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Abstract—Optimizing silencer placement in Heating, 

Ventilation, and Air Conditioning (HVAC) systems is a complex 

multi-objective problem due to conflicting objectives (noise, 

energy, cost) and intricate topological constraints. Conventional 

Multi-Objective Evolutionary Algorithms (MOEAs) often exhibit 

inefficient convergence on such problems due to their reliance on 

random search strategies. Addressing this challenging HVAC 

design problem requires a more informed approach. This paper 

proposes the G-HNSGA-III (Graph-Informed Hybrid NSGA-III), 

a novel framework that enhances the NSGA-III algorithm by 

embedding domain-specific knowledge from the system's Directed 

Acyclic Graph (DAG) topology. This is achieved through two core 

components that leverage heuristic search: a Graph-Informed 

Initialization (GINI) strategy to provide a high-quality starting 

population and a Graph-Informed Local Search (GILS) module 

for post-processing refinement. The performance of G-HNSGA-

III was comprehensively benchmarked against the baseline 

NSGA-III and six other established MOEAs on a complex data 

center test instance. The results demonstrate a marked 

superiority, with G-HNSGA-III achieving a 38.4% higher mean 

Hypervolume (HV) than the baseline NSGA-III and a 99.3% Set 

Coverage (SC) dominance over MOEA/D. The framework 

consistently converged to the best-known Pareto front, achieving 

a final mean Inverted Generational Distance (IGD) of 0.0030. 

These findings validate that the proposed graph-informed 

strategies effectively accelerate convergence and enable the 

discovery of a higher-quality Pareto front, providing superior and 

practically applicable solutions for complex engineering design 

problems. 

Keywords—Multi-objective optimization; NSGA-III; graph-
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I. INTRODUCTION 

Modern facilities with strict climate control requirements—
spanning from commercial complexes to critical infrastructure 
like hospitals—rely heavily on HVAC systems for operational 
stability [1-2]. While essential, these systems create a 
fundamental operational conflict. On one hand, the mechanical 
noise from fans degrades the acoustic environment; on the other, 
the fan power required to drive airflow constitutes a major 
operational cost, directly opposing sustainability targets [3-4]. 
The trade-off is physical and unforgiving: installing silencers to 
attenuate noise inherently increases airflow resistance (pressure 
drop), which forces fans to consume more energy to maintain 
the same flow rate. Therefore, optimizing the placement of these 

components is not merely a design preference but a central 
challenge in balancing energy efficiency with environmental 
quality. 

This optimization task is compounded by the topological 
complexity of HVAC ductworks. Unlike simple linear systems, 
duct networks function as Directed Acyclic Graphs (DAGs), 
where the airflow dynamics are highly interdependent [5-6]. A 
design decision at a single upstream node propagates through 
the entire network, affecting pressure and noise levels at all 
downstream branches. Consequently, conventional design 
methodologies reliant on heuristics or trial-and-error fail to 
capture these global dependencies. They lack the mathematical 
rigor to navigate a search space characterized by discrete 
variables (e.g., specific silencer models) and strict physical 
constraints. 

To address such high-dimensional engineering problems, 
Multi-Objective Evolutionary Algorithms (MOEAs) have 
become the established methodological standard [7-8]. 
However, their application to network-based systems faces a 
critical bottleneck: the quality of the initial population. Standard 
algorithms like NSGA-III typically rely on random 
initialization. In the strictly constrained solution space of an 
HVAC network, this stochastic approach often results in an 
inefficient search process, leading to slow convergence or 
stagnation in local optima—a limitation well-known in the field 
but rarely addressed with domain-specific logic. 

We propose that embedding domain-specific topological 
knowledge into the evolutionary search can overcome these 
limitations. To this end, we introduce the Graph-Informed 
Hybrid NSGA-III (G-HNSGA-III) framework. This approach 
enhances NSGA-III by integrating DAG topology through two 
mechanisms: a Graph-Informed Initialization (GINI) strategy 
and a Graph-Informed Local Search (GILS) module. 

The principal contributions of this paper are as follows: 

• The proposal of a novel hybrid framework, G-HNSGA-
III, that effectively embeds the topological knowledge 
from a DAG model into the evolutionary search process 
for HVAC optimization. 

• The design and implementation of two specific 
algorithmic components: a GINI strategy to accelerate 
initial convergence and a GILS module to enhance the 
final solution set quality. 

*Corresponding author. 
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• A comprehensive validation of the framework on a 
complex, real-world data center case study, 
demonstrating its significant performance superiority 
over the baseline NSGA-III and six other established 
MOEAs. 

The remainder of this paper is organized as follows. Related 
work is given in Section II. Section III details the DAG-based 
system modeling and the pre-computation of topological 
metrics. Section IV presents the proposed G-HNSGA-III 
framework in detail. Section V describes the experimental setup, 
parameters, and evaluation metrics. Section VI presents and 
analyzes the comparative results. Finally, Section VII concludes 
the paper and discusses future research directions. 

II. RELATED WORK 

The dual challenge of acoustic control and energy efficiency 
is well-established in HVAC literature. Noise generation is an 
inevitable byproduct of mechanical ventilation, necessitating 
robust attenuation strategies to meet environmental standards [9-
10]. Approaches to characterize and mitigate this noise vary 
widely, from detection algorithms based on recursive 
partitioning in office spaces [11] to structural analysis of duct 
vibration problems [12]. Parallel to acoustic concerns, energy 
optimization remains a priority. Research has extensively 
focused on improving fan operating efficiency [3], [13] and 
integrating low-noise mechanical ventilators [14-15]. These 
studies collectively illustrate that optimizing an HVAC system 
is never a single-variable problem; it is a complex balancing act 
between silencing the system and powering it. 

To navigate these conflicting objectives, Multi-Objective 
Evolutionary Algorithms (MOEAs) serve as the dominant 
computational tool. Comprehensive reviews confirm their 
efficacy in handling the non-linear constraints typical of 
building engineering [7-8]. Specific applications have ranged 
from optimizing pressure regulators [16] to automating design 
workflows based on BIM data [17]. However, the "black-box" 
nature of standard MOEAs presents limitations. Without domain 
knowledge, these algorithms struggle with initialization. As 
noted in recent studies, random initialization in algorithms like 
NSGA-III heavily influences the final hypervolume 
convergence [18], and while adaptive penalty schemes can 
mitigate some stagnation issues [19], they do not fundamentally 
resolve the lack of structural awareness. 

Recent advancements suggest that hybridizing evolutionary 
search with domain-specific models offers a way forward. For 
instance, combining MOEAs with LSTM networks has proven 
effective in dynamic routing problems [20-21]. More 
importantly, the value of topological information is gaining 
recognition. Graph-based representations, such as DAGs and 
Convolutional Networks, are increasingly used to model spatial-
temporal dependencies in complex systems [22-23]. Unlike 
conventional approaches that treat HVAC optimization as a 
black-box problem, this paper synthesizes these advancements 
by explicitly embedding the DAG topological structure into the 
evolutionary framework. This distinct positioning allows the 
proposed G-HNSGA-III to overcome the initialization blindness 
and premature convergence flaws inherent in standard MOEAs. 

III. DAG MODEL 

A. System Modeling with Directed Acyclic Graphs 

A Directed Acyclic Graph (DAG) is employed to model the 
ventilation system, as its structure inherently captures the 
unidirectional nature of airflow and acoustic propagation. The 
system is formally represented as 𝐺 = (𝑉,𝐸), where V is the set 
of nodes and E is the set of directed edges. 

Each node 𝑡𝑖  ∈  𝑉  corresponds to a unique physical 

component, including air sources (e.g., fans), transport elements 
(e.g., ducts, elbows), functional units (e.g., silencers), and 
terminal points (e.g., rooms). The edge set 𝐸 = 𝑒𝑖𝑗 represents 

the direct physical connections, where an edge 𝑒𝑖𝑗 signifies that 

both airflow and acoustic energy propagate from node 𝑡𝑖 to 𝑡𝑗. 
The graph's topology and the physical properties of its 
connections are encoded in a weighted adjacency matrix, A [23]. 

B. Formal Expression and Matrix Construction for Nodes 

and Edges 

Each node 𝑣𝑖  ∈ V in the DAG corresponds to a discrete 

physical component of the ventilation system (e.g., a fan, duct 
segment, or silencer). The quantifiable properties of each 
component are encapsulated in a multi-dimensional attribute 
vector, 𝐹𝑖 . This vector is a concatenation of several attribute 
subset, which are based on established engineering principles 
[24]: 

Location (𝐿𝑖 ∈ R³): The 3D spatial coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). 

Geometric (𝐺𝑖 ∈ 𝑅𝑘): Component dimensions, such as duct 

length, width, and height (𝐿𝑑𝑢𝑐𝑡,𝑖,𝑊𝑑𝑢𝑐𝑡,𝑖, 𝐻𝑑𝑢𝑐𝑡,𝑖)  or elbow 

parameters (𝑊𝑒𝑙𝑏𝑜𝑤,𝑘, 𝐻𝑒𝑙𝑏𝑜𝑤,𝑘, 𝑟𝑒𝑙𝑏𝑜𝑤,𝑘). 

Fluid Dynamic (𝑉𝑖 ∈ 𝑅(𝑘𝑉)): Parameters governing airflow, 

including surface roughness (𝜀𝑖), local loss coefficients(𝐾𝑖), 
and fan performance curve coefficients. 

Acoustic (𝐶𝑖 ∈ 𝑅(𝑘𝐶)) : Parameters governing sound, 
including natural attenuation 𝐴𝑛𝑎𝑡,𝑖(𝑓) , flow-generated noise 

𝐿𝑊,𝑆𝐺𝑁,𝑖(𝑓), and silencer insertion loss 𝐼𝐿𝑖(𝑓)). 

Economic (𝐸𝑖 ∈ 𝑅(𝑘𝐸)) : Cost-related data, such as the 

procurement cost (𝐶𝑜𝑠𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑖). 

The directed edges, 𝑒𝑖𝑗 ∈ 𝐸 , formally represent the 

unidirectional connections between nodes 𝑡𝑖 and 𝑡𝑗, defining the 

path for airflow and acoustic energy. The acyclic property of the 
graph is critical, as it mirrors the physical unidirectionality of the 
ventilation system. This structure ensures a partial ordering of 
nodes, which eliminates circular dependencies and guarantees 
the sequential convergence of network-based simulations. 

Weighted Adjacency Matrix (𝐴): This matrix encodes the 
topology of the system, defining the existence and properties 
(e.g., length) of the connections between any two nodes. 

Component Attribute Matrix (𝐷𝑐𝑜𝑚𝑝): This matrix serves as 

a central repository for the intrinsic features of all available 
component types. Each row corresponds to a specific component 
model, while the columns parameterize its key attributes: 
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• Component ID 

• Reference location vector 

• Geometric and fluid dynamic parameter vector 

• Acoustic and economic parameter vector 

During optimization, a specific component from 𝐷𝑐𝑜𝑚𝑝 is 

assigned to a node in the graph. The process of translating a 
physical system layout into this formal DAG representation is 
shown in Fig. 2. 

 
Fig. 1. Illustration of directed acyclic graph generation. 

For example, consider a simple system composed of a duct 
segment, an elbow, and another duct segment. The attributes of 
these three components would be stored in the component 
attribute matrix, 𝐷𝑐𝑜𝑚𝑝, as shown in Eq. (1). 

𝐷𝑐𝑜𝑚𝑝 =

[
 
 
 
 
𝑛𝑢𝑚 𝑙 𝑔 𝑎

1 [0， 0， 0] [2000， 1000， 4.9] 11000

2 [0， 10， 0] [2000， 1] 11000

3 [0， 0， 10] [2000， 1000， 1.5] 11000]
 
 
 
 

(1)
 

Each row in 𝐷𝑐𝑜𝑚𝑝 represents a unique component in the 

system. The first row, 𝑓1, corresponds to the first duct segment 
and contains its complete attribute vector. This vector begins 
with the component's unique identifier, 1. It is followed by the 
location vector 𝐿1  = [0, 0, 0], specifying its 3D spatial 
coordinates. The subsequent vector, 𝐺1/𝑉1 = [2000,1000,4.9], 
encapsulates its geometric and fluid dynamic properties, 
representing, for instance, a width of 2000 mm, a height of 1000 
mm, and a length of 4.9 m. The final vector (omitted here for 
brevity) would contain the relevant acoustic and economic 
parameters, completing the row's specification for a single 
component. 

A weighted directed adjacency matrix, 𝐴 = (𝑎𝑖𝑗), is used 

to encode both the system's topology and the proportional 
distribution of acoustic energy. This 𝑁 × 𝑁 matrix is defined as 
shown in Eq. (2): 

𝑎𝑖𝑗 = {
𝜔𝑖𝑗 , if 𝑒𝑖𝑗 = ⟨𝑡𝑖, 𝑡𝑗⟩ ∈ 𝐸

0, otherwise
         (2) 

The weight  𝜔𝑖𝑗  represents the fraction of acoustic energy 

that propagates from node 𝑡𝑖 to a direct successor node 𝑡𝑗. At 

any junction where the duct branches, this fraction is determined 
by the ratio of the cross-sectional areas, as calculated in Eq. (3): 

ω𝑖𝑗 = 𝑆𝑗/ ∑ 𝑆𝑘

𝑘∈succ(𝑖)

(3) 

where 𝑆𝑗  is the cross-sectional area of the specific branch 

leading to node 𝑡𝑗, and the denominator is the sum of the areas 

of all branches immediately downstream from node 𝑡𝑖. 

For example, consider the system illustrated in Fig. 1. Its 
topology and energy distribution are encoded in the weighted 
adjacency matrix A, shown in Eq. (4). An element 𝑎12 = 0.5 
signifies that the branch from node 1 to node 2 receives 50% of 
the acoustic energy from node 1; similarly, 𝑎14 = 0.5 indicates 
an equal energy split to node 4. In contrast, an element 𝑎23 = 1 
indicates that 100% of the energy from node 2 propagates to 
node 3, which is characteristic of a non-branching connection. 
All zero-valued elements denote the absence of a direct path 
between the corresponding nodes. 

𝐴 =

(

 
 
 
 

0 0.5 0 0.5 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0)

 
 
 
 

(4) 

C.  Pre-computation of Structural Information 

To enhance computational efficiency, key structural metrics 
are pre-computed from the DAG. As these metrics are inherent 
to the network topology and independent of any specific silencer 
configuration, they are calculated once and stored prior to 
initiating the optimization process. A primary metric is node 
depth, 𝐷𝑒𝑝𝑡ℎ(𝑡𝑖), which defines a node's hierarchical position 
relative to the system's source. The root node of the 
system,  𝑡𝑠𝑜𝑢𝑟𝑐𝑒 (e.g., the fan), is assigned a depth of zero: 
𝐷𝑒𝑝𝑡ℎ(𝑡𝑠𝑜𝑢𝑟𝑐𝑒)  = 0. For any other node 𝑡𝑗 , the depth is 

calculated recursively, as expressed in Eq. (5), as the minimum 
depth of its immediate predecessors plus one: 

𝐷𝑒𝑝𝑡ℎ(𝑡𝑗) = min{𝐷𝑒𝑝𝑡ℎ(𝑡𝑖)+ 1}
𝑡𝑖∈pred(𝑡𝑗)

(5)
 

where, pred(𝑡𝑗) is the set of immediate parent nodes of 𝑡𝑗. 

Another pre-computed metric is the downstream total 
airflow, 𝑄𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑡𝑖). This value represents the cumulative 
volumetric flow demand of all terminal outlets reachable from 
node 𝑡𝑖 . It is calculated via a reverse topological traversal, 
starting from the outlets. The recursive definition is provided in 
Eq. (6): 

𝑄𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑡𝑖) 

= {
𝑄(𝑑𝑒𝑚𝑎𝑛𝑑,𝑖), 𝑖𝑓 𝑡𝑖 ∈ 𝑉𝑜𝑢𝑡𝑙𝑒𝑡𝑠

∑(𝑡𝑗 ∈ 𝑠𝑢𝑐𝑐(𝑡𝑖))𝑄𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑡𝑗),𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

 

where 𝑄(𝑑𝑒𝑚𝑎𝑛𝑑,𝑖) is the specified airflow requirement for a 

terminal outlet node 𝑡𝑖 , and 𝑠𝑢𝑐𝑐(𝑡𝑖) is the set of immediate 
successor nodes of 𝑡𝑖. 

The potential sound source strength of a node,  
𝐿𝑊,𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑡𝑘)  , estimates the maximum potential noise 
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contribution of each node 𝑡𝑘 . Its value is dependent on the 
component type and is defined in Eq. (7) as: 

𝐿𝑊,𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑡𝑘)

= {
𝐿𝑤,𝑟𝑎𝑡𝑒𝑑(𝑡𝑘), if 𝑡𝑘 is a fan

𝐿𝑤,𝑆𝐺𝑁,𝑚𝑎𝑥(𝑡𝑘), if 𝑡𝑘 is a duct component
(7)

 

where 𝐿𝑤,𝑟𝑎𝑡𝑒𝑑(𝑡𝑘)is the fan's sound power level at its rated 

operating point, The term 𝐿𝑤,𝑆𝐺𝑁,𝑚𝑎𝑥(𝑡𝑘)  is the maximum 

estimated self-generated noise for an aerodynamic component 
(e.g., a duct, elbow, or damper), calculated using the empirical 
formula presented in Eq. (8): 

𝐿𝑤,𝑆𝐺𝑁,𝑚𝑎𝑥(𝑡𝑘) = 𝐿𝑤𝑐(𝑡𝑘)+ 50 log10(𝑉𝑑 ,𝑘) + 10 log10(𝐴𝑘) (8) 

Where 𝐿𝑤𝑐(𝑡𝑘)  is the component-specific sound power 
level, 𝑉𝑑,𝑘 is the design velocity through the component, and 𝐴𝑘 

is its cross-sectional area.  

Finally, the previously computed metrics (node depth, 
downstream airflow, and potential sound source strength) are 
aggregated into a composite Location Importance score, 𝐼(𝑡𝑘). 
This heuristic is designed to estimate the strategic value of 
placing a silencer at any given node 𝑡𝑘 , providing critical 
domain knowledge to guide the optimization algorithm. This 
score is calculated via Eq. (9) as a normalized, weighted sum of 
the previously defined metrics: 

𝐼(𝑡𝑘)

= 𝛼 ⋅
1

𝐷𝑒𝑝𝑡ℎ(𝑡𝑘)+ 1

+𝛽 ⋅
𝑄𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑡𝑘)

max(𝑄𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑡𝑖))
𝑡𝑖∈𝑉

+𝛾 ⋅
𝐿𝑊,𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑡𝑘)

max (𝐿𝑊,𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑡𝑗))
𝑡𝑗∈𝑉

(9)

 

where α, β, and γ are weighting coefficients constrained by 
α + β + γ = 1. Each term in the sum is normalized to a range 
between 0 and 1 to ensure a balanced contribution. 

Collectively, these pre-computed metrics— 𝐷𝑒𝑝𝑡ℎ(𝑡𝑖) , 
𝑄𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑡𝑖) , and  𝐼(𝑡𝑘) —constitute the quantitative 
domain knowledge that informs the heuristic guidance for the 
Graph-Informed Initialization (GINI) and Local Search (GILS) 
strategies within the GINS-III framework. 

IV. GRAPH-INFORMED HYBRID OPTIMIZATION 

FRAMEWORK 

The core of this work is the Graph-Informed Hybrid 
Optimization Framework (GINS-III), designed to solve the 
multi-objective silencer placement problem. The framework is 
built upon the Non-dominated Sorting Genetic Algorithm III 
(NSGA-III) and enhances its performance by incorporating the 
pre-computed topological metrics described in Section II-C. 

This integration is achieved through two primary 
components: a Graph-Informed Initialization (GINI) strategy 
and a Graph-Informed Local Search (GILS) mechanism. By 
systematically leveraging this domain knowledge, the GINS-III 

framework guides the evolutionary search process to efficiently 
balance the conflicting objectives of acoustic attenuation, 
energy consumption, and economic cost.  

A. Multi-Objective Optimization Preliminaries 

In multi-objective optimization, a solution 𝑋1  Pareto 
dominates 𝑋2 (denoted 𝑋1 ≺ 𝑋2) if it is superior in at least one 
objective without being inferior in any other. Formally, this 
relationship is defined in Eq. (10): 

𝑋1 ≺ 𝑋2 ⇔ (∀𝑖, 𝑓𝑖(𝑋1) ≤ 𝑓𝑖(𝑋2))∧ (∃𝑗, 𝑓𝑗(𝑋1) < 𝑓𝑗(𝑋2)) (10) 

where 𝑓𝑖(𝑋) is the value of the i-th objective function. The 
set of all such non-dominated solutions within the search space 
𝑋  constitutes the Pareto Front (PF), as mathematically 
represented in Eq. (11). 

𝑃𝐹 =  {𝑋 ∈  𝑋 | ∄ 𝑋′ ∈  𝑋,𝑋′ ≺  𝑋} (11) 

Multi-Objective Evolutionary Algorithms (MOEAs) aim to 
find a high-quality approximation of this front. The foundational 
NSGA-II algorithm uses a crowding distance metric to promote 
diversity, but its efficacy degrades in many-objective (≥3 

objectives) problems. To overcome this limitation, NSGA-III 
replaces the crowding distance calculation with a reference-
point-based selection mechanism, which effectively maintains 
population diversity across high-dimensional trade-off surfaces 
and allows for superior performance on complex problems. The 
complete methodological workflow of the proposed approach is 
visually illustrated in Fig. 2. 

 
Fig. 2. Methodological workflow of the graph-informed optimization 

approach. 

B. Framework Overview 

The G-HNSGA-III framework is a two-phase hybrid 
architecture. It enhances NSGA-III's global exploration by 
embedding graph-based domain knowledge through two novel 
components: a Graph-Informed Initialization (GINI) strategy 
and a Graph-Informed Local Search (GILS) mechanism. 

Phase 1: Global Exploration. This phase employs NSGA-III, 
but critically replaces its random initialization with our GINI 
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strategy. GINI leverages pre-computed topological metrics to 
generate a high-quality guided initialization population, thereby 
accelerating convergence from the outset. 

Phase 2: Local Refinement. The preliminary Pareto front 
from the global search is then refined by the GILS module. As a 
post-processing step, GILS performs a targeted neighborhood 
search to improve solution convergence, operating 
independently of the main evolutionary loop. 

C. Graph-Informed Population Initialization (GINI) 

To mitigate the inefficiencies of random initialization in 
complex engineering problems, we developed the Graph-
Informed Initialization (GINI) strategy. GINI replaces a purely 
random start by embedding pre-computed topological 
knowledge into the initial population using two complementary 
mechanisms: 

1) Heuristic seeding: A fraction of the population (𝑝𝑠𝑒𝑒𝑑) 
is heuristically seeded. For individuals in this subset, decision 

variables corresponding to the most topologically important 

nodes (as determined by 𝐼(𝑡𝑘) ) are assigned a high-

performance silencer model with a high probability. 

2) Graph-Informed Opposition-Based Learning (GIOBL): 

Unlike standard Opposition-Based Learning (OBL) which 

operates on numerical inversion, GIOBL performs a physical 

state inversion at these high-impact nodes. For a given solution 

𝑥, its opposition 𝑥𝑜𝑝𝑝 is generated by flipping the silencer state 

(i.e., installed ↔ not installed) at these key locations, thereby 

improving the algorithm's exploratory efficiency. 

D. Graph-Informed Local Search (GILS) 

The Graph-Informed Local Search (GILS) is a post-
processing module designed to refine the final Pareto front. It 
leverages the system's DAG topology to perform a targeted 
search, which improves solution convergence and diversity 
without interfering with the primary evolutionary operators of 
NSGA-III. 

The core strategy of GILS is to focus its computational effort 
on a set of key solutions ( 𝑆𝑘𝑒𝑦 ), which are strategically 

significant points on the Pareto front. These are identified as:  

• Knee Points: Solutions that are closest to the ideal point 
in the normalized objective space, representing the most 
balanced trade-offs. 

• Extreme Points: Solutions that represent the best 
performance for each individual objective. 

The GILS algorithm proceeds iteratively as follows: 

1) Preparation: At the beginning of each iteration t, the 

current Pareto front, 𝑃𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡, is de-duplicated to create a set 

of unique solutions. 

2) Key solution identification: The set of key solutions, 

𝑆𝑘𝑒𝑦, is identified from the unique front based on the definitions 

above. 

3) Adaptive neighborhood search: For each solution 𝑋 on 

the front, a set of neighboring solutions, 𝑁(𝑋), is generated. 

This is done by applying "upgrade" (add/improve a silencer) or 

"downgrade" (remove/lessen a silencer) operations at nodes 

along critical acoustic propagation paths in the DAG. The 

search depth is adaptive: solutions belonging to 𝑆𝑘𝑒𝑦  are 

subjected to a more extensive neighborhood search. 

4) Evaluation and filtering: All generated neighborhood 

solutions 𝑋′  are evaluated by the physics simulation model. 

Any solution that violates system constraints is discarded. 

5) HV-based acceptance: The remaining valid, non-

dominated neighbors are considered for inclusion. A candidate 

solution 𝑋′  is accepted and used to update the archive 

(𝑃𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) only if its inclusion increases the Hypervolume 

(HV) indicator of the overall set. That is, 𝑃𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡 becomes 
𝑃𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∪ {X ′} only if 𝐻𝑉(𝑃𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡  ∪ {𝑋′} ) >
 𝐻𝑉(𝑃𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡). 

6) Termination criteria: The GILS process terminates 

when one of two conditions is met: (a) a maximum number of 

refinement iterations, 𝑇𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 , is reached, or (b) the 

improvement in the Hypervolume stagnates between iterations, 

such that 𝛥𝐻𝑉 <  𝛿𝐻𝑉. 

E.  The G-HNSGA-III Algorithm Workflow 

The complete workflow of the G-HNSGA-III framework 
integrates the GINI strategy, the core NSGA-III evolutionary 
loop, and the GILS post-processing module. The step-by-step 
process is as follows: 

1) Initialization: The topological metrics of the DAG are 

pre-computed (as described in Section II-C). Key parameters 

for the NSGA-III algorithm (e.g., population size 𝑁 , max 

generations 𝐺𝑚𝑎𝑥, crossover/mutation rates) are set. 

2) Graph-Informed Population Generation (GINI): The 

initial population, 𝑃0  (size 𝑁 ), is created using the GINI 

strategy (Section III-C). Each individual in 𝑃0 is then evaluated 

using the physics-based simulation model to determine its 

objective function values. 

3) Evolutionary loop: The evolutionary process iterates for 

generations 𝑔 = 0  to 𝐺𝑚𝑎𝑥  to drive the population toward 

convergence along the Pareto front. This process consists of 

three substeps: 

a) Variation: An offspring population, Qg  (size N), is 

generated from the current population, Pg , using standard 

genetic operators (selection, crossover, and mutation). 

b) Evaluation: All individuals in the offspring population 

𝑄𝑔 are evaluated. 

c) Selection: The parent and offspring populations are 

merged into a combined population 𝑅𝑔 = 𝑃𝑔 ∪ 𝑄𝑔 (size 2𝑁). A 

fast non-dominated sort is applied to 𝑅𝑔. The next generation, 

𝑃(𝑔+1), is constructed by selecting individuals from the best 

non-dominated fronts (𝐹1, 𝐹2 , … ) . The reference-point 
mechanism of NSGA-III is used to ensure diversity when 

selecting from the last front that cannot be fully included. 

4) Local refinement (GILS): Upon termination of the 

evolutionary loop, the final non-dominated front, 𝑃𝐹𝑓𝑖𝑛𝑎𝑙 , is 

passed to the GILS module. GILS iteratively refines this front 

to enhance the convergence and diversity of the solutions. 
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5) Final output: The refined Pareto-optimal solution set 

from GILS is returned as the final output of the algorithm. The 

complete workflow described above is visually summarized in 

the flowchart in Fig. 3. 

 
Fig. 3. Flowchart of the multi-objective optimization program.

V.   EXPERIMENTAL SETUP AND VALIDATION 

This chapter details the computational experiments designed 
to validate the performance of the proposed G-HNSGA-III 
framework. All experiments were conducted on a complex, 
large-scale data center air supply duct system, which serves as 
the primary test instance. 

A. Computational Environment and Simulation Model 

The simulation and optimization environment was 
developed in Python 3.9. The physics-based model for fluid 
dynamics, acoustics, and economics was implemented using the 
PyTorch library. All MOEAs, including our proposed 
framework, were implemented using the Platypa-opt library. 
The hardware platform consisted of an Intel Core i7-10700 CPU 
and 16 GB of RAM, running a Windows 11 operating system.  

B. Test Instance: Data Center HVAC System 

A complex and asymmetrical data center HVAC supply air 
system was used as the test instance to ensure the problem's 
practical relevance and difficulty. A partial schematic of the 
system's DAG topology is shown in Fig. 4. The key parameters 
and engineering constraints of this system are summarized in 
Table I. 

C. Compared Algorithms and Parameter Settings 

To validate the performance of the proposed G-HNSGA-III 
framework, it was benchmarked against a baseline NSGA-III 
and six other established MOEAs: NSGA-II, SPEA2, GDE3, 
MOEAD, and OMOPSO. 

TABLE I.  KEY PARAMETERS OF THE DATA CENTER TEST INSTANCE 

Parameter 

Category 
Parameter Value Unit 

Topological 

Properties 

Total nodes 

(components) 
44 - 

Potential silencer 

locations 
22 - 

Number of fans 2 - 

Total edges (paths) 40 - 

Geometric 

Properties 

Main duct cross-section 
1500 x 

800 
mm 

Branch duct cross-

section 
500 x 500 mm 

Operational 

Requirements 

Number of terminal 

outlets 
12 - 

Average outlet airflow 

demand 
0.6 m³/s 

Decision 

Variables 

Available silencer 

models 
18 - 

Economic 

Factors 

Electricity cost 0.85 RMB/kWh 

Annual operating hours 2500 h 

Engineering 

Constraints 

Max. main duct velocity 5.0 m/s 

Max. branch duct 

velocity 
4.0 m/s 

Max. outlet air velocity 2.0 m/s 

Max. room noise 

criterion 
40 dB(A) 

Max. fan static pressure 800 Pa 
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Fig. 4. Node processing of ventilation duct model. 

For a fair and rigorous comparison, all algorithms were 
executed under a consistent computational budget: a population 
size of 100 (105 for MOEAD, due to its reference vector 
requirements) and a termination criterion of 15,000 total 
function evaluations. To ensure statistical robustness, each 
experimental run was independently repeated five times. 

The specific parameter configurations for each algorithm are 
detailed in Table II. Standard evolutionary parameters, such as 
crossover and mutation probabilities, were set to common values 
from the literature. The unique parameters for the GINI and 
GILS components of G-HNSGA-III were determined through a 
separate calibration process, as detailed in Section V-E. 

TABLE II.  PARAMETER CONFIGURATION FOR COMPARED ALGORITHMS 

Algorithm Parameter Value 

General Settings 

All Algorithms 

Population / Swarm Size (N) 
100 (105 for 

MOEAD) 

Crossover Operator 
Simulated 

Binary (SBX) 

Mutation Operator Polynomial 

Algorithm-Specific Parameters 

NSGA-II/III, 

G-HNSGA-III, 

SPEA2 

SBX crossover probability (𝑝𝑐 ) 0.9 

Polynomial mutation probability(𝑝𝑚 ) 0.1 

distribution index (η) 20.0 

GDE3 

Scaling Factor (F) 0.5 

Differential evolution crossover rate 

(CR) 
0.9 

MOEAD Neighborhood Size (T) 20 

OMOPSO 
Swarm Size(N) 100 

Archive Size 100 

G-HNSGA-III Specific Parameters 

GINI 

seeding fraction (𝑝𝑠𝑒𝑒𝑑) 0.12 

Importance ratio(𝑟𝑖𝑚𝑝 ) 0.1 

Assignment probability (𝑝𝑎𝑠𝑠𝑖𝑔𝑛 ) 0.8 

GILS 

Max refinement iterations (𝑇𝑟𝑒𝑓 ) 10 

Max search depth (key nodes) 3 

Neighborhood search depth (normal 

nodes) 
1 

D. Performance Evaluation Metrics 

To quantitatively evaluate the performance of the compared 
algorithms, three widely-used metrics were employed: Set 
Coverage (SC), Inverted Generational Distance (IGD), and 
Hypervolume (HV). 

1) Set Coverage (SC): The SC metric (also known as the 

C-metric) quantifies the Pareto dominance relationship 

between two solution sets, 𝑃𝐴  and 𝑃𝐵 . The value 𝑆𝐶(𝑃𝐴 , 𝑃𝐵) 

represents the fraction of solutions in 𝑃𝐵  that are weakly 

dominated by at least one solution in 𝑃𝐴, as computed by Eq. 

(12). 

𝑆𝐶(𝑃𝐴 , 𝑃𝐵) =
∣ {𝑏 ∈ 𝑃𝐵 ∣∣ ∃𝑎 ∈ 𝑃𝐴 : 𝑎 ⪰ 𝑏 } ∣

∣ 𝑃𝐵 ∣
(12) 

 where 𝑎 ≽  𝑏 denotes that solution a weakly dominates b. 
A value of 𝑆𝐶(𝑃𝐴, 𝑃𝐵) = 1 indicates that all solutions in 𝑃𝐵 are 
dominated by 𝑃𝐴, signifying the superiority of algorithm A over 
B. 

2) Inverted Generational Distance (IGD): The IGD metric 

quantifies the quality of a solution set (𝑃𝑎𝑙𝑔) by computing the 

average Euclidean distance from a reference Pareto front (𝑃∗) 
to 𝑃𝑎𝑙𝑔, as formulated in Eq. (13). 

𝐼𝐺𝐷(𝑃∗, 𝑃𝑎𝑙𝑔) =

∑ min 𝑝∈𝑃𝑎𝑙𝑔
𝑑(𝑝∗ ,𝑝)

𝑝∗∈𝑃∗

∣ 𝑃∗ ∣
(13)

 

A lower IGD value indicates a superior solution set that is 
both closer to the true front and better distributed. 

Since the true Pareto front is unknown for this complex 
engineering problem, a high-fidelity reference front 𝑃∗  was 
constructed by aggregating the final non-dominated solution sets 
from all 5 independent runs of all 8 compared algorithms. A non-
dominated sort was performed on this aggregate archive, 
yielding 786 unique solutions. This set serves as the best-known 
approximation of the true Pareto front for all IGD calculations. 

3) Hypervolume (HV): The HV indicator is a unary metric, 

fully compliant with Pareto dominance, that measures both the 

convergence and diversity of a solution set 𝑃𝑎𝑙𝑔. It calculates 

the volume of the objective space dominated by 𝑃𝑎𝑙𝑔 relative to 

a reference point 𝑃𝑟𝑒𝑓. A larger HV value signifies a better 

Pareto front approximation. In this study, the reference point 

𝑃𝑟𝑒𝑓 was set to the nadir point (the vector of worst objective 

values) observed across all experimental runs, supplemented by 

a small offset to ensure that all generated solutions strictly 

dominate 𝑃𝑟𝑒𝑓. 

E. Hyperparameter Calibration for G-HNSGA-III 

A sensitivity analysis was performed to optimize the core 
hyperparameters of the G-HNSGA-III framework. All 
experiments were conducted on the data center test instance, 
with each setting repeated 7 times under a consistent 
computational budget of 15,000 function evaluations. 

1) GILS max search depth: The Local Refinement 

Exploration Depth for the GILS module was tested across 

integer values from 0 (disabled) to 6. As shown in Fig. 5, the 
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results confirm the module's efficacy. Both HV and IGD 

metrics identify a consistent optimum at a search depth of 3, 

achieving a peak HV of 0.358 and a minimum IGD of 0.00326. 

This setting was chosen as it achieves the peak demonstrated 

performance; increasing the search depth further leads to 

performance degradation while unnecessarily increasing the 

computational budget. Excessively deep local searches can 

cause the population to converge prematurely to a suboptimal 

region, stifling the global exploration required to find the true 

Pareto front. 

 
Fig. 5. Performance of the H-NSGAIII algorithm at different local refining 

exploration depths. 

2) GINI heuristic seeding fraction: The Heuristic Seeding 

Fraction (𝑝𝑠𝑒𝑒𝑑 ) for the GINI module was tested from 0.0 

(disabled) to 0.23. The results, presented in Fig. 6, demonstrate 

a clear peak in performance at a fraction of 0.12, which 

achieved the highest HV (0.360) and the lowest IGD (0.00384).   

Performance degrades beyond this point, likely because an 

excessive injection of guided solutions prematurely reduces the 

initial population's diversity and hinders broader exploration.   

Therefore, a value of 0.12 was selected as it provides the 

optimal balance between a guided initialization and sufficient 

initial diversity. 

 
Fig. 6. Mean Hypervolume (HV) and Mean Inverted Generational Distance 

(IGD) of G-HNSGA-III under different settings for the initial population 

adjustment ratio parameter. 

VI. RESULTS AND DISCUSSION 

This chapter presents the quantitative performance 
comparison of the G-HNSGA-III framework against the 
baseline NSGA-III and six other established MOEAs. 

A. Overall Performance Comparison and Solution Set 

Quality 

All eight algorithms were independently executed 10 times 
under a consistent computational budget of 15,000 function 
evaluations. The statistical distributions of the final 

Hypervolume (HV) and Inverted Generational Distance (IGD) 
metrics across these runs are summarized in Table III. 

TABLE III.  STATISTICAL RESULTS FOR HV AND IGD METRICS ACROSS 10 

INDEPENDENT RUNS 

Algorith

m 

Mean 

HV 

Std 

HV 

Media

n HV 

Mean 

IGD 

Std 

IGD 

Media

n IGD 

G-

HNSGA-

III 

0.389

1 

0.012

2 
0.3910 

0.003

0 

0.000

8 
0.0030 

GDE3 
0.295

0 

0.012

4 
0.2913 

0.015

4 

0.001

1 
0.0152 

MOEAD 
0.194

4 

0.022

9 
0.1848 

0.023

9 

0.003

8 
0.0234 

MOGWO 
0.182

4 

0.047

7 
0.1942 

0.011

9 

0.001

0 
0.0119 

NSGAII 
0.269

7 

0.019

7 
0.2665 

0.019

3 

0.002

1 
0.0197 

NSGAIII 
0.281

2 

0.017

3 
0.2814 

0.020

2 

0.002

9 
0.0195 

OMOPSO 
0.265

5 

0.032

3 
0.2626 

0.031

7 

0.006

7 
0.0342 

SPEA2 
0.260

8 

0.028

1 
0.2519 

0.015

0 

0.003

3 
0.0160 

The statistical results confirm the superior performance of 
the G-HNSGA-III framework. For Hypervolume (HV), G-
HNSGA-III achieved the highest mean value of 0.3891, a 38.4% 
improvement over the baseline NSGA-III (0.2812). This result, 
combined with a low standard deviation (0.0122), demonstrates 
superior overall solution quality and high reliability. Similarly, 
the framework obtained the lowest mean Inverted Generational 
Distance (IGD) of 0.0030, confirming the closest and most 
complete approximation of the best-known Pareto front. An 
exceptionally low standard deviation of 0.0008 further 
underscores its robust stability. 

 
Fig. 7. Boxplot distributions of the final Hypervolume (HV) and Inverted 

Generational Distance (IGD) metrics for all compared algorithms. 

The statistical distributions of the final metric values are 
visualized using boxplots in Fig. 7 to provide a clearer 
comparison of algorithm robustness and consistency. 

The plots visually affirm the superiority of G-HNSGA-III. 
For the HV metric (Fig. 8, left), the G-HNSGA-III boxplot is 
located in a distinctly higher region than all competitors, 
indicating a consistently better overall performance. 
Furthermore, its compact interquartile range (IQR) and short 
whiskers signify high stability and low variance across the 
independent runs. A similar pattern is observed for the IGD 
metric (Fig. 8, right), where the G-HNSGA-III boxplot is 
positioned significantly lower and exhibits the tightest 
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distribution. Collectively, these plots confirm the findings from 
Table IV: G-HNSGA-III not only achieves a superior median 
performance but also does so with the highest level of 
consistency. 

Fig. 8 illustrates the final non-dominated solution sets 
obtained by each algorithm, plotted in the three-dimensional 
objective space (Noise Level, Total Cost, and Total Pressure 
Drop). This visualization highlights the differences in the 
algorithms' ability to approximate the true Pareto front. 

 
Fig. 8. Comparison of the distribution of solution sets of each algorithm in 

the three-dimensional target space. 

The solution set produced by G-HNSGA-III (cyan) provides 
a visibly superior approximation of the Pareto front. It extends 
further toward the ideal point (lower values on all three axes) 
and achieves a broader, more uniform coverage of the trade-off 
surface compared to the other algorithms. The solutions from the 
competing MOEAs are, for the most part, either dominated by 
or co-located with only a subset of the G-HNSGA-III solutions. 
This visualization directly corroborates the quantitative HV and 
IGD results, confirming that the proposed framework excels in 
both convergence (approaching the optimal region) and 
diversity (covering a wide range of trade-off solutions). 

 
Fig. 9. 2D Pareto front projections of the solution sets of each algorithm 

under different target pairs. 

Fig. 9 projects the aggregated solution set onto three 2D 
objective planes to visualize the trade-off relationships, with the 
2D non-dominated front highlighted in red. The plots confirm 
the expected conflicts between objectives. The Noise-Cost plane 
(a) demonstrates that improved acoustic performance requires 
higher capital investment. The Noise-Pressure Drop plane (b) 
shows that noise reduction typically increases aerodynamic 
resistance, leading to higher energy use. Finally, the Cost-
Pressure Drop plane (c) identifies the set of most efficient 
designs that achieve the lowest pressure drop for a given cost. 

These visualizations affirm the conflicting, multi-
dimensional nature of the problem space. The Pareto front 
approximated by G-HNSGA-III (shown in Fig. 8) provides the 
most effective navigation of these trade-offs. 

B. Algorithmic Behavior and Dominance Analysis 

To analyze the dynamic performance of the algorithms, the 
HV and IGD metrics were recorded throughout the search 
process. Fig. 10 plots the metric trajectories from a 
representative run for each algorithm, illustrating their 
convergence behavior. 

 
Fig. 10. Comparison of convergence curves of each algorithm on HV and 

IGD metrics. 

The G-HNSGA-III framework (solid blue line) 
demonstrates superior convergence behavior on both metrics. Its 
IGD curve (left) exhibits the most rapid descent, reaching a final 
value of ~0.003, which signifies an efficient search for a high-
quality front. Concurrently, its HV curve (right) sustains growth 
longer than any competitor, diverging after ~2,000 evaluations 
to achieve the highest final HV of ~0.37. In contrast, algorithms 
like MOEA/D stagnate early, indicating premature convergence. 

For a direct comparison based on Pareto dominance, the Set 
Coverage (SC) metric was computed. Fig. 11 presents the full 
pairwise SC matrix as a heatmap, while Fig. 12 isolates the 
bidirectional dominance between G-HNSGA-III and each 
competitor for a focused analysis. 

 
Fig. 11. Heatmap of the pairwise Set Coverage (SC) matrix across all 

algorithms. 
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Fig. 12. Comparison of set coverage (SC) between G-HNSGA-III and other 

algorithms. 

The results unequivocally demonstrate the dominance of G-
HNSGA-III. As shown in Fig. 12, G-HNSGA-III dominates a 
very high percentage of the solutions generated by the other 
algorithms. For example, it dominates 99.3% of the solutions 
from MOEA/D (SC (G-HNSGA-III, MOEA/D) = 0.9934) and 
over 82.3% of the solutions from the baseline NSGA-III (SC (G-
HNSGA-III, NSGA-III) = 0.8235). 

Conversely, the orange bars show that the solution sets from 
the other algorithms dominate very few, if any, of the solutions 
produced by G-HNSGA-III. This direct quantitative evidence 
confirms that the graph-informed strategies enable G-HNSGA-
III to discover a Pareto front that is demonstrably superior to 
those found by the other established MOEAs. 

C. Engineering Significance Analysis of Representative 

Solutions 

The high-quality Pareto front generated by G-HNSGA-III 
provides a rich set of optimal trade-off solutions for engineering 
decision-making. To illustrate this, Table IV details five 
representative solutions selected from the final front, including 
the extremes for each objective and a balanced solution 
identified using the TOPSIS method [25]. 

TABLE IV.  PERFORMANCE COMPARISON OF TYPICAL SOLUTIONS 

OBTAINED BY G-HNSGA-III 

Solution Type 
Noise 

Level  

(dBA) 

Total 

Cost 

(RMB) 

Total 

Pressure 

Drop (Pa) 

Number 

of 

Silencers 
Lowest Noise 

Solution 28.67 45688.09 277.20 11 

Lowest Cost 

Solution 
49.86 19482.96 187.39 5 

Lowest Pressure 

Drop Solution 45.08 37490.16 126.60 9 

Min Cost (Noise 

≤ 50.0dBA) 
46.78 19812.29 176.37 5 

Best 

Compromise 

(TOPSIS) 
38.84 22970.92 178.76 6 

The 'Best Compromise' solution represents a practically 
balanced design. Relative to the 'Minimum Cost' solution, it 
achieves a substantial 11.1 dBA noise reduction (a 22% 
improvement) with a moderate 18% increase in cost and 
negligible impact on pressure drop. Analysis of the system 
configuration reveals that this acoustic improvement is achieved 
by deploying a single additional silencer at a critical upstream 

location, which was correctly identified by the framework's 
graph-based importance metrics. This result empirically 
validates the capacity of G-HNSGA-III to leverage domain 
knowledge for discovering highly efficient trade-offs. 

To facilitate practical project planning, the minimum cost 
required to achieve specific noise targets was extracted from the 
global Pareto front and plotted as the 'Minimum Cost Frontier' 
in Fig. 13. This curve quantifies the necessary capital investment 
to meet varying acoustic criteria. A distinct non-linear trend is 
observed, characterized by a 'knee' point in the 35–40 dBA 
range. Beyond this threshold, each incremental decibel of noise 
reduction incurs a substantially higher cost, demonstrating the 
principle of diminishing returns. This insight provides 
actionable data for cost-benefit analysis in real-world 
engineering contexts. 

 
Fig. 13. Noise-cost quantitative trade-off analysis. 

VII. CONCLUSION AND FUTURE WORK 

This paper introduced G-HNSGA-III, a hybrid optimization 
framework that enhances NSGA-III by embedding topological 
domain knowledge from a Directed Acyclic Graph (DAG) 
model of an HVAC system. The framework's core innovations, 
a Graph-Informed Initialization (GINI) strategy and a Graph-
Informed Local Search (GILS) module, were shown to be highly 
effective. 

Experimental validation demonstrated that G-HNSGA-III 
significantly outperforms the baseline NSGA-III and six other 
established MOEAs across all standard metrics (HV, IGD, and 
SC). The results confirm that the proposed graph-informed 
heuristics effectively guide the search, leading to a superior 
Pareto front that offers a range of practical, high-value 
engineering trade-off solutions. 

While the current physical model could be expanded and the 
framework's generalizability tested on other HVAC typologies, 
the results confirm the validity of our approach. Future work will 
focus on integrating surrogate models, such as Graph Neural 
Networks (GNNs), to improve computational efficiency and 
adapting this graph-informed optimization paradigm to other 
network-based engineering domains. 
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