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Abstract—Optimizing silencer placement in Heating,
Ventilation, and Air Conditioning (HVAC) systems is a complex
multi-objective problem due to conflicting objectives (noise,
energy, cost) and intricate topological constraints. Conventional
Multi-Objective Evolutionary Algorithms (MOEAs) often exhibit
inefficient convergence on such problems due to their reliance on
random search strategies. Addressing this challenging HVAC
design problem requires a more informed approach. This paper
proposes the G-HNSGA-III (Graph-Informed Hybrid NSGA-III),
a novel framework that enhances the NSGA-III algorithm by
embedding domain-specific knowledge from the system's Directed
Acyclic Graph (DAG) topology. This is achieved through two core
components that leverage heuristic search: a Graph-Informed
Initialization (GINI) strategy to provide a high-quality starting
population and a Graph-Informed Local Search (GILS) module
for post-processing refinement. The performance of G-HNSGA-
III was comprehensively benchmarked against the baseline
NSGA-III and six other established MOEAs on a complex data
center test instance. The results demonstrate a marked
superiority, with G-HNSGA-III achieving a 38.4% higher mean
Hypervolume (HV) than the baseline NSGA-III and a 99.3% Set
Coverage (SC) dominance over MOEA/D. The framework
consistently converged to the best-known Pareto front, achieving
a final mean Inverted Generational Distance (IGD) of 0.0030.
These findings validate that the proposed graph-informed
strategies effectively accelerate convergence and enable the
discovery of a higher-quality Pareto front, providing superior and
practically applicable solutions for complex engineering design
problems.

Keywords—Multi-objective optimization; NSGA-III; graph-
informed optimization; HVAC design; heuristic search; domain
knowledge

I INTRODUCTION

Modern facilities with strict climate control requirements—
spanning from commercial complexes to critical infrastructure
like hospitals—rely heavily on HVAC systems for operational
stability [1-2]. While essential, these systems create a
fundamental operational conflict. On one hand, the mechanical
noise from fansdegrades the acoustic environment; on the other,
the fan power required to drive airflow constitutes a major
operational cost, directly opposing sustainability targets [3-4].
The trade-offis physical and unforgiving: installing silencers to
attenuate noise inherently increases airflow resistance (pressure
drop), which forces fans to consume more energy to maintain
the same flowrate. Therefore, optimizing the placement of these
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components is not merely a design preference but a central
challenge in balancing energy efficiency with environmental
quality.

This optimization task is compounded by the topological
complexity of HVAC ductworks. Unlike simple linear systems,
duct networks function as Directed Acyclic Graphs (DAGsS),
where the airflow dynamics are highly interdependent [5-6]. A
design decision at a single upstream node propagates through
the entire network, affecting pressure and noise levels at all
downstream branches. Consequently, conventional design
methodologies reliant on heuristics or trial-and-error fail to
capture these global dependencies. They lack the mathematical
rigor to navigate a search space characterized by discrete
variables (e.g., specific silencer models) and strict physical
constraints.

To address such high-dimensional engineering problems,
Multi-Objective Evolutionary Algorithms (MOEAs) have
become the established methodological standard [7-8].
However, their application to network-based systems faces a
critical bottleneck: the quality ofthe initial population. Standard
algorithms like NSGA-III typically rely on random
initialization. In the strictly constrained solution space of an
HVAC network, this stochastic approach often results in an
inefficient search process, leading to slow convergence or
stagnation in local optima—a limitation well-known in the field
but rarely addressed with domain-specific logic.

We propose that embedding domain-specific topological
knowledge into the evolutionary search can overcome these
limitations. To this end, we introduce the Graph-Informed
Hybrid NSGA-III (G-HNSGA-III) framework. This approach
enhances NSGA-III by integrating DAG topology through two
mechanisms: a Graph-Informed Initialization (GINI) strategy
and a Graph-Informed Local Search (GILS) module.

The principal contributions of this paper are as follows:

e The proposal of a novel hybrid framework, G-HNSGA-
I1I, that effectively embeds the topological knowledge
from a DAG model into the evolutionary search process
for HVAC optimization.

e The design and implementation of two specific
algorithmic components: a GINI strategy to accelerate
initial convergence and a GILS module to enhance the
final solution set quality.
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e A comprehensive validation of the framework on a
complex, real-world data center case study,
demonstrating its significant performance superiority
over the baseline NSGA-III and six other established
MOEAs.

The remainder of this paper is organized as follows. Related
work is given in Section II. Section III details the DAG-based
system modeling and the pre-computation of topological
metrics. Section IV presents the proposed G-HNSGA-III
framework in detail. Section V describes the experimental setup,
parameters, and evaluation metrics. Section VI presents and
analyzes the comparative results. Finally, Section VII concludes
the paper and discusses future research directions.

II. RELATED WORK

The dual challenge of acoustic control and energy efficiency
is well-established in HVAC literature. Noise generation is an
inevitable byproduct of mechanical ventilation, necessitating
robustattenuation strategies to meet environmental standards[9-
10]. Approaches to characterize and mitigate this noise vary
widely, from detection algorithms based on recursive
partitioning in office spaces [11] to structural analysis of duct
vibration problems [12]. Parallel to acoustic concerns, energy
optimization remains a priority. Research has extensively
focused on improving fan operating efficiency [3], [13] and
integrating low-noise mechanical ventilators [14-15]. These
studies collectively illustrate that optimizing an HVAC system
is never a single-variable problem; it is a complex balancing act
between silencing the system and powering it.

To navigate these conflicting objectives, Multi-Objective
Evolutionary Algorithms (MOEAs) serve as the dominant
computational tool. Comprehensive reviews confirm their
efficacy in handling the non-linear constraints typical of
building engineering [7-8]. Specific applications have ranged
from optimizing pressure regulators [ 16] to automating design
workflows based on BIM data [17]. However, the "black-box"
natureof standard MOEAs presents limitations. Without domain
knowledge, these algorithms struggle with initialization. As
noted in recent studies, random initialization in algorithms like
NSGA-III  heavily influences the final hypervolume
convergence [18], and while adaptive penalty schemes can
mitigate some stagnation issues [ 19], they do not fundamentally
resolve the lack of structural awareness.

Recent advancements suggest that hybridizing evolutionary
search with domain-specific models offers a way forward. For
instance, combining MOEAs with LSTM networks has proven
effective in dynamic routing problems [20-21]. More
importantly, the value of topological information is gaining
recognition. Graph-based representations, such as DAGs and
Convolutional Networks, are increasingly used to model spatial-
temporal dependencies in complex systems [22-23]. Unlike
conventional approaches that treat HVAC optimization as a
black-box problem, this paper synthesizes these advancements
by explicitly embedding the DAG topological structure into the
evolutionary framework. This distinct positioning allows the
proposed G-HNSGA-IIIto overcomethe initialization blindness
and premature convergence flaws inherent in standard MOEAs.
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III. DAG MODEL

A. System Modeling with Directed Acyclic Graphs

A Directed Acyclic Graph (DAG) is employed to model the
ventilation system, as its structure inherently captures the
unidirectional nature of airflow and acoustic propagation. The
systemis formally representedas G = (V, E'), where Vis the set
of nodes and E is the set of directed edges.

Each node t; € V corresponds to a unique physical
component, including air sources (e.g., fans), transport elements
(e.g., ducts, elbows), functional units (e.g., silencers), and
terminal points (e.g., rooms). The edge set E' = e;; represents
the direct physical connections, where an edge e;; signifies that
both airflow and acoustic energy propagate fromnode ¢; to t.
The graph's topology and the physical properties of its
connections areencoded in a weightedadjacency matrix, A [23].

B. Formal Expression and Matrix Construction for Nodes
and Edges

Eachnode v; € V in the DAG corresponds to a discrete
physical component of the ventilation system (e.g., a fan, duct
segment, or silencer). The quantifiable properties of each

component are encapsulated in a multi-dimensional attribute
vector, F;. This vector is a concatenation of several attribute

subset, which are based on established engineering principles
[24]:

Location (L; € R*): The 3D spatial coordinates (x;, ¥;, Z;)-

Geometric (G; € R¥): Componentdimensions, such as duct
length, width, and height (L g,c¢i Wayeri Hauce) or elbow
parameters (Welbow,k' Helbow,k' relbow,k)'

Fluid Dynamic (Vi € R(kV)): Parameters goveming airflow,
including surface roughness (¢;), local loss coefficients (K;),
and fan performance curve coefficients.

Acoustic (Cl- € R ) : Parameters governing sound,
including natural attenuation A4, ;(f), flow-generated noise
Ly sen:(f), and silencer insertion loss IL;(f)).

Economic (Ei € R(kE)) : Cost-related data, such as the
procurement cost (COStipiriqri)-

The directed edges, e;; € E, formally represent the
unidirectional connections betweennodes t; and t;, defining the
path forairflow and acoustic energy. The acyclic property of the
graphiscritical, as it mirrors the physicalunidirectionality of the
ventilation system. This structure ensures a partial ordering of
nodes, which eliminates circular dependencies and guarantees
the sequential convergence of network-based simulations.

Weighted Adjacency Matrix (A): This matrix encodes the
topology of the system, defining the existence and properties
(e.g., length) of the connections between any two nodes.

Component Attribute Matrix (D 4,;): This matrix serves as
a central repository for the intrinsic features of all available
componenttypes. Eachrow corresponds toa specific component
model, while the columns parameterize its key attributes:
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e Component ID

e Reference location vector

e Geometric and fluid dynamic parameter vector
e Acoustic and economic parameter vector

During optimization, a specific component from Dy, is
assigned to a node in the graph. The process of translating a
physical system layout into this formal DAG representation is
shown in Fig. 2.
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Weighted Directed Adjacency Matrix
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Fig. 1. TIllustration of directed acyclic graph generation.

For example, consider a simple system composed of a duct
segment, an elbow, and another duct segment. The attributes of
these three components would be stored in the component
attribute matrix, D gy, as shown in Eq. (1).

Dcomp=
num l g a
1 o, o, o] [2000, 1000, 4.9] 11000
2 o, 10, 0 [2000, 1] 11000 |
3 [o. o. 10] [2000, 1000, 1.5] 11000

Each row in D, represents a unique component in the
system. The firstrow, f;, corresponds to the first duct segment
and contains its complete attribute vector. This vector begins
with the component's unique identifier, 1. It is followed by the
location vector L, = [0, 0, 0], specifying its 3D spatial
coordinates. The subsequent vector, G, /V; =[2000,1000,4.9],
encapsulates its geometric and fluid dynamic properties,
representing, for instance, a width of2000 mm, a height of 1000
mm, and a length of 4.9 m. The final vector (omitted here for
brevity) would contain the relevant acoustic and economic
parameters, completing the row's specification for a single
component.

A weighted directed adjacency matrix, A = (a;;), is used
to encode both the system's topology and the proportional
distribution of acoustic energy. This N X N matrix is defined as
shown in Eq. (2):

(A)ij, lfeu=<tl,t])EE
0, otherwise

aij = { (2)

The weight w;; represents the fraction of acoustic energy
that propagates from node ¢; to a direct successor node t;. At
any junction where the duct branches, this fraction is determined
by the ratio ofthe cross-sectional areas, as calculated in Eq. (3):
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wy =S/ Z S, 3)

kesucc(i)

where S; is the cross-sectional area of the specific branch
leading to node t;, and the denominator is the sum of the areas
of all branches immediately downstream from node t;.

For example, consider the system illustrated in Fig. 1. Its
topology and energy distribution are encoded in the weighted
adjacency matrix A, shown in Eq. (4). An element a,, = 0.5
signifies that the branch fromnode 1 to node 2 receives 50% of
the acoustic energy fromnode 1; similarly, a,, = 0.5 indicates
an equal energy splitto node 4. In contrast, an element a,;=1
indicates that 100% of the energy from node 2 propagates to
node 3, which is characteristic of a non-branching connection.
All zero-valued elements denote the absence of a direct path
between the corresponding nodes.

0 05 0 05 0 0 0

0 0 1 0 00 O

0 0 0 0 1 0 0
A=]l0 0 0 0 0 1 0 4

0 0 0 0 00 1

0 0 0 0 0O O

0 0 0 0 0O O

C. Pre-computation of Structural Information

To enhance computational efficiency, key structural metrics
are pre-computed from the DAG. As these metrics are inherent
to the network topology and independent of any specificsilencer
configuration, they are calculated once and stored prior to
initiating the optimization process. A primary metric is node
depth, Depth(t;), which defines a node's hierarchical position
relative to the system's source. The root node of the
system, t¢q,ce (€.2., the fan), is assigned a depth of zero:
Depth(ts,yrce) = 0. For any other node ¢;, the depth is
calculated recursively, as expressed in Eq. (5), as the minimum
depth of its immediate predecessors plus one:

Depth(tj) = min{Depth(t,) + 1} (5)
tiEpred(tj)

where, pred(tj) is the setof immediate parent nodes of ¢;.

Another pre-computed metric is the downstream total
airflow, Qg ownstream (t;)- This value represents the cumulative
volumetric flow demand of all terminal outlets reachable from
node ¢;. It is calculated via a reverse topological traversal,
starting from the outlets. The recursive definition is provided in

Eq. (6):

Qdownstre am (ti)
Q(demand,i)' lf t; € Voutlets

= {Z (tj € succ(tl-)) Quownstream (t;), 0therwise

where Q(gemana,) 18 the specified airflow requirement fora
terminal outletnode t;, and succ(t;) is the set of immediate
successor nodes of t;.

(6)

The potential sound source strength of a node,
wpotential(tx) , estimates the maximum potential noise
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contribution of each node t,. Its value is dependent on the
component type and is defined in Eq. (7) as:

LW.potential(tk)
Lyyratea(ty), if ty isa fan
B Lw,SGN,max(fk), if t; is a duct component

(7)

where L, -q¢0q (ti)is the fan's sound power level at its rated
operating point, The term L, 56y max(ty) is the maximum
estimated self-generated noise for an aerodynamic component
(e.g., a duct, elbow, or damper), calculated using the empirical
formula presented in Eq. (8):

Ly, s6nmax (ty) = Ly, () + 5010g,, (Vd,k) +101log,,(4,) (8)

Where L,,.(t;) is the component-specific sound power
level, V, is the design velocity through the component, and A
is its cross-sectional area.

Finally, the previously computed metrics (node depth,
downstream airflow, and potential sound source strength) are
aggregated into a composite Location Importance score, I(t},).
This heuristic is designed to estimate the strategic value of
placing a silencer at any given node t;, providing critical
domain knowledge to guide the optimization algorithm. This
score is calculated via Eq. (9) as a normalized, weighted sum of
the previously defined metrics:

1(t,)
1

- Depth(t,)+ 1
Qdownstream (tk)

maX(Qdownstream (ti))
tiev

+B

LW,potential (tk) (9)

max (L W,potential (tj))
tj (S

+y

where a, 5, and y are weighting coefficients constrained by
o + f +y = 1. Each termin the sumis normalized to a range
between 0 and 1 to ensure a balanced contribution.

Collectively, these pre-computed metrics— Depth(t;) ,
Quownstream(ti) » and I(t,) —constitute the quantitative
domain knowledge that informs the heuristic guidance for the
Graph-Informed Initialization (GINI) and Local Search (GILS)
strategies within the GINS-III framework.

IV. GRAPH-INFORMED HYBRID OPTIMIZATION
FRAMEWORK

The core of this work is the Graph-Informed Hybrid
Optimization Framework (GINS-III), designed to solve the
multi-objective silencer placement problem. The framework is
built upon the Non-dominated Sorting Genetic Algorithm III
(NSGA-III) and enhances its performance by incorporating the
pre-computed topological metrics described in Section II-C.

This integration is achieved through two primary
components: a Graph-Informed Initialization (GINI) strategy
and a Graph-Informed Local Search (GILS) mechanism. By
systematically leveraging this domain knowledge, the GINS-III
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framework guides the evolutionary search process to efficiently
balance the conflicting objectives of acoustic attenuation,
energy consumption, and economic cost.

A. Multi-Objective Optimization Preliminaries

In multi-objective optimization, a solution X; Pareto
dominates X, (denoted X; < X,)iflit is superiorin at least one
objective without being inferior in any other. Formally, this
relationship is defined in Eq. (10):

X, < X, & (i, £,(X) < £6))A (3 £,00) < £,(5,)) (10)

where f; (X) is the value of the i-th objective function. The
set of all such non-dominated solutions within the search space
X constitutes the Pareto Front (PF), as mathematically
represented in Eq. (11).

PF={X€X|AX € XX < X} (11)

Multi-Objective Evolutionary Algorithms (MOEAs) aim to
find a high-quality approximation of this front. The foundational
NSGA-II algorithm uses a crowding distance metric to promote
diversity, but its efficacy degrades in many-objective ( =3
objectives) problems. To overcome this limitation, NSGA-III
replaces the crowding distance calculation with a reference-
point-based selection mechanism, which effectively maintains
population diversity across high-dimensional trade-off surfaces
and allows for superior performance on complex problems. The
complete methodological workflow ofthe proposed approach is
visually illustrated in Fig. 2.
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Fig. 2. Methodological workflow of the graph-informed optimization

approach.

B. Framework Overview

The G-HNSGA-III framework is a two-phase hybrid
architecture. It enhances NSGA-III's global exploration by
embedding graph-based domain knowledge through two novel
components: a Graph-Informed Initialization (GINI) strategy
and a Graph-Informed Local Search (GILS) mechanism.

Phase 1: Global Exploration. This phase employs NSGA-III,
but critically replaces its random initialization with our GINI
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strategy. GINI leverages pre-computed topological metrics to
generate a high-quality guided initialization population, thereby
accelerating convergence from the outset.

Phase 2: Local Refinement. The preliminary Pareto front
from the global search is then refined by the GILS module. As a
post-processing step, GILS performs a targeted neighborhood
search to improve solution convergence, operating
independently of the main evolutionary loop.

C. Graph-Informed Population Initialization (GINI)

To mitigate the inefficiencies of random initialization in
complex engineering problems, we developed the Graph-
Informed Initialization (GINI) strategy. GINI replaces a purely
random start by embedding pre-computed topological
knowledge into the initial population using two complementary
mechanisms:

1) Heuristic seeding: A fraction of the population (P, eq)
is heuristically seeded. For individuals in this subset, decision
variables corresponding to the most topologically important
nodes (as determined by I(t,) ) are assigned a high-
performance silencer model with a high probability.

2) Graph-Informed Opposition-Based Learning (GIOBL):
Unlike standard Opposition-Based Learning (OBL) which
operates on numerical inversion, GIOBL performs a physical
state inversion at these high-impactnodes. For a given solution
X, its opposition X, is generated by flipping the silencer state
(i.e., installed <» not installed) at these key locations, thereby
improving the algorithm's exploratory efficiency.

D. Graph-Informed Local Search (GILS)

The Graph-Informed Local Search (GILS) is a post-
processing module designed to refine the final Pareto front. It
leverages the system's DAG topology to perform a targeted
search, which improves solution convergence and diversity

without interfering with the primary evolutionary operators of
NSGA-IIL

The core strategy of GILS is to focus its computational effort
on a set of key solutions ( Sy, ), which are strategically
significant points on the Pareto front. These are identified as:

e Knee Points: Solutions that are closest to the ideal point
in the normalized objective space, representing the most
balanced trade-offs.

e Extreme Points: Solutions that represent the best
performance for each individual objective.

The GILS algorithm proceeds iteratively as follows:

1) Preparation: At the beginning of each iteration t, the
current Pareto front, PF,,,,ons 1S de-duplicated to create a set
of unique solutions.

2) Key solution identification: The set of key solutions,
Skey» isidentified fromthe unique front based on the definitions
above.

3) Adaptive neighborhood search: For each solution X on
the front, a set of neighboring solutions, N(X), is generated.
This is done by applying "upgrade" (add/improve a silencer) or
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"downgrade" (remove/lessen a silencer) operations at nodes
along critical acoustic propagation paths in the DAG. The
search depth is adaptive: solutions belonging to Sy, are
subjected to a more extensive neighborhood search.

4) Evaluation and filtering: All generated neighborhood
solutions X' are evaluated by the physics simulation model.
Any solution that violates system constraints is discarded.

5) HV-based acceptance: The remaining valid, non-
dominated neighbors are considered for inclusion. A candidate
solution X’ is accepted and used to update the archive
(PF.7rent) Only if its inclusion increases the Hypervolume
(HV) indicator of the overall set. That is, PF_,,;,-cn; becomes
PFcurrent U {X’} Only if HV(PFcurrent v {X’}) >
HV(PFcurrent)'

6) Termination criteria: The GILS process terminates
when one of two conditions is met: (a) a maximum number of
refinement iterations, Ty fipement » 1S reached, or (b) the
improvement in the Hypervolume stagnates between iterations,
such that AHV < SHV.

E. The G-HNSGA-III Algorithm Workflow

The complete workflow of the G-HNSGA-III framework
integrates the GINI strategy, the core NSGA-III evolutionary
loop, and the GILS post-processing module. The step-by-step
process is as follows:

1) Initialization: The topological metrics of the DAG are
pre-computed (as described in Section II-C). Key parameters
for the NSGA-III algorithm (e.g., population size N, max
generations G,,,,, Crossover/mutation rates) are set.

2) Graph-Informed Population Generation (GINI): The
initial population, P, (size N ), is created using the GINI
strategy (Section IlI-C). Each individual in P, is then evaluated
using the physics-based simulation model to determine its
objective function values.

3) Evolutionary loop: The evolutionary process iterates for
generations g = 0 to G4, to drive the population toward
convergence along the Pareto front. This process consists of
three substeps:

a) Variation: An offspring population, Q4 (size N), is
generated from the current population, Py, using standard
genetic operators (selection, crossover, and mutation).

b) Evaluation: All individuals in the offspring population
Qg are evaluated.

¢) Selection: The parent and offspring populations are
merged into a combined population R; = P; U Q4 (size 2N). A
fastnon-dominated sortis applied to R,. The next generation,
P(g+1), is constructed by selecting individuals from the best
non-dominated fronts (F;,F,,..) . The reference-point
mechanism of NSGA-III is used to ensure diversity when
selecting from the last front that cannot be fully included.

4) Local refinement (GILS): Upon termination of the
evolutionary loop, the final non-dominated front, PFyinq;, is
passed to the GILS module. GILS iteratively refines this front
to enhance the convergence and diversity of the solutions.
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5) Final output: The refined Pareto-optimal solution set
from GILS is returned as the final output of the algorithm. The
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complete workflow described above is visually summarized in
the flowchart in Fig. 3.
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V. EXPERIMENTAL SETUP AND VALIDATION

This chapter details the computational experiments designed
to validate the performance of the proposed G-HNSGA-III
framework. All experiments were conducted on a complex,
large-scale data center air supply duct system, which serves as
the primary test instance.

A. Computational Environment and Simulation Model

The simulation and optimization environment was
developed in Python 3.9. The physics-based model for fluid
dynamics, acoustics, and economics was implemented using the
PyTorch library. All MOEAs, including our proposed
framework, were implemented using the Platypa-opt library.
The hardware platform consisted of an Intel Core 17-10700 CPU
and 16 GB of RAM, runninga Windows 11 operating system.

B. Test Instance: Data Center HVAC System

A complex and asymmetrical data center HVAC supply air
system was used as the test instance to ensure the problem's
practical relevance and difficulty. A partial schematic of the
system's DAG topology is shown in Fig. 4. The key parameters
and engineering constraints of this system are summarized in
Table L

C. Compared Algorithms and Parameter Settings

To validate the performance of the proposed G-HNSGA-II
framework, it was benchmarked against a baseline NSGA-III
and six other established MOEAs: NSGA-II, SPEA2, GDE3,
MOEAD, and OMOPSO.

Optimization Algorithm

Evaluate Solutions and

Convergence
Criterion

Multi-Objective

Generate
Offspring

lominated Sorting

Output Initial

Pareto Front

Physical Propagation

Evaluate Coniribution of

Identify Critical

Path

Neighborhood
Upgrade/Downgrade

Depth
Exploration

New Solution

anvergence

Criterion

Output Refined

Solutions

Flowchart of the multi-objective optimization program.

TABLE. KEY PARAMETERS OF THE DATA CENTER TEST INSTANCE
Parameter Parameter Value Unit
Category
Total nodes 44 )
(components)
Topological f’oter}tlal silencer 2 B
c ocations
Properties
Number of fans 2 -
Total edges (paths) 40 -
. . 1500 x
Geometric Main duct cross-section 800 mm
Properties Brar}ch duct €ross- | 500x 500 | mm
section
Number of terminal 12
Operational outlets
Requirements Average outlet airflow 0.6 m/s
demand
Decision Available silencer 13
Variables models B
Economic Electricity cost 0.85 RMB/kWh
Factors Annual operating hours 2500 h
Max. main duct velocity | 5.0 m/s
Max.‘ branch duct 4.0 m/s
) ) velocity
Engmeepng Max. outlet air velocity 2.0 m/s
Constraints d
M_ax.‘ room noise | 4 dB(A)
criterion
Max. fan static pressure 800 Pa
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OUTLET-RACK-S

DUCK-RACK-5
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Fig. 4. Node processing of ventilation duct model.

For a fair and rigorous comparison, all algorithms were
executed under a consistent computational budget: a population
size of 100 (105 for MOEAD, due to its reference vector
requirements) and a termination criterion of 15,000 total
function evaluations. To ensure statistical robustness, each
experimental run was independently repeated five times.

The specific parameter configurations for each algorithm are
detailed in Table II. Standard evolutionary parameters, such as
crossoverand mutation probabilities, were set tocommon values
from the literature. The unique parameters for the GINI and
GILS components of G-HNSGA-III were determined through a

separate calibration process, as detailed in Section V-E.

TABLEII. PARAMETER CONFIGURATION FOR COMPARED ALGORITHMS
Algorithm Parameter Value
General Settings
. . 100 (105 for
Population / Swarm Size (N) MOEAD)
All Algorithms Simulated
& Crossover Operator Binary (SBX)
Mutation Operator Polynomial
Algorithm-Specific Parameters
ili 0.9
NSGA-II/IIL, SBX crossover probability (p,)
G-HNSGA-III, | Polynomial mutation probability(p,,) | 0.1
SPEA2
distribution index (1) 20.0
Scaling Factor (F) 0.5
GDE3 Differential evolution crossover rate 09
(CR) i
MOEAD Neighborhood Size (T) 20
Swarm Size(N) 100
OMOPSO
Archive Size 100
G-HNSGA-III Specific Parameters
seeding fraction (Pgeeq) 0.12
GINI Importance ratio(tjp,,, ) 0.1
Assignment probability (Passign ) 0.8
Max refinement iterations (T;..r) 10
GILS Max search depth (key nodes) 3
Neighborhood search depth (normal 1
nodes)

Vol. 16, No. 12, 2025

D. Performance Evaluation Metrics

To quantitatively evaluate the performance of the compared
algorithms, three widely-used metrics were employed: Set
Coverage (SC), Inverted Generational Distance (IGD), and
Hypervolume (HV).

1) Set Coverage (SC): The SC metric (also known as the
C-metric) quantifies the Pareto dominance relationship
between two solution sets, Py and P;. The value SC(P,, Pg)
represents the fraction of solutions in Py that are weakly
dominated by at least one solution in P,, as computed by Eq.
(12).
|{beP;|3aeP:a=h}|

| Pg |

where a > b denotes that solutiona weakly dominates b.
A value of SC(P,, Py) = 1 indicates that all solutions in Py are

dominated by P,, signifying the superiority of algorithm A over
B.

2) Inverted Generational Distance (IGD): The IGD metric
quantifies the quality of a solution set (Palg) by computing the
average Euclidean distance from a reference Pareto front(P*)
to Pg4, as formulated in Eq. (13).

min,ep - d(p*,p)
| P* | (13)

A lower IGD value indicates a superior solution set that is
both closer to the true front and better distributed.

SC(Py, Pg) = (12)

*

IGD(P*,Py,) = —2

EP

Since the true Pareto front is unknown for this complex
engineering problem, a high-fidelity reference front P* was
constructedby aggregating the final non-dominated solution sets
fromall 5 independentruns ofall 8 compared algorithms. A non-
dominated sort was performed on this aggregate archive,
yielding 786 unique solutions. This set serves as the best-known
approximation of the true Pareto front forall IGD calculations.

3) Hypervolume (HV): The HV indicator is a unary metric,
fully compliant with Pareto dominance, that measures both the
convergence and diversity of a solution set Py, It calculates
the volume of the objective space dominated by Py, relative to
a reference point .. A larger HV value signifies a better
Pareto front approximation. In this study, the reference point
P.5 was set to the nadir point (the vector of worst objective
values) observed across all experimental runs, supplemented by
a small offset to ensure that all generated solutions strictly
dominate Py .

E. Hyperparameter Calibration for G-HNSGA-111

A sensitivity analysis was performed to optimize the core
hyperparameters of the G-HNSGA-III framework. All
experiments were conducted on the data center test instance,
with each setting repeated 7 times under a consistent
computational budget of 15,000 function evaluations.

1) GILS max search depth: The Local Refinement
Exploration Depth for the GILS module was tested across
integer values from 0 (disabled) to 6. As shown in Fig. 5, the
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results confirm the module's efficacy. Both HV and IGD
metrics identify a consistent optimum at a search depth of 3,
achievinga peak HV 0f 0.358 and a minimum IGD of 0.00326.
This setting was chosen as it achieves the peak demonstrated
performance; increasing the search depth further leads to
performance degradation while unnecessarily increasing the
computational budget. Excessively deep local searches can
cause the population to converge prematurely to a suboptimal
region, stifling the global exploration required to find the true
Pareto front.

0.3600 4
a1s7s 0.00475 {

0.00450 {
0.3550

0.00425 1

03525 4 £

0.00400 {

£ 035001 8

0.00375 {
03475 {

0.00350 {
0.3450 1

0.00325 4
0.34254

0.00300

Fig.5. Performance of the H-NSGAIII algorithm at different local refining
exploration depths.

an HV
Mean 1GD

Me

2) GINI heuristic seeding fraction: The Heuristic Seeding
Fraction (pgeeq) for the GINI module was tested from 0.0
(disabled) to 0.23. The results, presented in Fig. 6, demonstrate
a clear peak in performance at a fraction of 0.12, which
achieved the highest HV (0.360) and the lowest IGD (0.00384).
Performance degrades beyond this point, likely because an
excessive injection of guided solutions prematurely reduces the
initial population's diversity and hinders broader exploration.
Therefore, a value of 0.12 was selected as it provides the
optimal balance between a guided initialization and sufficient
initial diversity.

0.0055

= 0.0050

Mean HV

Mean IGD

0.0045

0.0040

0.0035

IR R R

Fig. 6. Mean Hypervolume (HV) and Mean Inverted Generational Distance
(IGD) of G-HNSGA-III under different settings for the initial population
adjustment ratio parameter.

VI. RESULTS AND DISCUSSION

This chapter presents the quantitative performance
comparison of the G-HNSGA-II framework against the
baseline NSGA-III and six other established MOEAs.

A. Overall Performance Comparison and Solution Set
Quality
All eight algorithms were independently executed 10 times
under a consistent computational budget of 15,000 function
evaluations. The statistical distributions of the final
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Hypervolume (HV) and Inverted Generational Distance (IGD)
metrics across these runs are summarized in Table III.

TABLE III. STATISTICAL RESULTS FORHV AND IGD METRICS ACROSS 10
INDEPENDENT RUNS
Algorith Mean Std Media Mean Std Media
m HV HV n HV IGD 1GD n IGD
G-
HNSGA- 0.389 | 0.012 03910 0.003 0.000 0.0030
1 2 0 8
111
GDE3 0.295 0.012 02913 0.015 0.001 00152
0 4 4 1
MOEAD 0.194 | 0.022 0.1848 0.023 0.003 0.0234
4 9 9 8
MOGWO 0.182 | 0.047 0.1942 0.011 0.001 00119
4 7 9 0
NSGAIIL 2'269 2'019 0.2665 2'019 (1)'002 0.0197
NsGann | 0281 | 0017 g gy | 00200100021 6105
2 3 2 9
OMOPSO (5)'265 (3)'032 0.2626 3'031 (7)'006 0.0342
SPEA2 2'260 (1)'028 02519 8'015 2'003 0.0160

The statistical results confirm the superior performance of
the G-HNSGA-III framework. For Hypervolume (HV), G-
HNSGA-III achieved thehighestmeanvalueof(0.3891,a384%
improvement over the baseline NSGA-III (0.2812). This result,
combined with a low standard deviation (0.0122), demonstrates
superior overall solution quality and high reliability. Similarly,
the framework obtained the lowest mean Inverted Generational
Distance (IGD) of 0.0030, confirming the closest and most
complete approximation of the best-known Pareto front. An
exceptionally low standard deviation of 0.0008 further
underscores its robust stability.

Hypervolume (HV) Distribution Inverted Generaticnal Distance (IGD) Distribution

I aose| =
B |

EREPI
E E B
@ = @

HV Value
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FU’
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I
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o

= =
P o & 0 5 ] & > 3 & 0 Ky
& & F S & & F S S F
& & & . & B S

Fig. 7. Boxplot distributions of the final Hypervolume (HV) and Inverted
Generational Distance (IGD) metrics for all compared algorithms.

The statistical distributions of the final metric values are
visualized using boxplots in Fig. 7 to provide a clearer
comparison of algorithm robustness and consistency.

The plots visually affirm the superiority of G-HNSGA-IIL
For the HV metric (Fig. 8, left), the G-HNSGA-III boxplot is
located in a distinctly higher region than all competitors,
indicating a consistently better overall performance.
Furthermore, its compact interquartile range (IQR) and short
whiskers signify high stability and low variance across the
independent runs. A similar pattern is observed for the IGD
metric (Fig. 8, right), where the G-HNSGA-III boxplot is
positioned significantly lower and exhibits the tightest
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distribution. Collectively, these plots confirm the findings from
Table IV: G-HNSGA-III not only achieves a superior median
performance but also does so with the highest level of
consistency.

Fig. 8 illustrates the final non-dominated solution sets
obtained by each algorithm, plotted in the three-dimensional
objective space (Noise Level, Total Cost, and Total Pressure
Drop). This visualization highlights the differences in the
algorithms' ability to approximate the true Pareto front.

Algorithms
e H-NSGAIl
GDE3

e MOEAD

e NSGAI
NSGAIll
OMOPSO
SPEA2

Total Pressure Drop (Pe

] 55
(‘75‘,4 ) 60 10000

Fig. 8. Comparison of the distribution of solution sets of each algorithm in

the three-dimensional target space.

The solution set produced by G-HNSGA-III (cyan) provides
a visibly superior approximation of the Pareto front. It extends
further toward the ideal point (lower values on all three axes)
and achieves a broader, more uniform coverage of the trade-off
surface compared to the other algorithms. The solutions from the
competing MOEAs are, for the most part, either dominated by
or co-located with only a subset ofthe G-HNSGA-III solutions.
This visualization directly corroborates the quantitative HV and
IGD results, confirming that the proposed framework excels in
both convergence (approaching the optimal region) and
diversity (covering a wide range of trade-off solutions).

Dominated Solutions ~ «  Pareto Front

Total Cost (x10* RMB)

Total Pressure Drop (Pa)

EEE R
Noise Level (dB(A))

o ]

© 40 xS0 = W 3 i @ 8
Nolse Level (dB(A)) Total Cost (x10° RMB)

Fig. 9. 2D Pareto front projections of the solution sets of each algorithm

under different target pairs.

Fig. 9 projects the aggregated solution set onto three 2D
objective planes to visualize the trade-off relationships, with the
2D non-dominated front highlighted in red. The plots confirm
the expected conflicts betweenobjectives. The Noise-Costplane
(a) demonstrates that improved acoustic performance requires
higher capital investment. The Noise-Pressure Drop plane (b)
shows that noise reduction typically increases aecrodynamic
resistance, leading to higher energy use. Finally, the Cost-
Pressure Drop plane (c) identifies the set of most efficient
designs thatachieve the lowest pressure drop for a given cost.
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These visualizations affirm the conflicting, multi-
dimensional nature of the problem space. The Pareto front
approximated by G-HNSGA-III (shown in Fig. 8) provides the
most effective navigation of these trade-offs.

B. Algorithmic Behavior and Dominance Analysis

To analyze the dynamic performance of the algorithms, the
HV and IGD metrics were recorded throughout the search
process. Fig. 10 plots the metric trajectories from a
representative run for each algorithm, illustrating their
convergence behavior.

o

IGD Value
HV Value

0 2000 4000 6000 8000 10000 12000 14000 [
Number of Evaluations

2000 4000 €000 BO0O 10000 12000 14000
Number of Evaluations

—+— HNSGAIll  —= NSGAII + NSGAI ~ MOEAD
- GDE3 - SPEA2 OMOPSO

Fig. 10. Comparison of convergence curves of each algorithm on HV and
I1GD metrics.

The G-HNSGA-III framework (solid blue line)
demonstrates superior convergence behavior on bothmetrics. Its
IGD curve (left) exhibits themostrapid descent, reachinga final
value of ~0.003, which signifies an efficient search for a high-
quality front. Concurrently, its HV curve (right) sustains growth
longer than any competitor, diverging after ~2,000 evaluations
to achieve the highest final HV of ~0.37. In contrast, algorithms
like MOEA/D stagnate early, indicating premature convergence.

For a direct comparison based on Pareto dominance, the Set
Coverage (SC) metric was computed. Fig. 11 presents the full
pairwise SC matrix as a heatmap, while Fig. 12 isolates the
bidirectional dominance between G-HNSGA-III and each
competitor for a focused analysis.
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Fig. 11. Heatmap of the pairwise Set Coverage (SC) matrix across all
algorithms.
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Fig. 12. Comparison of set coverage (SC) between G-HNSGA-III and other
algorithms.

The results unequivocally demonstrate the dominance of G-
HNSGA-III. As shown in Fig. 12, G-HNSGA-III dominates a
very high percentage of the solutions generated by the other
algorithms. For example, it dominates 99.3% of the solutions
from MOEA/D (SC (G-HNSGA-III, MOEA/D) = 0.9934) and
over 82.3% ofthe solutions fromthebaseline NSGA-III (SC (G-
HNSGA-III, NSGA-III) = 0.8235).

Conversely, the orange bars show that the solution sets from
the other algorithms dominate very few, if any, of the solutions
produced by G-HNSGA-IIL This direct quantitative evidence
confirms that the graph-informed strategies enable G-HNSGA-
III to discover a Pareto front that is demonstrably superior to
those found by the other established MOEAs.

C. Engineering Significance Analysis of Representative
Solutions

The high-quality Pareto front generated by G-HNSGA-III
provides a rich set of optimal trade-off solutions for engineering
decision-making. To illustrate this, Table IV details five
representative solutions selected from the final front, including
the extremes for each objective and a balanced solution
identified using the TOPSIS method [25].

TABLEIV. PERFORMANCE COMPARISON OF TYPICAL SOLUTIONS
OBTAINED BY G-HNSGA-III
Noise Total Total Number
Solution Type Level Cost Pressure of
(dBA) (RMB) Drop (Pa) Silencers
Lowest — Noise | ¢ ¢ 45688.09 | 277.20 11
Solution
Lowest = Cost |49 g6 1948296 | 187.39 5
Solution
powest IeSSU | 45.08 37490.16 | 126.60 9
rop Solution
Min Cost (Noise
< 50.0dBA) 46.78 19812.29 176.37 5
Best
Compromise 38.84 22970.92 178.76 6
(TOPSIS)

The 'Best Compromise' solution represents a practically
balanced design. Relative to the 'Minimum Cost' solution, it
achieves a substantial 11.1 dBA noise reduction (a 22%
improvement) with a moderate 18% increase in cost and
negligible impact on pressure drop. Analysis of the system
configuration reveals that this acoustic improvement is achieved
by deploying a single additional silencer at a critical upstream
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location, which was correctly identified by the framework's
graph-based importance metrics. This result empirically
validates the capacity of G-HNSGA-III to leverage domain
knowledge for discovering highly efficient trade-offs.

To facilitate practical project planning, the minimum cost
required to achieve specific noise targets was extracted from the
global Pareto frontand plotted as the 'Minimum Cost Frontier'
inFig. 13. This curvequantifiesthe necessary capital investment
to meet varying acoustic criteria. A distinct non-linear trend is
observed, characterized by a 'knee' point in the 35-40 dBA
range. Beyond this threshold, each incremental decibel ofnoise
reduction incurs a substantially higher cost, demonstrating the
principle of diminishing returns. This insight provides
actionable data for cost-benefit analysis in real-world
engineering contexts.
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Fig. 13. Noise-cost quantitative trade-off analysis.

VII. CONCLUSION AND FUTURE WORK

This paper introduced G-HNSGA-III, a hybrid optimization
framework thatenhances NSGA-III by embedding topological
domain knowledge from a Directed Acyclic Graph (DAG)
model of an HVAC system. The framework's core innovations,
a Graph-Informed Initialization (GINI) strategy and a Graph-
Informed LocalSearch (GILS) module, wereshownto be highly
effective.

Experimental validation demonstrated that G-HNSGA-III
significantly outperforms the baseline NSGA-III and six other
established MOEAs across all standard metrics (HV, IGD, and
SC). The results confirm that the proposed graph-informed
heuristics effectively guide the search, leading to a superior
Pareto front that offers a range of practical, high-value
engineering trade-off solutions.

While the current physical model could be expanded and the
framework's generalizability tested on other HVAC typologies,
the results confirm the validity of our approach. Future work will
focus on integrating surrogate models, such as Graph Neural
Networks (GNNs), to improve computational efficiency and
adapting this graph-informed optimization paradigm to other
network-based engineering domains.

ACKNOWLEDGMENT

This research is based upon work supported by the National
Natural Science Foundation of China (No. 62277001).

566 |Page

www.ijacsa.thesai.org



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(IJACSA) International Journal of Advanced Computer Science and Applications,

REFERENCES

G. Huang,S. T. Ng, D. Li, and Y. Zhang, “State of the art review on the
HVAC occupant-centric control in different commercial buildings,” J.
Build. Eng., vol. 96, Art. no. 110445, Nov. 2024, doi:
10.1016/j.jobe.2024.110445.

A. Shajahan, C. H. Culp, and B. Williamson, “ Effects of indoor
environmentalparameters related to building heating, ventilation, and air
conditioning systems on patients,” medical outcomes: A review of
scientific research on hospital buildings’, Indoor Air, vol. 29, no. 2, pp.
161-176, Mar. 2019, doi: 10.1111/ina.12531.

O. Alves, E. Monteiro, P. Brito, and P. Romano, “Measurement and
classification of energy efficiency in HVAC systems”, Energy Build., vol.
130, pp. 408—419, Oct. 2016, doi: 10.1016/j.enbuild.2016.08.070.

N. Asim etal., “Sustainability of heating, ventilation and air-conditioning
(HVAC) systems in buildings—an overview”, Int.J. Environ. Res. Public
Health, vol. 19,no0. 2, p. 1016, Jan. 2022, doi: 10.3390/ijerph19021016.

D. Mavrokapnidis, G. N. Lilis, K. Katsigarakis, I. Korolija, and D. Rovas,
“Semi-automated extraction of HVAC system topology from imperfect
Building Information Models”, in Proc. 18th IBPSA Conf. (BS 2023),
Shanghai, China, Sept. 2023. doi: 10.26868/25222708.2023.1392.

M. Wang, G. N. Lilis, D. Mavrokapnidis, K. Katsigarakis, I. Korolija, and
D. Rovas, “A knowledge graph-based framework to automate the
generation of building energy models using geometric relation checking
and HVAC topology establishment”, Energy Build., vol. 325, Art. no.
115035, Dec. 2024, doi: 10.1016/j.enbuild.2024.115035.

R. Behmanesh, I. Rahimi, and A. H. Gandomi, “Evolutionary many-
objective algorithms for combinatorial optimization problems: a
comparative study”, Arch. Comput. Methods Eng., vol. 28, no. 2, pp.
673-688, Mar. 2021, doi: 10.1007/s11831-020-09415-3.

S. Sharma and V. Kumar, “A comprehensive review on multi-objective
optimization techniques: past, present and future”, Arch. Comput.
Methods Eng., vol. 29, no. 7, pp. 5605-5633, Nov. 2022, doi:
10.1007/s11831-022-09778-9.

D. Ouis, M. A. Hassanain, A. Alshibani, and A. M. Ghaithan, “Noise from
heating, ventilation, and air conditioning (HVAC) systems: A review of
its characteristics, effects and control”, J. Build. Eng., vol. 112, Art. no.
113770, Oct. 2025, doi: 10.1016/j.jobe.2025.113770.

J. Harvie-Clark, N. Conlan, W. Wei, and M. Siddall, “How loud is too
loud? Noise from domestic mechanical ventilation systems”, Int.J. Vent.,
vol. 18,  no. 4, pp- 303-312, Oct. 2019, doi:
10.1080/14733315.2019.1615217.

G. Iannace, G. Ciaburro, and A. Trematerra, “Heating, ventilation,and air
conditioning (HVAC) noise detection in open-plan offices using recursive
partitioning”, Buildings, vol. 8, no. 12, p. 169, Dec. 2018, doi:
10.3390/buildings8120169.

X. Ruan and Y. Yin, “Analysis of common problems of noise and
vibration in building heating ventilation air conditioning design”, E3S
Web Conf., vol. 283, p. 01051, 2021, doi:
10.1051/e3sconf/202128301051.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Vol. 16, No. 12, 2025

M. Piwowarski and D. Jakowski, “Areas of fan research—a review of the
literature in terms of improving operating efficiency and reducing noise
emissions”, Energies, vol. 16, no. 3, p. 1042, Jan. 2023, doi:
10.3390/en16031042.

Y. B. Alexandrov, V. A. Sychenkov,R. R. Khaliulin, W. M. Yousef, and
S. A. Semichev, “Ventilation systems noise reduction issue”, in 2020
International Conference on Dynamics and Vibroacoustics of Machines
(DVM),  Samara, Russia, Sept. 2020, pp. 1-6. doi:
10.1109/DVM49764.2020.9243922.

M. A. Oliveira, L. Braganga, S. M. Silva, D. Paixdo, and J. Antonio,
“Noise reduction performance of a low energy facade-integrated
mechanicalventilator”, Build. Acoust., vol. 28, no. 2, pp. 119-139,June
2021, doi: 10.1177/1351010X20966185.

S. Li, J. Zhang, J. Hou, B. Zhang, L. Yang, and M. Zheng, “Multi-
objective optimization of pressure regulators in buildings,” HVAC
systems’, J. Build. Eng., vol. 76, Art. no. 107260, Oct. 2023, doi:
10.1016/j.jobe.2023.107260.

H. Wanget al., “BIM-based automated design for HVAC system of office
buildings—An experimental study,” Build. Simul,, vol. 15, no. 7, pp.
1177-1192, July 2022, doi: 10.1007/s12273-021-0883-7.

J. Glamsch, T. Rosnitschek, and F. Rieg, “Initial population influence on
hypervolume convergence of NSGA-II1,” Int. J. Simul. Model., vol. 20,
no. 1, pp. 123—133, Mar. 2021, doi: 10.2507/1JSIMM20-1-549.

X. Xu, D. Cheng, D. Wang, Q. Li, and F. Yu, “An improved NSGA-III
with a comprehensive adaptive penalty scheme for many-objective
optimization,” Symmetry, vol. 16, no. 10, p. 1289, Oct. 2024, doi:
10.3390/sym16101289.

D. Ma, S. Zhou, Y. Han, W. Ma, and H. Huang, “Multi-objective ship
weather routing method based on the improved NSGA-III algorithm,” J.
Ind. Inf. Integr, vol. 38, p. 100570, Mar. 2024, doi:
10.1016/.jii.2024.100570.

Z. Lietal, “GA-LSTM and NSGA-III based collaborative optimization
of ship energy efficiency forlow-carbon shipping,” Ocean Eng., vol. 312,
Art. no. 119190, Nov. 2024, doi: 10.1016/j.oceaneng.2024.119190.

A. Behravan, R. Obermaisser, D. H. Basavegowda, and S. Meckel,
“Automatic model-based fault detection and diagnosis using diagnostic
directed acyclic graph for a demand-controlled ventilation and heating
system in Simulink,” in 2018 Annu. IEEE Int. Syst. Conf. (SysCon),
Vancouver, BC, Canada, Apr. 2018, pp. 1-7.  doi:
10.1109/SYSCON.2018.8369614.

Z. Sheng, Y. Xu, S. Xue, and D. Li, “Graph-Based Spatial-Temporal
ConvolutionalNetwork for Vehicle Trajectory Prediction in Autonomous
Driving,” IEEE Trans. Intell. Transport. Syst., vol. 23,n0. 10, pp. 17654—
17665, Oct. 2022, doi: 10.1109/TITS.2022.3155749.

2021 ASHRAE Handbook—Fundamentals, Inch-Pound ed., Peachtree
Corners, GA: ASHRAE, 2021.

V. Pandey,Komal, and H. Dincer, “A review on TOPSIS method and its
extensions for different applications with recent development,” Soft
Comput., vol. 27, no. 23, pp. 18011-18039, Dec. 2023, doi:
10.1007/s00500-023-09011-0.

567|Page

www.ijacsa.thesai.org



