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Abstract—Address Resolution Protocol (ARP) is a standard 

protocol used to map an IP address to its MAC address so the 

network can send packets to its destination. Office networks, 

which typically have limited network resources, are vulnerable to 

ARP flooding attacks launched by malware. ARP flooding can be 

used by malware to create network disruption and jam the 

networks. This study presents a rule-based detection method, 

Time Density ARP Thresholding with Binding Consistency 

Monitoring (TDCM), to identify ARP flooding using a simple 

mechanism, making it suitable for use in networks with limited 

hardware. To detect flooding anomalies, the TDCM algorithm 

monitors the flow of ARP packets and the consistency between 

MAC IP bindings in ARP packets. In this study, a series of 

experiments was conducted and repeated multiple times. On 

average, the experiment shows that the system performs well 

under high-volume ARP attack conditions. This proposed method 

offers an alternative to machine learning techniques, making it 

more suitable for deployment in resource-constrained office 

networks. Future work will focus on improving detection in low-

volume attack scenarios, validating performance in real-world 

environments, and implementing on devices with limited 

computing resources. 
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I. INTRODUCTION  

Today, office networks play a crucial role in our daily 
activities. High usage of office networks and internet 
connectivity introduces cybersecurity threats, particularly from 
malware. Malware can exploit vulnerabilities in protocols to 
disrupt network operations [1]. For example, the Address 
Resolution Protocol (ARP) flooding technique can be used by 
malware to cause network and device congestion. ARP flooding 
is a network-based attack that exploits the mechanism in the 
ARP protocol. It has a function that maps IP addresses to MAC 
addresses at the data link layer [2]. In an ARP flooding attack, 
an attacker sends a large number of malicious ARP packets into 
the network, causing ARP Table overflow on network devices. 
This results in incorrect or missing address resolutions and 
disruption of network services [2]. 

A high volume of ARP flooding attacks can cause network 
denial-of-service (DoS) attacks, data loss, and potential breaches 
of sensitive information [3]. ARP flooding attacks generate a 
high volume of ARP request/reply packets from malicious 
sources within a short time frame [4]. These traffic spikes 
sometimes exceed the number of ARP activities observed in 
typical LAN environments, which typically maintain stable 
ARP caches and low ARP exchange rates. Attackers often used 
spoofed or randomized MAC and IP addresses, generating 

inconsistent ARP Table updates that lead to Table exhaustion or 
overflow [5]. Sometimes, forged ARP packets are broadcast 
across the subnet to maximize the effect [6]. Those 
characteristics can be used as a foundation for constructing rule-
based detection mechanisms [7]. 

Some approaches have been developed to detect and 
mitigate ARP flooding attacks, from traditional fingerprint-
based techniques to machine learning and deep learning 
methods. Conventional methods rely on static rules, such as port 
security, static ARP entries, dynamic ARP inspection, and a 
whitelist based on IP MAC binding validation [2]. Other 
methods, such as monitoring ARP request rates, tracking 
consistency between MAC and IP addresses, and identifying 
bulk packet broadcasts from non-gateway devices, could help 
administrators quickly detect ARP flooding attempts. However, 
such approaches may lack adaptability to evolving threats. 

Currently, ARP attack detection is shifting toward more 
intelligent and adaptive mechanisms. Using machine learning 
and deep learning models, such as Random Forest, 
Convolutional Neural Networks, and Bi-directional Long Short-
Term Memory (Bi-LSTM) architectures, achieves high 
accuracy and low false-positive rates in identifying malicious 
ARP traffic [5], [7], [8]. In industrial contexts, especially in the 
Internet of Things environments, hybrid CNN and Bi-LSTM 
models can detect large-scale ARP-based attacks [7]. The 
adoption of Software-Defined Networking (SDN) can also 
enhance ARP security by enabling centralized binding 
verification and automated mitigation strategies [6]. Another 
solution employs blockchain-based immutable address-
resolution records and cloud-based ARP monitoring systems, 
thereby enhancing scalability and resilience for ARP detection 
in distributed environments [5]. 

Although machine learning and deep learning show 
promising results, they have limitations. They require large 
datasets for training, which are challenging to obtain in real-
world ARP flooding scenarios. Machine learning and deep 
learning also make detection more complex for administrators 
to interpret [9]. These models consume substantial computing 
resources during training and inference, making deployment less 
practical [6]. Modified packets may also bypass those models by 
exploiting a threshold in the machine-learning algorithm. In 
contrast, fingerprint-based mechanisms can offer deterministic, 
explainable, and lightweight detection that can be used with 
minimal resources [4]. 

This study proposes an algorithm, Time Density ARP 
Thresholding with Binding Consistency Monitoring (TDCM), 
for detecting ARP flooding attacks using a rule-based detection 
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approach. With low computational requirements, TDCM can be 
deployed on resource-constrained devices. The algorithm 
detects common ARP flooding characteristics, such as bulk 
ARP packet broadcasts within short intervals and spoofing 
signs, in which a single IP address is associated with multiple 
MAC addresses. This mechanism is evaluated through 
simulations involving both regular network traffic and ARP 
attack scenarios. 

II. THEORETICAL FOUNDATION AND RELATED WORKS 

An office network designed to connect multiple devices 
within a work environment, enabling communication, data 
sharing, and resource sharing among employees and 
departments. The network infrastructure typically comprises 
both wired and wireless local area networks. Wired connections 
often rely on Ethernet cables connected to switches and routers, 
providing stable, high-speed connectivity for desktop 
computers, servers, and network printers. Wireless networks, by 
contrast, offer flexibility and mobility, enabling laptops, tablets, 
and mobile devices to connect without physical cabling. A 
central switch or a set of interconnected switches serves as a 
backbone that manages traffic flows between devices. These 
switches are often connected to one or more routers that provide 
internet access and enable communication with wide-area 
networks. Depending on the organization's size and structure, 
the network may be divided into segments or virtual LANs to 
separate traffic for security and performance reasons [10]. 

Another important aspect of office networking is sharing 
resources. File servers are commonly used to store 
organizational data and to enable employees to share files and 
documents. Network printers and scanners are connected 
through print servers, enabling centralized management and 
reducing the need for individual device setups. In larger 
organizations, directory services are often implemented to 
manage users, devices, and policies in a unified manner. This 
centralized approach simplifies administration while 
maintaining a consistent security framework. 

Network administrators must ensure that bandwidth is 
allocated appropriately to prevent congestion, especially during 
peak hours when many users are online simultaneously. Quality-
of-service configurations may be applied to prioritize critical 
traffic, such as voice over IP calls or video conferencing, over 
less time-sensitive data transfers. Regular network assessments 
help identify bottlenecks and potential failures before they affect 
productivity. Finally, office networks are designed for 
scalability. As businesses grow, additional devices, users, and 
services need to be integrated without causing significant 
disruptions. 

The Address Resolution Protocol (ARP) is a fundamental 
component of computer networks. It operates at the data link 
layer and plays an essential role in maintaining network 
connectivity. Its primary function is to map IP addresses to 
corresponding MAC addresses. Each device on the network 
maintains an ARP Table, which contains a list of IP-to-MAC 
address mappings for other devices. When a computer 
application wants to send data, it uses a system call in the 
operating system. The operating system first checks its ARP 
Table to see whether the destination IP address already has a 
corresponding MAC address. If it does not, the operating system 

broadcasts an ARP request on the network, asking which MAC 
address corresponds to that IP address. Upon receiving the ARP 
request, the corresponding device responds with its MAC 
address. However, if the IP address is in a different subnet, the 
router responds instead, using its own MAC address. Upon 
receipt of the reply, the ARP Table is updated with the new 
information. Over time, if an entry is no longer valid or the time 
to live expires, the IP-to-MAC pair is removed from the Table 
[10]. 

The ARP packet flows through the network without any 
encryption or authentication mechanism [11]. Any device on the 
network can generate a bogus or fake ARP packet, which can 
lead to network errors and disruption. This lack of protection 
means that any device connected to the network can generate a 
fake or bogus ARP packet. When this happens, it can result in 
serious problems such as network errors or even the complete 
disruption of communication between devices [3]. This 
weakness has long been recognized as a major security 
vulnerability, and attackers often take advantage of it to 
intentionally cause malfunctions and interruptions in computer 
networks. However, because ARP is a widely used protocol and 
an integral part of the network layer, the vulnerability still exists. 
Hong et al. [11] and other researchers have already proposed 
ideas to enhance security in the ARP protocol, but changing the 
current ARP protocol requires significant effort, especially 
changing the code embedded in millions of network devices 
worldwide. 

ARP flooding is a type of network attack that exploits a 
vulnerability in the ARP protocol. In this attack, the attacker 
generates a large number of ARP packets and sends them across 
the network [12]. The continuous flow of these fake packets can 
overwhelm the ARP tables in the targeted devices, filling them 
with unnecessary or false ARP entries. When the ARP table 
becomes overloaded, the device may no longer function 
properly, leading to errors in communication between hosts on 
the network. Another major effect of ARP flooding is the 
excessive traffic it creates on the network. Because so many 
packets are being transmitted at once, the network bandwidth 
becomes congested. As a result, legitimate traffic, such as actual 
data transmissions between users, may be delayed or even 
completely blocked. This may lead to denial of service or upper-
layer service disruption [5]. ARP flooding is not only a direct 
attack on specific devices but also a threat to the stability and 
availability of the entire network. 

Certain types of malware exploit weaknesses in the ARP 
protocol by using ARP flooding to launch denial-of-service 
(DoS) attacks or to position themselves for man-in-the-middle 
(MITM) attacks [3]. One common method involves sending a 
large number of ARP request packets into the network, which 
forces devices with the corresponding IP addresses to repeatedly 
respond. In some cases, the malware may also send a large 
volume of ARP reply packets, which can overwhelm the 
targeted devices. This continuous flooding puts heavy pressure 
on the ARP cache and consumes a significant amount of CPU 
resources, eventually disrupting normal network operations and 
causing a denial of service. If the attack is directed at critical 
infrastructure such as routers or switches, the impact can be even 
more severe. It could shut down the entire network and interrupt 
communication for all connected devices. 
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ARP flooding attacks typically exhibit distinct traffic 
patterns that can be detected using rule-based mechanisms. One 
primary characteristic is a high volume of ARP request or reply 
packets, often originating from a single host or multiple forged 
sources within a short time frame [12]. This abnormal packet 
volume is usually much higher than the expected ARP traffic in 
a typical local area network, which typically maintains stable 
ARP caches and exhibits low ARP exchange rates [4]. 
Additionally, ARP flooding often involves spoofed or 
randomized source MAC and IP addresses, resulting in 
continuous updates to the ARP tables of switches or hosts, 
eventually leading to table exhaustion [5]. Another notable 
feature is the broadcast nature of forged ARP packets, as they 
are typically sent to the entire subnet to maximize network 
disruption [6]. These traits, such as packet rate threshold 
violations, inconsistent or unknown MAC and IP bindings, and 
repetitive broadcast ARP replies, form the basis for rule-based 
detection mechanisms. By implementing static thresholds, 
whitelist-based validation of IP and MAC pairs, and monitoring 
for excessive ARP broadcasts from non-gateway devices, 
network administrators can define deterministic rules to 
promptly identify and block ARP flooding attempts without 
relying on complex models or machine learning [7]. 

Alongside intelligent detection models, recent research also 
underscores the importance of integrating detection with 
prevention frameworks. For instance, deploying Dynamic ARP 
Inspection in SDN-controlled environments has enabled rapid 
identification and isolation of malicious nodes [4]. Furthermore, 
cloud-based ARP monitoring systems that use real-time data 
analysis have shown scalability and effectiveness in large, 
distributed networks [5]. Integrating IP and MAC static binding 
in industrial SDN settings and using blockchain for immutable 
address resolution records represent emerging frontiers in ARP 
security [6]. These developments reflect a broader trend toward 
building resilient, autonomous systems that not only detect but 
also actively adapt to evolving ARP-based threats across 
enterprise, cloud, and IoT networks. 

Despite the growing adoption of machine learning and deep 
learning for ARP flooding detection, these approaches have 
notable limitations compared with traditional fingerprint-based 
mechanisms [9]. A major drawback is reliance on large, well-
labeled datasets for effective training. In practice, collecting 
real-world ARP flooding data can be challenging, leading to 
models that may generalize poorly across different network 
environments [5]. Additionally, machine learning and deep 
learning models often act as black boxes, making it difficult for 
network administrators to interpret or justify detection 
outcomes. By contrast, fingerprint-based systems are rule-
driven and inherently explainable. Furthermore, these 
techniques tend to consume significant computational resources, 
especially during training and real-time inference, which can 
hinder deployment in resource-constrained environments. 
Another concern is their vulnerability to adversarial inputs; 
carefully crafted packets can potentially bypass detection by 
manipulating model behavior. In contrast, fingerprint-based 
mechanisms, while limited to known attack signatures, offer 
fast, deterministic, and lightweight detection that is easier to 
implement and maintain [4]. These tradeoffs highlight the need 
for a balanced approach, where intelligent systems are supported 

by traditional methods to ensure comprehensive and resilient 
ARP flooding defense. 

In parallel with network-level attacks, recent studies have 
highlighted the growing threat of side-channel attacks, in which 
attackers exploit indirect information leakage, such as timing 
behavior, power consumption, cache access patterns, or 
electromagnetic emissions, to infer sensitive data [13]. Side-
channel attacks have been demonstrated against both classical 
cryptographic implementations and lightweight cryptography, 
which is increasingly adopted in resource-constrained 
environments such as IoT and embedded systems [14],[15]. 
While lightweight cryptographic primitives reduce 
computational overhead, several works report that 
simplifications in control flow and reduced noise may 
unintentionally amplify side-channel leakage. Similarly, 
emerging post-quantum cryptography (PQC) algorithms, 
although designed to resist quantum adversaries, are vulnerable 
to timing and cache-based side-channel attacks due to complex 
polynomial operations and memory-intensive structures 
[16][17]. Prior research emphasizes that security mechanisms 
designed for constrained environments must consider not only 
algorithmic robustness but also implementation-level leakage. 
These findings reinforce the relevance of lightweight, 
deterministic, and transparent security mechanisms—such as 
rule-based detection approaches—that minimize attack surfaces 
and reduce exploitable side-channel behaviors in real-world 
deployments. 

III. RESEARCH METHOD 

This research starts with a literature study, the development 
of a simulation, an experiment, and the creation of conclusions. 
First, a literature review was conducted by analyzing existing 
ARP flooding detection techniques, both traditional and 
machine learning based, comparing the pros and cons of both 
mechanisms. This provided the theoretical foundation for the 
proposed rule-based detection framework. Second, a Python-
based simulation environment was developed to model ARP 
traffic in a controlled office network scenario. The simulator was 
designed to generate both normal and attack traffic. The 
detection module was implemented to monitor ARP packet 
density and MAC IP binding anomalies. The burst packets are 
identified with a short timestamp among packets. The traffic 
simulation algorithm can be seen in Algorithm 1. Third, 
experiments were performed by executing multiple simulations 
with varying attack intensities. Each scenario was repeated five 
times, and detection performance was measured using metrics 
such as the number of undetected attack packets, true positives, 
and false positives. Results were averaged and visualized to 
reveal detection trends. 

Algorithm 1: Traffic Simulation 

SimulateTraffic(): 

now ← current time 

attack_count = 100, 150, 200, …, 1000  

normal_count = attack_count/2 

For each in 1 to normal_count: 

Create packet with: 

src_ip = fixed unique IP 
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src_mac = fixed unique MAC 

timestamp = now + randomFloatTime(0,5) 

is_attack = False 

Add to packets 

 

For each in 1 to attack_count: 

Create packet with: 

src_ip = fixed IP 

src_mac = unique or duplicate MAC 

timestamp = now + randomFloatTime(0,5) 

is_attack = True 

Add to packets 
 

The proposed mechanism is called Time Density ARP 
Thresholding with Binding Consistency Monitoring (TDCM). It 
combines analysis of ARP packet density with tracking of IP and 
MAC binding behavior, without using statistical learning 
models or training data. The core of the TDCM system 
comprises two parallel components, as shown in Fig. 1. 

 
Fig. 1. Flow of the TDCM method. 

The first component focuses on time-density monitoring, 
measuring the arrival rate of ARP packets within a predefined 
time window. A burst of ARP packets is detected when the 
number of ARP packets from a single host or targeting a 
particular IP address exceeds a set threshold within a short 
period. In this case, the system raises a potential flooding alert 
or a combination of flooding and binding alerts. If incoming 
packets contain an IP address with multiple MAC addresses, the 
attack is categorized as an ARP flooding and spoofing attack. 
Otherwise, the attack is categorized as ARP flooding only, 
without spoofing. This approach is based on the insight that ARP 
flooding attacks generate unusually high volumes of ARP traffic 
over a short period, which deviates significantly from typical 
network behavior. By calibrating this threshold based on 
historical network baselines, false positives can be reduced 
without the need for adaptive learning. Malware sometimes 
combines ARP flooding with a spoofed MAC address to initiate 
a man-in-the-middle attack. 

The flooding alert component tracks the number of ARP 
requests and replies received per source MAC address over fixed 
intervals. If a particular source exceeds a predefined packet-per-
interval threshold, the system flags it as a flooding candidate. 
Unlike static rate limiting, this approach uses sliding windows 
to account for short bursts while avoiding false positives from 
legitimate activity. 

The second component, binding consistency monitoring, 
monitors the consistency of IP-MAC pairings over time. In a 
normal network, a specific IP address is usually bound to a fixed 
MAC address within a session or subnet. During ARP spoofing 
or flooding scenarios, MAC-IP bindings in ARP packets change 
rapidly. Multiple MAC addresses may be associated with the 
same IP address, or vice versa. TDCM tracks these 
inconsistencies and flags them as malicious packets. 

Each incoming ARP packet is checked against a list of 
verified IP and MAC pairs. If a device continuously uses 
different MAC addresses with the same IP address in a short 
time frame, it is marked as suspicious. This check is also 
performed after packets are detected as burst ARP packets. 

This approach offers a reliable and efficient method to 
detect ARP-based attacks. By using deterministic rule-based 
logic, it enhances interpretability and operational transparency, 
two aspects that often lack in machine learning approaches. 
Network administrators can trace each alert back to a specific 
condition or packet pattern, facilitating faster incident response 
and better threat understanding. 

An optional quarantine queue can be activated when both 
modules flag a source: traffic from the suspicious node is rate-
limited or redirected to an isolated VLAN for further inspection 
or logging. This multi-aspect detection, based on time density 
and binding logic, enables fast, deterministic identification of 
ARP flooding attacks using simple thresholds and lookups. 

IV. RESULTS AND DISCUSSION 

To evaluate the detection effectiveness of the proposed 
TDCM algorithm, we conducted a series of simulations 
emulating ARP flooding attacks of varying intensities. The 
simulations generated two distinct traffic patterns. The first was 
legitimate ARP traffic from a single device with a fixed IP-to-
MAC pairing, and the second was malicious flooding traffic that 
imitated a spoofing attack by sending a large volume of ARP 
packets from a single IP address with randomly generated MAC. 

The legitimate traffic simulated a normal device transmitting 
ARP requests or responses at a moderate rate. Conversely, the 
flooding traffic was designed to trigger TDCM alerts by 
exceeding the time density threshold and violating binding 
consistency. The number of malicious ARP packets injected into 
the network increased from 100 to 1000 in steps of 50. This 
allowed testing both low-volume and high-volume attack 
scenarios, representative of stealthy and aggressive attack 
profiles. 

Each configuration was executed five times with 
randomized MAC address generation and minor timing 
fluctuations during packet injection. The detection engine 
recorded the number of undetected packets for each run, and the 
results were averaged. The key metric analyzed was the 
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percentage of undetected malicious packets relative to the total 
number injected. The results in Table I represent the average 
number of undetected attack packets across these five runs. 

TABLE I.  SIMULATION RESULTS 

Total 

packet 

Flooding 

alert 

Binding 

alert 

False 

Positive 

(%) 

False 

Negative 

(%) 

150 0 91 0.00 9.00 

225 0 140 0.00 6.67 

300 0 191 0.00 4.50 

375 0 241 0.00 3.60 

450 0 291 0.00 3.00 

525 0 341 0.00 2.57 

600 10 391 0.00 2.25 

675 34 439 5.56 2.00 

750 55 491 10.00 1.80 

825 80 541 13.64 1.64 

900 108 591 16.67 1.50 

975 136 641 19.23 1.38 

1050 157 691 21.43 1.29 

1125 186 741 23.33 1.20 

1200 215 791 25.00 1.13 

1275 234 841 26.47 1.06 

1350 259 891 27.78 1.00 

1425 289 941 28.95 0.95 

1500 312 990 30.00 0.90 

The number of packets in this simulation ranged from 150 to 
1500 total packets. The total packet count consisted of one- third 
normal packets and two- thirds attack packets. The goal was to 
observe the system's ability to trigger flooding and binding alerts 
and measure its accuracy through false- positive and false- 
negative rates. At lower traffic volumes (below 600 packets), the 
system issued no flooding alerts, and only binding alerts were 
triggered. This indicates that low- volume attacks can be 
handled by the binding consistency module alone. However, as 
the total packet count increased beyond 600, the system began 
generating flooding alerts, starting with 34 alerts at 675 packets 
and increasing progressively to 312 alerts at 1500 packets. 

The detection system maintained a zero false- positive rate 
up to 600 packets. As the packet volume increased, however, the 
false- positive rate gradually rose, reaching 30% at 1500 
packets. This tradeoff reflects the system's sensitivity under 
stress, as aggressive ARP flooding patterns resemble high- 
volume traffic spikes that may sometimes be misclassified. On 
the other hand, the false- negative rate consistently decreased as 
the total packet count increased, from 9% at 150 packets to 0. 
0.9% at 1500 packets, indicating that the system becomes more 
accurate at detecting attacks as flooding intensity rises. 

The simulation results show the effectiveness of TDCM in 
detecting ARP flooding attacks. The method, which combines 
flooding threshold monitoring and MAC IP binding, can detect 

malicious ARP packet activity while maintaining a reasonable 
false- positive rate. These results also show that balancing 
packet data with traffic activity can maintain accuracy in 
flooding detection. 

 

 
Fig. 2. Graph of simulation result. 

Fig. 2 shows a trend with larger attack volume. This trend 
indicates that the TDCM algorithm will be more effective at 
recognizing ARP flooding as the number of packet attacks 
increases. The reduction in undetected packets suggests that the 
system's time density and MAC IP consistency thresholds will 
likely be triggered more often in high- packet- attack scenarios. 
This shows that TDCM may have poor performance in low- 
volume attacks, but it will increase its performance on large- 
scale ARP flooding attacks. 

Compared to machine learning-based approaches, the 
TDCM mechanism offers a comparable alternative in high-
volume ARP flooding attack scenarios. As demonstrated in the 
latest simulation, TDCM achieved a detection rate of up to 99% 
with a false-negative rate as low as 0.9% at 1500 total packets, 
without relying on model training or feature engineering. This 
indicates that TDCM can match the effectiveness of ML models 
in identifying large-scale flooding attacks while maintaining low 
computational complexity. Furthermore, while recent studies [4] 
acknowledge the scalability and adaptability of machine 
learning and deep learning techniques, they also highlight 
concerns about their black-box nature and limited 
interpretability during real-time deployment. 

In contrast, TDCM’s rule-based approach offers transparent 
detection logic, making it easier for administrators to trace and 
understand alerts during live network monitoring. TDCM’s 
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approach, based on defined rules and simple logic, offers 
transparency and low overhead. It doesn't need a powerful 
computer or a GPU-powered device, making it ideal for 
resource-limited hardware. Because of its simplicity, TDCM can 
be implemented using the C programming language and 
deployed on low-cost IoT hardware. Technically, TDCM can 
also be implemented using a shell script running common 
networking tools on a tiny Linux system, making it feasible to 
deploy in resource-limited office network environments. 

V. CONCLUSION 

This study introduced a simple rule-based mechanism, Time 
Density ARP Thresholding with Binding Consistency 
Monitoring (TDCM), to detect ARP flooding malware in office 
networks. The proposed method combines two strategies: 
monitoring the number of ARP packets in the network and 
checking the consistency of IP-MAC bindings. TDCM does not 
require model training, large datasets, or high computational 
resources to implement. 

Simulation and experiments show that the TDCM algorithm 
performs well under high-volume ARP flooding. MAC and IP 
binding detection plays a significant role in detecting most 
attacks. Combined with its monitoring strategies, TDCM can 
maintain a reasonable false-negative rate. The number of 
detected attack packets increased as the volume of malicious 
traffic increased. At a low injection level of 100 packets, the 
system missed an average of 10 packets. However, as the attack 
volume reached 1000 packets, the undetected rate dropped to 
less than 1%. This shows that TDCM is effective in identifying 
flooding attempts, making it suitable for practical deployment 
in infrastructure-limited office environments. 

TDCM’s transparency and deterministic rule structure 
provide an advantage in interpretability, so network 
administrators can readily understand, audit, and tune detection 
logic. This makes the system ideal for environments with 
limited staffing. Furthermore, its low overhead ensures 
compatibility with legacy systems, unmanaged switches, and 
embedded devices, where machine learning-based solutions are 
often impractical. Despite its strengths, TDCM showed reduced 
sensitivity to low-rate ARP flooding scenarios. 

VI. FUTURE WORK 

Future work will focus on enhancing detection granularity 
during such attacks. One promising direction is to integrate 

adaptive thresholding techniques that adjust detection 
parameters based on observed traffic baselines. Additionally, 
field testing in production networks is essential to assess 
performance under real-world conditions, including traffic 
noise, heterogeneous devices, and mixed protocol loads. 
Another possible direction for future research is to apply the 

algorithm in wireless environments with limited computing 
resources, such as IoT networks. IoT systems are an excellent 
setting for testing and applying TDCM because they typically 
comprise numerous small devices with limited processing 
power and memory. Experimenting with TDCM in this type of 
environment could yield valuable insights into how well the 
algorithm performs under real-world limitations. Over time, 

studies across different device types and network conditions 

could further refine the algorithm and enable more efficient, 
practical implementations of TDCM. 
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