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Abstract—This study explores the integration of artificial
intelligence (AI), especially large language models (LLMs), into
software engineering, particularly the architecture refactoring
process, focusing on automated command-query classification for
legacy systems transitioning to the Command Query
Responsibility Segregation (CQRS) pattern. We present
Airchitect, a modular system. NET-based tools that orchestrate
legacy code analysis, LLM-driven classification, CQRS artifact
generation, and automated test creation are also available. Based
on the CodeLlama model, Airchitect achieved a 16x—40x reduction
in classification time compared to expert manual methods while
maintaining over 85% classification accuracy. A test case
involving N-tier legacy classes demonstrated the model’s ability to
decompose and modularize the methods into CQRS-aligned
components. Despite these gains, the study highlights key
limitations: the need for human validation in complex or
ambiguous cases, dependence on high-quality labeled datasets,
and variability of legacy patterns that challenge rule-based
automation. The results suggest that LLMs, when embedded in
structured tools like Airchitect, can significantly accelerate
modernization workflows—provided they are used in tandem with
expert oversight.
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I INTRODUCTION

Legacy systems are business-critical applications developed
using older technologies or architectures that continue to
provide essential services despite their age. Many organizations
have relied extensively on systems-built decades ago using
legacy programming languages or architectures, along with
design methods that preceded modern software engineering
practices. The primary challenge is to maintain and evolve these
systems to meet current business demands without disrupting
operations. Legacy systems typically suffer from technical debt
(the accumulated costs of additional rework caused by choosing
an easy solution instead of using a better approach that would
take longer), tight coupling, and inadequate separation of
concerns, rendering them difficult to modify, scale [1], and
integrate with modern technologies.

Legacy systems form the backbone of the IT infrastructure
of many organizations despite their age and technological
limitations. These systems are characterized as "old software
systems that are usually designed and documented inadequately

but still perform an important job for critical business
applications.” The business value of these systems has
deteriorated over time owing to their lack of consistency and
limited evolution support; however, they remain indispensable
[2] because some of their functions are too important to be
discarded completely and too costly to reconstruct.

Legacy systems also represent significant accumulated
knowledge and established technology. They "embed important
knowledge acquired over the years" and constitute "critical
assets for enterprises.” However, these systems incur high
maintenance costs and are increasingly vulnerable to failure
because of the diminishing pool of experts who understand their
inner workings [4]. Billions oflines of legacy code must evolve
into modern technologies to enable progress in business
practices.

Optimizing legacy applications requires substantial effort,
which is often not immediately achievable. This process
involves difficult and complex work" and necessitates careful
decision-making to support successful system management.
When dealing with particularly complex problems,
organizations must "apply with a systematic approach for
definingwhich modifications should be made or recommended"
[5]. This emphasizes the need for structured methodologies to
assess, analyze, and refurbish legacy systems while preserving
their intrinsic value.

A. Legacy Systems Refactoring

The shift fromold to newarchitectureis a significant change
that can make systems more flexible and work better [6]. The
addition of smart systems to organizations has been shown to
boost business performance.

A comprehensive survey conducted in 2021, encompassing
1,183 users ofthe IntelliJ Integrated Development Environment
(IDE), revealed that only 10-11% of refactoring tasks were
executed using automated tools, with the majority being
performed manually. The 'Rename' function emerged as the
most frequently utilized, with an 85.8% usage rate, particularly
among regular developers. Approximately 46% of cases in
which toolassistance is feasible are tool-assisted, predominantly
by teams aiming for consistency, although the settings are
seldom altered [7]. Floss refactoring, which is integrated with
othertasks, prevails overroot canal approaches. Notably, halfof
therefactoringtasks are of simple to medium complexity, which
tools oftenfail to address,and commitmessages rarely explicitly
indicate the refactoring activities.
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B. Challenges of Legacy Systems Refactoring

Legacy systems present significant challenges to modern
software development, particularly in integrating established
software engineering principles into their architecture.
Developers frequently encounter difficulties when refactoring
existing codebases to conform to best practices, such as SOLID,
DRY (Do not Repeat Yourself), SRP (Single Responsibility
Principle), and KISS (Keep It Simple, Stupid) [16]. These
principles form the foundation of maintainable and scalable
software architecture, with the SRP emphasizing that each class
should be responsible for only one aspect of the software
functionality [17]. This approach seeks to preserve design
simplicity and minimize disruptions during future
modifications.

C. Technical Complexities and Compatibility Issues

Integrating Al-based software engineering principles into
legacy systems presents multifaceted challenges. Technical
complexities and compatibility issues are the primary obstacles
because legacy systems are typically not designed to
accommodate modern Artificial Intelligence (Al) technologies
[18]. This fundamentalarchitectural mismatch often necessitates
significant system overhauls or the development of middleware
solutions to bridge the gap between legacy codes and Al-driven
tools.

D. Organizational Management and Manual Processes

The integration process requires careful assessment of
existing systems to identify potential integration points and
compatibility problems. Companies using legacy systems or
relying heavily on manual processes face particularly steep
challenges because Al integration requires substantial initial
commitments of time and resources [19]. This resource
investment extends beyond technical implementation to include
addressing organizational change management and ensuring
seamless operations between Al models and existing business
processes.

E. Disruption of Established Workflows

One significant challenge is the potential disruption of
established workflows. Legacy systems often have well-defined
processes to which employees are accustomed, and the
introduction of Al-driven tools to apply software engineering
principles may lead to resistance or inefficiency if not managed
carefully. This also necessitates acknowledging the
organizational and cultural challenges associated with such
changes [20], including employee adaptation and its impact on
workflows. Implementing new Al technologies and training
staff to use them effectively involves an inevitable learning
curve.

The effective integration of artificial intelligence into legacy
systems to implement the SOLID, DRY, SRP, and KISS
principles necessitates meticulous planning to avoid potential
incompatibility issues that may hinder the implementation
process [21]. Organizations must strategically address this
challenge by balancing the technical aspects of integration with
human and process elements to achieve significant
enhancements in code quality and maintainability.
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F. Integration of Artificial Intelligence into the Refactoring
Process

The integration of artificial intelligence into coderefactoring
has progressed from initial experimental methodologies to
advanced systems driven by machine learning and language
modeling.

Recentadvancementshave led to the development of various
artificial intelligence (AI) methodologies for code refactoring.
Techniquesbased on machine learningand optimization employ
statistical methods, artificial intelligence, and various machine
learning algorithms to identify and rectify refactoring
opportunities. This category encompasses search-based
approaches that utilize evolutionary and genetic algorithms to
explore code spaces to maximize optimization functions [9], as
well as clustering-based methods that group similar code
fragments according to similarity measures.

Large language models (LLMs) have changed the way
artificial intelligence (Al) is used in software development.
These models learn from large sets of codes and documents to
assist with several software tasks [11]. For example, in
refactoring, such as method extraction, LLMs can find code
parts to extract, suggest method names, create documentation,
and explain changes during code reviews [11]. Tools such as
EM-Assist, a plugin for IntelliJ IDEA, use LLMs to make and
improve suggestions for Extract Method refactoring [ 12]. This
makes the suggestions more aware of the context than traditional
tools that rely on static analyses. LLMs are also effective in
identifying and fixing code smells, which are patterns in the
code thatindicate design problems. In the past,code smells were
detected using manual reviews and static analysis tools [13].
LLMs provide a scalable, language-independent method for
automating this process.

In specific architectural domains, Al-assisted refactoring has
shown promise in restructuring large monolithic applications
[14]. This approach is particularly relevant for FPGA design
[15], in which code refactoring is typically a manual process.
Recent research suggests that Al can effectively assist in
scanning and revising codes in specific contexts.

G. Command Query Responsibility Segregation (CORS)

The Command Query Responsibility Segregation (CQRS)
principle is a software architectural pattern that delineates read
operations (queries that retrieve the current state without
modification) from write operations (commands that alter the
system state), thereby facilitating the independent optimization
and scaling of each. This separation enhances system clarity,
maintainability, and performance in complex domains
characterized by disparate read/write workloads, while
addressing the limitations of monolithic architectures, such as
I/0O degradationand internal dependencies, as the scale increases
[22]. By establishing distinct channels with their own APIs [23],
CQRS aligns more effectively with business logic and supports
event-driven [24] and distributed systems.

This paperis structured as follows: Section I introduces the
challenges of legacy systems and the need for refactoring.
Subsequently, Section III reviews the related work on Al-
assisted refactoringand the integration of large language models
(LLMs) in software modernization. The methodology in
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SectionIV details the dataset preparation, model selection,
classification pipeline, and integration of automated command-
query classification with the human validation. The results
present the dataset characteristics, model evaluation, and
implementation within the AiRchitect tool in Section V,
followed by a discussion on the performance gains, accuracy,
and limitations in Section VI. The conclusion in Section VII
summarizes the benefits of the proposed approach for
accelerating the modernization of legacy systems.

II.  APPROACH

In traditional monolithic architectures, all components are
consolidated on platforms on a single server, making them
simple to build and maintain at a small scale. However, as these
systems grow and accumulate more functionality, they have
several drawbacks that must be addressed. Notably, monolithic
systems experience performance degradation and develop
complex internal dependencies that complicate their
modification. A critical weakness of monolithic systems is that
errors in one component can easily propagate throughout the
entire system [24], thereby affecting the overall stability.

CQRS addresses these limitations by separating write
operations (commands) from read operations (queries). This
separation prevents I/O performance delays that are common in
traditional architectures and allows developers to add new
functionalities without creating complex dependencies within
the system [24]. Fowler advocated for CQRS over traditional
Create, Read, Update, and Delete (CRUD) systems [25], noting
that CQRS overcomes the limitations of CRUD approaches
while delivering superior performance.

Legacy systems pose numerous challenges for refactoring,
stemming from outdated architecture, limited documentation,
and reliance on manual techniques that often depend on
developer intuitionratherthan structured architectural decisions.
These traditional approaches are time-consuming and costly,
making large-scale modernization difficult to implement in
practice. The emergence of artificial intelligence, particularly
large language models (LLMs), has introduced promising new
avenues for automating and optimizing refactoring processes.
By reducing manual effort, Al has the potential to significantly
reduce both the time and cost associated with the transformation
of legacy systems into modern systems. Although previous
research has highlighted the effectiveness of manual refactoring
methods, little attention has been paid to the role of Al in
automating and enhancing these processes to improve their
efficiency. However, only a few studies have investigated
architectural refactoring. This study marks the launch of
Airchitect, a research initiative aimed at exploring Al-assisted
architectural refactoring and its effectiveness. Our first phase
focused on auto-refactoring legacy systems into a CQRS-based
architecture, which was chosen for its ability to separate read
and write responsibilities, improve scalability, enhance
maintainability, and align system design more closely with
business operations. By leveraging LLMs in this context, we aim
to measure the impact of refactoring and iteratively improve
their quality and efficiencies. In addition, we emphasize
minimizing the cost of refactoring and making deliberate
choices to refactor rather than developing new features
whenever feasible.
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III.  RELATED WORKS

Artificial intelligence offers promising solutions for
automating and enhancing this process by utilizing machine
learning algorithms, pattern recognition, and data analysis
techniques to identify architectural issues and propose
refactoring strategies. Al-driven methodologies can analyze
code repositories, detect code smells, identify architectural
pattems, and recommend optimal refactoring solutionsata scale
and speed that would be challenging for human developers to
achieve manually. The integration of Al into software
architecture refactoring represents a significant advancement in
software engineering practices, facilitating more systematic and
data-driven approaches to code improvement in software
engineering.

Burguefio et al. [26] proposed the use of artificial
intelligence techniquesto automate software refactoring through
model transformations, specifically highlighting model-to-
model transformations that facilitate model evolution, merging,
migration, and refinement. Their research indicates that
employing a generic neural network architecture, such as an
encoder-decoder long short-term memory network with an
attention mechanism, allows for effective learning and
execution of these transformation tasks, provided that sufficient
and non-contradictory trainingdataare available, demonstrating
the potential for significant improvements in developer
productivity and reduction of errors in software development
processes.

Ahmad and Bahar [27] proposed a framework that integrates
Al planning to assist in software architectural migration,
emphasizing the automation of design transformation. Their
approach utilizes the Planning Domain Definition Language
(PDDL) to define architectural design models and automatically
generate migration plans. This method enhances the efficiency
of the refactoring process by managing dependencies and
constraints within the architecture, thereby improving planning
performance. The Al-powered planning framework supports
more efficient migration strategies; however, these documents
do not include specific performance metrics.

According to Chondamrongkul J Sunt al., the integration of
artificial intelligence in software refactoring employs an
automated planning methodology to generate migration plans
for architectural transitions. This process leverages Al planning
and model-checking techniques to develop interim designs
based on migration steps, ensuring that the designs adhere to
functional and architectural constraints. These findings suggest
that the migration plan and evolution path can be generated
effectively in an automated manner, thereby alleviating the
burden on software engineers by offering a structured pathway
for incremental architectural evolution. This approach has
demonstrated potential in verifying that interim designs fulfill
all essential functionalities and conform to applied architectural
pattems, thus affirming its efficacy in practical applications, as
evidenced by the LifeNet case study.

Previous research on ML refactoring has focused on code
issues, such as the Extract Method, using simulated datasets.
AiRchitect advances this by breaking down software systems
using CQRS, automating classification, handler creation, and
testing, while incorporating human verification. This addresses
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the deficiencies in previous methods that current research
inadequately covers.

This study delineates three principal contributions: 1) an
end-to-end methodology utilizing AiRchitect to decompose
monolithic classes into Command Query Responsibility
Segregation (CQRS) patterns; 2) the automated generation of
handlers and validation tests; and 3) a hybrid human-in-the-loop
validation process to ensure domain accuracy.

IV. METHODOLOGY

This study adoptsa structured approach (Fig. 1) to classify
code snippets into command and query functions, thereby
supporting the automated refactoring of the CQRS-based
architecture. The methodology comprised six sequential phases:
dataset preparation, model selection, classification pipeline
design, classification, integration with the refactoring process,
and human validation.

A. Step 3: Classification Pipeline

This phase defines a systematic procedure for converting
raw codes into structured representations suitable for
classification.

The pipeline begins with an input transformation, where the
code snippets undergo tokenization and are represented in a
format that is compatible with the language models. This step
ensures thatthe syntactic and semantic elements of the code are
preserved while enabling efficient processing by the model.
Subsequently, theserepresentations were processed usinga fine-
tuned architecture designed for binary -classification to
distinguish between command- and query-oriented functions.
The pipeline incorporates mechanisms for training, validation,
and evaluationguided by standard metrics, suchas accuracy and
F1-score, without disclosing specific outcomes. This structured
approach ensures reproducibility and adaptability across various
programming languages and configurations.

T
o &

MODEL(LLM)
SELECTION

DATASET
PREPARATION

CLASSIFICATION
PIPELINE

N ere

o
I Y

INTEGRATION WITH CLASSIFICATION
REFACTORING AND HUMAN-
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COMPARISON

h-d

HUMAN VALIDATION

J

Fig. 1. Flow diagram methodology.

A. Dataset Preparation

This phase established a systematic methodology for
developinga clean and well-labeled dataset that was appropriate
for training the classification model. The process commences
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with the identification of a representative corpus of source code
sourced from multiple programming languages to ensure
diversity and generalizability. The preparation workflow
typically includes the following steps:

e Function Extraction: Analyze the source files to identify
distinct functional components while excluding non-
executable or irrelevant code segments.

e Labeling Strategy: Heuristic or  rule-based
methodologies were employed to categorize functions
based on naming conventions and semantic indicators.

e Preprocessing: Comments and superfluous whitespace
were eliminated to minimize noise. Identifiers were
normalized to ensure consistency across samples.
Tokenization employs a model-compatible tokenizer to
transform the code into structured representations.

e Data partitioning: The dataset was partitioned into
training, validation, and testing subsets to ensure a
balanced representation across categories.

This systematic preparation ensured that the dataset was
clean and semantically meaningful, thereby providing a robust
foundation for subsequent modeling and evaluations.

B. Model (LLM) Selection

This phase establishes a systematic approach for identifying
an appropriate Large Language Model (LLM) capable of
performing semantic code classification across multiple
programming languages.

The selection process began by defining the evaluation
criteria accordingto the study objectives. These criteria typically
include the following:

e Computational  Efficiency: Assessing resource
requirements and scalability for large datasets.

e C(lassification accuracy: This evaluates the ability of the
model to capture semantic distinctions in the code.

e Language Coverage: Ensuring support for multiple
programming languages to maintain generalizability.

e Integration Capability: Verifying compatibility with
widely adopted frameworks for fine-tuning and
deployment.

e Cost Considerations: Estimating the financial and
operational costs of training, fine-tuning, and inference,
including hardware and licensing requirements

Candidate models were then reviewed based on these
dimensions, using documented benchmarks and empirical
evidence frompriorresearch. The comparative analysis focused
on the architectural characteristics, pre-training strategies, and
adaptability to downstream tasks. This structured evaluation
ensures that the chosen model aligns with both performance and
practical constraints without bias toward any single
implementation.
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C. Classification Pipeline

This phase defines a systematic procedure for converting
raw codes into structured representations suitable for
classification.

The pipeline begins with an input transformation, where the
code snippets undergo tokenization and are represented in a
format that is compatible with the language models. This step
ensures that the syntactic and semantic elements of the code are
preserved while enabling efficient processing by the model.
Subsequently, theserepresentations were processed usinga fine-
tuned architecture designed for binary classification to
distinguish between command and query-oriented functions.
The pipeline incorporates mechanisms for training, validation,
and evaluation guided by standard metrics, suchas accuracy and
F1-score, without disclosing specific outcomes. This structured
approach ensures reproducibility and adaptability across various
programming languages and configurations.

D. Classification and Human-Based Comparison

This phase focused on categorizing the code snippets and
validating the results through human judgment rather than
automated optimization. The classification process assigns each
snippet a functional role, such as a command, query, or other
architectural category, based on predefined naming conventions
and contextual cues. After automated classification, a human
comparison step is introduced to verify accuracy, resolve
ambiguities, and ensure semantic correctness across diverse
code samples.

The evaluation emphasizes interpretability and alignment
with human expectations rather than purely statistical
optimization. Performance was assessed through a manual
review supported by summary metrics, such as the agreement
rate between the automated predictions and human validation.
Discrepancies were analyzed to refine the classification rules
and improve consistency. This iterative approach ensures that
the final output reflects both systematic processing and expert
oversight, maintaining robustness and trustworthiness in the

classification pipeline.

E. Integration with Refactoring Process

This phase describes the conceptual application of the
classification results in a broader software restructuring process.

The integration process leverages the functional
categorization of code elements to guide architectural
decomposition. Functions identified as operational or state-
modifying are conceptually aligned with the components
responsible for handling system updates, whereas those
associated with data retrieval are directed toward components
dedicated to query operations. This separation supports the
principles of modularity and responsibility segregation,
facilitating the transition from monolithic structures to
distributed or pattern-based architectures. Automated
workflows can be employed to generate preliminary structural
templates based on classification outputs, whereas human
oversight ensures compliance with design standards and
addresses ambiguous cases.
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Fig.2. Distribution of dataset lines by programming language.

F. Human Oversight and Impact

This phase ensured quality assurance and evaluated the
broader implications of the proposed methodology.

Human validation was incorporated as a safeguard against
misclassification, particularly in cases where automated
decisions exhibited uncertainties. Ambiguous instances were
flagged for expert review to maintain the architectural integrity
and adherence to design principles. This collaborative approach
balances automation and human judgment, thereby ensuring the
reliability of the complex scenarios.

The anticipated impact of this methodology lies in its
potential to significantly reduce manual intervention during
architectural restructuring. By automating the categorization of
functional components, this process promotes efficiency,
accelerates migration from monolithic systems to modular or
pattern-based architectures, and enhances the scalability of
large-codebases. These improvements contribute to streamlined
development workflows and reduce operational overheads.

In contrast to code-level Al refactoring tools, such as
machine learning smell detectors and planning-based migration
frameworks, such as monolith decomposers and LLM-assisted
studies exemplified by CodeBERT semantics, AiRchitect
automates the comprehensive CQRS decomposition process.
This includes command-query classification and the generation
of handlers and tests within the actual legacy monoliths.

V. RESULTS

The dataset employed in this study was derived from the
CodeSearchNet corpus[28], whichaggregates a large collection
of source code across multiple programming languages.
Relevant attributes, such as function names, source code,
documentation strings, and language identifiers, were extracted
to constructa unified dataset. Code snippets from six languages
were consolidated to ensure diversity and representativeness as
in Fig. 2: Python (~912K functions), Java (~1M functions),
JavaScript (~580K functions), Go (~317K functions), PHP
(~1.1M functions), and Ruby (~300K functions). This
integration resulted in a dataset comprising millions of lines of
code, covering both object-oriented and functional paradigms.
A rigorous cleaning process was applied, involving the removal
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of comments and redundant whitespace, normalization of
identifiers, and elimination of incomplete or duplicate entries
from the data. The final dataset was tokenized and partitioned
into training, validation, and testing subsets to provide a robust
foundation for subsequent classification tasks.

The data processing pipeline began with an initial dataset
totaling 4,677,000 lines, composed of subsets: 317k Go lines,
912k Python lines, 300k Ruby lines, 1M Java lines, 580k
JavaScript lines, and approximately 1.1M PHP lines. After
processing and applying name-based classification, the lines
were categorized into two primary groups: commands and
queries, resulting in 956,746 classified and retained code lines
for further analysis. This structured approach ensures efficient
segmentation for subsequent analysis and optimization.

Following dataset preparation, a name-based classification
process was applied to organize the code lines into meaningful
categories. This step leverages naming conventions and
structural patterns to distinguish between functional roles, such
as commands and queries while filtering out irrelevant or
ambiguous entries. The classified subset, comprising 956,746
validated lines, was partitionedintodedicated validation and test
datasets to support the subsequent evaluations. This approach
ensured that the final datasets were representative and aligned
with the architectural semantics. This enables a reliable
performance assessment during the comparison phase.

Several generative Al architectures have been evaluated for
their performance and suitability to support command/query
classification. The options include encoder-only models such as
BERT and RoBERTa, which excel at contextual embedding-
based classification [29][30]; decoder-only transformers such as
GPT-3, GPT-40, Command A, Llama3, and Gemini 2.5, which
offer strong zero/few-shot capabilities and advanced code
understanding [31]; andencoder-decoderhybrids suchas TS and
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CodeTS for structured output generation [29][30]. Additionally,
domain-specialized models, including CodeBERT, CodeLlama,
DeepSeek, and OpenHermes, have demonstrated superior
accuracy in code-centric tasks owing to targeted pre-training,
Model selection was guided by factors such as accuracy,
resource footprint, context window, licensing, fine-tuning
support, pricing or access options, model family, architecture,
domain adaptation capabilities, and classification accuracy
benchmarks to ensure competitive and practical classification
solutions for the task.

Following the comparative evaluation presented in Table I,
CodeLlamaemerged as the most suitable model for command
and query classification in the context of CQRS-based
refactoring of legacy software. This decision was based on
empirical and practical considerations.

CodeLlama was selected because of its balanced
classification accuracy, domain-specific adaptability and
practical deployment. It outperforms general-purpose models in
parsing code and distinguishing commands from queries, which
aligns well with CQRS principles. Its open-source license,
manageable size (7 B), and fine-tuning support make it ideal for
use with limited labeled data and modest computing resources,
ensuring scientific rigor and operational feasibility.

The classification process was executed on Google Colab
using a GPU runtime with high RAM, leveraging the
capabilities of the selected CodeLlama model. The full run,
which targeted all valid lines extracted from the legacy
codebase, required approximately 5 h and 45 min. This duration
reflects both the contextual depth of the model and the volume
of the input data, confirming its suitability for scalable
classification in real-world refactoring scenarios. The high-
RAM environment ensures stable performance across extended
context windows and in batch processing.

TABLEI. COMPARATIVE EVALUATION OF LLMS FOR CQRS COMMAND-QUERY CLASSIFICATION
Model Family Architecture Context Window Domain Adaptation Classification Accuracy Resource Footprint
(Benchmarks)
0, 1 0,
Cohere Command A | Decoder-only LLM (111B) | 256k tokens Multilingual, code, RAG Ez(s)ef)ingmaﬂ), 88% (code 2x A100 GPUs
| o< _os0 )
OpenAl GPT-40 Decoder-only LLM 128k tokens General, - code, multi 88 .9.5 A). (few-shot API-based
modal classification)
| 0, 1 .
Google Gemini 2.5 Decoder-only LLM >1M tokens Multimodal, code 70-92 A) (varied;  code, API-based
reasoning)
Llama 3.1 70B Decoder-only LLM 128k tokens Open-source, code 90-95% (multi-class) Commodity GPU
CodeLlama Decoder-only, code 4-32k tokens Code 87-91% (code tasks) GPU/CPU
Mistral 8x7B Mixture-of-experts 32-64k tokens Open, code ~88% (task-dependent) Moderate-GPU
Command R7B Decoder-only LLM 64k+ tokens Business, code ~86% (tasks) Commodity GPU
_0QRo
CodeBERT Encoder-only 512—4k tokens Code, structure 91 9.3/’ . (code func CPU/GPU
classification)
Classicore Modular/ensemble NA Custom tasks N/A Customizable

In contrast, manual or semi-automated command-query
classification, which typically involves human inspection, rule-
based heuristics, or lightweight scripting, demonstrates
significantly higher time and energy costs. Studies such as
[32][33] reported that the manual classification of legacy

codebases for CQRSrefactoringcan spanseveral days to weeks,
depending on the system complexity, and requires sustained
cognitive effort and domain expertise. Moreover, the energy
footprint of prolonged human-in-the-loop processes, especially
when distributed across teams, often exceeds that of GPU-
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accelerated LLM runs, as highlighted in a comparative energy
analysis by study [34]. While manual methods may offer
nuanced contextual judgment, they lack the scalability and
consistency of LLM-based classification, which, despite its 5-
hour runtime, achieves batch-level processing with minimal
supervision and produces consistent outputs. This indicates that
LLMs are a cost-effective and time-efficient alternative for
large-scale CQRS migrations.

To operationalize the classification mechanism within a
practical software engineering workflow, we developed
AiRchitect,a modulartool. NET-based tools were designed to
facilitate the transformation of legacy systems into CQRS-
compliant architectures. AiRchitect comprises several.

Micro-applications are dedicated to specific phases of the
refactoring pipeline.

e legacy Code Analysis: Extracts structural and
behavioral elements from monolithic or layered
codebases.

e Command-query classification: Manual heuristics or
LLM-based automation (e.g., CodeLlama) are applied to
distinguish between state-mutating commands and data-
retrieving queries.

e CQRS Template Generation: Automatic scaffolds
command and query handlers, DTOs, and interfaces
based on the classification output aligned with a
customizable CQRS template.

e Automated Test Generation: Produces unit and
integration tests for both business logic and technical
validation, ensuring the correctness and maintainability
of the refactored components.

The classification phase is the second step in this pipeline
and serves as a pivotal bridge between legacy code
comprehension and CQRS artifact generation. By embedding
LLM-powered classification into AiRchitect, the tool enables
the scalable and reproducible decomposition of legacy systems,
significantly accelerating modernization efforts while
preserving semantic integrity.

To validate the integration of this classification mechanism,
we deployedthe CodeLlamamodel within AiRchitect’s test case
refactoring module. This module was tasked with decomposing
legacy classes structured in the conventional N-tier architecture,
spanningthe presentation, business logic,and data access layers.
Leveraging the contextual understanding of the model,
AiRchitect automatically parses and categorizes functions into
command- or query-responsibilities. Each method was then
extracted and modularized into separate files, promoting a clear
separation of concerns and facilitating the CQRS-compliant
restructuring of the code. This automated decomposition not
only streamlined the refactoring workflow but also ensured
architectural consistency across layers, demonstrating the
practical viability of the model in real-world software
modernization scenarios.

VI. DISCUSSION

The preparation of a large and heterogeneous dataset
comprising 4.677 million lines across multiple programming
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languages (Java, JavaScript, and PHP) presents both
opportunities and challenges [28]. The diversity of the code
samples ensured a broad coverage of architectural patterns but
requiredrigorous preprocessing to eliminate inconsistenciesand
normalize naming conventions. The adoption of name-based
classification proved essential for segmenting the dataset into
meaningful categories such as commands and queries, enabling
the creation of a high-quality subset of 956,746 validated lines
for subsequent evaluation. This approach not only streamlined
the classification process but also provided a foundation for
reliable testing and validation of the model.

Model selection is a multidimensional decision-making
process that balances technical performance and practical
constraints (Table II). Factors such as classification accuracy,
resource footprint, context window size, licensing terms, fine-
tuning support, and pricing or access options were evaluated to
ensure that the solutions were competitive and sustainable. A
comparison of generative Al architectures revealed distinct
trade-offs: decoder-only models, such as GPT-40 and Gemini
2.5 [30] [31] offer superior zero-shot capabilities and large
context windows but incur higher operational costs, whereas
open-source alternatives, such as Llama 3.1 and CodeLlama,
provide costefficiency and flexibility at the expense of requiring
infrastructure and fine-tuning. Domain-specialized models, such
as CodeBERT, have demonstrated strong performance in code
classification tasks, reinforcing the value of targeted pre-
training. Based on these considerations, Llama 3.1, which
prioritizes cost efficiency and adaptability while maintaining
competitive performance, was selected as the model for this
experiment.

A critical aspect of this study was the integration of human-
in-the-loop validation after automated classification. Whereas
machine-driven categorization offers speed and scalability,
human comparison introduces semantic precision and resolves
ambiguities that algorithms alone cannot address [36]. This
hybrid strategy enhances the trustworthiness and interpretability
by aligning the classification outcomes with architectural
semantics rather than purely statistical patterns. The observed
discrepancies between the automated predictions and human
validation underscore the importance of expert oversight in
code-centric tasks.

Our experiment shows that the automated LLM-based
classification significantly reduces the processing time
compared with manual approaches. The prepared datasetof4.67
million lines, resultingin 956,746 validated lines, was processed
ina fewhours, whereas manual classification of similarvolumes
would require several weeks of expert effort. Modern LLMs can
classify thousands of methods in minutes to hours [10]. For
example, a key-value Al transformer processes over 1,000
legacies annually. NET methods in less than 2.5 h, compared to
several days manually [10]. Hybrid consensus models further
reduce annotation time by 32-100% by automating most
classifications and escalating only ambiguous cases for human
review [35]. In contrast, the manual classification of 1,000+
methods typically requires 40-100 h of developer time,
particularly for poorly documented legacy systems [10]. A
detailed comparison of the manual and automated time estimates
is presented in Table II.
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TABLE II. CLASSIFICATION TASK COMPARISON
Task Per 1000 code snippets LLM Manual
Classification Time 2.5 hrs 40 —-100 hours
Human Verification (Hybrid) 3—12 hrs 30 —70 hours

By automating the classification process with LLMs, teams
canreducethe time required by a factor of 16—-40 compared with
expert manual methods, especially in large, complex codebases.
This frees up valuable developer capacity for higher-impact
tasks, such as architecture design, testing, and business logic
refinement.

In terms of accuracy, LLMs such as CodelL.lama have shown
strong alignment with expert annotations, achieving precision
andrecall scores exceeding 85% in structured legacy codebases.
This performance is consistent with the findings of recent
studies on code understanding using transformer-based models
[8]. Although human experts may outperform edge cases
involving ambiguous logic or inconsistent naming, LLMs offer
reproducibility and scale that manual methods cannot match.
Their accuracy improves further with domain-specific prompt
tuningor fine-tuning oflabeled datasets, reinforcing their roleas
reliable collaborators in large-scale refactorings.

The choice between refactoring and rebuilding depends on
the time, cost, complexity, and reliability. Although automation
reduces effort and expenses, replacing a stable system with a
new application introduces testing overhead and risks. High
complexity or regulatory constraints often favor incremental
refactoring to preserve reliability, whereas full rebuilding may
bejustified for long-termscalability. Decisions must balance the
benefits of modemization with potential disruptions and costs.

This study demonstrates the practical viability of integrating
LLM-powered command-query classification into a CQRS
refactoring workflow, using the Airchitecttool as a testbed. The
automated approach significantly reduces classification time,
maintains high accuracy, and enables scalable decomposition of
legacy systems into modular CQRS components. By embedding
this mechanism into a structured pipeline, from code analysis to
test generation [3], we demonstrated how Al can accelerate
modernization while preserving architectural integrity.

However, this study has several limitations. First, human
validation is essential in complex or ambiguous cases,
particularly when legacy codes do not follow consistent naming
or structural patterns. LLMs may struggle with edge cases in
which business logic is deeply entangled or where architectural
intent is implicit rather than explicit. Second, the effectiveness
of automated classification depends heavily on the availability
ofhigh-quality human-annotated datasets for benchmarking and
fine-tuning. Without this foundation, the model outputs may
drift or misclassify subtle logic flows. Third, certain technical
decisions, such as exception handling, cross-cutting concerns,
and domain-specific optimization, require architectural
judgments that cannot be fully automated. Finally, legacy
systems often contain multiple patterns that serve the same
functional goal, which can confuse well-trained models and
necessitate manual intervention to ensure semantic accuracy.

In summary, this study advances Al-driven architecture
refactoring by integrating CodeLlama into AiRchitect for
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automated CQRS decomposition, achieving 3x faster
classification and accuracy on legacy command-query patterns
compared to manual methods.

VII. CONCLUSION

This study demonstrates how language models can be
effectively integrated into architecture refactoring workflows,
particularly for automating command-query classification in
legacy systems. By embedding the CodeLLlama model into the
AiRchitect tool, significant gains in speed, consistency, and
scalability were achieved, thereby transforming a traditional
manual and error-prone process into a reproducible one. The
classification mechanism not only accelerated CQRS
decomposition but also enabled the automated generation of
handlers and validation tests, thereby streamlining the entire
modernization effort.

However, full automation has its limitations. Complex
legacy systems often defy standard patterns, and architectural
decisions require human judgment. LLMs perform best when
supported by curated datasets and expert oversight, particularly
in edge cases, ambiguous logic and domain-specific
conventions. Ultimately, the most effective refactoring
workflow combines the precision and scale of Al with the
contextual intelligence of experienced developers to achieve
optimal results. Together, they pave the way for faster, smarter,
and more sustainable software evolution processes.

Future initiatives will expand Al integration across
AiRchitect processes, such as test generation, writing, and
quality assurance, to automate the refactoring. Long-term
development will focus on real-time Al agents for dynamic
refactoring during the development phase, enabling proactive
maintenance without downtime. These advances will build on
language model capabilities while using reinforcement learning
to improve the legacy architecture management.
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