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Abstract—Skin diseases represent a global healthcare 

challenge because of their frequent occurrence and complex 

diagnosis. However, despite clinical advances, accurately 

identifying dermatological lesions remains difficult due to 

significant intra-class variability, overlapping visual patterns, and 

reliance on clinician expertise. In this study, it presents a complete 

overview of a number of state-of-the-art CNN architectures as 

they apply to multiclass classification of skin diseases. The study 

introduces an overview of the common skin diseases and discuss 

the fundamentals of deep learning for medical image analysis. The 

study proceeds to introduce the dataset used in this work and 

provide a brief description of the two diagnostic groups identified 

for evaluation. A range of CNN models which comprise 

GoogLeNet, Inception-V3, Inception-V4, ResNet-50, Xception, 

MobileNet, ResNeXt-50, AlexNet, VGG-16, and VGG-19 were 

trained and tested in terms of accuracy, loss, FLOPs, and epoch 

runtime. The experimental findings suggest that Xception 

performs constantly at the highest level, with an accuracy of more 

than 98% and low validation loss, whereas lightweight models 

such as MobileNet-V3 provide a competitive outperformance with 

minimum computational cost. These findings demonstrate the 

potential of modern CNN architectures to enhance efficient and 

accurate dermatological diagnosis and offer guidance for selecting 

appropriate architectures for clinical and real-time deployment. 
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I. INTRODUCTION 

 One of the most common diseases in the world is skin 
disease. The United States and Australia have the greatest 
prevalence of skin cancer worldwide, with over five million 
cases reported annually. Skin cancer is still one of the most 
common diseases diagnosed worldwide, and it is closely linked 
to exposure to ultraviolet light and having fair skin [1]-[2]. 
Australia is one of the countries most affected by cancer due to 
its high levels of ultraviolet radiation and poor environmental 
lifestyle conditions. A comprehensive analysis of prominent 
features, such as pigmentation, texture, and morphological 
changes, can help identify skin lesions. However, these complex 
patterns can be a real burden during diagnosis and have the 
potential to hinder medical detection or cause misdiagnosis [3]-
[4]. 

The ABCD criteria, pattern technique, Menzies approach, 
and seven-point assessment are common methods for detecting 
melanoma during examinations. Some of the most significant 

characteristics are colour, texture, and the extent to which 
different skin spots overlap with each other. Using these older 
methods to achieve a very high level of diagnostic accuracy 
requires a great deal of clinical expertise. Because of the 
complexity and autonomy of these decisions, vision-based 
diagnostic Because these judgments are complicated and 
independent, vision-based diagnostic treatments have become 
more popular [5]. Machine learning and deep learning have 
come together to make it possible to objectively find lesions by 
recognizing face traits that are always the same. As a result, they 
have shown to be more accurate and precise, often beating 
manual diagnosis in recent trials [6]. 

Machine learning emerged in the domain of computer 
science in the latter half of the 20th century, leading to 
significant progress in the area [7]. The creation of algorithms 
that can learn on their own was a big step forward. Machine 
learning art. It was a game-changer to develop algorithms that 
could learn on their own. To enable deep learning, a kind of 
machine learning, artificial neural networks (ANNs) are 
constructed to mimic the way neurones in the human brain 
function [8]. Modern artificial intelligence research relies on 
these designs because of their success in computer vision, audio 
processing, and picture recognition [9]. It is estimated that more 
than 5 million new cases of skin cancer are diagnosed each year 
in the United States, making skin diseases (and particularly skin 
cancers) a major global health problem. Due to the wide 
variability in lesion morphology, clinical appearance, size, 
colour, and spatial arrangement, differentiation between these 
entities can be challenging and sometimes requires considerable 
clinical expertise [10]. 

Traditional methods of dermatological diagnosis depend 
largely on the clinician's individual interpretation and visual 
abilities, which can lead to low repeatability and between-
observer variability [11]. The combination of computer vision 
and sophisticated learning algorithms has recently led to a more 
objective and consistent framework for medical decision-
making [12]. 

CNNs have gained popularity among these techniques due 
to their ability to generate structures directly from the images 
that are used, eliminating the need for computational features 
[13]. With high-performance computers and large-scale data 
sets, CNN architectures such as VGG16, ResNet50, and 
GoogLeNet have achieved impressive results in challenging 
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visual recognition tasks, particularly in the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) [14]. 

The success of these algorithms in image classification has 
resulted in their use in medical image analysis, particularly in 
dermatological diagnosis. Today, they constitute the basis of 
computer-assisted diagnostic techniques. 

It remains difficult to classify skin images, as many skin 
diseases are very similar. There is great variability within each 
category and real clinical cases present anomalies and 
distortions. Deep learning, particularly convolutional neural 
networks (CNNs), has greatly improved diagnostic efficiency. 
However, many studies to date use small or limited datasets and 
do not provide a fair comparison between shallow and deep 
architectures. Furthermore, computational efficiency is often 
overlooked, despite its crucial importance for real-time clinical 
applications. For these reasons, there is a clear need for a 
systematic comparison of alternative convolutional neural 
network designs based on their diagnostic accuracy and cost. 
This work fills this gap by testing a number of modern CNN 
models on a large skin dataset to find accurate and efficient 
architectures for real-world use. 

The objective of this study is to provide a comprehensive, 
large-scale evaluation of the optimal CNN architectures for 
classifying skin images. The specific objectives are: 1) to 
compare deep and lightweight CNNs in a common evaluation 
protocol; 2) to measure their diagnostic performance and 
computational efficiency (FLOPs and runtime); 3) to analyse the 
behaviour of the models in diagnostic subgroups; and 4) to find 
the architectures that best balance accuracy and computational 
cost for real-world clinical implementation. 

Additionally, this study. It presents a comparative in-depth. 
It specifically considers instances necessitating diagnostic 
precision for skin condition photos using convolutional neural 
networks. This paper uses a singular strategy and integrates 
eleven distinct architectural patterns, contrasting with prior 
studies that mostly concentrated on a limited number of cases or 
disorders. This is what makes us different from everyone else. 
This approach shows how loss, accuracy, FLOPs, and transfer 
time vary over time. The applications also operate with the 
economic or integrated features of MobileNet-V3 since the 
features are mostly compatible. This research investigates 
architectural variety concerning damage complexity. There have 
been many papers done on this topic previously. Overall, these 
contributions provide a comprehensive and useful guide to the 
selection of CNN systems that can meet the real-world 
requirements for performance. 

This research study brings significant changes to the 
automatic evaluation of skin images. First, it proposes a 
comparative evaluation of eleven modern CNN architectures, 
including deep models (Xception, Inception-V3/V4, ResNet-50) 
and lightweight networks (MobileNet-V3). Second, to ensure a 
fair and reproducible evaluation framework, a standardised 
evaluation protocol based on accuracy, loss evolution, FLOPs, 
runtime, and confusion matrices is implemented. Third, the 
study presents an analysis of diagnostic sets that reveals specific 
behaviours of architectures across relevant clinical categories. 
Fourth, it shows that lightweight architectures can provide 
competitive accuracy while significantly reducing 

computational costs. This makes these architectures suitable for 
real-time and portable clinical applications. Finally, the work 
provides practical guidelines for convolutional neural network 
architectures (CNN) based on the trade-off between diagnostic 
performance and computational efficiency. This supports the 
development of deployable, resource-aware, skin-based 
decision support systems. 

II. RELATED WORK 

Yan et al. used several deep CNNs, including VGG16, 
InceptionV3, Inception, ResNet-V2, and DenseNet-201 at ISIC 
2018 to classify skin lesions in dermoscopic image data, they 
achieved an accuracy of 94.7% and a loss of 0.19, exceeding 
each model individually [15]. 

Hosny et al. analysed the ResNet50, VGG16/19, 
InceptionV3 and DenseNet201 methods to classify skin disease 
detection. The DenseNet201 variant outperformed all other 
networks in terms of feature stability and convergence speed, 
reaching an accuracy of 96.4% with a validation loss of 0.12 
[17]. 

Nigar and Umar classified skin diseases in 2022 with 
VGG16 and ResNet50 algorithms using an explainable AI 
(XAI) system The LIME and Grad-CAM methods were applied 
to explain the predictions of convolutional neural networks 
(CNNs) and visualize the regions of interest in lesions its 
approached an accuracy of 94,5 % on database ISIC 2019 [18]. 

Vinodgopal and Raj have enhanced EfficientNet-B4 through 
batch normalization and strong training methods.Their model 
achieved 97.3% accuracy, an F1 score of 0.972, and showed a 
low loss of 0.08 on the ISIC 2020 dataset [19]. 

Shapna and Shahriar exploited the HAM10000 database to 
evaluate 7 previously trained CNN frameworks for detecting 
multiple classes of skin cancers: AlexNet, 
DenseNet121, VGG16, InceptionV3, ResNet-50, Xception, and 
ResNet 50, and MobileNet. DenseNet121 outperformed the 
other models, earning 94.8% accuracy with F1 score 0.95 and 
loss 0.11. This research highlighted the importance of deep 
feature extraction and network depth in improving classification 
performance [20]. 

Yao et al. ranked melanoma disease risk levels using state-
of-the-art computer vision techniques on the ISIC 2016–2020 
datasets. They stabilized the model by putting in a lot more data, 
training it in batches, and adjusting its hyperparameters with the 
ResNet-50 and DenseNet-201 models.They proved that gradient 
boosting ensembles and transfer learning are effective in 
correcting imbalanced data [21]. 

Kanchana et al. proposed an improved cancer detection 
model with EfficientNet variants (B0-B7) using patient-specific 
transfer learning techniques. The diagnosis accuracy of the 
model on the ISIC 2020 dataset had improved with ImageNet 
pre-trained weights and a better pre-processing strategy that 
removed Bias, Resized, and Added images. The merged residual 
efficiency improved feature extraction, reduced overfitting, and 
showed generalization across a range of different lesion types 
[22]. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

579 | P a g e  
www.ijacsa.thesai.org 

Anubhav De et al. developed a hybrid CNN-DenseNet 
method to exploit dermatological and Histological data for 
automatic classification of skin diseases. The approach 
employed deep convolutional layers and DenseNet connectivity 
for feature utilization, Gradient flow, and the management of 
vanishing gradients. Therefore, they used the HAM10000 
dataset from PADUFES-20 to train and test their model for 
accuracy. This approach effectively mitigates overfitting while 
maintaining high accuracy and recall through batch 
normalization and early stopping and transfer learning [23]. 

Alwaisi and Al-Fahdawi discovered Skin-Deep, a deep 
learning structure which is based on DenseNet for the fast and 
correct diagnosis of melanoma. To retrieve skin features, the 
method consists of multi-level convolutional blocks, dense 
residual connections, and feature fusion. The model was also 
trained and assessed on the ISIC 2019 dataset. The model 
utilized dropout, batch normalization and data augmentation to 
boost generalization and avoid overfitting [24]. 

Tai and Janes successfully diagnosed skin cancer using dual-
conditioning capacitors and attention techniques. Their TinyML 
approach decreased computing loads while retaining accuracy in 
the diagnosis. The network acquired compact yet pertinent 
vector representations of features, via dual capacitor blocks, 
emphasizing melanoma-specific attributes. The DC-AC model, 
trained on the ISIC 2020 dataset, exhibits good generalization 
capacity with only 1.6 million parameters and a computational 
complexity of 0.32 GFLOPs, making it suitable for real-time 
clinical applications [25]. Table I presents the recent studies 
referenced in this paper. 

Fig. 1 illustrates the main flow chart used in this study on 
skin diseases in detail. This diagram highlights the sequence of 
the different stages and processes involved in the research. It 
aims to explain each stage and process involved in research on 
this specific area, in a comprehensive and in-depth manner, thus 
providing a clear and organized presentation of the study in its 
entirety. This visual representation highlights the various 

essential stages of the process in detail, starting with the image 
processing phase, then moving on to model training and finally 
ending with the evaluation of its performance. 

 

Fig. 1. The flowchart for classifying skin diseases based on a convolutional 

neural network by the authors. 

The study presented here aims to provide a systematic 
evaluation of a range of convolutional neural network (CNN) 
algorithms for the classification of dermatological diseases, 
using high-quality dermoscopic images. Their performance is 
analysed in terms of accuracy, loss, execution time and 
computational cost, in order to determine the most appropriate 
models for clinical deployment and real-time applications. 

TABLE I.  COMPARISON OF RECENT RESEARCH (2020–2025) 

Ref Authors / Year Architectures Dataset 
Accuracy 

(%) 

Loss / 

Metric 
Notes 

[15] Yan et al 2020 
VGG16, Inception-ResNet-V2, 

InceptionV3, DenseNet-201 
ISIC 2018 94.7 0.19 

Ensemble outperformed 

Individual CNNs 

[17] Hosny et al 2021 
VGG16/19, InceptionV3, 

ResNet50, DenseNet201 
Skin disease 96.4 0.12 DenseNet best performer 

[18] Nigar et al 2022 VGG16, ResNet50 + XAI ISIC 2019 94.5 — Explainable AI integration 

[19] 
Venugopal and 

Raj 2023 
EfficientNet-B4 vs VGG, ResNet ISIC 2020 97.3 

0.08 F1 = 

0.97 
Improved residual extraction 

[20] 
Shapna and 

Shahriar 2023 

AlexNet, VGG16, DenseNet121, 

InceptionV3, ResNet-50 
HAM10000 94.8 

0.11 F1 = 

0.95 
DenseNet121 best 

[21] 
Yao et al 

2023 
ResNet-50, DenseNet-201 ISIC 2016–2020 — 

AUC > 94 

% 
Risk-level classification 

[22] 
Kanchana et al 

2024 
EfficientNet + ResNet ISIC 2020 97.5 

0.07 AUC = 

0.987 
Hybrid residual-efficient 

[23] De et al.2024 Hybrid CNN-DenseNet 
Hybrid CNN-

DenseNet 

95.7 / 

91.07 
0.04 / 0.09 

surpassed all other CNNs tested; 

implemented hybridization and learning-

rate adjustments for dermatological 

histology. 

[24] 
Al-Waisy et al 

2025 
DenseNet-169 (Skin-DeepNet) ISIC 2019 98.6 

0.05 F1 = 

0.98 
Early-detection hybrid 

[25] Tai et al 2024 ResNet + Attention Condensers HAM10000 97.9 0.06 Efficient attention-enhanced CNN 
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III. METHOD 

A. Dataset 

All the data chosen for this study came from Dermnet 
(www.dermnet.org), the largest publicly available collection of 
dermatological images. This dataset contains over 23,000 
dermoscopic images of skin issues, each accompanied by 
diagnostic labels offered by experienced providers of 
dermatological resources. The dataset includes 22 distinct 
classes of skin illnesses (Table II). Fig. 2 offers an outline. 

B. Image Selection 

The dataset includes various images of skin diseases, all in 
JPEG format. During the preparation of the dataset, some 
images were removed due to low quality. Following quality 
control, the remaining images were split into 80% training data, 
10% testing data, and 10% validation data for each class within 
the dataset. To ensure specificity in our research, we divided the 
dataset into two groups, with each group having two categories. 
This layout was essential in considering other criteria such as 
biological and functional analysis, which assists in diagnosis. 
The images correspond to the two classes in each group and their 
labels (Table III and Table IV). 

The division into two groups is selected to simulate the most 
sophisticated situations in clinical practice, where multiple 
lesions present very similar visual signatures. 

C. Technology of Decision 

Numerous researchers have effectively employed deep 
learning techniques to tackle classification tasks (see Table I). 
Deep learning is a cutting-edge machine learning domain that 
mimics the human brain in its ability to learn and progress 
through experience. This technology, which incorporates the 
fields of neuroscience, mathematics, and technological 
advancement, is considered a true breakthrough in the domain 
of artificial intelligence. Lately, models for deep learning, 
leveraging progress in computing and massive datasets have 
been shown to outperform human performance in visual 
activities, similar to games, strategic activities, and object 
recognition. Computer vision and object recognition, including 
skin disease recognition, have extensively employed deep 
learning, utilising a convolutional neural network of CNNs. 
They comprise several processing layers that are able to learn 
data structures at various degrees of abstraction, resulting in 
significant improvements in image recognition and 
classification. 

In this study, different CNN architectures are tested, with the 
three best ones being selected for the classification of skin 
datasets. These architectures included Google Net, Xception, 

VGG19, ResNet-50 [17], [20], VGG-16 [18], Inception-v4 [19], 
AlexNet, Inception-v3 [20] and ResNext-50 [21]. 

 
Fig. 2. DermNet New Zealand's open-access medical image library 

https://www.dermnetnz.org/ 

TABLE II.  LABELS OF THE 22 SKIN DISEASES CLASS 

Label Name Class / Category 
Number 

of Images 

1 Acne-and-Rosacea 939 

2 
Actinic-Keratosis-Basal-Cell-Carcinoma-and-

other-Malignant Lesions 
1485 

3 Atopic-Dermatitis 814 

4 Bullous-Disease 561 

5 Cellulitis-Impetigo-and-other-Bacterial-Infections 361 

6 Eczema 2050 

7 Exanthems-and-Drug-Eruptions 2050 

8 
Hair-Loss-Photos-Alopecia-and-other-Hair-

Diseases 
291 

9 Herpes-HPV-and-other-STDs-Photos 554 

10 Light-Diseases-and-Disorders-of-Pigmentation 709 

11 Lupus-and-other-Connective-Tissue-diseases 516 

12 Melanoma-Skin-Cancer-Nevi-and-Moles 655 

13 Nail-Fungus-and-other-Nail-Disease 1540 

14 Poison-Ivy-Photos-and-other-Contact-Dermatitis 367 

15 
Psoriasis-pictures-Lichen-Planus-and-related-

diseases 
2363 

16 
Scabies-Lyme-Disease-and-other-Infestations-and-

Bites 
595 

17 Seborrheic-Keratoses-and-other-Benign-Tumors 2630 

18 Systemic-Disease 840 

19 
Tinea-Ringworm-Candidiasis-and-other-Fungal-

Infections 
2140 

20 Urticaria-Hives 265 

21 Vascular-Tumors 603 

22 Vasculitis 585 

 

TABLE III.  GROUP 1 SKIN DISEASES CLASS 

Label Class / Category 
Train 

Data 

Validation 

Data 

Test 

Data 

Number of 

Images 

0 
Psoriasis-pictures-Lichen Planus-and-

related-diseases 
1897 234 236 2367 

1 
Seborrheic-Keratoses -and-other-Benign-

Tumors 
1945 240 252 2437 

https://www.dermnetnz.org/
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TABLE IV.  GROUP 2 SKIN DISEASES CLASS 

Label Class / Category 
Train 

Data 

Validation ta 

Data 

Test 

Data 

Number of 

Images 

0 Nail-Fungus-and-other-Nail-Disease 1232 154 154 1540 

1 Warts-Molluscum-and-other-Viral-Infections 1389 171 173 1733 
 

IV. EXPERIMENTS 

A. Data Pre-Processing 

During the early phases of this research, the dataset has been 
broken down into training, testing, and validation sets and 
thoroughly assessed the quality of the data. With this training, 
the CNN architectures can be implemented in this study. To 
obtain the best performance. The input images are processed for 
each architecture. For example, the images are resized to 
(224,224,3) pixels for use with the VGG-16, VGG-19, ResNet-
50, ResNext-50, AlexNet and GoogLeNet architectures. At the 
same time, the Inception-V3, Inception-V4 and Xception 
architectures are fed with images of (299,299,3) pixels. Finally, 
for the LeNet-5 architecture, the images are prepared in advance 
in (32,32,1) pixel format, this preparation of data has allowed 
CNNs to learn more rapidly and improve their performance. 

B. Data Augmentation 

This work attempts a randomized architecture with its own 
dataset and it overfitted. It also attempts data augmentation to 
avoid this. Table V illustrates the values used to augment the 
data for skin diseases. Data augmentation is a technique that 
aims to artificially inflate the volume of a database by injecting 
variations into existing data. This approach can prove to be 
extremely effective within CNNs for overcoming overfitting, 
boosting generalization, exploiting fragmented data, balancing 
asymmetric datasets, and taming noise. Enriching neural 
networks by adding data is now a common practice and a state-
of-the-art approach in this field. It may be used to 
computationally equalize the dataset by producing novel 
instances for under-represented categories, as well as to 
synthetically boost the dataset's size to make it appropriate for 
model training. 

TABLE V.  MEASUREMENTS USED TO ADD MORE DATA 

Process Value 

Rescale 1./255 

Rotation range ±45 

Width shift range ±0.15 

Height shift range ±0.15 

Horizontal flip Enabled 

C. Training Procedure 

All experiments were performed Intel Xeon multicore 
processors optimised for parallel processing powered the 
Marwan CNRST high-performance HPC computing 
infrastructure. This platform has additional memory, a fast 
internal network, and ideal conditions for deep learning. This 
makes it possible to train CNN models faster and analyse a large 
number of skin photos more quickly and reliably. 

The batch sizes varies from 32 to 256 depending on memory 
restrictions, while maintaining equivalent efficient batch sizes to 
the gradient accumulation. Learning rate utilizes Reduce LR-on-
Plateau to stabilize convergence. 

For each model, we recorded training and validation 
accuracy, loss and confusion matrices. The research evaluated 
the eleven models based on Accuracy, Loss and Matrix 
Confusion [16]. The classification metrics are used with 
performance indicators like runtime per picture and FLOPs to 
Figure out how efficient and complicated each design is. The 
execution time for each image estimates the average time 
required to classify a sample, meaning it can be used in real time. 
The FLOPs scale counts the number of floating operations 
needed for each pass, which shows the cost and updatability of 
the network [26]. 

These additional measures enable a fair analysis of the trade-
off between model accuracy and computational performance. 
The various measures, each symbolized by a specific numbered 
Eq. (1), (2) and (3), play an essential role in the accurate 
measurement and in-depth analysis of the gathered data. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
                        (1) 

𝐹𝐿𝑂𝑃𝑠 = ∑ 2 ∗ 𝐶𝑖𝑛
𝑙𝐿

𝑙=1 ∗ 𝐶𝑜𝑢𝑡
𝑙 ∗ (𝐾𝑙)2 ∗ 𝐻𝑜𝑢𝑡

𝑙 ∗ 𝑊𝑜𝑢𝑡
𝑙  )   (2) 

𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑒𝑝𝑜𝑐ℎ =
𝑁𝑡𝑟𝑎𝑖𝑛∗𝐹𝐿𝑂𝑃𝑠𝑚𝑜𝑑𝑒𝑙

𝐵∗𝑅𝐶𝑃𝑈∗𝑁𝑛𝑜𝑑𝑒𝑠  
                (3) 

V. RESULTS AND DISCUSSION 

The results in this section present accuracy and loss curves 
for learning stability and confusion matrices for the models' 
capacity to split visually identical classes. Computational 
metrics (FLOPs, epoch runtime) deliver crucial insights into the 
actual efficiency of the models. Together, they form a baseline 
for understanding the value, advantages, and limitations of each 
architecture in practice. The following section discusses these 
outcomes in relation to their generalizability, speed of training, 
and accuracy (see Table VI and Fig. 3). There are low-cost 
models (VGG-19, LeNet-5) and more expensive higher-
performance models (Xception, Inception-v3), which gives a 
complete comparison of the performance and the resource 
requirements. 

The accuracy curve in Fig. 4(a) is greater than 98%, and Fig. 
4(b) confirms very clean convergence with low loss. Matrix, the 
confusion matrix, Fig. 4(c) shows near-optimal separation 
between classes. More expensive 1.28 GFLOPs, 44 s/epoch); 
therefore, Xception presents best the benchmark. 

Fig. 5(a) and Fig. 5(b) present a very stable learning dynamic 
with an accuracy above 97%. The confusion matrix in Fig. 5(c) 
presents a very low error rate, confirming the robustness of the 
model. Slightly more expensive than MobileNet but much more 
accurate, it is a benchmark model for demanding clinical 
applications. 
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TABLE VI.  FINDINGS OF THIS STUDY 

Name of 

Architectures 

Total 

Parameters 

Group 1 Group 2 

Accuracy Loss FLOPs(G) 
Runtime 

(s) 
Accuracy Loss 

FLOPs 
(G) 

Runtime 
(s) 

Inception-v3 23,853,786 93.23% 16.28% 2.85 52 96.33% 54.70% 2.85 54 

Lenet-5 60,374 76.37% 46.78% 0.00238 33 80.37% 42.67% 0.00238 34 

MobileNet v3 8,758,866 88.43% 28.12% 0.45 37 90.96% 22.18% 0.45 38 

ResNet-50 25,638,714 76.63% 46.80% 3.8 61 80.32% 44.79% 3.8 63 

ResNext-50 26,507,010 85.64% 31.42% 4.25 64 85.16% 32.38% 4.25 66 

VGG-16 134,268,738 52.69% 69.18% 15.5 92 53.54% 69.07% 15.5 95 

VGG-19 138,988,354 52.54% 69.19% 19.6 118 53.10% 69.13% 19.6 120 

Xception 22,912,482 98.33% 05.03% 1.85 48 96.89% 09.73% 1.85 49 

GoogLeNet 6,998,552 53.25% 69.12% 1.05 42 53.47% 69.07% 1.05 43 

AlexNet 62,380,346 74.06% 51.54% 0.82 41 46.69% 78.26% 0.82 42 

  
(a)      (b) 

 
(c) 

Fig. 3. Comparison Metrics of CNNs Models and their performance indicators. 
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(a) 

 
(b) 

  
(c) 

Fig. 4. Metrics of accuracy, loss and Confusion Matrix of  Xception Group 1 

model. 

The corresponding Fig. 6(a) shows a monotonic increase in 
accuracy up to 93%, and Fig. 6(b) shows a monotonic decrease 
in loss, indicating stable convergence. The confusion matrix in 
Fig. 6(c) shows good discrimination between the two classes, 
with some minor confusion. With 1.05 GFLOPs and 42 s/epoch, 
this model is a good compromise between performance and 
computational cost. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Metrics of accuracy, loss and confusion matrix of Xception group 2 

model. 

The sub-figures in 7(a) and 7(b) are very stable with an 
accuracy higher than 96% and a well-regularized loss. Fig. 7(c) 
also confirms a very clear inter-class separation with a low error 
rate. Its low cost (1.05 GFLOPs) and stable runtime reflect its 
robustness on a second set of skin diseases. 
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(a) 

 
(b) 

 
(c) 

Fig. 6. Metrics of accuracy, loss and confusion matrix of Inception -V3 

group 1 model. 

  
(a) 

 
(b) 

 
(c) 

Fig. 7. Metrics of accuracy, loss and confusion matrix of Inception-v3 

group 2 model. 

Fig. 8(a) and Fig. 8(b) show stable convergence, with an 
accuracy exceeding 96%. The low and stable loss values of the 
loss prove efficient generalization. Matrix confusion in Fig. 8(c) 
indicates a very strong inter-class separation with only 
insignificant misclassification. Its low cost 1.05 GFLOPs and 
stable runtime testify to its robustness on a second set of skin 
diseases. Fig. 9(a) and 9(b) exhibit stable convergence with an 
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accuracy exceeding 96% and a well-regularized loss. Fig. 9(c) 
demonstrates a clear inter-class distinction with marginal 
misclassification. Its low cost 1.05 GFLOPs and stable runtime 
reflect its robustness on a second set of skin diseases. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Metrics of accuracy, loss and confusion matrix of Inception-v3 

group 1 model. 

The experimental results obtained for the two groups of skin 
conditions show distinct behaviours depending on the 
architecture tested. Xception delivers the highest performance, 
with stable learning curves, rapid convergence, and accuracy of 

around 98–99% in both groups. The confusion array, Fig. 4(c), 
reveals near-perfect separation across classes. The confusion 
arrays display an ultra-low error rate, which confirms the ability 
of Xception to adequately model intra-class variances, 
especially in visually similar skin lesions. This great 
performance may be partly explained by its structure, which is 
built on separable convolutions in the depth. This makes 
recognition easier and reduces the amount of computing needed. 

 
(a) 

 
(b) 

  
(c) 

Fig. 9. Metrics of accuracy, loss and confusion matrix of Inception-v3 

group 2 model. 
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Also, Xception-V3 works well, properly detecting things 
95% to 97% of the time. The loss and accuracy curves show that 
the training and validation sets are a good fit. The confusion 
matrices are a little more confusing than Xception, especially in 
classes where the textures are identical. 

In addition, Inception-v3 is a great balance between price 
and performance. This makes it a good choice, especially when 
quick decisions are needed. 

MobileNet-v3 is light and has an accuracy rate of 85 to 92 
percent. It doesn't work as well as Xception or Inception-v3, but 
it uses a lot less computational resource. It is 85% to 92% 
accurate. It's not as powerful as Xception or Inception-v3, but it 
is more efficient in terms of computing, which means it takes 
less time to run and uses fewer GFLOPs. That makes it great for 
compact gadgets that can be carried around. But the confusion 
matrices indicate greater mistakes in classifying things, 
especially when the classifications are quite similar. This means 
that the simpler model isn't particularly good at finding intricate 
skin patterns. 

Overall, the three topologies comparison shows that the 
depth of the network and the number of convolutional blocks 
influence its generalisation. The results surpass previous work 
applied to dermatological classification, notably that of 
[6],[9],[11],[15],[17],[18], which used more limited datasets or 
conventional models (VGG, ResNet, AlexNet) and reported 
generally lower accuracies (80–95The use of recent 
architectures such as Inception and Inception-v3, in association 
with a variety of data sets, significantly enhances the reliability 
of the system. This enhancement is also due to hyperparameter 
optimisation and strict pre-processing. 

However, this study has limitations that reduce its 
generalizability and clinical realism. First, the experimental data 
is only from DermNet NZ, which are images under ideal and 
standard lighting and photography conditions, making the 
models less robust to the variety of real-world images taken by 
smartphones or in clinical settings. Second, the study is just a 
binary classification, where the diseases are classified into two 
groups, which is not enough to deal with the complexity of 
diagnosing different and similar skin diseases. Thirdly, although 
models such as Xception model performed well, they are not 
clinically validated by experts, which is required for medical 
use. Fourth, while Marwan's HPC cluster, no explainable AI 
model has been trained to enable clinicians to understand why 
the classifications were made. Finally, the study did not validate 
the models in real-world settings or with local clinic data, 
suggesting the need for future real-world validation. 

VI. CONCLUSION 

The results demonstrate that Xception is the most effective 
solution for dermatological classification, followed by 
Inception-v3 which offers a relevant compromise between 
accuracy and computational cost. Although MobileNet-
V3presente lower accuracy than Xception and Inception-V3, its 
minimum computational cost makes it a relevant candidate for 
implementation on medical equipment with limited resources. 
In contrast, Xception consistently delivers the strongest 
diagnostic accuracy, reinforcing its relevance for clinical 
decision support systems. 

Future research will involve incorporating visual 
transformers to detect overall dependencies in dermatological 
images and using explainable AI methods (Grad-CAM++, 
SHAP) for better clinical interpretability. The exploration of 
hybrid CNN-Transformer models, the reduction of 
computational overhead through pruning and quantisation, and 
validation by dermatologists are also promising avenues. 
Finally, optimising the model for execution on mobile devices 
or edge computing will enhance the clinical reach of the 
proposed solutions. 
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