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Abstract—This study explores the integration of artificial 

intelligence (AI), especially large language models (LLMs), into 

software engineering, particularly the architecture refactoring 

process, focusing on automated command-query classification for 

legacy systems transitioning to the Command Query 

Responsibility Segregation (CQRS) pattern. We present 

Airchitect, a modular system. NET-based tools that orchestrate 

legacy code analysis, LLM-driven classification, CQRS artifact 

generation, and automated test creation are also available. Based 

on the CodeLlama model, Airchitect achieved a 16x–40x reduction 

in classification time compared to expert manual methods while 

maintaining over 85% classification accuracy. A test case 

involving N-tier legacy classes demonstrated the model’s ability to 

decompose and modularize the methods into CQRS-aligned 

components. Despite these gains, the study highlights key 

limitations: the need for human validation in complex or 

ambiguous cases, dependence on high-quality labeled datasets, 

and variability of legacy patterns that challenge rule-based 

automation. The results suggest that LLMs, when embedded in 

structured tools like Airchitect, can significantly accelerate 

modernization workflows—provided they are used in tandem with 

expert oversight. 
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I. INTRODUCTION 

Legacy systems are business-critical applications developed 
using older technologies or architectures that continue to 
provide essential services despite their age. Many organizations 
have relied extensively on systems-built decades ago using 
legacy programming languages or architectures, along with 
design methods that preceded modern software engineering 
practices. The primary challenge is to maintain and evolve these 
systems to meet current business demands without disrupting 
operations. Legacy systems typically suffer from technical debt 
(the accumulated costs of additional rework caused by choosing 
an easy solution instead of using a better approach that would 
take longer), tight coupling, and inadequate separation of 
concerns, rendering them difficult to modify, scale [1], and 
integrate with modern technologies. 

Legacy systems form the backbone of the IT infrastructure 
of many organizations despite their age and technological 
limitations. These systems are characterized as "old software 
systems that are usually designed and documented inadequately 

but still perform an important job for critical business 
applications.” The business value of these systems has 
deteriorated over time owing to their lack of consistency and 
limited evolution support; however, they remain indispensable 
[2] because some of their functions are too important to be 
discarded completely and too costly to reconstruct. 

Legacy systems also represent significant accumulated 
knowledge and established technology. They "embed important 
knowledge acquired over the years" and constitute "critical 
assets for enterprises.” However, these systems incur high 
maintenance costs and are increasingly vulnerable to failure 
because of the diminishing pool of experts who understand their 
inner workings [4]. Billions of lines of legacy code must evolve 
into modern technologies to enable progress in business 
practices. 

Optimizing legacy applications requires substantial effort, 
which is often not immediately achievable. This process 
involves difficult and complex work" and necessitates careful 
decision-making to support successful system management. 
When dealing with particularly complex problems, 
organizations must "apply with a systematic approach for 
defining which modifications should be made or recommended" 
[5]. This emphasizes the need for structured methodologies to 
assess, analyze, and refurbish legacy systems while preserving 
their intrinsic value. 

A. Legacy Systems Refactoring 

The shift from old to new architecture is a significant change 
that can make systems more flexible and work better [6]. The 
addition of smart systems to organizations has been shown to 
boost business performance. 

A comprehensive survey conducted in 2021, encompassing 
1,183 users of the IntelliJ Integrated Development Environment 
(IDE), revealed that only 10-11% of refactoring tasks were 
executed using automated tools, with the majority being 
performed manually. The 'Rename' function emerged as the 
most frequently utilized, with an 85.8% usage rate, particularly 
among regular developers. Approximately 46% of cases in 
which tool assistance is feasible are tool-assisted, predominantly 
by teams aiming for consistency, although the settings are 
seldom altered [7]. Floss refactoring, which is integrated with 
other tasks, prevails over root canal approaches. Notably, half of 
the refactoring tasks are of simple to medium complexity, which 
tools often fail to address, and commit messages rarely explicitly 
indicate the refactoring activities. 
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B. Challenges of Legacy Systems Refactoring 

Legacy systems present significant challenges to modern 
software development, particularly in integrating established 
software engineering principles into their architecture. 
Developers frequently encounter difficulties when refactoring 
existing codebases to conform to best practices, such as SOLID, 
DRY (Do not Repeat Yourself), SRP (Single Responsibility 
Principle), and KISS (Keep It Simple, Stupid) [16]. These 
principles form the foundation of maintainable and scalable 
software architecture, with the SRP emphasizing that each class 
should be responsible for only one aspect of the software 
functionality [17]. This approach seeks to preserve design 
simplicity and minimize disruptions during future 
modifications. 

C. Technical Complexities and Compatibility Issues 

Integrating AI-based software engineering principles into 
legacy systems presents multifaceted challenges. Technical 
complexities and compatibility issues are the primary obstacles 
because legacy systems are typically not designed to 
accommodate modern Artificial Intelligence (AI) technologies 
[18]. This fundamental architectural mismatch often necessitates 
significant system overhauls or the development of middleware 
solutions to bridge the gap between legacy codes and AI-driven 
tools. 

D. Organizational Management and Manual Processes 

The integration process requires careful assessment of 
existing systems to identify potential integration points and 
compatibility problems. Companies using legacy systems or 
relying heavily on manual processes face particularly steep 
challenges because AI integration requires substantial initial 
commitments of time and resources [19]. This resource 
investment extends beyond technical implementation to include 
addressing organizational change management and ensuring 
seamless operations between AI models and existing business 
processes. 

E. Disruption of Established Workflows 

One significant challenge is the potential disruption of 
established workflows. Legacy systems often have well-defined 
processes to which employees are accustomed, and the 
introduction of AI-driven tools to apply software engineering 
principles may lead to resistance or inefficiency if not managed 
carefully. This also necessitates acknowledging the 
organizational and cultural challenges associated with such 
changes [20], including employee adaptation and its impact on 
workflows. Implementing new AI technologies and training 
staff to use them effectively involves an inevitable learning 
curve. 

The effective integration of artificial intelligence into legacy 
systems to implement the SOLID, DRY, SRP, and KISS 
principles necessitates meticulous planning to avoid potential 
incompatibility issues that may hinder the implementation 
process [21]. Organizations must strategically address this 
challenge by balancing the technical aspects of integration with 
human and process elements to achieve significant 
enhancements in code quality and maintainability. 

F. Integration of Artificial Intelligence into the Refactoring 

Process 

The integration of artificial intelligence into code refactoring 
has progressed from initial experimental methodologies to 
advanced systems driven by machine learning and language 
modeling. 

Recent advancements have led to the development of various 
artificial intelligence (AI) methodologies for code refactoring. 
Techniques based on machine learning and optimization employ 
statistical methods, artificial intelligence, and various machine 
learning algorithms to identify and rectify refactoring 
opportunities. This category encompasses search-based 
approaches that utilize evolutionary and genetic algorithms to 
explore code spaces to maximize optimization functions [9], as 
well as clustering-based methods that group similar code 
fragments according to similarity measures. 

Large language models (LLMs) have changed the way 
artificial intelligence (AI) is used in software development. 
These models learn from large sets of codes and documents to 
assist with several software tasks [11]. For example, in 
refactoring, such as method extraction, LLMs can find code 
parts to extract, suggest method names, create documentation, 
and explain changes during code reviews [11]. Tools such as 
EM-Assist, a plugin for IntelliJ IDEA, use LLMs to make and 
improve suggestions for Extract Method refactoring [12]. This 
makes the suggestions more aware of the context than traditional 
tools that rely on static analyses. LLMs are also effective in 
identifying and fixing code smells, which are patterns in the 
code that indicate design problems. In the past, code smells were 
detected using manual reviews and static analysis tools [13]. 
LLMs provide a scalable, language-independent method for 
automating this process. 

In specific architectural domains, AI-assisted refactoring has 
shown promise in restructuring large monolithic applications 
[14]. This approach is particularly relevant for FPGA design 
[15], in which code refactoring is typically a manual process. 
Recent research suggests that AI can effectively assist in 
scanning and revising codes in specific contexts. 

G. Command Query Responsibility Segregation (CQRS) 

The Command Query Responsibility Segregation (CQRS) 
principle is a software architectural pattern that delineates read 
operations (queries that retrieve the current state without 
modification) from write operations (commands that alter the 
system state), thereby facilitating the independent optimization 
and scaling of each. This separation enhances system clarity, 
maintainability, and performance in complex domains 
characterized by disparate read/write workloads, while 
addressing the limitations of monolithic architectures, such as 
I/O degradation and internal dependencies, as the scale increases 
[22]. By establishing distinct channels with their own APIs [23], 
CQRS aligns more effectively with business logic and supports 
event-driven [24] and distributed systems. 

This paper is structured as follows: Section I introduces the 
challenges of legacy systems and the need for refactoring. 
Subsequently, Section III reviews the related work on AI-
assisted refactoring and the integration of large language models 
(LLMs) in software modernization. The methodology in 
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Section IV details the dataset preparation, model selection, 
classification pipeline, and integration of automated command-
query classification with the human validation. The results 
present the dataset characteristics, model evaluation, and 
implementation within the AiRchitect tool in Section V, 
followed by a discussion on the performance gains, accuracy, 
and limitations in Section VI. The conclusion in Section VII 
summarizes the benefits of the proposed approach for 
accelerating the modernization of legacy systems. 

II. APPROACH 

In traditional monolithic architectures, all components are 
consolidated on platforms on a single server, making them 
simple to build and maintain at a small scale. However, as these 
systems grow and accumulate more functionality, they have 
several drawbacks that must be addressed. Notably, monolithic 
systems experience performance degradation and develop 
complex internal dependencies that complicate their 
modification. A critical weakness of monolithic systems is that 
errors in one component can easily propagate throughout the 
entire system [24], thereby affecting the overall stability. 

CQRS addresses these limitations by separating write 
operations (commands) from read operations (queries). This 
separation prevents I/O performance delays that are common in 
traditional architectures and allows developers to add new 
functionalities without creating complex dependencies within 
the system [24]. Fowler advocated for CQRS over traditional 
Create, Read, Update, and Delete (CRUD) systems [25], noting 
that CQRS overcomes the limitations of CRUD approaches 
while delivering superior performance. 

Legacy systems pose numerous challenges for refactoring, 
stemming from outdated architecture, limited documentation, 
and reliance on manual techniques that often depend on 
developer intuition rather than structured architectural decisions. 
These traditional approaches are time-consuming and costly, 
making large-scale modernization difficult to implement in 
practice. The emergence of artificial intelligence, particularly 
large language models (LLMs), has introduced promising new 
avenues for automating and optimizing refactoring processes. 
By reducing manual effort, AI has the potential to significantly 
reduce both the time and cost associated with the transformation 
of legacy systems into modern systems. Although previous 
research has highlighted the effectiveness of manual refactoring 
methods, little attention has been paid to the role of AI in 
automating and enhancing these processes to improve their 
efficiency. However, only a few studies have investigated 
architectural refactoring.  This study marks the launch of 
Airchitect, a research initiative aimed at exploring AI-assisted 
architectural refactoring and its effectiveness. Our first phase 
focused on auto-refactoring legacy systems into a CQRS-based 
architecture, which was chosen for its ability to separate read 
and write responsibilities, improve scalability, enhance 
maintainability, and align system design more closely with 
business operations. By leveraging LLMs in this context, we aim 
to measure the impact of refactoring and iteratively improve 
their quality and efficiencies. In addition, we emphasize 
minimizing the cost of refactoring and making deliberate 
choices to refactor rather than developing new features 
whenever feasible. 

III. RELATED WORKS 

Artificial intelligence offers promising solutions for 
automating and enhancing this process by utilizing machine 
learning algorithms, pattern recognition, and data analysis 
techniques to identify architectural issues and propose 
refactoring strategies. AI-driven methodologies can analyze 
code repositories, detect code smells, identify architectural 
patterns, and recommend optimal refactoring solutions at a scale 
and speed that would be challenging for human developers to 
achieve manually. The integration of AI into software 
architecture refactoring represents a significant advancement in 
software engineering practices, facilitating more systematic and 
data-driven approaches to code improvement in software 
engineering. 

Burgueño et al. [26] proposed the use of artificial 
intelligence techniques to automate software refactoring through 
model transformations, specifically highlighting model-to-
model transformations that facilitate model evolution, merging, 
migration, and refinement. Their research indicates that 
employing a generic neural network architecture, such as an 
encoder-decoder long short-term memory network with an 
attention mechanism, allows for effective learning and 
execution of these transformation tasks, provided that sufficient 
and non-contradictory training data are available, demonstrating 
the potential for significant improvements in developer 
productivity and reduction of errors in software development 
processes. 

Ahmad and Bahar [27] proposed a framework that integrates 
AI planning to assist in software architectural migration, 
emphasizing the automation of design transformation. Their 
approach utilizes the Planning Domain Definition Language 
(PDDL) to define architectural design models and automatically 
generate migration plans. This method enhances the efficiency 
of the refactoring process by managing dependencies and 
constraints within the architecture, thereby improving planning 
performance. The AI-powered planning framework supports 
more efficient migration strategies; however, these documents 
do not include specific performance metrics. 

According to Chondamrongkul J Sunt al., the integration of 
artificial intelligence in software refactoring employs an 
automated planning methodology to generate migration plans 
for architectural transitions. This process leverages AI planning 
and model-checking techniques to develop interim designs 
based on migration steps, ensuring that the designs adhere to 
functional and architectural constraints. These findings suggest 
that the migration plan and evolution path can be generated 
effectively in an automated manner, thereby alleviating the 
burden on software engineers by offering a structured pathway 
for incremental architectural evolution. This approach has 
demonstrated potential in verifying that interim designs fulfill 
all essential functionalities and conform to applied architectural 
patterns, thus affirming its efficacy in practical applications, as 
evidenced by the LifeNet case study. 

Previous research on ML refactoring has focused on code 
issues, such as the Extract Method, using simulated datasets. 
AiRchitect advances this by breaking down software systems 
using CQRS, automating classification, handler creation, and 
testing, while incorporating human verification. This addresses 
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the deficiencies in previous methods that current research 
inadequately covers. 

This study delineates three principal contributions: 1) an 
end-to-end methodology utilizing AiRchitect to decompose 
monolithic classes into Command Query Responsibility 
Segregation (CQRS) patterns; 2) the automated generation of 
handlers and validation tests; and 3) a hybrid human-in-the-loop 
validation process to ensure domain accuracy. 

IV. METHODOLOGY 

This study adopts a structured approach (Fig. 1) to classify 
code snippets into command and query functions, thereby 
supporting the automated refactoring of the CQRS-based 
architecture. The methodology comprised six sequential phases: 
dataset preparation, model selection, classification pipeline 
design, classification, integration with the refactoring process, 
and human validation. 

A. Step 3: Classification Pipeline 

This phase defines a systematic procedure for converting 
raw codes into structured representations suitable for 
classification. 

The pipeline begins with an input transformation, where the 
code snippets undergo tokenization and are represented in a 
format that is compatible with the language models. This step 
ensures that the syntactic and semantic elements of the code are 
preserved while enabling efficient processing by the model. 
Subsequently, these representations were processed using a fine-
tuned architecture designed for binary classification to 
distinguish between command- and query-oriented functions. 
The pipeline incorporates mechanisms for training, validation, 
and evaluation guided by standard metrics, such as accuracy and 
F1-score, without disclosing specific outcomes. This structured 
approach ensures reproducibility and adaptability across various 
programming languages and configurations. 

 
Fig. 1. Flow diagram methodology. 

A. Dataset Preparation 

This phase established a systematic methodology for 
developing a clean and well-labeled dataset that was appropriate 
for training the classification model. The process commences 

with the identification of a representative corpus of source code 
sourced from multiple programming languages to ensure 
diversity and generalizability. The preparation workflow 
typically includes the following steps: 

• Function Extraction: Analyze the source files to identify 
distinct functional components while excluding non-
executable or irrelevant code segments. 

• Labeling Strategy: Heuristic or rule-based 
methodologies were employed to categorize functions 
based on naming conventions and semantic indicators. 

• Preprocessing: Comments and superfluous whitespace 
were eliminated to minimize noise. Identifiers were 
normalized to ensure consistency across samples. 
Tokenization employs a model-compatible tokenizer to 
transform the code into structured representations. 

• Data partitioning: The dataset was partitioned into 
training, validation, and testing subsets to ensure a 
balanced representation across categories. 

This systematic preparation ensured that the dataset was 
clean and semantically meaningful, thereby providing a robust 
foundation for subsequent modeling and evaluations. 

B. Model (LLM) Selection 

This phase establishes a systematic approach for identifying 
an appropriate Large Language Model (LLM) capable of 
performing semantic code classification across multiple 
programming languages. 

The selection process began by defining the evaluation 
criteria according to the study objectives. These criteria typically 
include the following: 

• Computational Efficiency: Assessing resource 
requirements and scalability for large datasets. 

• Classification accuracy: This evaluates the ability of the 
model to capture semantic distinctions in the code. 

• Language Coverage: Ensuring support for multiple 
programming languages to maintain generalizability. 

• Integration Capability: Verifying compatibility with 
widely adopted frameworks for fine-tuning and 
deployment. 

• Cost Considerations: Estimating the financial and 
operational costs of training, fine-tuning, and inference, 
including hardware and licensing requirements 

Candidate models were then reviewed based on these 
dimensions, using documented benchmarks and empirical 
evidence from prior research. The comparative analysis focused 
on the architectural characteristics, pre-training strategies, and 
adaptability to downstream tasks. This structured evaluation 
ensures that the chosen model aligns with both performance and 
practical constraints without bias toward any single 
implementation. 
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C. Classification Pipeline 

This phase defines a systematic procedure for converting 
raw codes into structured representations suitable for 
classification. 

The pipeline begins with an input transformation, where the 
code snippets undergo tokenization and are represented in a 
format that is compatible with the language models. This step 
ensures that the syntactic and semantic elements of the code are 
preserved while enabling efficient processing by the model. 
Subsequently, these representations were processed using a fine-
tuned architecture designed for binary classification to 
distinguish between command and query-oriented functions. 
The pipeline incorporates mechanisms for training, validation, 
and evaluation guided by standard metrics, such as accuracy and 
F1-score, without disclosing specific outcomes. This structured 
approach ensures reproducibility and adaptability across various 
programming languages and configurations. 

D. Classification and Human-Based Comparison 

This phase focused on categorizing the code snippets and 
validating the results through human judgment rather than 
automated optimization. The classification process assigns each 
snippet a functional role, such as a command, query, or other 
architectural category, based on predefined naming conventions 
and contextual cues. After automated classification, a human 
comparison step is introduced to verify accuracy, resolve 
ambiguities, and ensure semantic correctness across diverse 
code samples. 

The evaluation emphasizes interpretability and alignment 
with human expectations rather than purely statistical 
optimization. Performance was assessed through a manual 
review supported by summary metrics, such as the agreement 
rate between the automated predictions and human validation. 
Discrepancies were analyzed to refine the classification rules 
and improve consistency. This iterative approach ensures that 
the final output reflects both systematic processing and expert 
oversight, maintaining robustness and trustworthiness in the 

classification pipeline. 

E. Integration with Refactoring Process 

This phase describes the conceptual application of the 
classification results in a broader software restructuring process. 

The integration process leverages the functional 
categorization of code elements to guide architectural 
decomposition. Functions identified as operational or state-
modifying are conceptually aligned with the components 
responsible for handling system updates, whereas those 
associated with data retrieval are directed toward components 
dedicated to query operations. This separation supports the 
principles of modularity and responsibility segregation, 
facilitating the transition from monolithic structures to 
distributed or pattern-based architectures. Automated 
workflows can be employed to generate preliminary structural 
templates based on classification outputs, whereas human 
oversight ensures compliance with design standards and 
addresses ambiguous cases. 

 
Fig. 2. Distribution of dataset lines by programming language. 

F. Human Oversight and Impact 

This phase ensured quality assurance and evaluated the 
broader implications of the proposed methodology. 

Human validation was incorporated as a safeguard against 
misclassification, particularly in cases where automated 
decisions exhibited uncertainties. Ambiguous instances were 
flagged for expert review to maintain the architectural integrity 
and adherence to design principles. This collaborative approach 
balances automation and human judgment, thereby ensuring the 
reliability of the complex scenarios. 

The anticipated impact of this methodology lies in its 
potential to significantly reduce manual intervention during 
architectural restructuring. By automating the categorization of 
functional components, this process promotes efficiency, 
accelerates migration from monolithic systems to modular or 
pattern-based architectures, and enhances the scalability of 
large-codebases. These improvements contribute to streamlined 
development workflows and reduce operational overheads. 

In contrast to code-level AI refactoring tools, such as 
machine learning smell detectors and planning-based migration 
frameworks, such as monolith decomposers and LLM-assisted 
studies exemplified by CodeBERT semantics, AiRchitect 
automates the comprehensive CQRS decomposition process. 
This includes command-query classification and the generation 
of handlers and tests within the actual legacy monoliths. 

V. RESULTS 

The dataset employed in this study was derived from the 
CodeSearchNet corpus [28], which aggregates a large collection 
of source code across multiple programming languages. 
Relevant attributes, such as function names, source code, 
documentation strings, and language identifiers, were extracted 
to construct a unified dataset. Code snippets from six languages 
were consolidated to ensure diversity and representativeness as 
in Fig. 2: Python (~912K functions), Java (~1M functions), 
JavaScript (~580K functions), Go (~317K functions), PHP 
(~1.1M functions), and Ruby (~300K functions). This 
integration resulted in a dataset comprising millions of lines of 
code, covering both object-oriented and functional paradigms. 
A rigorous cleaning process was applied, involving the removal 
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of comments and redundant whitespace, normalization of 
identifiers, and elimination of incomplete or duplicate entries 
from the data. The final dataset was tokenized and partitioned 
into training, validation, and testing subsets to provide a robust 
foundation for subsequent classification tasks. 

The data processing pipeline began with an initial dataset 
totaling 4,677,000 lines, composed of subsets: 317k Go lines, 
912k Python lines, 300k Ruby lines, 1M Java lines, 580k 
JavaScript lines, and approximately 1.1M PHP lines. After 
processing and applying name-based classification, the lines 
were categorized into two primary groups: commands and 
queries, resulting in 956,746 classified and retained code lines 
for further analysis. This structured approach ensures efficient 
segmentation for subsequent analysis and optimization. 

Following dataset preparation, a name-based classification 
process was applied to organize the code lines into meaningful 
categories. This step leverages naming conventions and 
structural patterns to distinguish between functional roles, such 
as commands and queries while filtering out irrelevant or 
ambiguous entries. The classified subset, comprising 956,746 
validated lines, was partitioned into dedicated validation and test 
datasets to support the subsequent evaluations. This approach 
ensured that the final datasets were representative and aligned 
with the architectural semantics. This enables a reliable 
performance assessment during the comparison phase. 

Several generative AI architectures have been evaluated for 
their performance and suitability to support command/query 
classification. The options include encoder-only models such as 
BERT and RoBERTa, which excel at contextual embedding-
based classification [29][30]; decoder-only transformers such as 
GPT-3, GPT-4o, Command A, Llama3, and Gemini 2.5, which 
offer strong zero/few-shot capabilities and advanced code 
understanding [31]; and encoder-decoder hybrids such as T5 and 

CodeT5 for structured output generation [29][30]. Additionally, 
domain-specialized models, including CodeBERT, CodeLlama, 
DeepSeek, and OpenHermes, have demonstrated superior 
accuracy in code-centric tasks owing to targeted pre-training. 
Model selection was guided by factors such as accuracy, 
resource footprint, context window, licensing, fine-tuning 
support, pricing or access options, model family, architecture, 
domain adaptation capabilities, and classification accuracy 
benchmarks to ensure competitive and practical classification 
solutions for the task. 

Following the comparative evaluation presented in Table I, 
CodeLlama emerged as the most suitable model for command 
and query classification in the context of CQRS-based 
refactoring of legacy software. This decision was based on 
empirical and practical considerations. 

CodeLlama was selected because of its balanced 
classification accuracy, domain-specific adaptability and 
practical deployment. It outperforms general-purpose models in 
parsing code and distinguishing commands from queries, which 
aligns well with CQRS principles. Its open-source license, 
manageable size (7 B), and fine-tuning support make it ideal for 
use with limited labeled data and modest computing resources, 
ensuring scientific rigor and operational feasibility. 

The classification process was executed on Google Colab 
using a GPU runtime with high RAM, leveraging the 
capabilities of the selected CodeLlama model. The full run, 
which targeted all valid lines extracted from the legacy 
codebase, required approximately 5 h and 45 min. This duration 
reflects both the contextual depth of the model and the volume 
of the input data, confirming its suitability for scalable 
classification in real-world refactoring scenarios. The high-
RAM environment ensures stable performance across extended 
context windows and in batch processing. 

TABLE I.  COMPARATIVE EVALUATION OF LLMS FOR CQRS COMMAND-QUERY CLASSIFICATION 

Model Family Architecture Context Window Domain Adaptation 
Classification Accuracy 

(Benchmarks) 
Resource Footprint 

Cohere Command A Decoder-only LLM (111B) 256k tokens Multilingual, code, RAG 
>99% (email), 88% (code 

baseline) 
2x A100 GPUs 

OpenAI GPT-4o Decoder-only LLM 128k tokens 
General, code, multi-

modal 

~88–95% (few-shot 

classification) 
API-based 

Google Gemini 2.5 Decoder-only LLM >1M tokens Multimodal, code 
70–92% (varied; code, 

reasoning) 
API-based 

Llama 3.1 70B Decoder-only LLM 128k tokens Open-source, code 90–95% (multi-class) Commodity GPU 

CodeLlama Decoder-only, code 4–32k tokens Code 87–91% (code tasks) GPU/CPU 

Mistral 8x7B Mixture-of-experts 32–64k tokens Open, code ~88% (task-dependent) Moderate-GPU 

Command R7B Decoder-only LLM 64k+ tokens Business, code ~86% (tasks) Commodity GPU 

CodeBERT Encoder-only 512–4k tokens Code, structure 
91–93% (code func 

classification) 
CPU/GPU 

Classicore Modular/ensemble NA Custom tasks N/A Customizable 
 

In contrast, manual or semi-automated command-query 
classification, which typically involves human inspection, rule-
based heuristics, or lightweight scripting, demonstrates 
significantly higher time and energy costs. Studies such as 
[32][33] reported that the manual classification of legacy 

codebases for CQRS refactoring can span several days to weeks, 
depending on the system complexity, and requires sustained 
cognitive effort and domain expertise. Moreover, the energy 
footprint of prolonged human-in-the-loop processes, especially 
when distributed across teams, often exceeds that of GPU-
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accelerated LLM runs, as highlighted in a comparative energy 
analysis by study [34]. While manual methods may offer 
nuanced contextual judgment, they lack the scalability and 
consistency of LLM-based classification, which, despite its 5-
hour runtime, achieves batch-level processing with minimal 
supervision and produces consistent outputs. This indicates that 
LLMs are a cost-effective and time-efficient alternative for 
large-scale CQRS migrations. 

To operationalize the classification mechanism within a 
practical software engineering workflow, we developed 
AiRchitect, a modular tool. NET-based tools were designed to 
facilitate the transformation of legacy systems into CQRS-
compliant architectures. AiRchitect comprises several. 

Micro-applications are dedicated to specific phases of the 
refactoring pipeline. 

• Legacy Code Analysis: Extracts structural and 
behavioral elements from monolithic or layered 
codebases. 

• Command-query classification: Manual heuristics or 
LLM-based automation (e.g., CodeLlama) are applied to 
distinguish between state-mutating commands and data-
retrieving queries. 

• CQRS Template Generation: Automatic scaffolds 
command and query handlers, DTOs, and interfaces 
based on the classification output aligned with a 
customizable CQRS template. 

• Automated Test Generation: Produces unit and 
integration tests for both business logic and technical 
validation, ensuring the correctness and maintainability 
of the refactored components. 

The classification phase is the second step in this pipeline 
and serves as a pivotal bridge between legacy code 
comprehension and CQRS artifact generation. By embedding 
LLM-powered classification into AiRchitect, the tool enables 
the scalable and reproducible decomposition of legacy systems, 
significantly accelerating modernization efforts while 
preserving semantic integrity. 

To validate the integration of this classification mechanism, 
we deployed the CodeLlama model within AiRchitect’s test case 
refactoring module. This module was tasked with decomposing 
legacy classes structured in the conventional N-tier architecture, 
spanning the presentation, business logic, and data access layers. 
Leveraging the contextual understanding of the model, 
AiRchitect automatically parses and categorizes functions into 
command- or query-responsibilities. Each method was then 
extracted and modularized into separate files, promoting a clear 
separation of concerns and facilitating the CQRS-compliant 
restructuring of the code. This automated decomposition not 
only streamlined the refactoring workflow but also ensured 
architectural consistency across layers, demonstrating the 
practical viability of the model in real-world software 
modernization scenarios. 

VI. DISCUSSION 

The preparation of a large and heterogeneous dataset 
comprising 4.677 million lines across multiple programming 

languages (Java, JavaScript, and PHP) presents both 
opportunities and challenges [28]. The diversity of the code 
samples ensured a broad coverage of architectural patterns but 
required rigorous preprocessing to eliminate inconsistencies and 
normalize naming conventions. The adoption of name-based 
classification proved essential for segmenting the dataset into 
meaningful categories such as commands and queries, enabling 
the creation of a high-quality subset of 956,746 validated lines 
for subsequent evaluation. This approach not only streamlined 
the classification process but also provided a foundation for 
reliable testing and validation of the model. 

Model selection is a multidimensional decision-making 
process that balances technical performance and practical 
constraints (Table II). Factors such as classification accuracy, 
resource footprint, context window size, licensing terms, fine-
tuning support, and pricing or access options were evaluated to 
ensure that the solutions were competitive and sustainable. A 
comparison of generative AI architectures revealed distinct 
trade-offs: decoder-only models, such as GPT-4o and Gemini 
2.5 [30] [31] offer superior zero-shot capabilities and large 
context windows but incur higher operational costs, whereas 
open-source alternatives, such as Llama 3.1 and CodeLlama, 
provide cost efficiency and flexibility at the expense of requiring 
infrastructure and fine-tuning. Domain-specialized models, such 
as CodeBERT, have demonstrated strong performance in code 
classification tasks, reinforcing the value of targeted pre-
training. Based on these considerations, Llama 3.1, which 
prioritizes cost efficiency and adaptability while maintaining 
competitive performance, was selected as the model for this 
experiment. 

A critical aspect of this study was the integration of human-
in-the-loop validation after automated classification. Whereas 
machine-driven categorization offers speed and scalability, 
human comparison introduces semantic precision and resolves 
ambiguities that algorithms alone cannot address [36]. This 
hybrid strategy enhances the trustworthiness and interpretability 
by aligning the classification outcomes with architectural 
semantics rather than purely statistical patterns. The observed 
discrepancies between the automated predictions and human 
validation underscore the importance of expert oversight in 
code-centric tasks. 

Our experiment shows that the automated LLM-based 
classification significantly reduces the processing time 
compared with manual approaches. The prepared dataset of 4.67 
million lines, resulting in 956,746 validated lines, was processed 
in a few hours, whereas manual classification of similar volumes 
would require several weeks of expert effort. Modern LLMs can 
classify thousands of methods in minutes to hours [10]. For 
example, a key-value AI transformer processes over 1,000 
legacies annually. NET methods in less than 2.5 h, compared to 
several days manually [10]. Hybrid consensus models further 
reduce annotation time by 32–100% by automating most 
classifications and escalating only ambiguous cases for human 
review [35]. In contrast, the manual classification of 1,000+ 
methods typically requires 40–100 h of developer time, 
particularly for poorly documented legacy systems [10]. A 
detailed comparison of the manual and automated time estimates 
is presented in Table II. 
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TABLE II.  CLASSIFICATION TASK COMPARISON 

Task Per 1000 code snippets LLM Manual 

Classification Time 2.5 hrs 40 –100 hours 

Human Verification (Hybrid) 3–12 hrs 30 –70 hours 

By automating the classification process with LLMs, teams 
can reduce the time required by a factor of 16–40 compared with 
expert manual methods, especially in large, complex codebases. 
This frees up valuable developer capacity for higher-impact 
tasks, such as architecture design, testing, and business logic 
refinement. 

In terms of accuracy, LLMs such as CodeLlama have shown 
strong alignment with expert annotations, achieving precision 
and recall scores exceeding 85% in structured legacy codebases. 
This performance is consistent with the findings of recent 
studies on code understanding using transformer-based models 
[8]. Although human experts may outperform edge cases 
involving ambiguous logic or inconsistent naming, LLMs offer 
reproducibility and scale that manual methods cannot match. 
Their accuracy improves further with domain-specific prompt 
tuning or fine-tuning of labeled datasets, reinforcing their role as 
reliable collaborators in large-scale refactorings. 

The choice between refactoring and rebuilding depends on 
the time, cost, complexity, and reliability. Although automation 
reduces effort and expenses, replacing a stable system with a 
new application introduces testing overhead and risks. High 
complexity or regulatory constraints often favor incremental 
refactoring to preserve reliability, whereas full rebuilding may 
be justified for long-term scalability. Decisions must balance the 
benefits of modernization with potential disruptions and costs. 

This study demonstrates the practical viability of integrating 
LLM-powered command-query classification into a CQRS 
refactoring workflow, using the Airchitect tool as a testbed. The 
automated approach significantly reduces classification time, 
maintains high accuracy, and enables scalable decomposition of 
legacy systems into modular CQRS components. By embedding 
this mechanism into a structured pipeline, from code analysis to 
test generation [3], we demonstrated how AI can accelerate 
modernization while preserving architectural integrity. 

However, this study has several limitations. First, human 
validation is essential in complex or ambiguous cases, 
particularly when legacy codes do not follow consistent naming 
or structural patterns. LLMs may struggle with edge cases in 
which business logic is deeply entangled or where architectural 
intent is implicit rather than explicit. Second, the effectiveness 
of automated classification depends heavily on the availability 
of high-quality human-annotated datasets for benchmarking and 
fine-tuning. Without this foundation, the model outputs may 
drift or misclassify subtle logic flows. Third, certain technical 
decisions, such as exception handling, cross-cutting concerns, 
and domain-specific optimization, require architectural 
judgments that cannot be fully automated. Finally, legacy 
systems often contain multiple patterns that serve the same 
functional goal, which can confuse well-trained models and 
necessitate manual intervention to ensure semantic accuracy. 

In summary, this study advances AI-driven architecture 
refactoring by integrating CodeLlama into AiRchitect for 

automated CQRS decomposition, achieving 3x faster 
classification and accuracy on legacy command-query patterns 
compared to manual methods. 

VII. CONCLUSION 

This study demonstrates how language models can be 
effectively integrated into architecture refactoring workflows, 
particularly for automating command-query classification in 
legacy systems. By embedding the CodeLlama model into the 
AiRchitect tool, significant gains in speed, consistency, and 
scalability were achieved, thereby transforming a traditional 
manual and error-prone process into a reproducible one. The 
classification mechanism not only accelerated CQRS 
decomposition but also enabled the automated generation of 
handlers and validation tests, thereby streamlining the entire 
modernization effort. 

However, full automation has its limitations. Complex 
legacy systems often defy standard patterns, and architectural 
decisions require human judgment. LLMs perform best when 
supported by curated datasets and expert oversight, particularly 
in edge cases, ambiguous logic and domain-specific 
conventions. Ultimately, the most effective refactoring 
workflow combines the precision and scale of AI with the 
contextual intelligence of experienced developers to achieve 
optimal results. Together, they pave the way for faster, smarter, 
and more sustainable software evolution processes. 

Future initiatives will expand AI integration across 
AiRchitect processes, such as test generation, writing, and 
quality assurance, to automate the refactoring. Long-term 
development will focus on real-time AI agents for dynamic 
refactoring during the development phase, enabling proactive 
maintenance without downtime. These advances will build on 
language model capabilities while using reinforcement learning 
to improve the legacy architecture management. 
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