
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

540 | P a g e
www.ijacsa.thesai.org

A Lightweight Rule-Based Detection Approach for

ARP Flooding Malware in Office Networks

Rizal Fathoni Aji, Heri Kurniawan, Nilamsari Putri Utami

Faculty of Computer Science, Universitas Indonesia, Indonesia

Abstract—Address Resolution Protocol (ARP) is a standard

protocol used to map an IP address to its MAC address so the

network can send packets to its destination. Office networks,

which typically have limited network resources, are vulnerable to

ARP flooding attacks launched by malware. ARP flooding can be

used by malware to create network disruption and jam the

networks. This study presents a rule-based detection method,

Time Density ARP Thresholding with Binding Consistency

Monitoring (TDCM), to identify ARP flooding using a simple

mechanism, making it suitable for use in networks with limited

hardware. To detect flooding anomalies, the TDCM algorithm

monitors the flow of ARP packets and the consistency between

MAC IP bindings in ARP packets. In this study, a series of

experiments was conducted and repeated multiple times. On

average, the experiment shows that the system performs well

under high-volume ARP attack conditions. This proposed method

offers an alternative to machine learning techniques, making it

more suitable for deployment in resource-constrained office

networks. Future work will focus on improving detection in low-

volume attack scenarios, validating performance in real-world

environments, and implementing on devices with limited

computing resources.

Keywords—ARP flooding; cybersecurity detection; rule-based

detection; lightweight intrusion detection

I. INTRODUCTION

Today, office networks play a crucial role in our daily
activities. High usage of office networks and internet
connectivity introduces cybersecurity threats, particularly from
malware. Malware can exploit vulnerabilities in protocols to
disrupt network operations [1]. For example, the Address
Resolution Protocol (ARP) flooding technique can be used by
malware to cause network and device congestion. ARP flooding
is a network-based attack that exploits the mechanism in the
ARP protocol. It has a function that maps IP addresses to MAC
addresses at the data link layer [2]. In an ARP flooding attack,
an attacker sends a large number of malicious ARP packets into
the network, causing ARP Table overflow on network devices.
This results in incorrect or missing address resolutions and
disruption of network services [2].

A high volume of ARP flooding attacks can cause network
denial-of-service (DoS) attacks, data loss, and potential breaches
of sensitive information [3]. ARP flooding attacks generate a
high volume of ARP request/reply packets from malicious
sources within a short time frame [4]. These traffic spikes
sometimes exceed the number of ARP activities observed in
typical LAN environments, which typically maintain stable
ARP caches and low ARP exchange rates. Attackers often used
spoofed or randomized MAC and IP addresses, generating

inconsistent ARP Table updates that lead to Table exhaustion or
overflow [5]. Sometimes, forged ARP packets are broadcast
across the subnet to maximize the effect [6]. Those
characteristics can be used as a foundation for constructing rule-
based detection mechanisms [7].

Some approaches have been developed to detect and
mitigate ARP flooding attacks, from traditional fingerprint-
based techniques to machine learning and deep learning
methods. Conventional methods rely on static rules, such as port
security, static ARP entries, dynamic ARP inspection, and a
whitelist based on IP MAC binding validation [2]. Other
methods, such as monitoring ARP request rates, tracking
consistency between MAC and IP addresses, and identifying
bulk packet broadcasts from non-gateway devices, could help
administrators quickly detect ARP flooding attempts. However,
such approaches may lack adaptability to evolving threats.

Currently, ARP attack detection is shifting toward more
intelligent and adaptive mechanisms. Using machine learning
and deep learning models, such as Random Forest,
Convolutional Neural Networks, and Bi-directional Long Short-
Term Memory (Bi-LSTM) architectures, achieves high
accuracy and low false-positive rates in identifying malicious
ARP traffic [5], [7], [8]. In industrial contexts, especially in the
Internet of Things environments, hybrid CNN and Bi-LSTM
models can detect large-scale ARP-based attacks [7]. The
adoption of Software-Defined Networking (SDN) can also
enhance ARP security by enabling centralized binding
verification and automated mitigation strategies [6]. Another
solution employs blockchain-based immutable address-
resolution records and cloud-based ARP monitoring systems,
thereby enhancing scalability and resilience for ARP detection
in distributed environments [5].

Although machine learning and deep learning show
promising results, they have limitations. They require large
datasets for training, which are challenging to obtain in real-
world ARP flooding scenarios. Machine learning and deep
learning also make detection more complex for administrators
to interpret [9]. These models consume substantial computing
resources during training and inference, making deployment less
practical [6]. Modified packets may also bypass those models by
exploiting a threshold in the machine-learning algorithm. In
contrast, fingerprint-based mechanisms can offer deterministic,
explainable, and lightweight detection that can be used with
minimal resources [4].

This study proposes an algorithm, Time Density ARP
Thresholding with Binding Consistency Monitoring (TDCM),
for detecting ARP flooding attacks using a rule-based detection

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

541 | P a g e
www.ijacsa.thesai.org

approach. With low computational requirements, TDCM can be
deployed on resource-constrained devices. The algorithm
detects common ARP flooding characteristics, such as bulk
ARP packet broadcasts within short intervals and spoofing
signs, in which a single IP address is associated with multiple
MAC addresses. This mechanism is evaluated through
simulations involving both regular network traffic and ARP
attack scenarios.

II. THEORETICAL FOUNDATION AND RELATED WORKS

An office network designed to connect multiple devices
within a work environment, enabling communication, data
sharing, and resource sharing among employees and
departments. The network infrastructure typically comprises
both wired and wireless local area networks. Wired connections
often rely on Ethernet cables connected to switches and routers,
providing stable, high-speed connectivity for desktop
computers, servers, and network printers. Wireless networks, by
contrast, offer flexibility and mobility, enabling laptops, tablets,
and mobile devices to connect without physical cabling. A
central switch or a set of interconnected switches serves as a
backbone that manages traffic flows between devices. These
switches are often connected to one or more routers that provide
internet access and enable communication with wide-area
networks. Depending on the organization's size and structure,
the network may be divided into segments or virtual LANs to
separate traffic for security and performance reasons [10].

Another important aspect of office networking is sharing
resources. File servers are commonly used to store
organizational data and to enable employees to share files and
documents. Network printers and scanners are connected
through print servers, enabling centralized management and
reducing the need for individual device setups. In larger
organizations, directory services are often implemented to
manage users, devices, and policies in a unified manner. This
centralized approach simplifies administration while
maintaining a consistent security framework.

Network administrators must ensure that bandwidth is
allocated appropriately to prevent congestion, especially during
peak hours when many users are online simultaneously. Quality-
of-service configurations may be applied to prioritize critical
traffic, such as voice over IP calls or video conferencing, over
less time-sensitive data transfers. Regular network assessments
help identify bottlenecks and potential failures before they affect
productivity. Finally, office networks are designed for
scalability. As businesses grow, additional devices, users, and
services need to be integrated without causing significant
disruptions.

The Address Resolution Protocol (ARP) is a fundamental
component of computer networks. It operates at the data link
layer and plays an essential role in maintaining network
connectivity. Its primary function is to map IP addresses to
corresponding MAC addresses. Each device on the network
maintains an ARP Table, which contains a list of IP-to-MAC
address mappings for other devices. When a computer
application wants to send data, it uses a system call in the
operating system. The operating system first checks its ARP
Table to see whether the destination IP address already has a
corresponding MAC address. If it does not, the operating system

broadcasts an ARP request on the network, asking which MAC
address corresponds to that IP address. Upon receiving the ARP
request, the corresponding device responds with its MAC
address. However, if the IP address is in a different subnet, the
router responds instead, using its own MAC address. Upon
receipt of the reply, the ARP Table is updated with the new
information. Over time, if an entry is no longer valid or the time
to live expires, the IP-to-MAC pair is removed from the Table
[10].

The ARP packet flows through the network without any
encryption or authentication mechanism [11]. Any device on the
network can generate a bogus or fake ARP packet, which can
lead to network errors and disruption. This lack of protection
means that any device connected to the network can generate a
fake or bogus ARP packet. When this happens, it can result in
serious problems such as network errors or even the complete
disruption of communication between devices [3]. This
weakness has long been recognized as a major security
vulnerability, and attackers often take advantage of it to
intentionally cause malfunctions and interruptions in computer
networks. However, because ARP is a widely used protocol and
an integral part of the network layer, the vulnerability still exists.
Hong et al. [11] and other researchers have already proposed
ideas to enhance security in the ARP protocol, but changing the
current ARP protocol requires significant effort, especially
changing the code embedded in millions of network devices
worldwide.

ARP flooding is a type of network attack that exploits a
vulnerability in the ARP protocol. In this attack, the attacker
generates a large number of ARP packets and sends them across
the network [12]. The continuous flow of these fake packets can
overwhelm the ARP tables in the targeted devices, filling them
with unnecessary or false ARP entries. When the ARP table
becomes overloaded, the device may no longer function
properly, leading to errors in communication between hosts on
the network. Another major effect of ARP flooding is the
excessive traffic it creates on the network. Because so many
packets are being transmitted at once, the network bandwidth
becomes congested. As a result, legitimate traffic, such as actual
data transmissions between users, may be delayed or even
completely blocked. This may lead to denial of service or upper-
layer service disruption [5]. ARP flooding is not only a direct
attack on specific devices but also a threat to the stability and
availability of the entire network.

Certain types of malware exploit weaknesses in the ARP
protocol by using ARP flooding to launch denial-of-service
(DoS) attacks or to position themselves for man-in-the-middle
(MITM) attacks [3]. One common method involves sending a
large number of ARP request packets into the network, which
forces devices with the corresponding IP addresses to repeatedly
respond. In some cases, the malware may also send a large
volume of ARP reply packets, which can overwhelm the
targeted devices. This continuous flooding puts heavy pressure
on the ARP cache and consumes a significant amount of CPU
resources, eventually disrupting normal network operations and
causing a denial of service. If the attack is directed at critical
infrastructure such as routers or switches, the impact can be even
more severe. It could shut down the entire network and interrupt
communication for all connected devices.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

542 | P a g e
www.ijacsa.thesai.org

ARP flooding attacks typically exhibit distinct traffic
patterns that can be detected using rule-based mechanisms. One
primary characteristic is a high volume of ARP request or reply
packets, often originating from a single host or multiple forged
sources within a short time frame [12]. This abnormal packet
volume is usually much higher than the expected ARP traffic in
a typical local area network, which typically maintains stable
ARP caches and exhibits low ARP exchange rates [4].
Additionally, ARP flooding often involves spoofed or
randomized source MAC and IP addresses, resulting in
continuous updates to the ARP tables of switches or hosts,
eventually leading to table exhaustion [5]. Another notable
feature is the broadcast nature of forged ARP packets, as they
are typically sent to the entire subnet to maximize network
disruption [6]. These traits, such as packet rate threshold
violations, inconsistent or unknown MAC and IP bindings, and
repetitive broadcast ARP replies, form the basis for rule-based
detection mechanisms. By implementing static thresholds,
whitelist-based validation of IP and MAC pairs, and monitoring
for excessive ARP broadcasts from non-gateway devices,
network administrators can define deterministic rules to
promptly identify and block ARP flooding attempts without
relying on complex models or machine learning [7].

Alongside intelligent detection models, recent research also
underscores the importance of integrating detection with
prevention frameworks. For instance, deploying Dynamic ARP
Inspection in SDN-controlled environments has enabled rapid
identification and isolation of malicious nodes [4]. Furthermore,
cloud-based ARP monitoring systems that use real-time data
analysis have shown scalability and effectiveness in large,
distributed networks [5]. Integrating IP and MAC static binding
in industrial SDN settings and using blockchain for immutable
address resolution records represent emerging frontiers in ARP
security [6]. These developments reflect a broader trend toward
building resilient, autonomous systems that not only detect but
also actively adapt to evolving ARP-based threats across
enterprise, cloud, and IoT networks.

Despite the growing adoption of machine learning and deep
learning for ARP flooding detection, these approaches have
notable limitations compared with traditional fingerprint-based
mechanisms [9]. A major drawback is reliance on large, well-
labeled datasets for effective training. In practice, collecting
real-world ARP flooding data can be challenging, leading to
models that may generalize poorly across different network
environments [5]. Additionally, machine learning and deep
learning models often act as black boxes, making it difficult for
network administrators to interpret or justify detection
outcomes. By contrast, fingerprint-based systems are rule-
driven and inherently explainable. Furthermore, these
techniques tend to consume significant computational resources,
especially during training and real-time inference, which can
hinder deployment in resource-constrained environments.
Another concern is their vulnerability to adversarial inputs;
carefully crafted packets can potentially bypass detection by
manipulating model behavior. In contrast, fingerprint-based
mechanisms, while limited to known attack signatures, offer
fast, deterministic, and lightweight detection that is easier to
implement and maintain [4]. These tradeoffs highlight the need
for a balanced approach, where intelligent systems are supported

by traditional methods to ensure comprehensive and resilient
ARP flooding defense.

In parallel with network-level attacks, recent studies have
highlighted the growing threat of side-channel attacks, in which
attackers exploit indirect information leakage, such as timing
behavior, power consumption, cache access patterns, or
electromagnetic emissions, to infer sensitive data [13]. Side-
channel attacks have been demonstrated against both classical
cryptographic implementations and lightweight cryptography,
which is increasingly adopted in resource-constrained
environments such as IoT and embedded systems [14],[15].
While lightweight cryptographic primitives reduce
computational overhead, several works report that
simplifications in control flow and reduced noise may
unintentionally amplify side-channel leakage. Similarly,
emerging post-quantum cryptography (PQC) algorithms,
although designed to resist quantum adversaries, are vulnerable
to timing and cache-based side-channel attacks due to complex
polynomial operations and memory-intensive structures
[16][17]. Prior research emphasizes that security mechanisms
designed for constrained environments must consider not only
algorithmic robustness but also implementation-level leakage.
These findings reinforce the relevance of lightweight,
deterministic, and transparent security mechanisms—such as
rule-based detection approaches—that minimize attack surfaces
and reduce exploitable side-channel behaviors in real-world
deployments.

III. RESEARCH METHOD

This research starts with a literature study, the development
of a simulation, an experiment, and the creation of conclusions.
First, a literature review was conducted by analyzing existing
ARP flooding detection techniques, both traditional and
machine learning based, comparing the pros and cons of both
mechanisms. This provided the theoretical foundation for the
proposed rule-based detection framework. Second, a Python-
based simulation environment was developed to model ARP
traffic in a controlled office network scenario. The simulator was
designed to generate both normal and attack traffic. The
detection module was implemented to monitor ARP packet
density and MAC IP binding anomalies. The burst packets are
identified with a short timestamp among packets. The traffic
simulation algorithm can be seen in Algorithm 1. Third,
experiments were performed by executing multiple simulations
with varying attack intensities. Each scenario was repeated five
times, and detection performance was measured using metrics
such as the number of undetected attack packets, true positives,
and false positives. Results were averaged and visualized to
reveal detection trends.

Algorithm 1: Traffic Simulation

SimulateTraffic():

now ← current time

attack_count = 100, 150, 200, …, 1000

normal_count = attack_count/2

For each in 1 to normal_count:

Create packet with:

src_ip = fixed unique IP

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

543 | P a g e
www.ijacsa.thesai.org

src_mac = fixed unique MAC

timestamp = now + randomFloatTime(0,5)

is_attack = False

Add to packets

For each in 1 to attack_count:

Create packet with:

src_ip = fixed IP

src_mac = unique or duplicate MAC

timestamp = now + randomFloatTime(0,5)

is_attack = True

Add to packets

The proposed mechanism is called Time Density ARP
Thresholding with Binding Consistency Monitoring (TDCM). It
combines analysis of ARP packet density with tracking of IP and
MAC binding behavior, without using statistical learning
models or training data. The core of the TDCM system
comprises two parallel components, as shown in Fig. 1.

Fig. 1. Flow of the TDCM method.

The first component focuses on time-density monitoring,
measuring the arrival rate of ARP packets within a predefined
time window. A burst of ARP packets is detected when the
number of ARP packets from a single host or targeting a
particular IP address exceeds a set threshold within a short
period. In this case, the system raises a potential flooding alert
or a combination of flooding and binding alerts. If incoming
packets contain an IP address with multiple MAC addresses, the
attack is categorized as an ARP flooding and spoofing attack.
Otherwise, the attack is categorized as ARP flooding only,
without spoofing. This approach is based on the insight that ARP
flooding attacks generate unusually high volumes of ARP traffic
over a short period, which deviates significantly from typical
network behavior. By calibrating this threshold based on
historical network baselines, false positives can be reduced
without the need for adaptive learning. Malware sometimes
combines ARP flooding with a spoofed MAC address to initiate
a man-in-the-middle attack.

The flooding alert component tracks the number of ARP
requests and replies received per source MAC address over fixed
intervals. If a particular source exceeds a predefined packet-per-
interval threshold, the system flags it as a flooding candidate.
Unlike static rate limiting, this approach uses sliding windows
to account for short bursts while avoiding false positives from
legitimate activity.

The second component, binding consistency monitoring,
monitors the consistency of IP-MAC pairings over time. In a
normal network, a specific IP address is usually bound to a fixed
MAC address within a session or subnet. During ARP spoofing
or flooding scenarios, MAC-IP bindings in ARP packets change
rapidly. Multiple MAC addresses may be associated with the
same IP address, or vice versa. TDCM tracks these
inconsistencies and flags them as malicious packets.

Each incoming ARP packet is checked against a list of
verified IP and MAC pairs. If a device continuously uses
different MAC addresses with the same IP address in a short
time frame, it is marked as suspicious. This check is also
performed after packets are detected as burst ARP packets.

This approach offers a reliable and efficient method to
detect ARP-based attacks. By using deterministic rule-based
logic, it enhances interpretability and operational transparency,
two aspects that often lack in machine learning approaches.
Network administrators can trace each alert back to a specific
condition or packet pattern, facilitating faster incident response
and better threat understanding.

An optional quarantine queue can be activated when both
modules flag a source: traffic from the suspicious node is rate-
limited or redirected to an isolated VLAN for further inspection
or logging. This multi-aspect detection, based on time density
and binding logic, enables fast, deterministic identification of
ARP flooding attacks using simple thresholds and lookups.

IV. RESULTS AND DISCUSSION

To evaluate the detection effectiveness of the proposed
TDCM algorithm, we conducted a series of simulations
emulating ARP flooding attacks of varying intensities. The
simulations generated two distinct traffic patterns. The first was
legitimate ARP traffic from a single device with a fixed IP-to-
MAC pairing, and the second was malicious flooding traffic that
imitated a spoofing attack by sending a large volume of ARP
packets from a single IP address with randomly generated MAC.

The legitimate traffic simulated a normal device transmitting
ARP requests or responses at a moderate rate. Conversely, the
flooding traffic was designed to trigger TDCM alerts by
exceeding the time density threshold and violating binding
consistency. The number of malicious ARP packets injected into
the network increased from 100 to 1000 in steps of 50. This
allowed testing both low-volume and high-volume attack
scenarios, representative of stealthy and aggressive attack
profiles.

Each configuration was executed five times with
randomized MAC address generation and minor timing
fluctuations during packet injection. The detection engine
recorded the number of undetected packets for each run, and the
results were averaged. The key metric analyzed was the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

544 | P a g e
www.ijacsa.thesai.org

percentage of undetected malicious packets relative to the total
number injected. The results in Table I represent the average
number of undetected attack packets across these five runs.

TABLE I. SIMULATION RESULTS

Total

packet

Flooding

alert

Binding

alert

False

Positive

(%)

False

Negative

(%)

150 0 91 0.00 9.00

225 0 140 0.00 6.67

300 0 191 0.00 4.50

375 0 241 0.00 3.60

450 0 291 0.00 3.00

525 0 341 0.00 2.57

600 10 391 0.00 2.25

675 34 439 5.56 2.00

750 55 491 10.00 1.80

825 80 541 13.64 1.64

900 108 591 16.67 1.50

975 136 641 19.23 1.38

1050 157 691 21.43 1.29

1125 186 741 23.33 1.20

1200 215 791 25.00 1.13

1275 234 841 26.47 1.06

1350 259 891 27.78 1.00

1425 289 941 28.95 0.95

1500 312 990 30.00 0.90

The number of packets in this simulation ranged from 150 to
1500 total packets. The total packet count consisted of one- third
normal packets and two- thirds attack packets. The goal was to
observe the system's ability to trigger flooding and binding alerts
and measure its accuracy through false- positive and false-
negative rates. At lower traffic volumes (below 600 packets), the
system issued no flooding alerts, and only binding alerts were
triggered. This indicates that low- volume attacks can be
handled by the binding consistency module alone. However, as
the total packet count increased beyond 600, the system began
generating flooding alerts, starting with 34 alerts at 675 packets
and increasing progressively to 312 alerts at 1500 packets.

The detection system maintained a zero false- positive rate
up to 600 packets. As the packet volume increased, however, the
false- positive rate gradually rose, reaching 30% at 1500
packets. This tradeoff reflects the system's sensitivity under
stress, as aggressive ARP flooding patterns resemble high-
volume traffic spikes that may sometimes be misclassified. On
the other hand, the false- negative rate consistently decreased as
the total packet count increased, from 9% at 150 packets to 0.
0.9% at 1500 packets, indicating that the system becomes more
accurate at detecting attacks as flooding intensity rises.

The simulation results show the effectiveness of TDCM in
detecting ARP flooding attacks. The method, which combines
flooding threshold monitoring and MAC IP binding, can detect

malicious ARP packet activity while maintaining a reasonable
false- positive rate. These results also show that balancing
packet data with traffic activity can maintain accuracy in
flooding detection.

Fig. 2. Graph of simulation result.

Fig. 2 shows a trend with larger attack volume. This trend
indicates that the TDCM algorithm will be more effective at
recognizing ARP flooding as the number of packet attacks
increases. The reduction in undetected packets suggests that the
system's time density and MAC IP consistency thresholds will
likely be triggered more often in high- packet- attack scenarios.
This shows that TDCM may have poor performance in low-
volume attacks, but it will increase its performance on large-
scale ARP flooding attacks.

Compared to machine learning-based approaches, the
TDCM mechanism offers a comparable alternative in high-
volume ARP flooding attack scenarios. As demonstrated in the
latest simulation, TDCM achieved a detection rate of up to 99%
with a false-negative rate as low as 0.9% at 1500 total packets,
without relying on model training or feature engineering. This
indicates that TDCM can match the effectiveness of ML models
in identifying large-scale flooding attacks while maintaining low
computational complexity. Furthermore, while recent studies [4]
acknowledge the scalability and adaptability of machine
learning and deep learning techniques, they also highlight
concerns about their black-box nature and limited
interpretability during real-time deployment.

In contrast, TDCM’s rule-based approach offers transparent
detection logic, making it easier for administrators to trace and
understand alerts during live network monitoring. TDCM’s

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

545 | P a g e
www.ijacsa.thesai.org

approach, based on defined rules and simple logic, offers
transparency and low overhead. It doesn't need a powerful
computer or a GPU-powered device, making it ideal for
resource-limited hardware. Because of its simplicity, TDCM can
be implemented using the C programming language and
deployed on low-cost IoT hardware. Technically, TDCM can
also be implemented using a shell script running common
networking tools on a tiny Linux system, making it feasible to
deploy in resource-limited office network environments.

V. CONCLUSION

This study introduced a simple rule-based mechanism, Time
Density ARP Thresholding with Binding Consistency
Monitoring (TDCM), to detect ARP flooding malware in office
networks. The proposed method combines two strategies:
monitoring the number of ARP packets in the network and
checking the consistency of IP-MAC bindings. TDCM does not
require model training, large datasets, or high computational
resources to implement.

Simulation and experiments show that the TDCM algorithm
performs well under high-volume ARP flooding. MAC and IP
binding detection plays a significant role in detecting most
attacks. Combined with its monitoring strategies, TDCM can
maintain a reasonable false-negative rate. The number of
detected attack packets increased as the volume of malicious
traffic increased. At a low injection level of 100 packets, the
system missed an average of 10 packets. However, as the attack
volume reached 1000 packets, the undetected rate dropped to
less than 1%. This shows that TDCM is effective in identifying
flooding attempts, making it suitable for practical deployment
in infrastructure-limited office environments.

TDCM’s transparency and deterministic rule structure
provide an advantage in interpretability, so network
administrators can readily understand, audit, and tune detection
logic. This makes the system ideal for environments with
limited staffing. Furthermore, its low overhead ensures
compatibility with legacy systems, unmanaged switches, and
embedded devices, where machine learning-based solutions are
often impractical. Despite its strengths, TDCM showed reduced
sensitivity to low-rate ARP flooding scenarios.

VI. FUTURE WORK

Future work will focus on enhancing detection granularity
during such attacks. One promising direction is to integrate

adaptive thresholding techniques that adjust detection
parameters based on observed traffic baselines. Additionally,
field testing in production networks is essential to assess
performance under real-world conditions, including traffic
noise, heterogeneous devices, and mixed protocol loads.
Another possible direction for future research is to apply the

algorithm in wireless environments with limited computing
resources, such as IoT networks. IoT systems are an excellent
setting for testing and applying TDCM because they typically
comprise numerous small devices with limited processing
power and memory. Experimenting with TDCM in this type of
environment could yield valuable insights into how well the
algorithm performs under real-world limitations. Over time,

studies across different device types and network conditions

could further refine the algorithm and enable more efficient,
practical implementations of TDCM.

ACKNOWLEDGMENT

This research is supported by the Faculty of Computer
Science at Universitas Indonesia, Grant no: NKB-
14/UN2.F11.D/HKP.05.00/2024.

DECLARATION ON GENERATIVE AI

The authors acknowledge using ChatGPT (OpenAI, 2025) to
improve the clarity, grammar, and structure of the manuscript.
The content, analysis, and conclusions remain the sole
responsibility of the authors.

REFERENCES

[1] T. Alsmadi and N. Alqudah, “A Survey on malware detection

techniques,” 2021 International Conference on Information Technology,

ICIT 2021 - Proceedings, pp. 371–376, Jul. 2021, doi:

10.1109/ICIT52682.2021.9491765.

[2] D. R. Raviya, D. Satasiya, H. Kumar, and A. Agrawal, “Detection and

prevention of ARP poisoning in dynamic IP configuration,” 2016 IEEE

International Conference on Recent Trends in Electronics, Information

and Communication Technology, RTEICT 2016 - Proceedings, pp. 1240–

1244, Jan. 2017, doi: 10.1109/RTEICT.2016.7808030.

[3] S. Oei, Y. Suyanto, and R. Pulungan, “A Comprehensive Approach for

Detecting and Handling MitM-ARP Spoofing Attacks,” IEEE Access,

vol. 13, pp. 115503–115519, 2025, doi:

10.1109/ACCESS.2025.3585463.

[4] Y. Lu, C. Zheng, and C. Tang, “Design of ARP Attack Defense System

Based on SDN Architecture in Industrial Internet,” 2024. [Online].

Available: https://h-tsp.com/://creativecommons.org/licenses/by/4.0/

[5] M. Kumar and C. S. Dash, “Detecting and Preventing ARP Spoofing

Attacks Using Real-Time Data Analysis and Machine Learning,”

International Journal of Innovative Research in Engineering &

Management, vol. 12, no. 5, pp. 47–55, Sep. 2024, doi:

10.55524/IJIRCST.2024.12.5.7.

[6] Q. Li and Y. Dong, “Advanced approaches to prevent ARP attacks,”

Applied and Computational Engineering, vol. 44, no. 1, pp. 124–137,

Mar. 2024, doi: 10.54254/2755-2721/44/20230410.

[7] J. Wang, “Industrial Internet of Things ARP Virus Attack Detection

Method Based on Improved CNN BiLSTM,” Journal of Cyber Security

and Mobility, vol. 13, no. 5, pp. 1173–1206, Sep. 2024, doi:

10.13052/JCSM2245-1439.13516.

[8] A. Tran, X. P. L. Ngô, Q. C. Nguyễn, N. Bui Trung, and T. M. T. Dinh,

“Using different machine learning models for address resolution protocol

spoofing attack detection in software-defined network architecture,”

International Journal of Pervasive Computing and Communications,

2025, doi: 10.1108/IJPCC-03-2024-0081/1250800/USING-

DIFFERENT-MACHINE-LEARNING-MODELS-FOR.

[9] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly

detection techniques,” Journal of Network and Computer Applications,

vol. 60, pp. 19–31, Jan. 2016, doi: 10.1016/J.JNCA.2015.11.016.

[10] J. F. Kurose et al., “Computer Networking A Top-Down Approach

Seventh Edition,” 2017, Accessed: Oct. 03, 2025. [Online]. Available:

www.pearsoned.com/permissions/.

[11] S. Hong, M. Oh, and S. Lee, “Design and implementation of an efficient

defense mechanism against ARP spoofing attacks using AES and RSA,”

Math Comput Model, vol. 58, no. 1–2, pp. 254–260, Jul. 2013, doi:

10.1016/J.MCM.2012.08.008.

[12] H. Prajapati and Z. Noorani, “A Survey on ARP Poisoning and

Techniques for Detection and Prevention,” International Journal of

Advance Research and Innovative Ideas in Education, 2017.

[13] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low

noise, L3 cache side-channel attack,” in USENIX Security Symp ., 2014.

[14] M. M. Kermani, R. Azarderakhsh and Jiafeng Xie, "Error detection

reliable architectures of Camellia block cipher applicable to different

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

546 | P a g e
www.ijacsa.thesai.org

variants of its substitution boxes," 2016 IEEE Asian Hardware-Oriented

Security and Trust (AsianHOST), Yilan, Taiwan, 2016

[15] M. M. Kermani, R. Azarderakhsh, "Efficient Fault Diagnosis Schemes for

Reliable Lightweight Cryptographic ISO/IEC Standard CLEFIA

Benchmarked on ASIC and FPGA," in IEEE Transactions on Industrial

Electronics, vol. 60, no. 12, pp. 5925-5932, Dec. 2013

[16] A. Jalali, R. Azarderakhsh, M. M. Kermani, D. Jao. “Towards Optimized

and Constant-Time CSIDH on Embedded Devices”. 2019.

[17] D. J. Bernstein et al., “Post-quantum cryptography,” Nature, vol. 549, no.

7671, pp. 188–194, 2017

