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Abstract—Recent developments in deep learning have 

demonstrated tremendous potential for enhancing medical 

picture classification tasks, particularly for the detection of skin 

malignancies like melanoma. However, it is still a huge challenge 

to guarantee high accuracy, reliability, and interpretability in 

real clinical settings. This study attempted to resolve these issues 

by proposing a novel approach to melanoma detection, by 

employing diverse techniques such as the Convolutional Block 

Attention Module (CBAM), binary focal loss, and Monte Carlo 

Dropout (MC Dropout) for uncertainty estimation. The CBAM 

attention module was inserted to help the network focus on 

important features of images, and focal loss was applied to solve 

class imbalance and encourage learning from hard samples. MC 

Dropout was used to achieve an uncertainty estimate in the test 

set, and thus, more reliable and interpretable predictions. The 

approach was implemented with a pre-trained deep CNN called 

EfficientNetB4 as the backbone and trained on a large melanoma 

dataset, which is separated into training sets, test sets, and 

validation sets in order to test the performance. Model evaluation 

was performed using accuracy, precision, recall, F1-score, and 

AUC, resulting in 0.95 for accuracy, whereas the AUC value is 

0.98. Furthermore, the uncertainty estimate made a clearer 

decision-making, and the interpretability was crucial when used 

as a clinical task model. These results highlight the necessity to 

combine attention mechanisms, task-specific loss terms, and 

uncertainty quantification for building accurate and 

interpretable AI in medical domains. The study prototype has the 

potential for improving the detection of early-stage melanoma 

and provides useful guidance to future AI-based healthcare 

services. 
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I. INTRODUCTION 

Melanoma is an aggressive skin cancer and has continued 
to be a leading cause of death from cancer worldwide [1]. 
Melanoma – which originates in the pigment-producing cells 
of the skin called melanocytes – can spread rapidly to other 
organs unless it is caught and treated early. Early detection of 
melanoma contributes significantly to the survival rates of 
patients and is, therefore, a critical area of research in medical 
imaging and diagnostics [2]. Diagnosis of melanoma is usually 
through clinical examination and histopathology, which are 
associated with human error and variability. Due to the visual 
aspect of the disease, automatic systems and methods, which 

make use of image analysis, are a central part of new scientific 
progress on accurate melanoma detection. 

Recent advances in machine learning, particularly deep 
learning, have demonstrated significant potential for automated 
melanoma classification based on skin lesion images [3]. 
Convolution neural network (CNN) has been known as a 
successful technique for image classification, where it can 
learn and abstract features automatically from visual data. 
Melanoma classification has been tackled using different 
methods, with the use of diverse CNN architectures to enhance 
accuracy. However, there are still many issues, such as the 
limited labeled datasets in diverse domains, the differences 
between the quality levels of images and patterns of skin 
lesions complexity [4]. Hence, emerging models capable in 
their ways to go beyond these limitations and make more 
appealing predictions (in terms of reliability, interpretability 
and robustness) are always needed. 

The problem of handling the uncertainty relating to the 
medical image analysis is one of the primary concerns for 
melanoma classification [5]. Despite their great power, deep 
learning models are typically unable to make predictions while 
also estimating the uncertainty of these predictions. Failure to 
estimate such uncertainty can lead to bad decisions in a clinical 
setting when missclassification is expensive [6]. Also, deep 
learning based algorithms are prone to overfitting when there is 
limited The study proposed a new deep learning framework for 
melanoma recognition, where the CBAM attention mechanism, 
focal loss and Monte Carlo Dropout (MC Dropout) were 
integrated to obtain uncertainty estimation. The incorporation 
produced a remarkable improvement in the performance and 
reliability. With the help of these sophisticated methods, our 
model could focus on important attributes and handle the issue 
of class imbalance to generate reliable predictions with 
uncertainty. With an accuracy of 95 and an AUC of 0.98, the 
model also has great potential in future real clinical 
applications. The novelty of our method lies in the usage of 
attention mechanism, focal loss and uncertainty estimation, 
optimizing them all simultaneously. This means to bring 
interpretability and robustness at the same time so that our 
model can generalize well for difficult tasks such as melanoma 
detection, training data or unbalanced data. All of these are 
reminiscent of the need to come up with methods that improve 
model accuracy and also provide uncertainty estimates’ which 
is a necessary condition for well-calibrate decision support 
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systems able to offer robustness and generalizability in clinical 
usage. 

Another is to determine what are the most relevant parts in 
an image, particularly when diagnosing melanomas [7]. Even if 
the CNNs are good feature extractors, this learning does not 
exploit spatial relationships and contextual information among 
the entities in an image. It can result in a mistake with 
grouping, particularly if the melanoma lesion is not readily 
visible or partly covered. The Convolutional Block Attention 
Module (CBAM): This has proved beneficial to enhance the 
performance of CNNs, so they attend more on a most 
important part of an image. By utilizing an attention 
mechanism, CBAM makes networks pay more attention on 
informed regions to increase the classification accuracy and 
interpretability. 

To tackle the above difficulties, a cost-effective and 
dynamic solution powered by an EfficientNet with CBAM 
attention-based model, incorporated with Monte Carlo Dropout 
(MCD) for uncertainty estimation. Derivation of network: 
EfficientNet has been chosen as it has strong and robust 
accuracy and computation efficiency according to retrospective 
training, testing using images regarding melanoma [8].  MCD 
can naturally give an approximate measure of prediction 
uncertainty, while the integration of CBAM may assist the 
network in attending to saliency parts on input images. This 
synergistic relationship leads to a stronger identification of 
melanoma, which in turn is good-performing (in terms of 
accuracy) and provides uncertainty, thereby allowing its 
application in the clinic where decisions are crucial. 

II. LITERATURE SURVEY 

S. Nazari et al. [9] stressed the relevance of diagnostic 
models for real-world usage, which include smartphone based 
dermoscopyin order to enhance the diagnosis in rural regions. 
As per the ISIC2020 challenge, their approach demonstrated 
comparable outcomes to the first-place model while 
outperforming second and third places. These models 
established an appropriate compromise between accuracy and 
computational efficiency by using 98 % fewer parameters, 
thereby making them well suited for real-time deployment in 
resource constrained environment and increasing the reach of 
accessible healthcare. 

A hybrid framework was proposed by P. K. Veni et al. [10] 
that integrates feature extraction from VGG16 with CBAM and 
classification with Caps Net. The proposed model was tested 
using augmented and non-augmented datasets, thereby 
displaying high performance results up to 100 % precision, 99 
% accuracy, and an F1-score. 

Skin-GAB, a deep learning based scheme, is proposed by J. 
Chen et al. [11] for classifying pigmented skin diseases. This 
approach makes use of augmentation, segmentation, network 
fusion, and the GAB mechanism for enhancing classification 
by highlighting essential characteristics. Skin GAB has 
enhanced the accuracy 2.89 % as compared to the previous 
model, projected to continue contributing to future diagnosis 
and managing pigmented skin illness. 

A most dangerous type of skin cancer, focusing melanoma, 
was proposed by G. Dogan et al. [12]. If diagnosed early, it can 
be treated effectively. 

Convolutional neural networks (CNNs), a popular deep 
learning tool, have shown great promise in accurately detecting 
melanoma. By integrating attention mechanisms with CNNs, 
their accuracy can be further enhanced. However, previous 
models for melanoma detection have not utilized attention 
mechanisms effectively. In order to help researchers use 
attention mechanisms effectively, this study investigates how 
they affect CNN performance. The authors investigated seven 
distinct attention mechanisms using a base CNN model and 
compared the outcomes. 

The C3BAM-XAI model of CNN was proposed by M. J. 
Abbas et al. [13], integrating CBAM and explainable AI. It 
addresses data imbalance through augmentation and uses 
CBAM’s attention modules for better feature extraction. 
Hyperparameters are optimized with Nadam for smoother 
training. The model, tested on the PD Kaggle dataset, achieved 
93.33% accuracy by B. Mittal [14]. Ablation trials demonstrate 
that CBAM will enhance the interpretability and accuracy of 
the model, making it dependable for clinical usage, particularly 
for Parkinson’s disease detection. This study highlights the 
expanding significance of deep learning approaches in 
improving medical diagnosis. 

CACBL-Net, a lightweight deep CNN, was proposed by R. 
Agrawal et al. [15], tailoring portable diagnostic devices like 
smartphones, thereby addressing limitations of data imbalance 
and computational capacity. The study made use of focal loss 
for handling imbalance in the dataset and the Monte Carlo 
dropout method for uncertainty estimation to improve the 
robustness of diagnostic networks. 

The network incorporates channel attention to enhance 
feature extraction and employs an adaptive class-balanced 
focal loss to prioritize complex cases while reducing the 
influence of simpler ones, B. Mittal [16]. On the HAM-10000, 
PAD-UFES-20 and MED-NODE datasets, CACBL-Net 
reached sensitivities of 90.60%, 91.88% and 91.31% with 
prediction times ranging from 0.006 to 0.011 s per case, 
respectively. These performances are superior to other models 
that prove the potential and CACBL-Net for skin lesion 
diagnosis using a mobile device with low computational cost. 

Z. Ji et al. [17] introduced EFAM-Net as a new architecture 
for the classification of skin lesions. The low-level information 
of color and texture is learned by inserting an Attention 
Residual Learning ConvNeXt (ARLC) block in the shallow 
part, and as the depth increases, it is removed to employ a 
deeper layer with the Parallel ConvNeXt (PCNXt) block by 
M.K. Amber [18]. To enhance the feature fusion in multiple 
scales, a Multi-scale Efficient Attention Feature Fusion 
(MEAFF) block is proposed. We tested our method on ISIC 
2019, HAM10000 and a private dataset and the experiment 
results showed it performed satisfactorily with classification 
accuracies of 92.30%, 93.95%, and 94.31%. 

Y. Jia et al. [19] proposed a medical image classification 
approach, which adopted a contour processing attention 
mechanism to increase its accuracy through focusing on key 
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regions. The process comprises a step of photo converting and 
linearizing images, as well as contour generation. 

The original gray-scale picture is convolved with these 
contours, creating a row-column feature map that can be 
further sharpened by means of point-wise multiplication by A. 
Siddiqui [20]. The resulting image is input to a residual 
network for classification. Experiments on three medical image 
datasets indicate noticeable enhancements are achieved with 
respect to accuracy, F1 score, and Kappa score. This technique 
also demonstrates value in other areas such as remote sensing 
and vehicle image recognition. 

III. PROPOSED MODEL 

A. Input Layer 

The model receives data through the input layer. In this 
instance, the input layer is set up to accept photos of shape 
(224, 224, and 3), which means the images have three color 
channels (RGB) and a dimension of 224 by 224 pixels. In order 
to ensure the model correctly processes the data, this layer 
specifies the form of the input data that will be fed into the 
neural network. 

𝐼𝑛𝑝𝑢𝑡 = ℝ𝐻 ×𝑊×𝐶  (1) 

where, 

H stands for height, W for width, and C for the number of 
channels (3 for RGB) in the picture. This layer does not do any 
calculation; it only takes in the input. 

B. EfficientNetB4 

The foundation of the model for feature extraction is a pre-
trained deep CNN called EfficientNetB. It belongs to an 
efficient net family, which is renowned for its excellent 
computational cost and parameter size efficiency. The top 
classification layers are eliminated by setting include 
top=False, allowing the model to focus on extracting relevant 
features from the image data. The model learns superior initial 
feature representations thanks to the pre-trained weights from 
ImageNet, which lessens the need for intensive training from 
the beginning. Similar to other convolutional neural networks, 
theEfficientNetB4 model processes the input image in several 
ways: 

Convolution Operation: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑣(𝑋, 𝑊, 𝑏) = (𝑋 ∗  𝑊) +  𝑏           (2) 

where, 

 X is the input tensor. 

 Wis the filter (kernel). 

 b is the bias. 

 ∗represents the convolution operation. 

Activation: Following the convolution, an activation 
function such as ReLU is applied: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝑋, 𝑊, 𝑏))                   (3) 

EfficientNetB4 uses advanced blocks like MBConv, 
Squeeze-and-Excitation (SE) blocks, and depth-wise separable 

convolutions, but the basic operation is a convolution followed 
by activation. 

C. Dense Layers (Channel Attention) 

The feature maps are transformed by the channel attention 
module dense layers following pooling operations. By using 
the ReLU activation function, the first dense layer reduces the 
number of channels by a factor of the ratio (usually set to 8). 
The feature map is compressed throughout this process, 
thereby allowing the network to learn more succinct 
representations. By returning the channel size to its initial 
value, the second dense layer produces an improved feature 
map that may be integrated with the attention mechanism. 

First Dense Layer: 

𝑂𝑢𝑡𝑝𝑢𝑡1 =  𝑅𝑒𝐿𝑈 (
𝑋

𝑅𝑎𝑡𝑖𝑜
)                          (4) 

where, 

• X is the input feature map from the previous layer. 

• Ratio is a hyperparameter (often set to 8). 

Second Dense Layer: 

Output2 = W.Output1+b1             (5) 

where, 

• Wis the weight matrix. 

• b is the bias vector. 

• The dense layer performs a matrix multiplication 
followed by the addition of bias 

D. GlobalAveragePooling2D 

GlobalAveragePooling2D calculates the average of every 
feature map throughout the full spatial dimension (including 
height and width). It makes the output size uniform across 
various input images by reducing the spatial dimension to a 
single value per feature map. By ensuring that each feature 
map is summed up by its average value, this pooling procedure 
enables the model to incorporate global context and exclude 
spatial details that are less crucial for the job. The average of 
each feature map of all spatial locations is calculated via global 
average pooling: 

𝑂𝑢𝑡𝑝𝑢𝑡𝑎𝑣𝑔[𝑐] =
1

𝐻×𝑊
∑ ∑ 𝑋[ℎ, 𝑤, 𝑐]𝑊

𝑤=1
𝐻
ℎ=1             (6) 

where, 

• Hand W are the height and width of the feature map. 

• c is the index for the channels. 

• The output is the average value of all the pixels in each 
channel of the feature map. 

E. Reshape Layer 

The reshape layer is used to transform the output of the 
global average pooling operation into a shape that corresponds 
to the layers it follows. In this instance, it ensures that the 
tensor has a single spatial dimension while retaining the 
channel information by reshaping the pooled tensor to a shape 
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of (1,1, channel). As a result, the feature map can be processed 
by the thick layers that follow, which are built to deal with a 
specific dimensionality. 

Reshaped Output = Reshape(Input, (1,1, Channels))  (7) 

The reshape operation doesn't modify the underlying data 
but changes the dimensions of the tensor to ensure 
compatibility with subsequent layers. The result is a tensor of 
shape (1,1,Channels), where each channel contains one 
averaged value. 

F. GlobalMaxPooling2D 

Similar to Global Average Pooling, Global Max Pooling 
calculates the maximum value for each feature map rather than 
averaging the values. The notable feature of each feature map 
is highlighted using this technique. For tasks that depend on 
identifying strong patterns, such as object recognition, it 
captures the most prominent spatial characteristic. 

Global Max Pooling computes the maximum value for each 
feature map: 

Outputmax[c] = max
h,w

X[h, w, c]             (8) 

where, 

• [h,w,c] is the value at spatial location h,w, and channel 
c. 

• This outputs the maximum value for each feature map, 
providing a more extreme form of feature aggregation 
compared to averaging. 

G. Dense (After MaxPooling) 

After max pooling, the features are processed by the same 
dense layers that were used for average pooling. These layers 
help refine the pooled features by applying the same 
transformations (reduction in channels and restoration) as seen 
with average pooling. This dual processing allows the model to 
consider both the maximum and average features extracted 
from the input image. 

Output = W ∙  X +  b    (9) 

where, 

• W is the weight matrix, 

• X is the input feature map from the pooling operation. 

• b is the bias term. 

This is a standard dense layer that performs matrix 
multiplication and bias addition. 

H. Add Layer 

The results from both average and max pooling are then 
aggregated (Add layer). This kind of addition has more rich 
feature representation by using complementary information 
involved in the two pooling types. With a Concatentity set, the 
model perhaps can more easily focus on both the prototype 
categories and the salient cues in the image. 

Output =  avg_pool +  max_pool        (10) 

This layer performs the addition of the output from average 
pooling and max pooling. Each result element is the sum of its 
two feature map elements. 

I. Activation (Sigmoid) 

The Activation layer, applying the sigmoid activation 
function, is used in order to squash attributes of two branches 
into [0, 1] value softening. This yields a tensor which can be 
employed as the attention weights. The attention map 
generated by this activation enables the network to focus on or 
ignore some feature channels according to their relevance to 
the task. 

Output =
1

1+e−X          (11) 

The sigmoid function normalizes values between 0 and 1, 
making it ideal for binary classification tasks, where the output 
is interpreted as a probability. 

J. Multiply (Channel Attention) 

The attention mechanism for the input features is added via 
the multiply layer. The input feature map is reweighted with 
the attention map of previous layers through element-wise 
multiplication. This operation enhances some objects while 
reducing others over the input. This attention mechanism 
successfully allows our network to pay more attention to the 
most essential parts of the input image. 

Output =  X ×  A         (12) 

The attention map A, produced by applying sigmoid 
activation to the attention mechanism, is element-wise 
multiplied with input feature map X. The operation highlights 
the most salient features while suppressing irrelevant ones. 

K. Lambda Layer (Spatial Attention) 

The Lambda layer average-pools the input feature map over 
its spatial dimensions. By means of spatial dimension 
reduction, it yields a tensor that characterizes the distribution of 
global features in the image. This enables the model to obtain 
context throughout the entire image, where contextual 
information may be important for feature relationships (e.g., 
object detection and segmentation). 

   Outputavg =
1

H×W
∑ ∑ X[h,w, : ]W

w=1
H
h=1         (13) 

   Outputmax = max
h,w

X[h, w, : ]           (14) 

In the Lambda layer, we calculate the mean and max pixel 
values for each feature map over spatial dimensions. This 
permits the spatial information to be 'out-of-context', thus 
facilitating attention-guiding. 

L. Concatenate Layer 

The results of average and max pooling are concatenated 
by the concatenate layer in the channels dimension. This 
concatenation results in a more enriched feature map, including 
the average and most discriminative spatial features, which 
could be utilized by the model for both average-based and 
peak-based aspects at some layers ahead. It facilitates the 
network to construct a better representation for images by 
modeling different types of feature information. 
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𝑂𝑢𝑡𝑝𝑢𝑡 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑎𝑣𝑔_𝑝𝑜𝑜𝑙, 𝑚𝑎𝑥_𝑝𝑜𝑜𝑙)    (15) 

The average and max pooled features are concatenated at 
channel level. This operation doubles the number of channels 
as both types of pooling information is merged into one tensor. 

 
Fig. 1. Proposed model architecture. 

Fig. 1 demonstrates the architecture of the proposed hybrid 
CNN model by combining EfficientNetB4 with CBAM for 
enhanced feature extraction. The layered structure in the figure 
illustrates components like convolution, pooling and attention 
mechanisms.  

M. Conv2D (Spatial Attention) 

A convolutional filter is then used by the Conv2D layer on 
the concatenated feature map to generate a spatial attention 
map. The layer is trained to pay attention to parts of the image, 
through learning of spatial features, so as to highlight the most 
relevant parts. Kernels size and strides are determined to 
maintain the spatial relationship in the image as well as 

computational efficiency. The sigmoid activation makes the 
attention values range within 0 and 1, controlling how much 
each spatial location needs to be weighted. 

𝑂𝑢𝑡𝑝𝑢𝑡 =

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣2𝐷(𝐶𝑜𝑛𝑐𝑎𝑡,𝐹𝑖𝑙𝑡𝑒𝑟𝑠, 𝐾𝑒𝑟𝑛𝑒𝑙 𝑆𝑖𝑧𝑒))  (16) 

A convolution operation is performed over the 
concatenated feature maps and fed into a sigmoid function for 
obtaining the spatial attention map, which emphasize the 
region at a spatial level that model should pay attentions to. 

N. Multiply (Spatial Attention) 

Similar to the channel attention mechanism, the multiply 
layer applies the spatial attention map to the input features. The 
input feature map is multiplied by the spatial attention map, 
allowing the model to focus on the important spatial regions 
while ignoring less relevant ones. This helps the network learn 
which regions in the image are critical for the task at hand. 

   Output =  X × Aspatial         (17) 

The input feature map X is element-wise multiplied by the 
spatial attention map A_spatial, highlighting the most important 
spatial regions. Which focuses on the most relevant spatial 
regions. 

O. Global Average Pooling2D (Post Attention) 

To summarize all feature maps, GlobalAverage Pooling 2D 
is applied after the application of CBAM attention mechanism. 
In order to prepare the output for thick layers, this pooling step 
reduces the spatial dimensions of each feature map to a single 
value. After using the attention mechanism, this step 
guarantees that network is taking into account global features 
in feature map. 

  Outputavg =
1

H×W
∑ ∑ X[h, w, : ]W

w=1
H
h=1         (18) 

Global average pooling is applied again after the attention 
mechanism to summarize the entire feature map into a single 
value per feature map. 

P. Batch Normalization 

Batch Normalization helps to stabilize and speed up 
training by normalizing activation of neurons throughout the 
mini-batch. It guarantees the consistency of activation 
distribution by minimizing internal covariate shift. 
Furthermore, batch normalization improves the generalization 
of model and training process efficiently by acting as a 
regularization strategy. 

 Output = γ (
X−μ

√σ2+ϵ
) + β         (19) 

Batch normalization normalizes the activations by 
subtracting the batch mean μ and dividing by the batch 
standard deviation σ. During training, the parameters γ(scale) 
and β(shift) are learned to adjust the normalized values. 

Q. Dense (Fully Connected Layer) 

The Dense layer of size 256 propagates the feature map 
through a fully connected transformation. It learns the high 
abstractions of stance properties (e.g., training structures) and 
is called “ReLU” which introduces non-linearity into the 
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model. This layer is important so that the model can learn 
complex patterns in between before outputting something 
simple. L2 regularization is introduced to avoid overfitting by 
punishing excessive weights. 

     Output = ReLU(W. X + b)        (20) 

This dense layer performs a matrix multiplication between 
the input and weight matrix W, adds the bias term b, and 
applies the ReLU activation function. 

R. MCDropout 

The Dropout layer is a dropout layer with a custom forward 
pass that remains active during test. This is in contrast to 
traditional dropout, which is employed only at training time 
and thus cannot measure the uncertainty during test. This is 
especially valuable for uncertainty estimation tasks, where the 
interpretability of the model’s confidence in prediction is key. 
Through the activation of dropout during inference, the model 
is able to produce a wider diversity of predictions, leading to a 
more reliable measure for uncertainty. 

  Output = Dropout(X,p = 0.5)        (21) 

The MCDropout layer ensures that dropout is active during 
both training and inference, which allows the model to 
generate multiple stochastic forward passes and estimate 
uncertainty in predictions. 

S. Dense (Output Layer) 

The final Dense layer is the output with a single unit for 
binary classification and sigmoid activation to make it suitable 
for your prediction task. Finally, the output of the sigmoid 
gives a value between 0 and 1, which one might interpret as 
being the probability that your input is in the positive class. 
This layer is the final decision point of the network, and 
observations fit to the model are transformed into a modeled 
prediction. 

 Output = Sigmoid(W ∙  X +  b)        (22) 

The final output layer calculates the probability of the 
positive class (binary problem) with a sigmoid activation. The 
output is a score in the range of [0, 1], which indicates the 
probability that the input sample falls into the positive class. 

The novel changes in the model could improve both 
performance and interpretability on a melanoma deep learning 
classifier. The contribution lies in integrating the CBAM 
(Convolutional Block Attention Module) that works with 
channel-wise and spatial attention. As a result, this allows the 
model to pay attention on most informative regions of the input 
image to improve feature extraction, which will automatically 
emphasize useful parts. Additionally, the model has a binary 
focused loss, which addresses class imbalance by emphasizing 
hard negatives more. The Monte Carlo dropout introduces 
uncertainty estimation during interference, which can be used 
to measure the degree of prediction confidence and reveal 
information about the dependability of the model. These 
enhancements are intended to maintain a reliable and 
understandable method of melanoma classification, which also 
improves the generalization of model performance and reduces 
overfitting. 

Advanced data augmentation and specially designed 
callbacks like ReduceLROnPlateau and EarlyStopping, which 
aid in learning optimization and prevent overfitting, are some 
further contributions of the suggested model. The model uses 
EfficientNetB4 as a backbone to extract features, making it 
possible for the model to achieve high accuracy with 
computational cost under control. We train the model in 
multiple stages with heavy data augmentation like rotation, 
zoom and flip to be able to generalize well to unseen data. In 
the evaluations, besides these standard measures (accuracy, 
precision, recall and F1-score), we measure uncertainty using 
Monte Carlo sampling. This perspective offers a broader 
interpretation of model behavior that can guide confidence in 
clinical decisions. 

IV. EXPERIMENTAL RESULTS 

The results produced by the method developed in this work 
during the current simulation studies are reviewed in this 
section of the study. 

 
Fig. 2. Sample images for melanoma and not melanoma classification. 

Fig. 2 shows the sample images taken for classifying 
Melanoma and Not Melanoma. The melanoma dataset was 
used for these experiments [17]. The data preprocessing 
techniques described earlier were also applied to this dataset in 
our work. The proposed work made use of ISIC 2019 [21], [22] 
and HAM10000 [23] public datasets available freely online on 
the International Skin Imaging Collaboration Challenge. 

The plot in Fig. 3 shows the training and validation 
accuracy across 50 epochs. The training accuracy curve, 
indicated by the blue line, gets very jagged with vivid spikes 
and ascents. This might reflect a tendency to overfit, implying 
that the model is making its predictions too closely follow the 
training set (as opposed to other data). On the other hand, the 
validation accuracy (green) moves more steadily on small steps 
of improvement, which means better generalization to unseen 
data. The saturation of the generalization g between the two 
accuracy curves suggests that the depth-3DIHNN fails to 
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generalize well, and this problem would be alleviated by 
techniques such as model fine-tuning or regularization. 

 
Fig. 3. Training and validation accuracy over epochs. 

  
Fig. 4. Training and validation loss over epochs. 

The above plot in Fig. 4 visualizes how loss changes over 
time with epochs as the independent variable. Training loss is 
the purple line, validation loss is the red line. Both the losses 
start large but decrease rapidly, indicating that the model 
makes good progress early in training. After this drop, there is 
some breakage, and the losses rapidly go lower in later epochs. 
Training and Validation loss have nearly no split, it means the 
model is not overfitting or underfitting. As the model is able to 
achieve low loss values, it suggests that the model can learn 
well. 

The Receiver Operating Characteristic (ROC) curve, shown 
in Fig. 5, is a popular measure of the performance of a binary 
classifier is depicted in the above figure. The relationship of 
the true positive rate (TPR) versus the false positive rate (FPR) 
is also plotted with different threshold values. The blue line is 
shooting up towards high TPR values as FPR rises – this means 
that the model can differentiate between positive and negative 
classes well. The curve is shifted towards the upper left corner 
(optimal performance) with high sensitivity and specificity. 

The dashed diagonal line is a random classifier which have 
same TPR as it has FPR for any threshold. The ROC curve is 
also well above this diagonal, so it shows that the model beats 
random guessing. Area Under the Curve (AUC) is probably 
close to 1, indicating strong classification. 

 
Fig. 5. Receiver Operating Characteristic (ROC) curve. 

  
Fig. 6. Precision and recall vs. Threshold. 

The above Fig. 6 shows the Precision-Recall curve against 
the classification threshold. The blue curve corresponds to 
precision, while the red one indicates recall. As we set the '+' 
threshold higher and higher, our precision improves drastically, 
approaching 1, which means that the model becomes 
increasingly confident in its positive predictions to yield high 
overall accuracy. But recall (the red curve) is decreasing as 
precision increases. This is a simple case of trade-off when we 
tune the threshold - recall increases (hits more true positives) 
and precision decreases (hits false positives). The feature space 
gives a geometrical picture of this trade-off, and allows to 
choose the best threshold with respect to the precision-recall 
trade-off according to the particular characteristics of the 
problem (e.g., more emphasis on precision or recall). 

The Cumulative Gain Curve shown in Fig. 7 is something 
that will help you when it comes to evaluating the performance 
of a classifier for ranking problems. The curve displays the 
cumulative gain against the percentile of the samples. With the 
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number of samples, the cumulative gain increases as well and 
tends to 1. This indicates that if 80% of samples are retained by 
taking those after the 20th row, a larger percentage of the 
positive class is covered. The steep rise at the start of the curve 
shows that the model can quickly identify many relevant 
samples, which could be advantageous for systems such as 
targeted marketing or fraud detection. A perfect curve would 
indicate a sharp steep at the beginning, followed by a plateau, 
indicating that most positive samples are correctly included in 
top ranked portion of the test. 

 
Fig. 7. Cumulative gain curve. 

 
Fig. 8. AUC vs. Threshold. 

Fig. 8 shows how the Area Under the Curve (AUC) and 
classification level relate. Plot of AUC as a function of the 
threshold defining positive and negative samples. At first, as 
the threshold increases substantially from 0 to about 0.3, AUC 
rapidly grows and it is close to the maximum value of almost 
1.0, showing that the model has great classification 
performance at this threshold grain highly balanced class 
separation. More importantly, the AUC starts to decline when 
this threshold becomes larger, implying that with higher 
threshold values, the model down-weights positive samples 
and accordingly its capability of distinguishing positives from 
negatives weakens. Such behavior suggests that an optimal 
threshold can be found where AUC is the largest for indicating 
the threshold that results in the best classification performance. 

This decline following the peak is expected due to the well-
known trade-off between precision and recall with threshold. 

 
Fig. 9. Classification of melanoma and not melanoma images with prediction 

confidence. 

The picture in Fig. 9 represents the classification between 
Melanoma and Not Melanoma images and model predictions 
with respective uncertainty values. The left column shows 
Melanoma cases that are correctly predicted as Melanoma, 
with uncertainty of 0.0013 and 0.0012, so the model is more 
certain in these predictions. The right column shows Not 
Melanoma images classified as such with even lower 
uncertainty values (U = 0.0011 and U = 0.0012). These very 
low levels of uncertainty indicate that the model is doing an 
excellent job accurately placing examples into one of two 
categories, and therefore can be thought to have high certainty 
in its predictions. 

TABLE I.  CLASSIFICATION REPORT 

 Precision Recall F1-Score 

Melanoma 0.98 0.91 0.95 

Not Melanoma 0.92 0.98 0.95 

Total Accuracy 0.95 

The above Table I is the classification report for a model 
that classifies between two labels, Melanoma and Not 
Melanoma. In the case of Melanoma, the model has high 
precision (0.98), which means that 98% are the predicted 
positive cases are comparable. Its recall (0.91) is a bit lower, 
which means that 91% of the actual positive cases have been 
recognized. Melanoma achieves F1-Score 0.95, balancing 
precision and recall. For Not Melanoma, it is 0.92 precision 
and a high recall of 0.98 indicates that the model accurately 
detects true positives at a high rate. The Not Melanoma F1-
Score: 0.95 as well. The suggested model, making use of 
Efficient Net using CBAM Attention and Monte Carlo Dropout 
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for uncertainty estimation and the model’s general accuracy of 
0.95 indicates a strong performance for the two classes. The 
balanced F1-Scores and high accuracy demonstrate that the 
model performs well in detecting both conditions without 
significant bias. 

 

Fig. 10. Confusion matrix for melanoma classification. 

Fig. 10 above shows the confusion matrix for a binary 
classification model distinguishing between Melanoma and 
Not Melanoma. Out of 2816 instances, the model correctly 
identified 1638 cases of Melanoma (True Positives) and 1750 
cases of Not Melanoma (True Negatives). However, it made 
errors by incorrectly predicting 143 cases of Not Melanoma as 
Melanoma (False Positives) and 30 cases of Melanoma as Not 
Melanoma (False Negatives). While the matrix reflects the 
model’s strong performance in accurately classifying Not 
Melanoma (with high True Negatives), it also reveals areas for 
improvement, particularly in reducing the False Positive and 
False Negative predictions. 

TABLE II.  COMPARATIVE ANALYSIS 

Model Name Accuracy (%) 

ResNet50 [18] 0.88 

Sequential [19] 0.92 

CNN [20] 0.93 

DenseNet121 [21] 0.93 

InceptionV3 [22] 0.94 

Proposed Model(EfficientNetB4) 0.95 

A comparison of different deep learning models based on 
their accuracy for a particular task is shown in Table II. 
ResNet50, Sequential CNN, Dense Net 121, Inception V3, and 
the suggested EfficientNetModel are all included in the 
comparison. Among these, Inception V3 attains maximum 
accuracy at 0.94 while the ResNet50 model has the lowest 
accuracy at 0.88. With an accuracy of 0.95, the suggested 
model making use of EfficientNet using CBAM Attention and 
Monte Carlo Dropout for uncertainty estimation beats all the 
other models, demonstrating its superior performance on the 
task at hand. 

V. RESULTS AND DISCUSSION 

The proposed Efficient NetB4 model demonstrates an 
accuracy of 95 % and strong melanoma classification 
performance. The precision and recall are (0.98, 0.91) for 
melanoma and (0.92, 0.98) for not melanoma classes. From the 
confusion matrix, it is clear that the misclassification rate is 
low thereby confirming reliable discrimination between 
classes. The comparative study shows that proposed approach 
outperforms CNN based methods, showing correct 
classification with low uncertainty thereby validating its 
effectiveness for melanoma detection. 

VI. CONCLUSION 

A new deep learning framework for melanoma recognition 
is proposed in this study that includes the CBAM attention 
mechanism, focal loss and Monte Carlo Dropout (MC 
Dropout) in order to prove uncertainty estimation. The 
integration has significantly improved the performance and 
dependability. These advanced techniques allowed our model 
to concentrate on key characteristics and address the problem 
of class imbalance in order to produce accurate forests with 
uncertainty. The proposed model made use of CBAM attention 
and the Monte Carlo dropout method for uncertainty estimation 
and the accuracy of the model is 95, and AUC is 0.98, which 
indicates it has a lot of potential for actual clinical use in the 
future. Our approach is novel in that it simultaneously 
optimizes the attention mechanism, focus loss and uncertainty 
estimation. Admittedly, in the presence of predictions and 
impossibilities, perhaps it is indeed that the model offers some 
kind of practical way to aid early diagnosis of skin cancer. The 
study is clinically relevant to image classification-based 
clinical applications, and it highlights the advantage of 
applying cutting-edge AI techniques for improved decision 
diagnosis and support accuracy. Future work can incorporate 
multi-class lesion classification to further improve robustness. 
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