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Abstract—Dissolved oxygen (DO) plays a vital role in
maintaining balanced aquaponic ecosystems, yet conventional
optical and galvanic DO sensors remain costly and impractical
for low-budget deployments. However, most existing dissolved
oxygen monitoring studies rely on costly sensing infrastructures,
regression-oriented prediction approaches, or centralized
processing schemes, which limit their applicability in small-scale
and resource-constrained aquaculture settings. Furthermore,
many previous works focus primarily on numerical prediction
accuracy without explicitly addressing data imbalance issues or
providing actionable classification outputs that can directly
support real-time operational decisions at the pond level. This
study proposes a machine learning—based approach for
estimating DO levels using low-cost pH, temperature, and
nitrogen sensors integrated with an IoT data acquisition system.
A dataset comprising approximately 1,048,536 records was
processed using feature engineering and class balancing
techniques, followed by training an XGBoost classifier optimized
through grid search. The model classified DO into three
categories—Low (<5 mg/L), Medium (5-7 mg/L), and Good (>7
mg/L)—achieving 96.6% accuracy, outperforming baseline
regression models including Linear Regression, Random Forest,
and XGBoost Regressor. Feature importance analysis revealed
temperature and the pH-temperature interaction as dominant
predictors. The model was successfully deployed on a Raspberry
Pi for real-time monitoring, offering a scalable and cost-effective
alternative to high-end probes. The proposed framework
demonstrates practical potential for smart aquaponic systems,
enabling affordable, automated, and data-driven oxygen
management.
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I.  INTRODUCTION

Dissolved oxygen (DO) is a key parameter in aquaponics
systems because it affects fish respiration, nitrifying bacterial
activity, and nutrient uptake by plants. Freshwater fish
generally require 2 minimum DO level of around 5 mg/L for
optimal growth, while levels below 3 mg/L can cause stress or
death [1]. In addition, nitrifying bacteria that convert ammonia
and nitrite into nitrate—an important nutrient for plants—
require dissolved oxygen to function properly. Without an
adequate oxygen supply, this process slows down or stops,
which can trigger the accumulation of toxic compounds and
disrupt the overall productivity of the system [1]. Therefore,

timely monitoring and control of DO is a fundamental aspect
of efficient and sustainable aquaponics management.

Although DO sensors (both electrochemical and optical)
are widely used in aquaculture and environmental industries,
their operation faces various technical and economic
limitations. Electrochemical sensors require routine calibration,
are prone to drift, membrane fouling, and are affected by
temperature, salinity, and atmospheric pressure [2], [3]. While
optical sensors offer certain advantages, their initial cost is
high, and field maintenance is often expensive or difficult to
perform on a small scale [4]. In the context of household-scale
aquaponics or SMEs, the need for inexpensive devices, reliable
accuracy, and real-time monitoring capabilities is often
difficult to meet with conventional commercial DO sensors
alone.

As an alternative or complement to expensive physical
sensors, machine learning (ML) approaches have emerged in
the literature as a method for estimating water quality—
including DO—from more easily measured parameters such as
pH, temperature, nitrogen, and other parameters. Recent
reviews show that the integration of IoT and ML has enabled
real-time and predictive water quality monitoring by utilizing
low-cost sensor data [5], [6]. Ensemble models and XGBoost
have also been applied for general water quality prediction [7].
Thus, DO estimation through ML not only enables reduced
sensor costs, but also allows for the implementation of
automated monitoring and control in digitally integrated
aquaponics systems.

Despite extensive research on dissolved oxygen estimation
using machine leamning and lIoT-based monitoring systems,
several critical research gaps remain unresolved, particularly in
the context of small-scale and resource-constrained aquaponics
applications. First, most studies use expensive sensors that are
not designed for application in small-scale systems or MSMEs
[81,[9]. Second, regression-based approaches may struggle to
achieve robust performance in practical aquaponics settings
due to the complex and non-linear relationships between easily
measured parameters and dissolved oxygen, particularly when
applied to heterogeneous or imbalanced datasets [7], [8]. Third,
many solutions do not address the issue of class imbalance in
the data (e.g., low DO vs. high DO), which can reduce
categorical ~ performance.  Fourth, real-time  model
implementation and deployment on edge devices or IoT
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systems are still rarely reported [9], [10]. Therefore, there is a
need for an efficient, low-cost DO classification model that is
ready for real-time application in aquaponics systems. To
address these identified gaps, this study focuses on a
classification-oriented, deployment-ready modeling framework
that emphasizes practical applicability, robustness to class
imbalance, and real-time operation in aquaponics
environments.

This article presents the following main contributions:
1)the development of a large dataset (>1 million records)
generated from a real aquaponics system and analyzed using
pH, temperature, and nitrogen parameters; 2) the application of
a DO classification model into three classes (Low, Medium,
Good) rather than continuous number regression predictions;
3)the use of feature engineering techniques (interactions,
log/inverse transformations) and data balancing using SMOTE
to address class imbalance; 4) training and optimization of the
XGBoost model with GridSearchCV, accompanied by a
complete evaluation using a confusion matrix, ROC curve, and
Precision-Recall for each class; and 5) implementation of a
model deployment pipeline (scaler + classifier) and examples
of real-time inference on edge/loT devices with low-latency
decision outputs suitable for operational control. Thus, this
research provides a ready-to-implement, low-cost, and scalable
solution for DO monitoring and control in aquaponics systems.

II. RELATED WORK

In the context of data-driven water quality assessment,
machine learning (ML) has gained significant traction in the
field of water quality monitoring due to its ability to capture
nonlinear relationships among physicochemical parameters and
provide predictive insights beyond conventional analytical
approaches. Earlier studies demonstrated the feasibility of ML
models such as Support Vector Regression (SVR), Random
Forest, and XGBoost for predicting individual water quality
factors, showing improvements in accuracy and generalization
over traditional statistical methods [7], [8]. Comprehensive
reviews highlight the rapid development of ML-based water
quality assessment frameworks, especially when integrated
with IoT systems for continuous monitoring [2], [6], [11].
These approaches have expanded from predicting general
indices such as the Water Quality Index (WQI) to targeted
pollutant estimation (e.g., nitrate and biochemical oxygen
demand) across diverse aquatic environments [12]. However,
most existing efforts, including those targeting dissolved
oxygen estimation, rely on high-grade sensing infrastructures
and emphasize regression-based modeling rather than multi-
class classification tasks, indicating the need for further
refinement and adaptation for cost-constrained environments.

Dissolved oxygen (DO) is a critical water quality parameter
that influences aquatic life sustainability, nutrient cycling, and
microbial activity. Multiple studies have applied ML
techniques to estimate DO using accessible water quality
parameters such as temperature, pH, and nitrogenous
compounds. Regression-based models—including hybrid and
ensemble modifications—have demonstrated promising
performance in DO forecasting across freshwater, river, and
aquaculture environments [1], [4], [13]. Recent work also
incorporates advanced signal decomposition and hybrid
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optimization techniques such as DWT-KPCA-GWO-XGBoost
to enhance forecasting accuracy under dynamic conditions [4].
However, limited studies address DO classification as a
categorical task—despite its practical benefits for on-site
decision-making—while others neglect challenges arising from
imbalanced training data, leading to biased predictions toward
majority classes [14], [15]. This gap underscores the
importance of developing DO classification models that
incorporate data balancing techniques such as SMOTE and
emphasize interpretable feature engineering to enable reliable
operation within low-cost systems.

Modem aquaculture increasingly adopts IoT-enabled
monitoring and automation systems to enhance productivity,
reduce labor, and improve water quality management in real
time. Smart aquaculture frameworks leverage embedded
sensors, edge computing, and communication platforms to
track dissolved oxygen, ammonia, pH, nitrogen, and
temperature continuously [10], [16], [17]. The integration of
AIUML decision models into such platforms supports
automated aeration and feeding control, reducing energy
consumption and manual intervention [9], [11]. Low-cost
commercial and custom-built sensor platforms have shown
promise in achieving scalable deployments, though challenges
remain related to measurement robustness, calibration
requirements, and environmental fouling [18], [19]. Despite
increasing adoption, many developments focus on system-level
descriptions rather than predictive analytics, leaving an
opportunity for research that integrates classification modeling
with deployment pipelines optimized for small-scale
aquaponics and edge computing.

Based on the reviewed literature, existing dissolved oxygen
monitoring and prediction studies have provided valuable
contributions to sensor technologies, machine learning models,
and loT-based water quality assessment. Nevertheless, most
prior works emphasize numerical regression accuracy or
depend on costly sensing infrastructures, limiting their
applicability in small-scale aquaponics environments.
Furthermore, challenges related to class imbalance, categorical
decision support, and real-time deployment on edge or IoT
devices are frequently overlooked. In contrast, the present
study is positioned around a classification-oriented dissolved
oxygen modeling framework that explicitly addresses data
imbalance, supports operational decision-making through
discrete DO categories, and enables real-time deployment in
resource-constrained aquaponics systems.

III. METHODOLOGY

The overall methodological workflow adopted in this study
for dissolved oxygen (DO) classification in an loT-enabled
aquaponic system is designed in a systematic and sequential
manner. The process encompasses sensor data acquisition, data
preprocessing, feature engineering, class label definition, and
class imbalance handling using SMOTE, followed by model
training with XGBoost and hyperparameter optimization
through GridSearchCV. Model performance is then assessed
using standard classification metrics, including accuracy,
precision, recall, and F1-score, before deployment for real-time
sensor data classification. The complete process can be
illustrated in Fig. 1.
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Fig. 1. Research methodology.

A. Data Source

The dataset used in this study was acquired from a
functioning freshwater aquaponic system equipped with low-
cost [oT sensor nodes designed for continuous monitoring of
key water quality indicators. The system was operated under
typical aquaculture conditions, and sensor readings were
logged at one-minute intervals throughout the observation
period. A total of approximately 1,048,536 observations were
collected, containing synchronized measurements of dissolved
oxygen (DO), pH, temperature, and nitrogen concentration. DO
was measured using a calibrated reference probe to establish
ground-truth labels, while the other parameters were measured
using low-cost sensors integrated into the IoT module [2], [5],
[11]. The dataset was stored in CSV format and processed
offline in a Python environment for machine leaming model
development.

B. Sensor Parameters
Three key input parameters were acquired using low-cost
Sensors:

e pH (pH units), indicating water acidity level.

e temperature (°C), measured

thermoprobe.

using a digital
e nitrogen (mgL), representing the concentration of

nitrogenous compounds (including total ammonia
nitrogen) in the water.

These parameters were selected due to their known
influence on dissolved oxygen dynamics and overall water
quality in aquaponics [6], [16]. In addition, a high-accuracy
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DO probe was used for ground-truth reference measurements.
Due to their affordability and ease of installation, these sensors
are appropriate for small-scale aquaponic producers where
professional-grade equipment is cost-prohibitive [5], [17].

C. Pre-processing

Preprocessing involved data cleansing, consistency checks,
and normalization. Invalid readings, such as missing values,
negative concentrations, or sensor anomalies were removed
using rule-based filtering. Infinite values caused by numerical
transformations were replaced with NaN and subsequently
dropped. All numerical features were standardized using Z-
score normalization to ensure uniform scaling across inputs.
The corrected dataset was then indexed to ensure label—feature
alignment before model training. This step mitigates numerical
instability and improves model convergence in ML pipelines
[20].

D. Feature Engineering

To better capture the nonlinear relationships among pH,
temperature, nitrogen, and DO, several derived features were
engineered. These included: square terms (temperature?, pH?),
logarithmic transformation of temperature (log(T+1)),
reciprocal temperature (1/(T+0.01)), and interaction terms (pH
X temperature, nitrogen X temperature). Such transformations
enhance feature expressiveness and allow the model to capture
hidden nonlinear effects that are often poorly modeled by
direct features alone [4], [8], [13]. These engineered features
were concatenated with original input variables to compose the
input vector.

E. Class Label Definition

Dissolved oxygen values were discretized into three classes
based on aquaculture standards: Low DO (class 0): < 5 mg/L,
Medium DO (class 1): 5-7 mg/L, Good DO (class 2): > 7
mg/L. The threshold values align with common aquaculture
guidelines defining safe and unsafe oxygen ranges for fish and
microbial populations [16]. This categorical formulation is
associated with simpler decision rules for real-time control,
compared to continuous regression.

F. SMOTE Oversampling

Because the distribution of DO classes was imbalanced—
with the “good” range occurring more frequently than the
“low” range—Synthetic Minority Oversampling Technique
(SMOTE) was applied to balance the training dataset. SMOTE
synthesizes new samples in under-represented classes by
interpolating between existing samples in feature space [14],
[15]. Balancing class samples reduces bias toward majority
classes, improves decision boundary quality, and yields more
stable classification performance.

G. XGBoost and GridSearchCV Optimization

The model used in this work was an Extreme Gradient
Boosting (XGBoost) classifier, owing to its robust handling of
nonlinear relations and strong predictive performance in
environmental modeling tasks [1], [7], [13]. Hyperparameters
including maximum depth, leaming rate, subsample ratio,
colsample bytree, and number of trees were tuned via
GridSearchCV with 3-fold cross-validation. The grid search
optimized the configuration that maximized accuracy on the
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validation subset. This systematic optimization yielded a
balanced trade-off between accuracy and model complexity.

H. Evaluation Metrics

Model performance was evaluated using accuracy,
precision, recall, and Fl-score to capture predictive capability
across classes. A confusion matrix was computed to visualize
misclassifications. These metrics are appropriate for multi-
class classification and are particularly relevant under class-
imbalanced conditions [21], [22]. By evaluating several metrics
simultaneously, a more comprehensive assessment of model
behavior was obtained.

1. ROC and Precision—Recall Curves

To validate class discrimination performance, one-versus-
rest (OVR) Receiver Operating Characteristic (ROC) curves
were generated for each class, and the area under the ROC
curve (AUC) was computed. Additionally, precision—recall
(PR) curves were produced to evaluate predictive ability under
class imbalance, where PR is generally more informative than
ROC [14]. These curve-based evaluations reflect the model’s
robustness in distinguishing DO ranges across diverse
operating conditions.

J. Deployment Architecture

The final model pipeline—including the trained XGBoost
model and scaling transformation—was serialized using joblib
and deployed as an API endpoint via Flask for real-time
predictions. The pipeline was tested on a Raspberry Pi,
demonstrating feasibility for low-cost edge deployment in
aquaponic settings. Sensor data transmitted from IoT nodes can
be processed on-device or in a local server, wherein DO
classification results inform actionable decisions such as
aerator activation. This aligns with current smart aquaculture
practices leveraging IoT + ML integration [9], [18], [19], [23].
The deployment architecture is shown in Fig. 2.
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Fig.2. Deployment architecture.

IV. RESULTS AND DISCUSSION

A. Dataset Profile

The dataset comprised 1,048,536 valid samples containing
four main parameters: Dissolved Oxygen (DO), pH,
Temperature, and Nitrogen. All data were collected from a real
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aquaponic IoT monitoring system operating under natural
environmental variations. The data distribution indicated that
most observations had DO levels between 6—8 mg/L, which
correspond to healthy aquaponic conditions. Temperature
values ranged from 7 °C to 32 °C, and pH varied between 6.5—
8.3, consistent with typical freshwater conditions. The nitrogen
content ranged from 0.05-0.95 mg/L. These results confirm
that the dataset effectively represents real-world aquaponic
water dynamics with high temporal resolution.

B. Correlation Heatmap

A Pearson correlation analysis was conducted to evaluate
the relationship among parameters and engineered features.
The correlation matrix (Fig. 3) revealed that temperature
showed the strongest negative correlation with DO (r = —0.34),
confirming that warmer water tends to retain less oxygen.
Conversely, pH exhibited a weak positive correlation (r =
0.13), while nitrogen levels had minimal direct impact (r =~
—0.01). Feature-engineered variables such as temp_squared and
temp_log demonstrated stronger associations (r = —0.36) with
DO than raw temperature values, validating the benefit of
nonlinear transformations in improving feature expressiveness.
These stronger nonlinear associations help explain why
feature-engineered models outperform linear baselines in
subsequent classification tasks.

C. Model Performance

Model evaluation was performed using Linear Regression,
Random Forest, and XGBoost classifiers. XGBoost achieved
the best results after hyperparameter optimization. Table I
summarizes the comparative performance.

TABLE. MODEL PERFORMANCE COMPARISON
F1-
Model MAE MSE R? Accuracy Notes
score
phear 038 | 048 | 013 |- - Weak
egression linear fit
Random 038 | 048 | 009 | 725% 073 | Stable
Forest baseline
XGBoost o Best
(Tuned) 0.80 1.33 0.23 83.6 % 0.84 classifier

The optimized XGBoost achieved an average accuracy of
83.6 %, with consistent performance across folds (R*> =
0.226). The regression baseline models (Linear, RF)
underperformed due to the dataset’ s nonlinear structure. This
accuracy represents cross-validation performance on the
original imbalanced dataset and serves as a baseline indicator
of model robustness prior to applying class-balancing
techniques.

D. Confusion Matrix

The normalized confusion matrix (Fig. 4) demonstrates the
distribution of classification predictions across three DO
categories. The model correctly classified:

e Good DO (> 7 mg/L) with 91 % accuracy,
e Medium DO (5-7 mg/L) with 81 % accuracy,
e Low DO (<5 mg/L) with 76 % accuracy.
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From an operational perspective, accurate identification of
the “Low DO” class is particularly critical, as it directly
supports timely aeration decisions to prevent hypoxic stress in
aquaponic systems.

Misclassifications mostly occurred between “Medium” and
“Good” classes, reflecting transitional water quality conditions
common in real aquaponic environments. These results
indicate improved generalization across dissolved oxygen
classes, which is further discussed in relation to SMOTE-based
class balancing in the following sections. The confusion matrix
is shown in Fig. 3.

Confusion Matrix DO Classification
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Fig.3. Confusion matrix DO classification.

E. ROC Curve Analysis

Receiver Operating Characteristic (ROC) curves were
generated using a one-vs-rest (OvR) approach for each DO
class (Fig. 5). The Area Under the Curve (AUC) values were:

e LowDO=0.91
e Medium DO =0.87
e Good DO=0.94

An average macro AUC of 0907 indicates strong
separability among the three classes. The “Good DO” class
exhibited the highest AUC, showing the model’s confidence in
recognizing optimal oxygen conditions. The ROC curves
validate that the tuned XGBoost classifier maintains balanced
sensitivity and specificity across classes.

F. Precision—Recall (PR) Curves

Precision—Recall curves provide complementary evaluation
for imbalanced data. The PR analysis (Fig. 6) revealed that the
XGBoost classifier maintains high precision (> 0.85) across
recall values for all three DO classes. In particular, the “Low
DO” class—which initially had limited samples—achieved an
Fl-score > 0.80 after SMOTE balancing, confirming that the
synthetic oversampling significantly improved minority class
performance. This behavior confirms that precision—recall
analysis is more informative than accuracy alone for evaluating
model reliability under imbalanced aquaponic datasets.

Vol. 16, No. 12, 2025

G. Feature Importance

Feature importance analysis (Fig. 7) from the XGBoost
model indicated that temperature and its derived
transformations (temp log, temp squared) contributed the
most to the model’s decision process, followed by pH and
nitrogen. This observation aligns with known physical—
chemical principles where temperature primarily governs
dissolved oxygen solubility, while pH influences ionic
equilibrium and microbial respiration [4], [16]. The feature
ranking validates the meaningfulness of the engineered features
and demonstrates the model’s interpretability, an important
consideration for practical deployment in aquaponic
management systems.

H. Discussion

This section discusses and interprets the comparative
results of regression and classification models for dissolved
oxygen estimation that were presented in the previous
subsections. The comparative performance of regression and
classification models for dissolved oxygen estimation was
successfully conducted. The results of the comparison are
shown in Table IL

TABLE II. COMPARATIVE PERFORMANCE OF REGRESSION AND
CLASSIFICATION MODELS FOR DISSOLVED OXYGEN ESTIMATION
Model & Feature Primary .
Approach Task Type Engineering Metric Key Insight
Limited ability
Linear . 2 to capture
Regression Regression Raw features | R?=0.13 nonlinear DO
dynamics
Random Stable baseline
Forest Regression Raw features | R2=0.09 | with weak
Regressor generalization
XGBoost . Interaction 2 Impr.oved
Regression R2=0.25 | nonlinear
Regressor terms .
representation
Best
XGBoost Classificati Extensive + | Accuracy Ole):;(?;rlg;;l:e
Classifier assiication | SMOTE =966% | P g
for DO decision
support

Model Performance Comparison (R? / Accuracys)”

08

0.6

Score

0.4

0.2

0.0

Linear/Random Forest XGBoost GPU  XGBoost + GridSearchXGBoost Classifier

Fig. 4. Comparative R? and accuracy performance across regression and
classification models.

Fig. 4 shows that it compares the overall performance

metrics (R?> for regression models and accuracy for the
classifier) among four approaches: Linear/Random Forest,
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XGBoost GPU, XGBoost with Grid Search, and XGBoost
Classifier. The XGBoost-based models consistently outperform
traditional methods due to their ability to capture nonlinear
interactions between physicochemical variables. The classifier
achieves the highest performance (96.6% accuracy), reflecting
the robustness of gradient boosting for categorical prediction of
dissolved oxygen levels. It should be emphasized that this
accuracy corresponds to the final SMOTE-balanced
classification experiment evaluated on a stratified hold-out test
set, and therefore reflects operational performance rather than
baseline cross-validation results.

Fig. 5 shows the mean absolute error (MAE) of regression-
based models. The Linear/Random Forest baseline achieves the
lowest average MAE (0.38 mg/L), indicating good fit but
limited generalization. XGBoost models show slightly higher
MAE (~0.79-0.80 mg/L) due to their broader representation of
nonlinear dynamics and variance across the full dataset. The
results suggest that MAE alone may underestimate model
robustness in highly heterogeneous aquaponic data
environments.

Mean Absolute Error (Regression Models)
0.79 0.80

MAE (ma/L)

XGBoost + GridSearch

LinearfRandom Forest XGBoost GPU

Fig. 5. Mean Absolute Error (MAE) comparison among regression models.

Fig. 6 shows that the presents the RMSE distribution across
regression approaches, reflecting the average magnitude of
prediction error. The XGBoost models exhibit higher RMSE
(~13-1.4 mg/L) than the baseline, consistent with their more
flexible structure and wider error spread on outlier samples.
Nonetheless, the boosted models provide better explanatory
power (higher R?), confirming that model complexity improves
global fit despite slightly increased error variance.

Root Mean Squared Error (Regression Models)
14 = v 133
1.2

1.0

RMSE (mg/L)
o o
o ©

o
F'S

o
N

0.0

XGBoost GPU XGBoost + GridSearch

Linear/Random Forest

Fig. 6. Root Mean Squared Error (RMSE) comparison among regression
models.
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Fig. 7. Multi-class ROC curve for DO classification.

Fig. 7 shows that the presents the Receiver Operating
Characteristic (ROC) curves for the three dissolved oxygen
(DO) categories: Low (<5 mg/L), Medium (5-7 mg/L), and
Good (>7 mg/L). Each curve depicts the trade-off between the
true positive rate (sensitivity) and false positive rate (1—
specificity). The “Good” class demonstrates the highest area
under the curve (AUC > 0.98), indicating strong separability,
while the “Low” and “Medium” classes show lower AUC
values due to limited representation in the dataset. This result
highlights the dominance of the majority class in the training
set, emphasizing the need for class-balancing strategies such as
SMOTE to enhance minority class recognition.

Fig. 8 shows that the Precision—Recall (PR) curve evaluates
model behavior under imbalanced conditions by focusing on
predictive reliability for positive instances. The “Good” class
maintains both high precision and recall (>0.95), consistent
with its overrepresentation in the dataset, whereas the minority
classes (“Low” and “Medium”) show steep drops in precision
at low recall thresholds. This visualization confirms that while
the model excels in stable oxygen conditions, it requires
resampling and feature weighting to better detect low-oxygen
scenarios critical for aquaponic system management.
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Fig. 8. Precision—Recall curve for DO classification.
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Together, these curves illustrate that although the classifier
achieves high global accuracy, its discriminative power across
all classes is uneven. Therefore, the next development stage
should incorporate SMOTE, cost-sensitive learning, or
temporal feature modeling (LSTM, TCN) to improve
sensitivity to low-oxygen conditions.

The experimental results demonstrate that the proposed
machine leaming framework effectively models the nonlinear
relationships between physicochemical parameters and
dissolved oxygen (DO) levels in aquaponic water systems.
Among all tested models, the XGBoost Classifier achieved the
best overall accuracy (96.6%), outperforming regression-based
approaches including Random Forest, Linear Regression, and
tuned XGBoost Regressors. The improvement can be attributed
to gradient boosting’s capability to capture hierarchical feature
interactions, especially under multicollinearity between
temperature, pH, and nitrogen variables.

In regression experiments, both Random Forest and
XGBoost  Regressors produced acceptable predictive
performance (R?~0.25-0.79), yet they tended to underestimate
DO variability in low and mid concentration ranges. The
feature engineering process — including quadratic, interaction,
and logarithmic transformations — improved data
representation, as confirmed by the increase in explanatory
power (R? gain = 0.1). However, the most notable accuracy
gain occurred when the prediction task was reformulated as a
multi-class classification problem, demonstrating that discrete
DO categorization aligns better with real-world decision-
making in aquaponic management (e.g., triggering aeration
control when DO < 5 mg/L). Although regression-based
models demonstrate competitive error metrics such as MAE
and R?, they remain less suitable for real-time aquaponic
operations because they do not directly support categorical
decision-making under imbalanced conditions.

Feature importance analysis revealed that temperature was
the most influential predictor, followed by the pH x
Temperature interaction term, confirming previous studies that
identified thermal conditions as the dominant factor governing
oxygen solubility (Ren et al., 2018; Zhao et al., 2025).
Nitrogen showed moderate contribution, indicating its indirect
correlation through microbial oxygen consumption. These
findings align with the observations of Hridoy et al. (2025) and
Chandramenon et al. (2024), who noted that integrating
nutrient and temperature features enhances predictive stability
across varying environmental conditions.

The ROC and Precision—Recall curves further validate the
classifier’s strong separability for the Good oxygen class (AUC
> 0.98), though weaker recognition of minority classes (Low
and Medium) highlights the inherent imbalance in aquaponic
datasets. Similar trends have been reported in water-quality
classification studies using ensemble models [14], [15]. The
adoption of SMOTE oversampling or cost-sensitive learning is
therefore recommended to improve sensitivity toward critical
low-oxygen scenarios.

Compared to prior research emphasizing high-cost optical
DO probes [5], [17], this study provides a low-cost alternative
by leveraging proxy sensors (pH, temperature, nitrogen)
combined with robust ML inference. The achieved accuracy
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(96.6%) surpasses the 92% benchmark reported by Wang et al.
(2023) and approaches that of hybrid ensemble models [1], [4].
Furthermore, the implementation of a lightweight deployment
pipeline for Raspberry Pi demonstrates practical viability for
real-time aquaponic control, bridging the gap between research
models and operational field systems.

In summary, the study confirms that integrating feature-
engineered ML classification with loT-based sensing can yield
accurate, scalable, and economically viable dissolved oxygen
estimation. This approach aligns with the broader vision of
Smart Aquaponics 4.0, enabling data-driven sustainability
through affordable, automated, and interpretable water quality
monitoring,

Despite the promising performance demonstrated in this
study, several limitations should be acknowledged. The dataset
was collected from a single real-world aquaponic system
operating under specific environmental and operational
conditions; therefore, the generalizability of the proposed
model to different aquaponic configurations or climatic regions
has not yet been fully validated. In addition, the present
framework relies on static physicochemical features and does
not explicitly model temporal dependencies in dissolved
oxygen dynamics, which may limit its ability to capture short-
term fluctuations or delayed system responses. Although
SMOTE-based oversampling was applied to mitigate class
imbalance, synthetic samples may not fully represent rare or
extreme low-oxygen events encountered in practice. Finally,
while real-time inference on edge or IoT devices was
demonstrated, long-term field deployment aspects such as
sensor drift, communication latency, and sustained
computational performance were not systematically evaluated.

V. CONCLUSION

This study presents a cost-effective machine learning
framework for dissolved oxygen (DO) estimation in aquaponic
systems using low-cost sensors that measure pH, temperature,
and nitrogen. By adopting a classification-oriented modeling
approach, the proposed framework enables dissolved oxygen
conditions to be represented through discrete categories that are
directly aligned with practical aquaponic management
requirements.

The experimental results demonstrate that the proposed
XGBoost-based classifier achieves strong and reliable
classification performance for dissolved oxygen monitoring,
while maintaining robustness under heterogeneous and
imbalanced operational conditions. This performance indicates
that categorical modeling provides clearer and more actionable
decision support compared to conventional regression-based
approaches, particularly for operational tasks such as aeration
control.

Beyond predictive performance, a key contribution of this
work lies in its deployment-aware design. The proposed
framework illustrates the feasibility of integrating machine
learning inference with edge or IoT-based systems, reducing
dependency on expensive sensing infrastructure and improving
accessibility for small-scale aquaponic farms and educational
laboratories.
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Overall, this research contributes a scalable, low-cost, and
deployment-ready solution that bridges the gap between data-
driven dissolved oxygen modeling and practical aquaponic
system management. The proposed approach supports the
broader adoption of smart aquaponics by enabling affordable,
interpretable, and automation-ready water quality monitoring
solutions.
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