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Abstract—Recent developments in deep learning have
demonstrated tremendous potential for enhancing medical
picture classification tasks, particularly for the detection of skin
malignancies like melanoma. However, it is still a huge challenge
to guarantee high accuracy, reliability, and interpretability in
real clinical settings. This study attempted to resolve these issues
by proposing a novel approach to melanoma detection, by
employing diverse techniques such as the Convolutional Block
Attention Module (CBAM), binary focal loss, and Monte Carlo
Dropout (MC Dropout) for uncertainty estimation. The CBAM
attention module was inserted to help the network focus on
important features of images, and focal loss was applied to solve
class imbalance and encourage learning from hard samples. MC
Dropout was used to achieve an uncertainty estimate in the test
set, and thus, more reliable and interpretable predictions. The
approach was implemented with a pre-trained deep CNN called
EfficientNetB4 as the backbone and trained on a large melanoma
dataset, which is separated into training sets, test sets, and
validation sets in order to test the performance. Model evaluation
was performed using accuracy, precision, recall, Fl1-score, and
AUC, resulting in 0.95 for accuracy, whereas the AUC value is
0.98. Furthermore, the uncertainty estimate made a clearer
decision-making, and the interpretability was crucial when used
as a clinical task model. These results highlight the necessity to
combine attention mechanisms, task-specific loss terms, and
uncertainty quantification for building accurate and
interpretable Al in medical domains. The study prototype has the
potential for improving the detection of early-stage melanoma
and provides useful guidance to future Al-based healthcare
services.
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I INTRODUCTION

Melanoma is an aggressive skin cancer and has continued
to be a leading cause of death from cancer worldwide [1].
Melanoma — which originates in the pigment-producing cells
of the skin called melanocytes — can spread rapidly to other
organs unless it is caught and treated early. Early detection of
melanoma contributes significantly to the survival rates of
patients and is, therefore, a critical area of research in medical
imaging and diagnostics [2]. Diagnosis of melanoma is usually
through clinical examination and histopathology, which are
associated with human error and variability. Due to the visual
aspect of the disease, automatic systems and methods, which

*Corresponding author.

make use of image analysis, are a central part of new scientific
progress on accurate melanoma detection.

Recent advances in machine learning, particularly deep
learning, have demonstrated significant potential for automated
melanoma classification based on skin lesion images [3].
Convolution neural network (CNN) has been known as a
successful technique for image classification, where it can
learn and abstract features automatically from visual data.
Melanoma classification has been tackled using different
methods, with the use of diverse CNN architectures to enhance
accuracy. However, there are still many issues, such as the
limited labeled datasets in diverse domains, the differences
between the quality levels of images and patterns of skin
lesions complexity [4]. Hence, emerging models capable in
their ways to go beyond these limitations and make more
appealing predictions (in terms of reliability, interpretability
and robustness) are always needed.

The problem of handling the uncertainty relating to the
medical image analysis is one of the primary concems for
melanoma classification [5]. Despite their great power, deep
learning models are typically unable to make predictions while
also estimating the uncertainty of these predictions. Failure to
estimate such uncertainty can lead to bad decisions in a clinical
setting when missclassification is expensive [6]. Also, deep
learning based algorithms are prone to overfitting when there is
limited The study proposed a new deep leaming framework for
melanoma recognition, where the CBAM attention mechanism,
focal loss and Monte Carlo Dropout (MC Dropout) were
integrated to obtain uncertainty estimation. The incorporation
produced a remarkable improvement in the performance and
reliability. With the help of these sophisticated methods, our
model could focus on important attributes and handle the issue
of class imbalance to generate reliable predictions with
uncertainty. With an accuracy of 95 and an AUC of 0.98, the
model also has great potential in future real clinical
applications. The novelty of our method lies in the usage of
attention mechanism, focal loss and uncertainty estimation,
optimizing them all simultaneously. This means to bring
interpretability and robustness at the same time so that our
model can generalize well for difficult tasks such as melanoma
detection, training data or unbalanced data. All of these are
reminiscent of the need to come up with methods that improve
model accuracy and also provide uncertainty estimates’ which
is a necessary condition for well-calibrate decision support
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systems able to offer robustness and generalizability in clinical
usage.

Another is to determine what are the most relevant parts in
an image, particularly when diagnosing melanomas [7]. Even if
the CNNs are good feature extractors, this learning does not
exploit spatial relationships and contextual information among
the entities in an image. It can result in a mistake with
grouping, particularly if the melanoma lesion is not readily
visible or partly covered. The Convolutional Block Attention
Module (CBAM): This has proved beneficial to enhance the
performance of CNNs, so they attend more on a most
important part of an image. By utilizing an attention
mechanism, CBAM makes networks pay more attention on
informed regions to increase the classification accuracy and
interpretability.

To tackle the above difficulties, a cost-effective and
dynamic solution powered by an EfficientNet with CBAM
attention-based model, incorporated with Monte Carlo Dropout
(MCD) for uncertainty estimation. Derivation of network:
EfficientNet has been chosen as it has strong and robust
accuracy and computation efficiency according to retrospective
training, testing using images regarding melanoma [§8]. MCD
can naturally give an approximate measure of prediction
uncertainty, while the integration of CBAM may assist the
network in attending to saliency parts on input images. This
synergistic relationship leads to a stronger identification of
melanoma, which in turn is good-performing (in terms of
accuracy) and provides uncertainty, thereby allowing its
application in the clinic where decisions are crucial.

II. LITERATURE SURVEY

S. Nazari et al. [9] stressed the relevance of diagnostic
models for real-world usage, which include smartphone based
dermoscopyin order to enhance the diagnosis in rural regions.
As per the ISIC2020 challenge, their approach demonstrated
comparable outcomes to the first-place model while
outperforming second and third places. These models
established an appropriate compromise between accuracy and
computational efficiency by using 98 % fewer parameters,
thereby making them well suited for real-time deployment in
resource constrained environment and increasing the reach of
accessible healthcare.

A hybrid framework was proposed by P. K. Veniet al. [10]
that integrates feature extraction from VGG16 with CBAM and
classification with Caps Net. The proposed model was tested
using augmented and non-augmented datasets, thereby
displaying high performance results up to 100 % precision, 99
% accuracy, and an F1-score.

Skin-GAB, a deep learing based scheme, is proposed by J.
Chen et al. [11] for classifying pigmented skin diseases. This
approach makes use of augmentation, segmentation, network
fusion, and the GAB mechanism for enhancing classification
by highlighting essential characteristics. Skin GAB has
enhanced the accuracy 2.89 % as compared to the previous
model, projected to continue contributing to future diagnosis
and managing pigmented skin illness.
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A most dangerous type of skin cancer, focusing melanoma,
was proposed by G. Dogan et al. [12]. If diagnosed early, it can
be treated effectively.

Convolutional neural networks (CNNs), a popular deep
learning tool, have shown great promise in accurately detecting
melanoma. By integrating attention mechanisms with CNNEs,
their accuracy can be further enhanced. However, previous
models for melanoma detection have not utilized attention
mechanisms effectively. In order to help researchers use
attention mechanisms effectively, this study investigates how
they affect CNN performance. The authors investigated seven
distinct attention mechanisms using a base CNN model and
compared the outcomes.

The C3BAM-XAI model of CNN was proposed by M. J.
Abbas et al. [13], integrating CBAM and explainable Al It
addresses data imbalance through augmentation and uses
CBAM’s attention modules for better feature extraction.
Hyperparameters are optimized with Nadam for smoother
training. The model, tested on the PD Kaggle dataset, achieved
93.33% accuracy by B. Mittal [14]. Ablation trials demonstrate
that CBAM will enhance the interpretability and accuracy of
the model, making it dependable for clinical usage, particularly
for Parkinson’s disease detection. This study highlights the
expanding significance of deep leaming approaches in
improving medical diagnosis.

CACBL-Net, a lightweight deep CNN, was proposed by R.
Agrawal et al. [15], tailoring portable diagnostic devices like
smartphones, thereby addressing limitations of data imbalance
and computational capacity. The study made use of focal loss
for handling imbalance in the dataset and the Monte Carlo
dropout method for uncertainty estimation to improve the
robustness of diagnostic networks.

The network incorporates channel attention to enhance
feature extraction and employs an adaptive class-balanced
focal loss to prioritize complex cases while reducing the
influence of simpler ones, B. Mittal [16]. On the HAM-10000,
PAD-UFES-20 and MED-NODE datasets, CACBL-Net
reached sensitivities of 90.60%, 91.88% and 91.31% with
prediction times ranging from 0.006 to 0.011 s per case,
respectively. These performances are superior to other models
that prove the potential and CACBL-Net for skin lesion
diagnosis using a mobile device with low computational cost.

Z.Jietal. [17] introduced EFAM-Net as a new architecture
for the classification of skin lesions. The low-level information
of color and texture is learned by inserting an Attention
Residual Leaming ConvNeXt (ARLC) block in the shallow
part, and as the depth increases, it is removed to employ a
deeper layer with the Parallel ConvNeXt (PCNXt) block by
M.K. Amber [18]. To enhance the feature fusion in multiple
scales, a Multi-scale Efficient Attention Feature Fusion
(MEAFF) block is proposed. We tested our method on ISIC
2019, HAM10000 and a private dataset and the experiment
results showed it performed satisfactorily with classification
accuracies 0f92.30%, 93.95%, and 94.31%.

Y. Jia et al. [19] proposed a medical image classification
approach, which adopted a contour processing attention
mechanism to increase its accuracy through focusing on key
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regions. The process comprises a step of photo converting and
linearizing images, as well as contour generation.

The original gray-scale picture is convolved with these
contours, creating a row-column feature map that can be
further sharpened by means of point-wise multiplication by A.
Siddiqui [20]. The resulting image is input to a residual
network for classification. Experiments on three medical image
datasets indicate noticeable enhancements are achieved with
respect to accuracy, F1 score, and Kappa score. This technique
also demonstrates value in other areas such as remote sensing
and vehicle image recognition.

III.  PROPOSED MODEL

A. Input Layer

The model receives data through the input layer. In this
instance, the input layer is set up to accept photos of shape
(224, 224, and 3), which means the images have three color
channels (RGB) and a dimension of 224 by 224 pixels. In order
to ensure the model correctly processes the data, this layer
specifies the form of the input data that will be fed into the
neural network.

Input = RHXWxC €))
where,

H stands for height, W for width, and C for the number of
channels (3 for RGB) in the picture. This layer does not do any
calculation; it only takes in the input.

B. EfficientNetB4

The foundation of the model for feature extraction is a pre-
trained deep CNN called EfficientNetB. It belongs to an
efficient net family, which is renowned for its excellent
computational cost and parameter size efficiency. The top
classification layers are eliminated by setting include
top=False, allowing the model to focus on extracting relevant
features from the image data. The model learns superior initial
feature representations thanks to the pre-trained weights from
ImageNet, which lessens the need for intensive training from
the beginning. Similar to other convolutional neural networks,
theEfficientNetB4 model processes the input image in several
ways:

Convolution Operation:
Output = Conv(X,W,b) = (X * W)+ b 2)
where,
X is the input tensor.
Wis the filter (kernel).
b is the bias.
*represents the convolution operation.

Activation: Following the convolution, an activation
function such as ReLU is applied:

Output = ReLU(Conv(X,W, b)) 3)

EfficientNetB4 uses advanced blocks like MBConv,
Squeeze-and-Excitation (SE) blocks, and depth-wise separable
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convolutions, but the basic operation is a convolution followed
by activation.

C. Dense Layers (Channel Attention)

The feature maps are transformed by the channel attention
module dense layers following pooling operations. By using
the ReLU activation function, the first dense layer reduces the
number of channels by a factor of the ratio (usually set to 8).
The feature map is compressed throughout this process,
thereby allowing the network to learn more succinct
representations. By returning the channel size to its initial
value, the second dense layer produces an improved feature
map that may be integrated with the attention mechanism.

First Dense Layer:

Output; = ReLU( X ) (@)

Ratio

where,
e Xis the input feature map from the previous layer.
e Ratio is a hyperparameter (often set to 8).
Second Dense Layer:
Output, = W.Output, +b, %)
where,
e Wis the weight matrix.
e b is the bias vector.

e The dense layer performs a matrix multiplication
followed by the addition of bias

D. GlobalAveragePooling2D

GlobalAveragePooling2D calculates the average of every
feature map throughout the full spatial dimension (including
height and width). It makes the output size uniform across
various input images by reducing the spatial dimension to a
single value per feature map. By ensuring that each feature
map is summed up by its average value, this pooling procedure
enables the model to incorporate global context and exclude
spatial details that are less crucial for the job. The average of
each feature map of all spatial locations is calculated via global
average pooling:

1
T Hxw

Output g [c] Sh=1Xw=1X[hw,c] (6)

where,
e Hand W are the height and width of the feature map.
e cis the index for the channels.

e The output is the average value of all the pixels in each
channel of the feature map.

E. Reshape Layer

The reshape layer is used to transform the output of the
global average pooling operation into a shape that corresponds
to the layers it follows. In this instance, it ensures that the
tensor has a single spatial dimension while retaining the
channel information by reshaping the pooled tensor to a shape
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of (1,1, channel). As a result, the feature map can be processed
by the thick layers that follow, which are built to deal with a
specific dimensionality.

Reshaped Output = Reshape(lnput, (11, Channels)) (7

The reshape operation doesn't modify the underlying data
but changes the dimensions of the tensor to ensure
compatibility with subsequent layers. The result is a tensor of
shape (1,1,Channels), where each channel contains one
averaged value.

F. GlobalMaxPooling2D

Similar to Global Average Pooling, Global Max Pooling
calculates the maximum value for each feature map rather than
averaging the values. The notable feature of each feature map
is highlighted using this technique. For tasks that depend on
identifying strong patterns, such as object recognition, it
captures the most prominent spatial characteristic.

Global Max Pooling computes the maximum value for each
feature map:

Output,,,.[c] = IEaXX[h, w, ] ®
W

where,

e [h,wc]is the value at spatial location h,w, and channel
c.

e This outputs the maximum value for each feature map,
providing a more extreme form of feature aggregation
compared to averaging.

G. Dense (After MaxPooling)

After max pooling, the features are processed by the same
dense layers that were used for average pooling. These layers
help refine the pooled features by applying the same
transformations (reduction in channels and restoration) as seen
with average pooling. This dual processing allows the model to
consider both the maximum and average features extracted
from the input image.

Output=W - X+ b 9
where,
e W is the weight matrix,
e Xisthe input feature map from the pooling operation.
e b is the bias term.

This is a standard dense layer that performs matrix
multiplication and bias addition.

H. Add Layer

The results from both average and max pooling are then
aggregated (Add layer). This kind of addition has more rich
feature representation by using complementary information
involved in the two pooling types. With a Concatentity set, the
model perhaps can more easily focus on both the prototype
categories and the salient cues in the image.

Output = avg pool + max_pool (10)

Vol. 16, No. 12, 2025

This layer performs the addition of the output from average
pooling and max pooling. Each result element is the sum of its
two feature map elements.

1. Activation (Sigmoid)

The Activation layer, applying the sigmoid activation
function, is used in order to squash attributes of two branches
into [0, 1] value softening. This yields a tensor which can be
employed as the attention weights. The attention map
generated by this activation enables the network to focus on or
ignore some feature channels according to their relevance to
the task.

1
Output = m (11)

The sigmoid function normalizes values between 0 and 1,
making it ideal for binary classification tasks, where the output
is interpreted as a probability.

J. Multiply (Channel Attention)

The attention mechanism for the input features is added via
the multiply layer. The input feature map is reweighted with
the attention map of previous layers through element-wise
multiplication. This operation enhances some objects while
reducing others over the input. This attention mechanism
successfully allows our network to pay more attention to the
most essential parts of the input image.

Output= X X A (12)

The attention map A, produced by applying sigmoid
activation to the attention mechanism, is element-wise
multiplied with input feature map X. The operation highlights
the most salient features while suppressing irrelevant ones.

K. Lambda Layer (Spatial Attention)

The Lambda layer average-pools the input feature map over
its spatial dimensions. By means of spatial dimension
reduction, it yields a tensor that characterizes the distribution of
global features in the image. This enables the model to obtain
context throughout the entire image, where contextual
information may be important for feature relationships (e.g.,
object detection and segmentation).

1
Output g = 31 Xw=1 X[hw,:] (13)
Output ., = r%llaXX[h. w,: ] (14)
W

In the Lambda layer, we calculate the mean and max pixel
values for each feature map over spatial dimensions. This
permits the spatial information to be 'out-of-context’, thus
facilitating attention-guiding.

L. Concatenate Layer

The results of average and max pooling are concatenated
by the concatenate layer in the channels dimension. This
concatenation results in a more enriched feature map, including
the average and most discriminative spatial features, which
could be utilized by the model for both average-based and
peak-based aspects at some layers ahead. It facilitates the
network to construct a better representation for images by
modeling different types of feature information.
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Output = Concatenate(avg_pool, max_pool) (15)

The average and max pooled features are concatenated at
channel level. This operation doubles the number of channels
as both types of pooling information is merged into one tensor.

Input Layer

EfficientNetB4

Dense Layer

GlobalAveragePooling 2D Layer

Reshape Layer

GlobalMaxPooling2D Layer

Dense Layer

Add Layer(Cbam)

Activation Layer

Multiply Layer

Lambda Layer

Concatenate Layer

Conv2D Layer

Multiply Layer

GlobalAveragePooling2D Layer

BatchNormalization Layer

Dense Layer

MCDropout Layer

Dense Layer

Fig. 1. Proposed model architecture.

Fig. 1 demonstrates the architecture of the proposed hybrid
CNN model by combining EfficientNetB4 with CBAM for
enhanced feature extraction. The layered structure in the figure
illustrates components like convolution, pooling and attention
mechanisms.

M. Conv2D (Spatial Attention)

A convolutional filter is then used by the Conv2D layer on
the concatenated feature map to generate a spatial attention
map. The layer is trained to pay attention to parts of the image,
through leamning of spatial features, so as to highlight the most
relevant parts. Kemels size and strides are determined to
maintain the spatial relationship in the image as well as
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computational efficiency. The sigmoid activation makes the
attention values range within 0 and 1, controlling how much
each spatial location needs to be weighted.

Output =
Sigmoid (Conv2D(Concat,Filters, Kernel Size)) (16)

A convolution operation is performed over the
concatenated feature maps and fed into a sigmoid function for
obtaining the spatial attention map, which emphasize the
region at a spatial level that model should pay attentions to.

N. Multiply (Spatial Attention)

Similar to the channel attention mechanism, the multiply
layer applies the spatial attention map to the input features. The
input feature map is multiplied by the spatial attention map,
allowing the model to focus on the important spatial regions
while ignoring less relevant ones. This helps the network leam
which regions in the image are critical for the task at hand.

Output = X X Agpaal (17)

The input feature map X is element-wise multiplied by the
spatial attention map A spatial, highlighting the most important
spatial regions. Which focuses on the most relevant spatial
regions.

O. Global Average Pooling2D (Post Attention)

To summarize all feature maps, Global Average Pooling 2D
is applied after the application of CBAM attention mechanism.
In order to prepare the output for thick layers, this pooling step
reduces the spatial dimensions of each feature map to a single
value. After using the attention mechanism, this step
guarantees that network is taking into account global features
in feature map.

1
Output ,,, = ngzlszvle[h, w,:] (18)

Global average pooling is applied again after the attention
mechanism to summarize the entire feature map into a single
value per feature map.

P. Batch Normalization

Batch Normalization helps to stabilize and speed up
training by normalizing activation of neurons throughout the
mini-batch. It guarantees the consistency of activation
distribution by minimizing internal covariate shift.
Furthermore, batch normalization improves the generalization
of model and training process efficiently by acting as a
regularization strategy.

Output :y<\/%)+[3 (19)

Batch normalization normalizes the activations by
subtracting the batch mean x and dividing by the batch
standard deviation ¢. During training, the parameters y(scale)
and f(shift) are learned to adjust the normalized values.

Q. Dense (Fully Connected Layer)

The Dense layer of size 256 propagates the feature map
through a fully connected transformation. It learns the high
abstractions of stance properties (e.g., training structures) and
is called “ReLU” which introduces non-linearity into the

551 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

model. This layer is important so that the model can leamn
complex patterns in between before outputting something
simple. L2 regularization is introduced to avoid overfitting by
punishing excessive weights.

Output = ReLU(W.X + b) (20)

This dense layer performs a matrix multiplication between
the input and weight matrix W, adds the bias term b, and
applies the ReLU activation function.

R. MCDropout

The Dropout layer is a dropout layer with a custom forward
pass that remains active during test. This is in contrast to
traditional dropout, which is employed only at training time
and thus cannot measure the uncertainty during test. This is
especially valuable for uncertainty estimation tasks, where the
interpretability of the model’s confidence in prediction is key.
Through the activation of dropout during inference, the model
is able to produce a wider diversity of predictions, leading to a
more reliable measure for uncertainty.

Output = Dropout(X,p = 0.5) 2n

The MCDropout layer ensures that dropout is active during
both training and inference, which allows the model to
generate multiple stochastic forward passes and estimate
uncertainty in predictions.

S. Dense (Output Layer)

The final Dense layer is the output with a single unit for
binary classification and sigmoid activation to make it suitable
for your prediction task. Finally, the output of the sigmoid
gives a value between 0 and 1, which one might interpret as
being the probability that your input is in the positive class.
This layer is the final decision point of the network, and
observations fit to the model are transformed into a modeled
prediction.

Output = Sigmoid(W- X + b) (22)

The final output layer calculates the probability of the
positive class (binary problem) with a sigmoid activation. The
output is a score in the range of [0, 1], which indicates the
probability that the input sample falls into the positive class.

The novel changes in the model could improve both
performance and interpretability on a melanoma deep learning
classifier. The contribution lies in integrating the CBAM
(Convolutional Block Attention Module) that works with
channel-wise and spatial attention. As a result, this allows the
model to pay attention on most informative regions of the input
image to improve feature extraction, which will automatically
emphasize useful parts. Additionally, the model has a binary
focused loss, which addresses class imbalance by emphasizing
hard negatives more. The Monte Carlo dropout introduces
uncertainty estimation during interference, which can be used
to measure the degree of prediction confidence and reveal
information about the dependability of the model. These
enhancements are intended to maintain a reliable and
understandable method of melanoma classification, which also
improves the generalization of model performance and reduces
overfitting.
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Advanced data augmentation and specially designed
callbacks like ReduceLROnPlateau and EarlyStopping, which
aid in learning optimization and prevent overfitting, are some
further contributions of the suggested model. The model uses
EfficientNetB4 as a backbone to extract features, making it
possible for the model to achieve high accuracy with
computational cost under control. We train the model in
multiple stages with heavy data augmentation like rotation,
zoom and flip to be able to generalize well to unseen data. In
the evaluations, besides these standard measures (accuracy,
precision, recall and F1-score), we measure uncertainty using
Monte Carlo sampling. This perspective offers a broader
interpretation of model behavior that can guide confidence in
clinical decisions.

IV. EXPERIMENTAL RESULTS

The results produced by the method developed in this work
during the current simulation studies are reviewed in this
section of the study.

Melanoma

Non-Melanoma

=

Non-Melanoma 2

Melanoma 2

Fig.2. Sample images for melanoma and not melanoma classification.

Fig. 2 shows the sample images taken for classifying
Melanoma and Not Melanoma. The melanoma dataset was
used for these experiments [17]. The data preprocessing
techniques described earlier were also applied to this dataset in
our work. The proposed work made use of ISIC 2019 [21],[22]
and HAM10000 [23] public datasets available freely online on
the International Skin Imaging Collaboration Challenge.

The plot in Fig. 3 shows the training and validation
accuracy across 50 epochs. The training accuracy curve,
indicated by the blue line, gets very jagged with vivid spikes
and ascents. This might reflect a tendency to overfit, implying
that the model is making its predictions too closely follow the
training set (as opposed to other data). On the other hand, the
validation accuracy (green) moves more steadily on small steps
of improvement, which means better generalization to unseen
data. The saturation of the generalization g between the two
accuracy curves suggests that the depth-3DIHNN fails to
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generalize well, and this problem would be alleviated by
techniques such as model fine-tuning or regularization.

Accuracy vs Epoch

1.000 +

0.975 -

0.950 -

0.925

Accuracy

0.900 ~

0.875 4

0.850 4

0.825 -

— Training Accuracy
— Validation Accuracy

T T T T T T
] 10 20 30 40 50
Epochs

Fig.3. Training and validation accuracy over epochs.

Loss vs Epoch

—— Training Loss
— Validation Loss

2.0

1.5+

Loss

1.0 1

0.5 1

0.0 4

T T T T T T
0 10 20 30 40 50
Epochs

Fig. 4. Training and validation loss over epochs.

The above plot in Fig. 4 visualizes how loss changes over
time with epochs as the independent variable. Training loss is
the purple line, validation loss is the red line. Both the losses
start large but decrease rapidly, indicating that the model
makes good progress early in training. After this drop, there is
some breakage, and the losses rapidly go lower in later epochs.
Training and Validation loss have nearly no split, it means the
model is not overfitting or underfitting. As the model is able to
achieve low loss values, it suggests that the model can leamn
well.

The Receiver Operating Characteristic (ROC) curve, shown
in Fig. 5, is a popular measure of the performance of a binary
classifier is depicted in the above figure. The relationship of
the true positive rate (TPR) versus the false positive rate (FPR)
is also plotted with different threshold values. The blue line is
shooting up towards high TPR values as FPR rises — this means
that the model can differentiate between positive and negative
classes well. The curve is shifted towards the upper left corner
(optimal performance) with high sensitivity and specificity.
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The dashed diagonal line is a random classifier which have
same TPR as it has FPR for any threshold. The ROC curve is
also well above this diagonal, so it shows that the model beats
random guessing. Area Under the Curve (AUC) is probably
close to 1, indicating strong classification.

Receiver Operating Characteristic (ROC) Curve

1.0 q

0.8 1 7

0.6 4 -

0.4 1 i

True Positive Rate
N\

0.2 14 -7

0.0 1

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Fig. 5. Receiver Operating Characteristic (ROC) curve.

Precision-Recall vs Threshold

1.0 4 = Precision
—— Recall

0.8

0.6

score

0.4

0.24

0.01

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Threshold

Fig. 6. Precision and recall vs. Threshold.

The above Fig. 6 shows the Precision-Recall curve against
the classification threshold. The blue curve corresponds to
precision, while the red one indicates recall. As we set the +'
threshold higher and higher, our precision improves drastically,
approaching 1, which means that the model becomes
increasingly confident in its positive predictions to yield high
overall accuracy. But recall (the red curve) is decreasing as
precision increases. This is a simple case of trade-off when we
tune the threshold - recall increases (hits more true positives)
and precision decreases (hits false positives). The feature space
gives a geometrical picture of this trade-off, and allows to
choose the best threshold with respect to the precision-recall
trade-off according to the particular characteristics of the
problem (e.g., more emphasis on precision or recall).

The Cumulative Gain Curve shown in Fig. 7 is something
that will help you when it comes to evaluating the performance
of a classifier for ranking problems. The curve displays the
cumulative gain against the percentile of the samples. With the
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number of samples, the cumulative gain increases as well and
tends to 1. This indicates that if 80% of samples are retained by
taking those after the 20th row, a larger percentage of the
positive class is covered. The steep rise at the start of the curve
shows that the model can quickly identify many relevant
samples, which could be advantageous for systems such as
targeted marketing or fraud detection. A perfect curve would
indicate a sharp steep at the beginning, followed by a plateau,
indicating that most positive samples are correctly included in
top ranked portion of the test.

Cumulative Gain Curve
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Fig. 7. Cumulative gain curve.

AUC vs Threshold
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Fig.8. AUC vs. Threshold.

Fig. 8 shows how the Area Under the Curve (AUC) and
classification level relate. Plot of AUC as a function of the
threshold defining positive and negative samples. At first, as
the threshold increases substantially from 0 to about 0.3, AUC
rapidly grows and it is close to the maximum value of almost
1.0, showing that the model has great -classification
performance at this threshold grain highly balanced class
separation. More importantly, the AUC starts to decline when
this threshold becomes larger, implying that with higher
threshold values, the model down-weights positive samples
and accordingly its capability of distinguishing positives from
negatives weakens. Such behavior suggests that an optimal
threshold can be found where AUC is the largest for indicating
the threshold thatresults in the best classification performance.
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This decline following the peak is expected due to the well-
known trade-off between precision and recall with threshold.

Melanoma

Images
True: Melanonma
Pred: Melanoma

Uncertainty: 0.0013

Not Melanoma Image

True: NotMelanoma
Pred: NotMelanomma
~ Uncertainty: 0.0012

&

True: NoMelanoma
Pred: NotMelanomma
Uncertainty: 0.0012 Uncertainty: 0.0011

CO R

Fig.9. Classification of melanoma and not melanoma images with prediction
confidence.

True: Melanoma
Pred: Melanoma

The picture in Fig. 9 represents the classification between
Melanoma and Not Melanoma images and model predictions
with respective uncertainty values. The left column shows
Melanoma cases that are correctly predicted as Melanoma,
with uncertainty of 0.0013 and 0.0012, so the model is more
certain in these predictions. The right column shows Not
Melanoma images classified as such with even lower
uncertainty values (U = 0.0011 and U = 0.0012). These very
low levels of uncertainty indicate that the model is doing an
excellent job accurately placing examples into one of two
categories, and therefore can be thought to have high certainty
in its predictions.

TABLE . CLASSIFICATION REPORT
Precision Recall F1-Score
Melanoma 0.98 091 0.95
Not Melanoma 0.92 0.98 0.95
Total Accuracy 0.95

The above Table I is the classification report for a model
that classifies between two labels, Melanoma and Not
Melanoma. In the case of Melanoma, the model has high
precision (0.98), which means that 98% are the predicted
positive cases are comparable. Its recall (0.91) is a bit lower,
which means that 91% of the actual positive cases have been
recognized. Melanoma achieves F1-Score 0.95, balancing
precision and recall. For Not Melanoma, it is 0.92 precision
and a high recall of 098 indicates that the model accurately
detects true positives at a high rate. The Not Melanoma F1-
Score: 0.95 as well. The suggested model, making use of
Efficient Net using CBAM Attention and Monte Carlo Dropout
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for uncertainty estimation and the model’s general accuracy of
0.95 indicates a strong performance for the two classes. The
balanced F1-Scores and high accuracy demonstrate that the
model performs well in detecting both conditions without
significant bias.

Confusion Matrix

Melanoma - 1638 143

True label

NotMelanoma 30 1750
-3 2
c\':'@ ¢°é\
b o®
A o
=5

Predicted label

Fig. 10. Confusion matrix for melanoma classification.

Fig. 10 above shows the confusion matrix for a binary
classification model distinguishing between Melanoma and
Not Melanoma. Out of 2816 instances, the model correctly
identified 1638 cases of Melanoma (True Positives) and 1750
cases of Not Melanoma (True Negatives). However, it made
errors by incorrectly predicting 143 cases of Not Melanoma as
Melanoma (False Positives) and 30 cases of Melanoma as Not
Melanoma (False Negatives). While the matrix reflects the
model’s strong performance in accurately classifying Not
Melanoma (with high True Negatives), it also reveals areas for
improvement, particularly in reducing the False Positive and
False Negative predictions.

TABLE II. COMPARATIVE ANALYSIS
Model Name Accuracy (%)
ResNet50 [18] 0.88
Sequential [19] 0.92
CNN [20] 0.93
DenseNet121 [21] 0.93
InceptionV3 [22] 0.94
Proposed Model(EfficientNetB4) 0.95

A comparison of different deep leaming models based on
their accuracy for a particular task is shown in Table II.
ResNet50, Sequential CNN, Dense Net 121, Inception V3, and
the suggested EfficientNetModel are all included in the
comparison. Among these, Inception V3 attains maximum
accuracy at 0.94 while the ResNet50 model has the lowest
accuracy at 0.88. With an accuracy of 0.95, the suggested
model making use of EfficientNet using CBAM Attention and
Monte Carlo Dropout for uncertainty estimation beats all the
other models, demonstrating its superior performance on the
task at hand.
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V. RESULTS AND DISCUSSION

The proposed Efficient NetB4 model demonstrates an
accuracy of 95 % and strong melanoma classification
performance. The precision and recall are (098, 091) for
melanoma and (0.92, 0.98) for not melanoma classes. From the
confusion matrix, it is clear that the misclassification rate is
low thereby confirming reliable discrimination between
classes. The comparative study shows that proposed approach
outperforms CNN based methods, showing correct
classification with low uncertainty thereby validating its
effectiveness for melanoma detection.

VI.  CONCLUSION

A new deep learning framework for melanoma recognition
is proposed in this study that includes the CBAM attention
mechanism, focal loss and Monte Carlo Dropout (MC
Dropout) in order to prove uncertainty estimation. The
integration has significantly improved the performance and
dependability. These advanced techniques allowed our model
to concentrate on key characteristics and address the problem
of class imbalance in order to produce accurate forests with
uncertainty. The proposed model made use of CBAM attention
and the Monte Carlo dropout method for uncertainty estimation
and the accuracy of the model is 95, and AUC is 0.98, which
indicates it has a lot of potential for actual clinical use in the
future. Our approach is novel in that it simultaneously
optimizes the attention mechanism, focus loss and uncertainty
estimation. Admittedly, in the presence of predictions and
impossibilities, perhaps it is indeed that the model offers some
kind of practical way to aid early diagnosis of skin cancer. The
study is clinically relevant to image -classification-based
clinical applications, and it highlights the advantage of
applying cutting-edge Al techniques for improved decision
diagnosis and support accuracy. Future work can incorporate
multi-class lesion classification to further improve robustness.
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