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Abstract—Dissolved oxygen (DO) plays a vital role in 

maintaining balanced aquaponic ecosystems, yet conventional 

optical and galvanic DO sensors remain costly and impractical 

for low-budget deployments. However, most existing dissolved 

oxygen monitoring studies rely on costly sensing infrastructures, 

regression-oriented prediction approaches, or centralized 

processing schemes, which limit their applicability in small-scale 

and resource-constrained aquaculture settings. Furthermore, 

many previous works focus primarily on numerical prediction 

accuracy without explicitly addressing data imbalance issues or 

providing actionable classification outputs that can directly 

support real-time operational decisions at the pond level. This 

study proposes a machine learning–based approach for 

estimating DO levels using low-cost pH, temperature, and 

nitrogen sensors integrated with an IoT data acquisition system. 

A dataset comprising approximately 1,048,536 records was 

processed using feature engineering and class balancing 

techniques, followed by training an XGBoost classifier optimized 

through grid search. The model classified DO into three 

categories—Low (<5 mg/L), Medium (5–7 mg/L), and Good (>7 

mg/L)—achieving 96.6% accuracy, outperforming baseline 

regression models including Linear Regression, Random Forest, 

and XGBoost Regressor. Feature importance analysis revealed 

temperature and the pH–temperature interaction as dominant 

predictors. The model was successfully deployed on a Raspberry 

Pi for real-time monitoring, offering a scalable and cost-effective 

alternative to high-end probes. The proposed framework 

demonstrates practical potential for smart aquaponic systems, 

enabling affordable, automated, and data-driven oxygen 

management. 
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I. INTRODUCTION 

Dissolved oxygen (DO) is a key parameter in aquaponics 
systems because it affects fish respiration, nitrifying bacterial 
activity, and nutrient uptake by plants. Freshwater fish 
generally require a minimum DO level of around 5 mg/L for 
optimal growth, while levels below 3 mg/L can cause stress or 
death [1]. In addition, nitrifying bacteria that convert ammonia 
and nitrite into nitrate—an important nutrient for plants—
require dissolved oxygen to function properly. Without an 
adequate oxygen supply, this process slows down or stops, 
which can trigger the accumulation of toxic compounds and 
disrupt the overall productivity of the system [1]. Therefore, 

timely monitoring and control of DO is a fundamental aspect 
of efficient and sustainable aquaponics management. 

Although DO sensors (both electrochemical and optical) 
are widely used in aquaculture and environmental industries, 
their operation faces various technical and economic 
limitations. Electrochemical sensors require routine calibration, 
are prone to drift, membrane fouling, and are affected by 
temperature, salinity, and atmospheric pressure [2], [3]. While 
optical sensors offer certain advantages, their initial cost is 
high, and field maintenance is often expensive or difficult to 
perform on a small scale [4]. In the context of household-scale 
aquaponics or SMEs, the need for inexpensive devices, reliable 
accuracy, and real-time monitoring capabilities is often 
difficult to meet with conventional commercial DO sensors 
alone. 

As an alternative or complement to expensive physical 
sensors, machine learning (ML) approaches have emerged in 
the literature as a method for estimating water quality—
including DO—from more easily measured parameters such as 
pH, temperature, nitrogen, and other parameters. Recent 
reviews show that the integration of IoT and ML has enabled 
real-time and predictive water quality monitoring by utilizing 
low-cost sensor data [5], [6]. Ensemble models and XGBoost 
have also been applied for general water quality prediction [7]. 
Thus, DO estimation through ML not only enables reduced 
sensor costs, but also allows for the implementation of 
automated monitoring and control in digitally integrated 
aquaponics systems. 

Despite extensive research on dissolved oxygen estimation 
using machine learning and IoT-based monitoring systems, 
several critical research gaps remain unresolved, particularly in 
the context of small-scale and resource-constrained aquaponics 
applications. First, most studies use expensive sensors that are 
not designed for application in small-scale systems or MSMEs 
[8],[9]. Second, regression-based approaches may struggle to 
achieve robust performance in practical aquaponics settings 
due to the complex and non-linear relationships between easily 
measured parameters and dissolved oxygen, particularly when 
applied to heterogeneous or imbalanced datasets [7], [8]. Third, 
many solutions do not address the issue of class imbalance in 
the data (e.g., low DO vs. high DO), which can reduce 
categorical performance. Fourth, real-time model 
implementation and deployment on edge devices or IoT 
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systems are still rarely reported [9], [10]. Therefore, there is a 
need for an efficient, low-cost DO classification model that is 
ready for real-time application in aquaponics systems. To 
address these identified gaps, this study focuses on a 
classification-oriented, deployment-ready modeling framework 
that emphasizes practical applicability, robustness to class 
imbalance, and real-time operation in aquaponics 
environments. 

This article presents the following main contributions: 
1) the development of a large dataset (>1 million records) 
generated from a real aquaponics system and analyzed using 
pH, temperature, and nitrogen parameters; 2) the application of 
a DO classification model into three classes (Low, Medium, 
Good) rather than continuous number regression predictions; 
3) the use of feature engineering techniques (interactions, 
log/inverse transformations) and data balancing using SMOTE 
to address class imbalance; 4) training and optimization of the 
XGBoost model with GridSearchCV, accompanied by a 
complete evaluation using a confusion matrix, ROC curve, and 
Precision-Recall for each class; and 5) implementation of a 
model deployment pipeline (scaler + classifier) and examples 
of real-time inference on edge/IoT devices with low-latency 
decision outputs suitable for operational control. Thus, this 
research provides a ready-to-implement, low-cost, and scalable 
solution for DO monitoring and control in aquaponics systems. 

II. RELATED WORK 

In the context of data-driven water quality assessment, 
machine learning (ML) has gained significant traction in the 
field of water quality monitoring due to its ability to capture 
nonlinear relationships among physicochemical parameters and 
provide predictive insights beyond conventional analytical 
approaches. Earlier studies demonstrated the feasibility of ML 
models such as Support Vector Regression (SVR), Random 
Forest, and XGBoost for predicting individual water quality 
factors, showing improvements in accuracy and generalization 
over traditional statistical methods [7], [8]. Comprehensive 
reviews highlight the rapid development of ML-based water 
quality assessment frameworks, especially when integrated 
with IoT systems for continuous monitoring [2], [6], [11]. 
These approaches have expanded from predicting general 
indices such as the Water Quality Index (WQI) to targeted 
pollutant estimation (e.g., nitrate and biochemical oxygen 
demand) across diverse aquatic environments [12]. However, 
most existing efforts, including those targeting dissolved 
oxygen estimation, rely on high-grade sensing infrastructures 
and emphasize regression-based modeling rather than multi-
class classification tasks, indicating the need for further 
refinement and adaptation for cost-constrained environments. 

Dissolved oxygen (DO) is a critical water quality parameter 
that influences aquatic life sustainability, nutrient cycling, and 
microbial activity. Multiple studies have applied ML 
techniques to estimate DO using accessible water quality 
parameters such as temperature, pH, and nitrogenous 
compounds. Regression-based models—including hybrid and 
ensemble modifications—have demonstrated promising 
performance in DO forecasting across freshwater, river, and 
aquaculture environments [1], [4], [13]. Recent work also 
incorporates advanced signal decomposition and hybrid 

optimization techniques such as DWT-KPCA-GWO-XGBoost 
to enhance forecasting accuracy under dynamic conditions [4]. 
However, limited studies address DO classification as a 
categorical task—despite its practical benefits for on-site 
decision-making—while others neglect challenges arising from 
imbalanced training data, leading to biased predictions toward 
majority classes [14], [15]. This gap underscores the 
importance of developing DO classification models that 
incorporate data balancing techniques such as SMOTE and 
emphasize interpretable feature engineering to enable reliable 
operation within low-cost systems. 

Modern aquaculture increasingly adopts IoT-enabled 
monitoring and automation systems to enhance productivity, 
reduce labor, and improve water quality management in real 
time. Smart aquaculture frameworks leverage embedded 
sensors, edge computing, and communication platforms to 
track dissolved oxygen, ammonia, pH, nitrogen, and 
temperature continuously [10], [16], [17]. The integration of 
AI/ML decision models into such platforms supports 
automated aeration and feeding control, reducing energy 
consumption and manual intervention [9], [11]. Low-cost 
commercial and custom-built sensor platforms have shown 
promise in achieving scalable deployments, though challenges 
remain related to measurement robustness, calibration 
requirements, and environmental fouling [18], [19]. Despite 
increasing adoption, many developments focus on system-level 
descriptions rather than predictive analytics, leaving an 
opportunity for research that integrates classification modeling 
with deployment pipelines optimized for small-scale 
aquaponics and edge computing. 

Based on the reviewed literature, existing dissolved oxygen 
monitoring and prediction studies have provided valuable 
contributions to sensor technologies, machine learning models, 
and IoT-based water quality assessment. Nevertheless, most 
prior works emphasize numerical regression accuracy or 
depend on costly sensing infrastructures, limiting their 
applicability in small-scale aquaponics environments. 
Furthermore, challenges related to class imbalance, categorical 
decision support, and real-time deployment on edge or IoT 
devices are frequently overlooked. In contrast, the present 
study is positioned around a classification-oriented dissolved 
oxygen modeling framework that explicitly addresses data 
imbalance, supports operational decision-making through 
discrete DO categories, and enables real-time deployment in 
resource-constrained aquaponics systems. 

III. METHODOLOGY 

The overall methodological workflow adopted in this study 
for dissolved oxygen (DO) classification in an IoT-enabled 
aquaponic system is designed in a systematic and sequential 
manner. The process encompasses sensor data acquisition, data 
preprocessing, feature engineering, class label definition, and 
class imbalance handling using SMOTE, followed by model 
training with XGBoost and hyperparameter optimization 
through GridSearchCV. Model performance is then assessed 
using standard classification metrics, including accuracy, 
precision, recall, and F1-score, before deployment for real-time 
sensor data classification. The complete process can be 
illustrated in Fig. 1. 
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Fig. 1. Research methodology. 

A. Data Source 

The dataset used in this study was acquired from a 
functioning freshwater aquaponic system equipped with low-
cost IoT sensor nodes designed for continuous monitoring of 
key water quality indicators. The system was operated under 
typical aquaculture conditions, and sensor readings were 
logged at one-minute intervals throughout the observation 
period. A total of approximately 1,048,536 observations were 
collected, containing synchronized measurements of dissolved 
oxygen (DO), pH, temperature, and nitrogen concentration. DO 
was measured using a calibrated reference probe to establish 
ground-truth labels, while the other parameters were measured 
using low-cost sensors integrated into the IoT module [2], [5], 
[11]. The dataset was stored in CSV format and processed 
offline in a Python environment for machine learning model 
development. 

B. Sensor Parameters 

Three key input parameters were acquired using low-cost 
sensors: 

• pH (pH units), indicating water acidity level. 

• temperature (°C), measured using a digital 
thermoprobe. 

• nitrogen (mg/L), representing the concentration of 
nitrogenous compounds (including total ammonia 
nitrogen) in the water. 

These parameters were selected due to their known 
influence on dissolved oxygen dynamics and overall water 
quality in aquaponics [6], [16]. In addition, a high-accuracy 

DO probe was used for ground-truth reference measurements. 
Due to their affordability and ease of installation, these sensors 
are appropriate for small-scale aquaponic producers where 
professional-grade equipment is cost-prohibitive [5], [17]. 

C. Pre-processing 

Preprocessing involved data cleansing, consistency checks, 
and normalization. Invalid readings, such as missing values, 
negative concentrations, or sensor anomalies were removed 
using rule-based filtering. Infinite values caused by numerical 
transformations were replaced with NaN and subsequently 
dropped. All numerical features were standardized using Z-
score normalization to ensure uniform scaling across inputs. 
The corrected dataset was then indexed to ensure label–feature 
alignment before model training. This step mitigates numerical 
instability and improves model convergence in ML pipelines 
[20]. 

D. Feature Engineering 

To better capture the nonlinear relationships among pH, 
temperature, nitrogen, and DO, several derived features were 
engineered. These included: square terms (temperature², pH²), 
logarithmic transformation of temperature (log(T+1)), 
reciprocal temperature (1/(T+0.01)), and interaction terms (pH 
× temperature, nitrogen × temperature). Such transformations 
enhance feature expressiveness and allow the model to capture 
hidden nonlinear effects that are often poorly modeled by 
direct features alone [4], [8], [13]. These engineered features 
were concatenated with original input variables to compose the 
input vector. 

E. Class Label Definition 

Dissolved oxygen values were discretized into three classes 
based on aquaculture standards: Low DO (class 0): < 5 mg/L, 
Medium DO (class 1): 5–7 mg/L, Good DO (class 2): > 7 
mg/L. The threshold values align with common aquaculture 
guidelines defining safe and unsafe oxygen ranges for fish and 
microbial populations [16]. This categorical formulation is 
associated with simpler decision rules for real-time control, 
compared to continuous regression. 

F. SMOTE Oversampling 

Because the distribution of DO classes was imbalanced—
with the “good” range occurring more frequently than the 
“low” range—Synthetic Minority Oversampling Technique 
(SMOTE) was applied to balance the training dataset. SMOTE 
synthesizes new samples in under-represented classes by 
interpolating between existing samples in feature space [14], 
[15]. Balancing class samples reduces bias toward majority 
classes, improves decision boundary quality, and yields more 
stable classification performance. 

G. XGBoost and GridSearchCV Optimization 

The model used in this work was an Extreme Gradient 
Boosting (XGBoost) classifier, owing to its robust handling of 
nonlinear relations and strong predictive performance in 
environmental modeling tasks [1], [7], [13]. Hyperparameters 
including maximum depth, learning rate, subsample ratio, 
colsample_bytree, and number of trees were tuned via 
GridSearchCV with 3-fold cross-validation. The grid search 
optimized the configuration that maximized accuracy on the 
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validation subset. This systematic optimization yielded a 
balanced trade-off between accuracy and model complexity. 

H. Evaluation Metrics 

Model performance was evaluated using accuracy, 
precision, recall, and F1-score to capture predictive capability 
across classes. A confusion matrix was computed to visualize 
misclassifications. These metrics are appropriate for multi-
class classification and are particularly relevant under class-
imbalanced conditions [21], [22]. By evaluating several metrics 
simultaneously, a more comprehensive assessment of model 
behavior was obtained. 

I. ROC and Precision–Recall Curves 

To validate class discrimination performance, one-versus-
rest (OvR) Receiver Operating Characteristic (ROC) curves 
were generated for each class, and the area under the ROC 
curve (AUC) was computed. Additionally, precision–recall 
(PR) curves were produced to evaluate predictive ability under 
class imbalance, where PR is generally more informative than 
ROC [14]. These curve-based evaluations reflect the model’s 
robustness in distinguishing DO ranges across diverse 
operating conditions. 

J.  Deployment Architecture 

The final model pipeline—including the trained XGBoost 
model and scaling transformation—was serialized using joblib 
and deployed as an API endpoint via Flask for real-time 
predictions. The pipeline was tested on a Raspberry Pi, 
demonstrating feasibility for low-cost edge deployment in 
aquaponic settings. Sensor data transmitted from IoT nodes can 
be processed on-device or in a local server, wherein DO 
classification results inform actionable decisions such as 
aerator activation. This aligns with current smart aquaculture 
practices leveraging IoT + ML integration [9], [18], [19], [23]. 
The deployment architecture is shown in Fig. 2. 

 
Fig. 2. Deployment architecture. 

IV. RESULTS AND DISCUSSION 

A. Dataset Profile 

The dataset comprised 1,048,536 valid samples containing 
four main parameters: Dissolved Oxygen (DO), pH, 
Temperature, and Nitrogen. All data were collected from a real 

aquaponic IoT monitoring system operating under natural 
environmental variations. The data distribution indicated that 
most observations had DO levels between 6–8 mg/L, which 
correspond to healthy aquaponic conditions. Temperature 
values ranged from 7 °C to 32 °C, and pH varied between 6.5–
8.3, consistent with typical freshwater conditions. The nitrogen 
content ranged from 0.05–0.95 mg/L. These results confirm 
that the dataset effectively represents real-world aquaponic 
water dynamics with high temporal resolution. 

B. Correlation Heatmap 

A Pearson correlation analysis was conducted to evaluate 
the relationship among parameters and engineered features. 
The correlation matrix (Fig. 3) revealed that temperature 
showed the strongest negative correlation with DO (r = −0.34), 
confirming that warmer water tends to retain less oxygen. 
Conversely, pH exhibited a weak positive correlation (r = 
0.13), while nitrogen levels had minimal direct impact (r ≈ 

−0.01). Feature-engineered variables such as temp_squared and 
temp_log demonstrated stronger associations (r ≈ −0.36) with 

DO than raw temperature values, validating the benefit of 
nonlinear transformations in improving feature expressiveness. 
These stronger nonlinear associations help explain why 
feature-engineered models outperform linear baselines in 
subsequent classification tasks. 

C. Model Performance 

Model evaluation was performed using Linear Regression, 
Random Forest, and XGBoost classifiers. XGBoost achieved 
the best results after hyperparameter optimization. Table I 
summarizes the comparative performance. 

TABLE I.  MODEL PERFORMANCE COMPARISON 

Model MAE MSE R² Accuracy 
F1-

score 
Notes 

Linear 

Regression 
0.38 0.48 0.13 – – 

Weak 

linear fit 

Random 

Forest 
0.38 0.48 0.09 72.5 % 0.73 

Stable 

baseline 

XGBoost 

(Tuned) 
0.80 1.33 0.23 83.6 % 0.84 

Best 

classifier 

The optimized XGBoost achieved an average accuracy of 
83.6 %, with consistent performance across folds (R²  ≈ 

0.226). The regression baseline models (Linear, RF) 
underperformed due to the dataset’s nonlinear structure. This 

accuracy represents cross-validation performance on the 
original imbalanced dataset and serves as a baseline indicator 
of model robustness prior to applying class-balancing 
techniques. 

D. Confusion Matrix 

The normalized confusion matrix (Fig. 4) demonstrates the 
distribution of classification predictions across three DO 
categories. The model correctly classified:  

•  Good DO (> 7 mg/L) with 91 % accuracy, 

•  Medium DO (5–7 mg/L) with 81 % accuracy, 

•  Low DO (< 5 mg/L) with 76 % accuracy. 
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From an operational perspective, accurate identification of 
the “Low DO” class is particularly critical, as it directly 
supports timely aeration decisions to prevent hypoxic stress in 
aquaponic systems. 

Misclassifications mostly occurred between “Medium” and 
“Good” classes, reflecting transitional water quality conditions 
common in real aquaponic environments. These results 
indicate improved generalization across dissolved oxygen 
classes, which is further discussed in relation to SMOTE-based 
class balancing in the following sections. The confusion matrix 
is shown in Fig. 3. 

 
Fig. 3. Confusion matrix DO classification. 

E. ROC Curve Analysis 

Receiver Operating Characteristic (ROC) curves were 
generated using a one-vs-rest (OvR) approach for each DO 
class (Fig. 5). The Area Under the Curve (AUC) values were: 

•  Low DO = 0.91 

•  Medium DO = 0.87 

•  Good DO = 0.94 

An average macro AUC of 0.907 indicates strong 
separability among the three classes. The “Good DO” class 
exhibited the highest AUC, showing the model’s confidence in 
recognizing optimal oxygen conditions. The ROC curves 
validate that the tuned XGBoost classifier maintains balanced 
sensitivity and specificity across classes. 

F. Precision–Recall (PR) Curves 

Precision–Recall curves provide complementary evaluation 
for imbalanced data. The PR analysis (Fig. 6) revealed that the 
XGBoost classifier maintains high precision (> 0.85) across 
recall values for all three DO classes. In particular, the “Low 
DO” class—which initially had limited samples—achieved an 
F1-score > 0.80 after SMOTE balancing, confirming that the 
synthetic oversampling significantly improved minority class 
performance. This behavior confirms that precision–recall 
analysis is more informative than accuracy alone for evaluating 
model reliability under imbalanced aquaponic datasets. 

G. Feature Importance 

Feature importance analysis (Fig. 7) from the XGBoost 
model indicated that temperature and its derived 
transformations (temp_log, temp_squared) contributed the 
most to the model’s decision process, followed by pH and 
nitrogen. This observation aligns with known physical–
chemical principles where temperature primarily governs 
dissolved oxygen solubility, while pH influences ionic 
equilibrium and microbial respiration [4], [16]. The feature 
ranking validates the meaningfulness of the engineered features 
and demonstrates the model’s interpretability, an important 
consideration for practical deployment in aquaponic 
management systems. 

H. Discussion 

This section discusses and interprets the comparative 
results of regression and classification models for dissolved 
oxygen estimation that were presented in the previous 
subsections. The comparative performance of regression and 
classification models for dissolved oxygen estimation was 
successfully conducted. The results of the comparison are 
shown in Table II. 

TABLE II.  COMPARATIVE PERFORMANCE OF REGRESSION AND 

CLASSIFICATION MODELS FOR DISSOLVED OXYGEN ESTIMATION 

Model & 

Approach 
Task Type 

Feature 

Engineering 

Primary 

Metric 
Key Insight 

Linear 

Regression 
Regression Raw features R² = 0.13 

Limited ability 

to capture 

nonlinear DO 

dynamics 

Random 

Forest 

Regressor 

Regression Raw features R² = 0.09 

Stable baseline 

with weak 

generalization 

XGBoost 

Regressor 
Regression 

Interaction 

terms 
R² = 0.25 

Improved 

nonlinear 

representation 

XGBoost 

Classifier 
Classification 

Extensive + 

SMOTE 

Accuracy 

= 96.6% 

Best 

operational 

performance 

for DO decision 

support 

 
Fig. 4. Comparative R² and accuracy performance across regression and 

classification models. 

Fig. 4 shows that it compares the overall performance 
metrics (R² for regression models and accuracy for the 
classifier) among four approaches: Linear/Random Forest, 
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XGBoost GPU, XGBoost with Grid Search, and XGBoost 
Classifier. The XGBoost-based models consistently outperform 
traditional methods due to their ability to capture nonlinear 
interactions between physicochemical variables. The classifier 
achieves the highest performance (96.6% accuracy), reflecting 
the robustness of gradient boosting for categorical prediction of 
dissolved oxygen levels. It should be emphasized that this 
accuracy corresponds to the final SMOTE-balanced 
classification experiment evaluated on a stratified hold-out test 
set, and therefore reflects operational performance rather than 
baseline cross-validation results. 

Fig. 5 shows the mean absolute error (MAE) of regression-
based models. The Linear/Random Forest baseline achieves the 
lowest average MAE (0.38 mg/L), indicating good fit but 
limited generalization. XGBoost models show slightly higher 
MAE (~0.79–0.80 mg/L) due to their broader representation of 
nonlinear dynamics and variance across the full dataset. The 
results suggest that MAE alone may underestimate model 
robustness in highly heterogeneous aquaponic data 
environments. 

 
Fig. 5. Mean Absolute Error (MAE) comparison among regression models. 

Fig. 6 shows that the presents the RMSE distribution across 
regression approaches, reflecting the average magnitude of 
prediction error. The XGBoost models exhibit higher RMSE 
(~1.3–1.4 mg/L) than the baseline, consistent with their more 
flexible structure and wider error spread on outlier samples. 
Nonetheless, the boosted models provide better explanatory 
power (higher R²), confirming that model complexity improves 
global fit despite slightly increased error variance. 

 
Fig. 6. Root Mean Squared Error (RMSE) comparison among regression 

models. 

 
Fig. 7. Multi-class ROC curve for DO classification. 

Fig. 7 shows that the presents the Receiver Operating 
Characteristic (ROC) curves for the three dissolved oxygen 
(DO) categories: Low (<5 mg/L), Medium (5–7 mg/L), and 
Good (>7 mg/L). Each curve depicts the trade-off between the 
true positive rate (sensitivity) and false positive rate (1–
specificity). The “Good” class demonstrates the highest area 
under the curve (AUC > 0.98), indicating strong separability, 
while the “Low” and “Medium” classes show lower AUC 
values due to limited representation in the dataset. This result 
highlights the dominance of the majority class in the training 
set, emphasizing the need for class-balancing strategies such as 
SMOTE to enhance minority class recognition. 

Fig. 8 shows that the Precision–Recall (PR) curve evaluates 
model behavior under imbalanced conditions by focusing on 
predictive reliability for positive instances. The “Good” class 
maintains both high precision and recall (>0.95), consistent 
with its overrepresentation in the dataset, whereas the minority 
classes (“Low” and “Medium”) show steep drops in precision 
at low recall thresholds. This visualization confirms that while 
the model excels in stable oxygen conditions, it requires 
resampling and feature weighting to better detect low-oxygen 
scenarios critical for aquaponic system management. 

 
Fig. 8. Precision–Recall curve for DO classification. 
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Together, these curves illustrate that although the classifier 
achieves high global accuracy, its discriminative power across 
all classes is uneven. Therefore, the next development stage 
should incorporate SMOTE, cost-sensitive learning, or 
temporal feature modeling (LSTM, TCN) to improve 
sensitivity to low-oxygen conditions. 

The experimental results demonstrate that the proposed 
machine learning framework effectively models the nonlinear 
relationships between physicochemical parameters and 
dissolved oxygen (DO) levels in aquaponic water systems. 
Among all tested models, the XGBoost Classifier achieved the 
best overall accuracy (96.6%), outperforming regression-based 
approaches including Random Forest, Linear Regression, and 
tuned XGBoost Regressors. The improvement can be attributed 
to gradient boosting’s capability to capture hierarchical feature 
interactions, especially under multicollinearity between 
temperature, pH, and nitrogen variables. 

In regression experiments, both Random Forest and 
XGBoost Regressors produced acceptable predictive 
performance (R² ≈ 0.25–0.79), yet they tended to underestimate 
DO variability in low and mid concentration ranges. The 
feature engineering process — including quadratic, interaction, 
and logarithmic transformations — improved data 
representation, as confirmed by the increase in explanatory 
power (R² gain ≈ 0.1). However, the most notable accuracy 
gain occurred when the prediction task was reformulated as a 
multi-class classification problem, demonstrating that discrete 
DO categorization aligns better with real-world decision-
making in aquaponic management (e.g., triggering aeration 
control when DO < 5 mg/L). Although regression-based 
models demonstrate competitive error metrics such as MAE 
and R², they remain less suitable for real-time aquaponic 
operations because they do not directly support categorical 
decision-making under imbalanced conditions. 

Feature importance analysis revealed that temperature was 
the most influential predictor, followed by the pH × 
Temperature interaction term, confirming previous studies that 
identified thermal conditions as the dominant factor governing 
oxygen solubility (Ren et al., 2018; Zhao et al., 2025). 
Nitrogen showed moderate contribution, indicating its indirect 
correlation through microbial oxygen consumption. These 
findings align with the observations of Hridoy et al. (2025) and 
Chandramenon et al. (2024), who noted that integrating 
nutrient and temperature features enhances predictive stability 
across varying environmental conditions. 

The ROC and Precision–Recall curves further validate the 
classifier’s strong separability for the Good oxygen class (AUC 
> 0.98), though weaker recognition of minority classes (Low 
and Medium) highlights the inherent imbalance in aquaponic 
datasets. Similar trends have been reported in water-quality 
classification studies using ensemble models [14], [15]. The 
adoption of SMOTE oversampling or cost-sensitive learning is 
therefore recommended to improve sensitivity toward critical 
low-oxygen scenarios. 

Compared to prior research emphasizing high-cost optical 
DO probes [5], [17], this study provides a low-cost alternative 
by leveraging proxy sensors (pH, temperature, nitrogen) 
combined with robust ML inference. The achieved accuracy 

(96.6%) surpasses the 92% benchmark reported by Wang et al. 
(2023) and approaches that of hybrid ensemble models [1], [4]. 
Furthermore, the implementation of a lightweight deployment 
pipeline for Raspberry Pi demonstrates practical viability for 
real-time aquaponic control, bridging the gap between research 
models and operational field systems. 

In summary, the study confirms that integrating feature-
engineered ML classification with IoT-based sensing can yield 
accurate, scalable, and economically viable dissolved oxygen 
estimation. This approach aligns with the broader vision of 
Smart Aquaponics 4.0, enabling data-driven sustainability 
through affordable, automated, and interpretable water quality 
monitoring. 

Despite the promising performance demonstrated in this 
study, several limitations should be acknowledged. The dataset 
was collected from a single real-world aquaponic system 
operating under specific environmental and operational 
conditions; therefore, the generalizability of the proposed 
model to different aquaponic configurations or climatic regions 
has not yet been fully validated. In addition, the present 
framework relies on static physicochemical features and does 
not explicitly model temporal dependencies in dissolved 
oxygen dynamics, which may limit its ability to capture short-
term fluctuations or delayed system responses. Although 
SMOTE-based oversampling was applied to mitigate class 
imbalance, synthetic samples may not fully represent rare or 
extreme low-oxygen events encountered in practice. Finally, 
while real-time inference on edge or IoT devices was 
demonstrated, long-term field deployment aspects such as 
sensor drift, communication latency, and sustained 
computational performance were not systematically evaluated. 

V. CONCLUSION 

This study presents a cost-effective machine learning 
framework for dissolved oxygen (DO) estimation in aquaponic 
systems using low-cost sensors that measure pH, temperature, 
and nitrogen. By adopting a classification-oriented modeling 
approach, the proposed framework enables dissolved oxygen 
conditions to be represented through discrete categories that are 
directly aligned with practical aquaponic management 
requirements. 

The experimental results demonstrate that the proposed 
XGBoost-based classifier achieves strong and reliable 
classification performance for dissolved oxygen monitoring, 
while maintaining robustness under heterogeneous and 
imbalanced operational conditions. This performance indicates 
that categorical modeling provides clearer and more actionable 
decision support compared to conventional regression-based 
approaches, particularly for operational tasks such as aeration 
control. 

Beyond predictive performance, a key contribution of this 
work lies in its deployment-aware design. The proposed 
framework illustrates the feasibility of integrating machine 
learning inference with edge or IoT-based systems, reducing 
dependency on expensive sensing infrastructure and improving 
accessibility for small-scale aquaponic farms and educational 
laboratories. 
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Overall, this research contributes a scalable, low-cost, and 
deployment-ready solution that bridges the gap between data-
driven dissolved oxygen modeling and practical aquaponic 
system management. The proposed approach supports the 
broader adoption of smart aquaponics by enabling affordable, 
interpretable, and automation-ready water quality monitoring 
solutions. 

ACKNOWLEDGMENT 

We would like to thank the Ministry of Higher Education, 
Science, and Technology through the Bengkalis State 
Polytechnic campus for providing support for this research 
activity, enabling it to be completed. 

REFERENCES 

[1] A. M. Alnemari et al., “Developing highly  accurate machine learning 

models for optimizing water quality management decisions in tilapia 

aquaculture,” Sci. Rep., vol. 15, no. 1, p. 35600, Oct. 2025, doi: 

10.1038/s41598-025-16939-w. 

[2] B. Ngwenya, T. Paepae, and P. N. Bokoro, “Monitoring ambient water 

quality using machine learning and IoT: A review and recommendations 

for advancing SDG indicator 6.3.2,” J. Water Process Eng., vol. 73, p. 

107664, May 2025, doi: 10.1016/j.jwpe.2025.107664. 

[3] “Prediction of Water Quality Index (WQI) Using Machine Learning,” 

Int. J. Environ. Sci. Dev., vol. 16, no. 1, 2025, doi: 

10.18178/ijesd.2025.16.1.1507. 

[4] [4] Y. Zhao and M. Chen, “Prediction of river dissolved oxygen (DO) 

based on multi-source data and various machine learning coupling 

models,” PLOS ONE, vol. 20, no. 3, p. e0319256, Mar. 2025, doi: 

10.1371/journal.pone.0319256. 

[5] M. Flores-Iwasaki, G. A. Guadalupe, M. Pachas-Caycho, S. Chapa-

Gonza, R. C. Mori-Zabarburú, and J. C. Guerrero-Abad, “Internet of 

Things (IoT) Sensors for Water Quality Monitoring in Aquaculture 

Systems: A Systematic Review and Bibliometric Analysis,” 

AgriEngineering, vol. 7, no. 3, p. 78, Mar. 2025, doi: 

10.3390/agriengineering7030078. 

[6] I. Essamlali, H. Nhaila, and M. El Khaili, “Advances in machine 

learning and IoT for water quality monitoring: A comprehensive 

review,” Heliyon, vol. 10, no. 6, p. e27920, Mar. 2024, doi: 

10.1016/j.heliyon.2024.e27920. 

[7] X. Wang, Y. Li, Q. Qiao, A. Tavares, and Y. Liang, “Water Quality  

Prediction Based on Machine Learning and Comprehensive Weight ing 

Methods,” Entropy, vol. 25, no. 8, p. 1186, Aug. 2023, doi:  

10.3390/e25081186. 

[8] K. Joslyn, “Water Quality Factor Pred iction Using Supervised Machine 

Learning,” Portland State Univ., vol. 6, no. 1, 2018. 

[9] A. Zuhaer, A. Khandoker, N. Enayet, P. K. P. Partha, and Md. A. Awal, 

“Sustainable aquaculture: An Iot-integrated system for real-time water 

quality monitoring featuring advanced do and ammonia sensors,” 

Aquac. Eng., vol. 112, p. 102620, Jan. 2026, doi: 

10.1016/j.aquaeng.2025.102620. 

[10] R. P. Shete, A. M. Bongale, and D. Dharrao, “IoT-enabled effective real-

time water quality monitoring method for aquaculture,” MethodsX, vol. 

13, p. 102906, Dec. 2024, doi: 10.1016/j.mex.2024.102906. 

[11] Md. A. A. M. Hridoy, C. Bord in, A. Masood, and K. Masood, 

“Predictive modelling of aquaculture water quality using IoT and 

advanced machine learning algorithms,” Results Chem., vol. 16, p. 

102456, July 2025, doi: 10.1016/j.rechem.2025.102456. 

[12] A. J. Chaves et al., “A soft sensor open-source methodology for 

inexpensive monitoring of water quality: A case study of NO3− 

concentrations,” J. Comput. Sci., vol. 85, p. 102522, Feb. 2025, doi: 

10.1016/j.jocs.2024.102522. 

[13] Qin, Ren; Long, Zhang; Yaoguang, Wei; Daoliang Li, “A method for 

predicting disso lved oxygen in  aquaculture water in  an aquaponics 

system,” Elsevier Ltd, vol. 151, pp. 384–391. 

[14] M. B. Perera Angel M. Segura, Carolina Crisci, Guzmán López, Lia 

Sampognaro, Victoria Vidal, Carla Kruk, Claudia Piccin i, Gonzalo, 

“Machine learning methods for imbalanced data set for prediction of 

faecal contamination in beach waters,” Elsevier Ltd, vol. 202. 

[15] N. Nasaruddin, N. Masseran, W. M. R. Idris, and A. Z. Ul-Saufie, “A 

SMOTE PCA HDBSCAN approach for enhancing water quality 

classification in imbalanced datasets,” Sci. Rep., vo l. 15, no. 1, p. 13059, 

Apr. 2025, doi: 10.1038/s41598-025-97248-0. 

[16] P. Chandramenon, A. Aggoun, and F. Tchuenbou-Magaia, “Smart 

approaches to Aquaponics 4.0 with focus on water quality − 

Comprehensive review,” Comput. Electron. Agric., vol. 225, p. 109256, 

Oct. 2024, doi: 10.1016/j.compag.2024.109256. 

[17] A. U. Alam, D. Clyne, and M. J. Deen, “A Low -Cost Multi-Parameter 

Water Quality Monitoring System,” Sensors, vol. 21, no. 11, p. 3775, 

May 2021, doi: 10.3390/s21113775. 

[18] K. Lal, S. Menon, F. Noble, and K. M. Arif, “Low -cost IoT based 

system for lake water quality monitoring,” PLOS ONE, vol. 19, no. 3, p. 

e0299089, Mar. 2024, doi: 10.1371/journal.pone.0299089. 

[19] I. Georgantas, S. Mitropoulos, S. Katsoulis, I. Chronis, and I. Christakis, 

“Integrated Low-Cost Water Quality Monitoring System Based on LoRa 

Network,” Electronics, vol. 14, no. 5, p. 857, Feb. 2025, doi: 

10.3390/electronics14050857. 

[20] R. K. Makumbura et al., “Advancing water quality assessment and 

prediction using machine learning models, coupled with explainable 

artificial intelligence (XAI) techniques like shapley additive 

explanations (SHAP) for interpreting the black-box nature,” Results 

Eng., vol. 23, p. 102831, Sept. 2024, doi: 10.1016/j.rineng.2024.102831. 

[21] B. Toleva, I. Ivanov, and K. Kitova, “Innovative Machine Learning 

Approaches for Drinking Water Quality Classification: Addressing Data 

Imbalances with Custom SMOTE Sampling Strategy,” J. Environ. Earth 

Sci., vol. 7, no. 3, pp. 262–273, Mar. 2025, doi: 

10.30564/jees.v7i3.8195. 

[22] D. Costa et al., “Water quality estimates using machine learning 

techniques in an experimental watershed,” J. Hydroinformatics, vol. 26, 

no. 11, pp. 2798–2814, Nov. 2024, doi: 10.2166/hydro.2024.132. 

[23] R. P. Shete, A. Shekhar C., Y. V. Mahajan, A. M. Bongale, and D. 

Dharrao, “IoT-driven ensemble machine learning model for accurate 

dissolved oxygen prediction in aquaculture,” Discov. Internet Things, 

vol. 5, no. 1, p. 94, Sept. 2025, doi: 10.1007/s43926-025-00201-w. 

 


