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Abstract—Skin diseases represent a global healthcare
challenge because of their frequent occurrence and complex
diagnosis. However, despite clinical advances, accurately
identifying dermatological lesions remains difficult due to
significant intra-class variability, overlapping visual patterns, and
reliance on clinician expertise. In this study, it presents a complete
overview of a number of state-of-the-art CNN architectures as
they apply to multiclass classification of skin diseases. The study
introduces an overview of the common skin diseases and discuss
the fundamentals of deep learning for medical image analysis. The
study proceeds to introduce the dataset used in this work and
provide a brief description of the two diagnostic groups identified
for evaluation. A range of CNN models which comprise
GoogLeNet, Inception-V3, Inception-V4, ResNet-50, Xception,
MobileNet, ResNeXt-50, AlexNet, VGG-16, and VGG-19 were
trained and tested in terms of accuracy, loss, FLOPs, and epoch
runtime. The experimental findings suggest that Xception
performs constantly at the highest level, with an accuracy of more
than 98% and low validation loss, whereas lightweight models
such as MobileNet-V3 provide a competitive outperformance with
minimum computational cost. These findings demonstrate the
potential of modern CNN architectures to enhance efficient and
accurate dermatological diagnosis and offer guidance for selecting
appropriate architectures for clinical and real-time deployment.
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I.  INTRODUCTION

One of the most common diseases in the world is skin
disease. The United States and Australia have the greatest
prevalence of skin cancer worldwide, with over five million
cases reported annually. Skin cancer is still one of the most
common diseases diagnosed worldwide, and it is closely linked
to exposure to ultraviolet light and having fair skin [1]-[2].
Australia is one of the countries most affected by cancer due to
its high levels of ultraviolet radiation and poor environmental
lifestyle conditions. A comprehensive analysis of prominent
features, such as pigmentation, texture, and morphological
changes, can help identify skin lesions. However, these complex
patterns can be a real burden during diagnosis and have the
potential to hinder medical detection or cause misdiagnosis [3]-

[4].

The ABCD criteria, pattern technique, Menzies approach,
and seven-pointassessment are common methods for detecting
melanoma during examinations. Some of the most significant

characteristics are colour, texture, and the extent to which
different skin spots overlap with each other. Using these older
methods to achieve a very high level of diagnostic accuracy
requires a great deal of clinical expertise. Because of the
complexity and autonomy of these decisions, vision-based
diagnostic Because these judgments are complicated and
independent, vision-based diagnostic treatments have become
more popular [5]. Machine learning and deep learning have
come together to make it possible to objectively find lesions by
recognizing face traits that are always the same. As aresult, they
have shown to be more accurate and precise, often beating
manual diagnosis in recent trials [6].

Machine learning emerged in the domain of computer
science in the latter half of the 20th century, leading to
significant progress in the area [7]. The creation of algorithms
that can learn on their own was a big step forward. Machine
learning art. It was a game-changerto develop algorithms that
could learn on their own. To enable deep learning, a kind of
machine learning, artificial neural networks (ANNs) are
constructed to mimic the way neurones in the human brain
function [8]. Modern artificial intelligence research relies on
these designs because of their success in computer vision, audio
processing, and picture recognition [9]. It is estimated that more
than 5 million new cases of skin cancer are diagnosed each year
in the United States, making skin diseases (and particularly skin
cancers) a major global health problem. Due to the wide
variability in lesion morphology, clinical appearance, size,
colour, and spatial arrangement, differentiation between these
entities can be challenging and sometimes requires considerable
clinical expertise [10].

Traditional methods of dermatological diagnosis depend
largely on the clinician's individual interpretation and visual
abilities, which can lead to low repeatability and between-
observer variability [11]. The combination of computer vision
and sophisticated learning algorithms has recently led to a more
objective and consistent framework for medical decision-
making [12].

CNNs have gained popularity among these techniques due
to their ability to generate structures directly from the images
that are used, eliminating the need for computational features
[13]. With high-performance computers and large-scale data
sets, CNN architectures such as VGG16, ResNet50, and
GoogleNet have achieved impressive results in challenging
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visual recognition tasks, particularly in the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) [14].

The success of these algorithms in image classification has
resulted in their use in medical image analysis, particularly in
dermatological diagnosis. Today, they constitute the basis of
computer-assisted diagnostic techniques.

It remains difficult to classify skin images, as many skin
diseases are very similar. There is great variability within each
category and real clinical cases present anomalies and
distortions. Deep learning, particularly convolutional neural
networks (CNNs), has greatly improved diagnostic efficiency.
However, many studies to date use small or limited datasets and
do not provide a fair comparison between shallow and deep
architectures. Furthermore, computational efficiency is often
overlooked, despite its crucial importance for real-time clinical
applications. For these reasons, there is a clear need for a
systematic comparison of alternative convolutional neural
network designs based on their diagnostic accuracy and cost.
This work fills this gap by testing a number of modern CNN
models on a large skin dataset to find accurate and efficient
architectures for real-world use.

The objective of this study is to provide a comprehensive,
large-scale evaluation of the optimal CNN architectures for
classifying skin images. The specific objectives are: 1) to
compare deep and lightweight CNNs in a common evaluation
protocol; 2) to measure their diagnostic performance and
computational efficiency (FLOPs and runtime); 3) to analyse the
behaviour of the models in diagnostic subgroups; and 4) to find
the architectures that best balance accuracy and computational
cost for real-world clinical implementation.

Additionally, this study. It presents a comparative in-depth.
It specifically considers instances necessitating diagnostic
precision for skin condition photos using convolutional neural
networks. This paper uses a singular strategy and integrates
eleven distinct architectural patterns, contrasting with prior
studies that mostly concentrated on a limited number of cases or
disorders. This is what makes us different from everyone else.
This approach shows how loss, accuracy, FLOPs, and transfer
time vary over time. The applications also operate with the
economic or integrated features of MobileNet-V3 since the
features are mostly compatible. This research investigates
architectural variety concerning damage complexity. There have
been many papers done on this topic previously. Overall, these
contributions provide a comprehensive and useful guide to the
selection of CNN systems that can meet the real-world
requirements for performance.

This research study brings significant changes to the
automatic evaluation of skin images. First, it proposes a
comparative evaluation of eleven modern CNN architectures,
includingdeep models(Xception, Inception-V3/V4, ResNet-50)
and lightweight networks (MobileNet-V3). Second, to ensure a
fair and reproducible evaluation framework, a standardised
evaluation protocol based on accuracy, loss evolution, FLOPs,
runtime, and confusion matrices is implemented. Third, the
study presents an analysis of diagnostic sets that reveals specific
behaviours of architectures across relevant clinical categories.
Fourth, it shows that lightweight architectures can provide
competitive accuracy while significantly reducing
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computational costs. This makes these architectures suitable for
real-time and portable clinical applications. Finally, the work
provides practical guidelines for convolutional neural network
architectures (CNN) based on the trade-off between diagnostic
performance and computational efficiency. This supports the
development of deployable, resource-aware, skin-based
decision support systems.

II. RELATED WORK

Yan et al. used several deep CNNs, including VGG16,
InceptionV3, Inception, ResNet-V2, and DenseNet-201 at ISIC
2018 to classify skin lesions in dermoscopic image data, they
achieved an accuracy of 94.7% and a loss of 0.19, exceeding
each model individually [15].

Hosny et al. analysed the ResNet50, VGGI16/19,
InceptionV3 and DenseNet201 methods to classify skin disease
detection. The DenseNet201 variant outperformed all other
networks in terms of feature stability and convergence speed,

reaching an accuracy of 96.4% with a validation loss of 0.12
[17].

Nigar and Umar classified skin diseases in 2022 with
VGG16 and ResNet50 algorithms using an explainable Al
(XAI) system The LIME and Grad-CAM methods were applied
to explain the predictions of convolutional neural networks
(CNNs) and visualize the regions of interest in lesions its
approached an accuracy of 94,5 % on database ISIC2019 [18].

Vinodgopal and Raj have enhanced EfficientNet-B4 through
batch normalization and strong training methods.Their model
achieved 97.3%accuracy, an F1 score 0f 0.972, and showed a
low loss 0f 0.08 on the ISIC 2020 dataset [19].

Shapna and Shahriar exploited the HAM 10000 database to
evaluate 7 previously trained CNN frameworks for detecting
multiple  classes of  skin  cancers: = AlexNet,
DenseNet121, VGG16, InceptionV3, ResNet-50, Xception, and
ResNet 50,and MobileNet. DenseNet121 outperformed the
other models, earning 94.8% accuracy with F1 score 0.95 and
loss 0.11. This research highlighted the importance of deep
feature extraction and network depth in improving classification
performance [20].

Yao et al. ranked melanoma disease risk levels using state-
of-the-art computer vision techniques on the ISIC 20162020
datasets. They stabilized the model by puttingin a lot more data,
training it in batches, and adjusting its hyperparameters with the
ResNet-50 and DenseNet-201 models. They proved thatgradient
boosting ensembles and transfer learning are effective in
correcting imbalanced data [21].

Kanchana et al. proposed an improved cancer detection
model with EfficientNet variants (B0-B7) using patient-specific
transfer learning techniques. The diagnosis accuracy of the
model on the ISIC 2020 dataset had improved with ImageNet
pre-trained weights and a better pre-processing strategy that
removed Bias, Resized,and Added images. The merged residual
efficiency improved feature extraction, reduced overfitting, and
showed generalization across a range of different lesion types
[22].
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Anubhav De et al. developed a hybrid CNN-DenseNet
method to exploit dermatological and Histological data for
automatic classification of skin diseases. The approach
employed deep convolutional layers and DenseNet connectivity
for feature utilization, Gradient flow, and the management of
vanishing gradients. Therefore, they used the HAMI10000
dataset from PADUFES-20 to train and test their model for
accuracy. This approach effectively mitigates overfitting while
maintaining high accuracy and recall through batch
normalization and early stopping and transfer learning [23].

Alwaisi and Al-Fahdawi discovered Skin-Deep, a deep
learning structure which is based on DenseNet for the fast and
correct diagnosis of melanoma. To retrieve skin features, the
method consists of multi-level convolutional blocks, dense
residual connections, and feature fusion. The model was also
trained and assessed on the ISIC 2019 dataset. The model
utilized dropout, batch normalization and data augmentation to
boost generalization and avoid overfitting [24].

Taiand Janessuccessfully diagnosedskincancerusing dual-
conditioning capacitors and attention techniques. Their TinyML
approach decreased computing loads whileretainingaccuracy in
the diagnosis. The network acquired compact yet pertinent
vector representations of features, via dual capacitor blocks,
emphasizing melanoma-specific attributes. The DC-AC model,
trained on the ISIC 2020 dataset, exhibits good generalization
capacity with only 1.6 million parameters and a computational
complexity of 0.32 GFLOPs, making it suitable for real-time
clinical applications [25]. Table I presents the recent studies
referenced in this paper.

Fig. 1 illustrates the main flow chart used in this study on
skin diseases in detail. This diagram highlights the sequence of
the different stages and processes involved in the research. It
aims to explain each stage and process involved in research on
this specific area, in a comprehensive and in-depth manner, thus
providing a clear and organized presentation of the study in its
entirety. This visual representation highlights the various
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essential stages of the process in detail, starting with the image
processing phase, then moving on to model training and finally
ending with the evaluation of its performance.

[ Data Acquisition (DermNet New Zealand's public medical image ]
database - 22 Classes )

[ Preprocessing ( Image Resizing 224,224,3 ,RBG Normalizatlorﬂ
l
[ Data Augmentation (Rescale -Rotation ,Shifting ,Horizontal Flip) ]

|
[ Train/VaUTest (80%, 10%, 10%) Standardized Protocol |

[ Feature Extraction ]
(Models of CNNs -Table 6)

Classification Layer
( Fully Connected+Softmax+2 Output Classes

|
[ Evaluation (Accuracy -Loss — Confusion Matrix - GFLOPs - ]

Runtime)

Comparative Analysis (Model Ranking -Sensitivity to Skin
Diseases - Errors by Class

Fig. 1. The flowchart for classifying skin diseases based on a convolutional
neural network by the authors.

The study presented here aims to provide a systematic
evaluation of a range of convolutional neural network (CNN)
algorithms for the classification of dermatological diseases,
using high-quality dermoscopic images. Their performance is
analysed in terms of accuracy, loss, execution time and
computational cost, in order to determine the most appropriate
models for clinical deployment and real-time applications.

TABLE . COMPARISON OF RECENT RESEARCH (2020-2025)
Ref Authors / Year Architectures Dataset Accuracy Loss./ Notes
(%) Metric
VGG16, Inception-ResNet-V2, Ensemble outperformed
[15] Yan etal 2020 InceptionV3, DenseNet-201 ISIC 2018 947 0.19 Individual CNNs
VGG16/19, InceptionV3, s
[17] Hosny et al 2021 ResNet50, DenseNet201 Skin disease 96.4 0.12 DenseNet best performer
[18] Nigar et al 2022 VGG16, ResNet50 + XAl ISIC 2019 94.5 — Explainable Al integration
Venugopal and . : 0.08 F1 = . .
[19] Raj 2023 EfficientNet-B4 vs VGG, ResNet | ISIC 2020 97.3 097 Improved residual extraction
Shapna and | AlexNet, VGG16, DenseNetl21, 0.11 F1 =
201 | Shahriar 2023 InceptionV3, ResNet-50 HAM10000 948 0.95 DenseNet 21 best
[21] }3‘3 ;t al ResNet-50, DenseNet-201 ISIC 2016-2020 | — gUC 7 9| Risk-level classification
0
oy | Manchana et al | g ieniNet + ResNet ISIC 2020 975 007AUC = | Hybrid residual-efficient
2024 0.987
surpassed all other CNNs tested;
. Hybrid CNN- | 95.7 / implemented hybridization and learning-
23] De ctal 2024 Hybrid CNN-DenseNet DenseNet 91.07 0.0470.09 rate adjustments for dermatological
histology.
241 | S0oet A} DenseNet-169 (Skin-DeepNet) | ISIC 2019 98.6 003 T 7| Barly-detection hybrid
[25] Tai et al 2024 ResNet + Attention Condensers HAM10000 97.9 0.06 Efficient attention-enhanced CNN
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III. METHOD

A. Dataset

All the data chosen for this study came from Dermnet
(www.dermnet.org), the largest publicly available collection of
dermatological images. This dataset contains over 23,000
dermoscopic images of skin issues, each accompanied by
diagnostic labels offered by experienced providers of
dermatological resources. The dataset includes 22 distinct
classes of skin illnesses (Table II). Fig. 2 offers an outline.

B. Image Selection

The datasetincludes various images of skin diseases, all in
JPEG format. During the preparation of the dataset, some
images were removed due to low quality. Following quality
control, the remaining images were split into 80% training data,
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VGG19,ResNet-50[17],[20], VGG-16[18], Inception-v4[19],
AlexNet, Inception-v3 [20] and ResNext-50 [21].

Fig.2. DermNet New Zealand's open-access medical image library
https://www.dermnetnz.org/

; welt -l TABLEIL.  LABELS OF THE 22 SKIN DISEASES CLASS
10% testing data, and 10% validation data for each class within
the dataset. To ensure specificity in our research, we divided the Label Name Class / Category Number
dataset into two groups, with each group having two categories. of Images
This layout was essential in considering other criteria such as ! Acne-and-Rosacea 939
biological and functional analysis, which assists in diagnosis. 5 Actinic-Keratosis-Basal-Cell-Carcinoma-and- 1485
The images correspondto thetwo classesin each group and their other Malignant Lesions
labels (Table Il and Table IV). 3 Atopic-Dermatitis 814
The division into two groups is selected to simulate the most 4 Bullous-Discase >61
sophisticated situations in clinical practice, where multiple 5 Cellulitis-Impetigo-and-other-Bacterial-Infections | 361
lesions present very similar visual signatures. 6 Eczema 2050
C. Technology of Decision 7 Exanthems-and-Drug-Eruptions 2050
Numerous researchers have effectively employed deep 8 Hair-Loss-Photos-Alopecia-and-other-Hair- 291
learning techniques to tackle classification tasks (see Table I). Diseases
Deep learning is a cutting-edge machine learning domain that 9 Herpes-HPV-and-other-STDs-Photos 554
mimics the hu.man bra%n in its ability to. lee{rn and progress 10 Light-Diseases-and-Disorders-of-Pigmentation 709
through experience. This technology, which incorporates the . Laonsandother Commoctive Tioono-disoases 16
fields of neuroscience, mathematics, and technological upu M "
advancement, is considered a true breakthrough in the domain 12 Melanoma-Skin-Cancer-Nevi-and-Moles 655
of artiﬂcial intelligepce. Latel.y, models fo.r deep learning, 13 Nail-Fungus-and-other-Nail-Disease 1540
leveraging progress in computing and massive datgsets have 14 Poison-Ivy-Photos-and-other-Contact-Dermatitis 367
been shown to outperform human performance in visual . :
activities, similar to games, strategic activities, and object 15 gisé’e‘;zzlss'p’Ct“reS'L“’he“'PlanuS'a“d'related' 2363
recognition. Computer vision and objectrecognition, including Scabies Lyme Discase-and-otherInfestations-and-
skin disease recognition, have extensively employed deep 16 Bites 595
learning, utlllsmg a convolut19na1 neural network of CNNs. 17 Sebortheic-Keratoses-and-other-Benign-Tumors 2630
They comprise several processing layers that are able to leam —
data structures at various degrees of abstraction, resulting in 18 Systemic-Disease 840
significant improvements in image recognition and 19 Tinea-Ringworm-Candidiasis-and-other-Fungal- 2140
classification. Infections
. . . . 20 Urticaria-Hives 265
In this study, different CNN architectures are tested, with the
. . . . 21 Vascular-Tumors 603
three best ones being selected for the classification of skin
datasets. These architectures included Google Net, Xception, 22 Vasculitis 585
TABLEIIl.  GROUP 1 SKIN DISEASES CLASS
Train Validation Test Number of
Label Class / Category Data Data Data Images
0 Psona51s-.plctures-L1chen Planus-and- 1897 234 236 2367
related-diseases
1 ?zz;);';lslelc-Keratoses -and-other-Benign- 1945 240 259 2437
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TABLEIV. GROUP 2 SKIN DISEASES CLASS
Train Validation ta Test Number of
Label Class / Category Data Data Data Images
0 Nail-Fungus-and-other-Nail-Disease 1232 154 154 1540
1 Warts-Molluscum-and-other-Viral-Infections 1389 171 173 1733

IV. EXPERIMENTS

A. Data Pre-Processing

During the early phases of this research, the dataset has been
broken down into training, testing, and validation sets and
thoroughly assessed the quality of the data. With this training,
the CNN architectures can be implemented in this study. To
obtain the best performance. The inputimages are processed for
each architecture. For example, the images are resized to
(224,224.3) pixels foruse with the VGG-16, VGG-19, ResNet-
50, ResNext-50, AlexNet and GooglLeNetarchitectures. At the
same time, the Inception-V3, Inception-V4 and Xception
architectures are fed with images 0f (299,299,3) pixels. Finally,
forthe LeNet-5 architecture, the images are prepared in advance
in (32,32,1) pixel format, this preparation of data has allowed
CNNs to learn more rapidly and improve their performance.

B. Data Augmentation

This work attempts a randomized architecture with its own
dataset and it overfitted. It also attempts data augmentation to
avoid this. Table V illustrates the values used to augment the
data for skin diseases. Data augmentation is a technique that
aims to artificially inflate the volume of a database by injecting
variations into existing data. This approach can prove to be
extremely effective within CNNs for overcoming overfitting,
boosting generalization, exploiting fragmented data, balancing
asymmetric datasets, and taming noise. Enriching neural
networks by adding datais now a common practice and a state-
of-the-art approach in this field. It may be used to
computationally equalize the dataset by producing novel
instances for under-represented categories, as well as to
synthetically boost the dataset's size to make it appropriate for
model training.

TABLE V. MEASUREMENTS USED TO ADD MORE DATA
Process Value
Rescale 1./255
Rotation range +45
Width shift range +0.15
Height shift range +0.15
Horizontal flip Enabled

C. Training Procedure

All experiments were performed Intel Xeon multicore
processors optimised for parallel processing powered the
Marwan CNRST high-performance HPC computing
infrastructure. This platform has additional memory, a fast
internal network, and ideal conditions for deep learning. This
makes it possible to train CNN models faster and analyse a large
number of skin photos more quickly and reliably.

The batch sizes varies from 32 to 256 depending on memory
restrictions, whilemaintaining equivalent efficient batchsizesto
the gradient accumulation. Learningrateutilizes Reduce LR-on-
Plateau to stabilize convergence.

For each model, we recorded training and validation
accuracy, loss and confusion matrices. The research evaluated
the eleven models based on Accuracy, Loss and Matrix
Confusion [16]. The classification metrics are used with
performance indicators like runtime per picture and FLOPs to
Figure out how efficient and complicated each design is. The
execution time for each image estimates the average time
requiredto classifya sample, meaningit can be usedin real time.
The FLOPs scale counts the number of floating operations
needed for each pass, which shows the costand updatability of
the network [26].

These additional measures enable a fair analysisofthe trade-
off between model accuracy and computational performance.
The various measures, each symbolized by a specific numbered
Eq. (1), (2) and (3), play an essential role in the accurate
measurement and in-depth analysis of the gathered data.

TP+TN

Accuracy = ———
y TP+TN+FP+FN

(D
FLOPs = ZIL=12 * Ciln * Ctlaut * (Kl)z * Héut * Wolut) (2)

. N¢rqin*FLOPs
Runtlmee och — train model (3)
p B*Rcpy*Nnodes

V. RESULTS AND DISCUSSION

The results in this section presentaccuracy and loss curves
for learning stability and confusion matrices for the models'
capacity to split visually identical classes. Computational
metrics (FLOPs, epoch runtime) deliver crucial insights into the
actual efficiency of the models. Together, they forma baseline
for understanding the value, advantages, and limitations of each
architecture in practice. The following section discusses these
outcomes in relation to their generalizability, speed of training,
and accuracy (see Table VI and Fig. 3). There are low-cost
models (VGG-19, LeNet-5) and more expensive higher-
performance models (Xception, Inception-v3), which gives a
complete comparison of the performance and the resource
requirements.

The accuracy curve in Fig. 4(a) is greater than 98%, and Fig.
4(b) confirms very clean convergence with low loss. Matrix, the
confusion matrix, Fig. 4(c) shows near-optimal separation
between classes. More expensive 1.28 GFLOPs, 44 s/epoch);
therefore, Xception presents best the benchmark.

Fig. 5(a)and Fig. 5(b) present a very stablelearning dynamic
with an accuracy above 97%. The confusion matrix in Fig. 5(c)
presents a very low error rate, confirming the robustness of the
model. Slightly more expensive than MobileNet but much more
accurate, it is a benchmark model for demanding clinical
applications.
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TABLE VI. FINDINGS OF THIS STUDY
Name of Total Group 1 Group 2
Architectures Parameters Accuracy Loss FLOPs(G) Rur(lt)ime Accuracy Loss FI(‘g)Ps Rur(lt)ime
S S
Inception-v3 23,853,786 93.23% 16.28% 2.85 52 96.33% 54.70% 2.85 54
Lenet-5 60,374 76.37% 46.78% 0.00238 33 80.37% 42.67% 0.00238 34
MobileNet v3 8,758,866 88.43% 28.12% 0.45 37 90.96% 22.18% 0.45 38
ResNet-50 25,638,714 76.63% 46.80% 38 61 80.32% 44.79% 38 63
ResNext-50 | 26,507,010 85.64% 31.42% 425 64 85.16% 32.38% 425 66
VGG-16 134,268,738 52.69% 69.18% 155 92 53.54% 69.07% 155 95
VGG-19 138,988,354 52.54% 69.19% 19.6 118 53.10% 69.13% 19.6 120
Xeeption 22912482 98.33% 05.03% 1.85 48 96.89% 09.73% 1.85 49
GoogLeNet 6,998,552 53.25% 69.12% 1.05 42 53.47% 69.07% 1.05 43
AlexNet 62,380,346 74.06% 51.54% 0.82 41 46.69% 78.26% 0.82 42
, e Computational Cost - Group 1 (Runtime & GFLOPs)
Comparion of I Models on Sin Disease Dataset- Groups 1 and 2 o113
100 s ; : 40 (S)
-&— GFLOPs i
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A 0 c 4
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Fig. 3. Comparison Metrics of CNNs Models and their performance indicators.
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Fig. 4. Metrics of accuracy, loss and Confusion Matrix of Xception Group 1
model.

The corresponding Fig. 6(a) shows a monotonic increase in
accuracy up to 93%, and Fig. 6(b) shows a monotonic decrease
in loss, indicating stable convergence. The confusion matrix in
Fig. 6(c) shows good discrimination between the two classes,
with some minor confusion. With 1.05 GFLOPs and 42 s/epoch,
this model is a good compromise between performance and
computational cost.
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Fig. 5. Metrics of accuracy, loss and confusion matrix of Xception group 2
model.

The sub-figures in 7(a) and 7(b) are very stable with an
accuracy higher than 96% and a well-regularized loss. Fig. 7(c)
also confirms a very clear inter-class separation with a low error
rate. Its low cost (1.05 GFLOPs) and stable runtime reflect its
robustness on a second set of skin diseases.

583 |Page

www.ljacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Tnception-v3 Group 1

0.92 -
0.90 1
g
© 0.88 1
=
§ 0.86 -
.84 4 .
08 = Train Accuracy
0.82 1 - Validation Accuracy
2 4 6 8 10 12 14
Epoch
i (a)
Inception-v3 Group 1
0.7 :
= Train Loss
0.6 - —— Validation Loss
0.5 4
]
"]
9 0.4+
0.31
0.2
T T T T T T T
2 4 6 8 10 12 14
Epoch
),
Confusion Matrix Inception-v3 - Group 1
2250
2000
Psoriasis / Lichen Planus 1750
1500
]
] 1250
H
" 1000
L 750
Seborrheic Keratoses
H 500
F 250
Psoriasis / Lichen Planus  Seborrheic Keratoses -
Predicted label
(©

Fig. 6. Metrics of accuracy, loss and confusion matrix of Inception -V3
group 1 model.
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Fig. 7. Metrics of accuracy, loss and confusion matrix of Inception-v3

group 2 model.

Fig. 8(a) and Fig. 8(b) show stable convergence, with an
accuracy exceeding 96%. The low and stable loss values of the
loss prove efficient generalization. Matrix confusion in Fig. 8(c)
indicates a very strong inter-class separation with only
insignificant misclassification. Its low cost 1.05 GFLOPs and
stable runtime testify to its robustness on a second set of skin
diseases. Fig. 9(a) and 9(b) exhibit stable convergence with an
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accuracy exceeding 96% and a well-regularized loss. Fig. 9(c)
demonstrates a clear inter-class distinction with marginal
misclassification. Its low cost 1.05 GFLOPs and stable runtime
reflect its robustness on a second set of skin diseases.
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Fig. 8. Metrics of accuracy, loss and confusion matrix of Inception-v3
group 1 model.

The experimental results obtained for the two groups of skin
conditions show distinct behaviours depending on the
architecture tested. Xception delivers the highest performance,
with stable learning curves, rapid convergence, and accuracy of

Vol. 16, No. 12, 2025

around 98-99% in both groups. The confusion array, Fig. 4(c),
reveals near-perfect separation across classes. The confusion
arrays display an ultra-low error rate, which confirms the ability
of Xception to adequately model intra-class variances,
especially in visually similar skin lesions. This great
performance may be partly explained by its structure, which is
built on separable convolutions in the depth. This makes
recognitioneasier andreduces the amount of computing needed.

MobileNet v3 Group 2

0.90 4 == Train Accuracy
—— Validation Accuracy /,__..—/

o

o

(v
L

Accuracy
o
[+
[
L

0.75 4
0?0 L T T T T T T T
2 4 6 8 10 12 14
Epoch
(a)
MobileNet v3 Group 2
= Train Loss
0.8 1 —— Validation Loss
v 0.6 -
3
0.4 -
0.2 1
Epoch

Confusion Matrix - MobileNet v3 Group 2

140¢
Nail Fungus / Nail Disease 1200

100¢

800

True label

r 600
Viarts / Viral Infections
r 400

200

Nail Fungus / Nail Disease  Warts / Viral Infections
Predicted label

©

Fig.9. Metrics of accuracy, loss and confusion matrix of Inception-v3
group 2 model.
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Also, Xception-V3 works well, properly detecting things
95%t0 97% ofthe time. The loss and accuracy curves show that
the training and validation sets are a good fit. The confusion
matrices are a little more confusing than Xception, especially in
classes where the textures are identical.

In addition, Inception-v3 is a great balance between price
and performance. This makes it a good choice, especially when
quick decisions are needed.

MobileNet-v3 is light and has an accuracy rate of 85 to 92
percent. It doesn't work as well as Xception or Inception-v3, but
it uses a lot less computational resource. It is 85% to 92%
accurate. It's notas powerful as Xception or Inception-v3, but it
is more efficient in terms of computing, which means it takes
less time to run and uses fewer GFLOPs. That makes it great for
compact gadgets that can be carried around. But the confusion
matrices indicate greater mistakes in classifying things,
especially when the classifications are quite similar. This means
that the simpler model isn't particularly good at finding intricate
skin patterns.

Overall, the three topologies comparison shows that the
depth of the network and the number of convolutional blocks
influence its generalisation. The results surpass previous work
applied to dermatological classification, notably that of
[61,[9],[11],[15],[17],[18], which used more limited datasets or
conventional models (VGG, ResNet, AlexNet) and reported
generally lower accuracies (80-95The use of recent
architectures such as Inception and Inception-v3, in association
with a variety of data sets, significantly enhances the reliability
of the system. This enhancement is also due to hyperparameter
optimisation and strict pre-processing.

However, this study has limitations that reduce its
generalizability and clinical realism. First, the experimental data
is only from DermNet NZ, which are images under ideal and
standard lighting and photography conditions, making the
models less robust to the variety of real-world images taken by
smartphones or in clinical settings. Second, the study is just a
binary classification, where the diseases are classified into two
groups, which is not enough to deal with the complexity of
diagnosingdifferentand similar skindiseases. Thirdly, although
models such as Xception model performed well, they are not
clinically validated by experts, which is required for medical
use. Fourth, while Marwan's HPC cluster, no explainable Al
model has been trained to enable clinicians to understand why
the classifications were made. Finally, the study did not validate
the models in real-world settings or with local clinic data,
suggesting the need for future real-world validation.

VI.  CONCLUSION

The results demonstrate that Xception is the most effective
solution for dermatological classification, followed by
Inception-v3 which offers a relevant compromise between
accuracy and computational cost. Although MobileNet-
V3presente lower accuracy than Xception and Inception-V3, its
minimum computational costmakes it a relevant candidate for
implementation on medical equipment with limited resources.
In contrast, Xception consistently delivers the strongest
diagnostic accuracy, reinforcing its relevance for clinical
decision support systems.

Vol. 16, No. 12, 2025

Future research will involve incorporating visual
transformers to detect overall dependencies in dermatological
images and using explainable Al methods (Grad-CAM+t,
SHAP) for better clinical interpretability. The exploration of
hybrid CNN-Transformer models, the reduction of
computational overhead through pruning and quantisation, and
validation by dermatologists are also promising avenues.
Finally, optimising the model for execution on mobile devices
or edge computing will enhance the clinical reach of the
proposed solutions.
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