj3
16. task t;3 is allocated to participant pj,
17. Task,=Task,-tj3, TA=TA+t;3
18. R=R-Rj;3

19. else

20. continue

21. if task tj3 is allocated to participant p;, then
22. select all task t; from Task, when PWj;,=1 call T’

23. find the max(e)task t; from T’ when TC (tj3, t;) =1 call
tia

24. If a*Cig jp < min(Cigj) & a*Ciyjp < Bj, then

25. task tj4 is allocated to participant pj,

26. Task,=Task,-ti4, TA=TA+t;,

27.R'=R"+ (1—a) #*cisjp

28. else

29. Ris=a*cigj2-bis

33. task tj, is allocated to participant pj,
34, Task,=Task,-t;4, TA=TA+t;,
35. R'=R’-Rj,
36. else
37. continue
38. else
39. Continue
40. return TA
IV. RESULTS

To illustrate the performance of the proposal, this section
compares the proposed algorithms with the baseline algorithm
derived from the existing work [29]. Note that the core idea of
[29] is allocating sensing tasks by means of a greedy algorithm.
Therefore, the classical greedy algorithm is adopted as the
baseline for comparison.

A. Task Allocation Rate

We set the discount coefficient a=0.5, the urgency ¢ is
randomly generated between 1 and 10, the participants' wishes
PW;; and the correlation coefficient TC (t;, t;) are
randomly assigned between 0 and 1, the compensation B; that
the task publisher is willing to pay for the task is randomly
generated between 1 and 15, and the cost C;; that the user i

needs to perform the task j is randomly generated between 5
and 20.

Task set of algorithm 1 contains 100 randomly generated
Tasks, set Part contains 50 randomly generated participants,
task set of algorithm 2 contains 100 randomly generated tasks,
and set Part contains 20 randomly generated participants. In the
process of testing, we tested two groups of data respectively.
The first group of data was tested 10 times, each time, with five
times. The second set of data is tested 100 times at a time, with
five times.

As can be seen from Fig. 4, in the first set of data, the
average task allocation rate of Algorithm 1 is 74.24%, that of
Algorithm 2 is 99.34%, and that of Algorithm 1 and 2 is
86.77%. At the same time, the average algorithm allocation
rates of baseline Algorithm 1 and baseline Algorithm 2 are
62.3% and 60.84%, respectively, so the total average task
allocation rate of the baseline algorithm is 61.57%. Compared
with the baseline algorithm, Algorithm 1 improves the task
allocation rate by 11.9% because of the use of related task
allocation. Compared with the baseline algorithm, the average
task allocation rate of Algorithm 2 is 99.34%, which is 38.5%
higher than that of the baseline algorithm, which proves the
superiority of the algorithm.

By comparing the first group of data (10 times in each
group) with the second group of data (100 times in each
group), the fluctuation of the task allocation rate of the
algorithm will decrease and the allocation completion rate will
tend to be stable with the increase of task execution times.

537|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

100 (%)
—e— Algorithm 1 {10 times)

Baseline algorithm 1 (10 times)
—*= Algorithm 1 (100 times)
" Baseline algorithm 1 (100 times)

76
7a
w2

(Times)
(a) Algorithm 1

[~e—Algorithm 2 (10 times] |
Baseline algorithm 2 (10 times)

~—+=Algorithm 2 (100 times)

—#— Baseline algarithm 2 (100 time:

(&)

6231__63r1r1__/!2~“1_\&g_
62 38

1 2 3 4 5
(b) Algorithm?2

—e— Algorithm 1 (10 times}sAlgorithm 2 (10 times]
Baseline algorithm 1 (10 times}+Baseline algorithm 2 (10 times)

s Algorithm 1 (100 times)+Algorithm 2 (100 times)

—=—Baseline algorithm 1 (100 times)+Baseline algorithrn 2 (100 times)

(Times)

10008

a8 87.4 8715  B7.33 87035 87,3

1 2 3 4 5

(c) Algorithm 1+Algorithm?2

(Times)

Fig. 4. Algorithm task allocation rate result.

B. Discount Coefficient

We tested three sets of data, and set the discount
coefficients a=0.3, a=0.5 and a=0.7, respectively. The urgency
€ is randomly generated between 1 and 10, the participants'
willingness PW;; and the correlation coefficient TC (t;, t;)
are randomly assigned between 0 and 1, the compensation B;
that the task publisher is willing to pay for the task is randomly
generated between 1 and 15, and the cost Cj; that the user i

needs to perform the task j is randomly generated between 6
and 20. Task set of Algorithm 1 contains 500 randomly
generated Tasks, set Part contains 100 randomly generated
participants, task set of Algorithm 2 contains 500 randomly
generated tasks, and set Part contains 50 randomly generated
participants. In the process of testing, each group of data is
tested 10 times, and there are five groups. The test results are
summarized in Fig. 5.

When a=0.7, the average task allocation rate of
Algorithm 1 is 72.072%, the average task allocation rate of
Algorithm 2 is 86.088%, and the overall average task
allocation rate of algorithm is 79.08%. When a=0.5, the
average task allocation rate of algorithm 1 is 75.224%, the
average task allocation rate of algorithm 2 is 97.768%, and the
overall average task allocation rate of algorithm is 86.496%.
When a=0.3, the average task allocation rate of Algorithm 1 is
80.416%, the average task allocation rate of Algorithm 2 is
100%, and the total average task allocation rate of algorithm is
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90.208%. From the comparison of three data, the smaller the
coefficient a is, the greater the cost saved by related allocation,
and the greater the incentive provided for the second allocation,
the higher the average task allocation rate.
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Fig. 5. Under different A values, the task allocation rate.

V. CONCLUSION

In this study, a related multi-task allocation scheme based
on a greedy algorithm is proposed. By quantifying the temporal
and spatial distribution characteristics of tasks and participants,
different application scenarios are distinguished, and two
allocation algorithms suitable for scenarios with sufficient
participants and limited resources are designed respectively.
Experimental results show that, compared with the benchmark
method, the proposed scheme can effectively improve the
success rate of task allocation in the mobile crowd sensing
(MCS) system in various temporal and spatial distribution
scenarios. Especially in scenes with strong task correlation or
limited participants' resources, this method shows more stable
and consistent performance advantages through joint allocation
of related tasks and optimization of incentive costs. Overall,
the experimental results verify the effectiveness of the
proposed algorithm in improving task allocation efficiency and
completion rate from different scene levels.
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Although the method in this study has achieved remarkable
performance improvement in the experiment, there are still
some research limitations. First of all, the task correlation
modeling is coarse-grained, which is mainly measured from the
perspective of overall correlation, and has not fully described
the fine-grained correlation characteristics between users and
tasks in terms of historical behavior and ability differences,
which limits the applicability of the algorithm in complex
practical scenarios to some extent. Secondly, the uncertainties
of participants' behaviors, dynamic changes of tasks,
communication and calculation overhead in real MCS system
have not been fully considered, and the generalization ability of
the results needs further evaluation. In addition, although the
proposed greedy strategy has advantages in computational
efficiency, it still has potential for improvement in global
optimality.

Future research will focus on the above limitations. On the
one hand, the modeling of task correction and user correction
will be further refined, and the multidimensional features and
leaming mechanism will be introduced to improve the
accuracy of the allocation decision. On the other hand, the
algorithm will be verified in more complex and real application
scenarios, and the multi-task allocation strategy combined with
intelligent optimization or learning method will be explored to
achieve more efficientand robust MCS multi-task allocation.
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