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Abstract—Accurate partial discharge (PD) localization in
medium-voltage (MV) power cables is essential for condition-
based maintenance, yet it remains unreliable when PD pulses are
masked by broadband noise and narrowband interference. The
novelty of this work is a controlled denoiser-to-localization
benchmarking framework that isolates the denoising front end,
while keeping the downstream PD detection and localization
backend fixed, allowing localization differences to be attributed
solely to denoising decisions. Within this fixed-backend paradigm,
an optimization-driven Adaptive Denoising Optimization (ADO)
method is introduced as an adaptive discrete wavelet transform
(DWT) front end that systematically selects the mother wavelet,
decomposition level, and threshold parameters to preserve time-
of-arrival (ToA) critical wavefront features rather than only
maximizing noise suppression. ADO is evaluated against two
learning-based denoisers, a multilayer artificial neural network
(ANN) and a lightweight feedforward neural network (FNN),
using MATLAB simulations of synthetic PD pulses corrupted by
white Gaussian noise (WGN) and discrete spectral interference
(DSI) over SNRs from 9.78 dB to -10.34 dB. Performance is
quantified using execution time, percentage localization error
(PE), median absolute localization error (MedAE), and F1 score.
Results show that ADO delivers the most robust localization
fidelity, maintaining near-zero PE above -6 dB, keeping PE below
0.3% at-10.34 dB, achieving sub-metre MedAE, and sustaining F1
close to 1.0 across noise levels. In contrast, FNN is the fastest
option, reducing runtime by approximately 15% versus ANN and
27% versus ADO, highlighting a practical robustness-efficiency
trade-off for real-time MV cable monitoring.
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I.  INTRODUCTION

Partial discharge (PD) in medium-voltage (MV) power
cablesis a well-established indicator of insulation deterioration.
If PD is not detected and localized reliably, degradation can
accelerate, outage risk increases, and maintenance and
replacement costs rise. Accurate localization remains
challenging because PD pulses are short, broadband, and
nonstationary,andare easily distorted or masked by background
noise and electromagneticinterference (EMI). As aresult, recent
studies have combined physics-informed localization with
advanced signal analytics, including time-of-arrival (ToA)
formulations that account for cable propagation effects such as
skin effect andsemiconductinglayers [ 1], reviews of ultra-high-

frequency (UHF) PD signal processing and machine learning
[2], electromagnetic time reversal (EMTR) methods for online
MYV cable localization with very low error [3], deep models for
PD patternrecognition in cable accessories and sensing arrays
[4],[5], and unsupervised deep leaming for separating multiple
PD sources in other high-voltage assets [6]. Collectively, this
literature confirms the importance of PD localization, whilealso
showing that realistic interference remains a primary barrier to
dependable field deployment.

This barrier is closely tied to a common assumption
embedded in many localization backends, including ToA, time-
domainreflectometry (TDR), and correlation-based estimators:
the first-arriving PD wavefront can be extracted clearly enough
to preserve timing cues. In field-like MV cable monitoring, this
assumption often fails because measurements are frequently
contaminated by white Gaussian noise (WGN) and discrete
spectral interference (DSI), which can shift, smooth, or obscure
the onsetused for ToA estimation. Prior studies and surveys
highlight that noise strongly constrains PD feature extraction
and localization fidelity [2],[ 7], including efforts to separate PD
from EMI under WGN and DSI conditions [8] and analyses
showingthat timing-basedmethodsdegrade in long cables when
propagation effects and noise jointly distort the pulse [9]. These
findings motivate denoising as a critical front-end stage, since
overall localization error can be dominated by preprocessing
rather than by the mathematical form ofthe backend estimator.

Wavelet-domain denoising, particularly discrete wavelet
transforms (DWT) processing, is widely used in PD analysis
because it is well matched to transient multiscale signals and
provides time-frequency localization of impulsive events [10-
14]. However, conventional DWT denoising typically relies on
fixed choices of mother wavelet, decomposition level, and
thresholdingrulethat are tunedto a specific dataset or laboratory
condition. When the interference spectrum changes or the
signal-to-noise ratio (SNR) deteriorates, fixed settings may
leave residual noise that masks the first wavefront, or they may
distort PD timing through mismatched wavelet bases and over-
thresholding [15]. Recent investigations further show that
denoising quality is highly sensitive to the wavelet family,
decomposition depth, and threshold strategy, and that the best
configuration varies with the dominant noise type, implying that
no single static setting is consistently optimal across operating
conditions [16], [17]. In parallel, learning-based denoisers such
as artificial neural networks (ANNs) and related deep
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architectures can learn nonlinear noise suppression mappings
and have reported strong denoising performance [18-20].
Nevertheless, their effectiveness can degrade when test noise
statistics differ from training conditions, and their computational
footprint may be undesirable for online or embedded
monitoring, especially when robustness is required at very low
SNR.

Despite this broad literature, systematic evaluation of
denoiser-to-localization coupling under severe WGN and DSI
conditions, including very low SNR, remains limited,
particularlyin controlled studies, where the localization backend
is held fixed. Many reported improvements modify both the
denoising stage and the localization logic, or change feature
extraction and decision thresholds, which makes it difficult to
attribute performance gains specifically to the denoiser. This
confounding limit practical guidance for selecting a deployable
denoising frontend, especially when the design goal is not only
noise suppression but also preservation of ToA-critical timing
features that directly determine localization accuracy.

To address this gap, this study adopts a controlled
benchmarking framework that varies only the denoising front
end while keeping the downstream localization backend
identical across all pipelines. This design removes backend-
dependent influences such as different ToA pickers, correlation
rules, or post-processing heuristics, so changes in localization
accuracy, detection reliability, and runtime can be attributed
directly to the denoiser. Within this fixed-backend setting, the
proposed adaptive DWT-based Adaptive Denoising
Optimization (ADO) [21] is evaluated against two learning-
based benchmarks, a multilayer ANN and a lightweight
feedforward neural network (FNN), using synthetic PD signals
contaminated by WGN and DSI over SNRs from9.78 dB to -
10.34 dB. Performance is quantified using percentage
localization error (PE), median absolute localization error
(MedAE), F1 score, and execution time, enabling direct
assessment of how denoising affects ToA-critical timing
preservation and, consequently, localization fidelity under
severe interference. The novelty is twofold: 1) establishing an
explicit denoiser-to-localization coupling evaluation under a
fixed localization backend, and 2) introducing an optimization-
driven adaptive wavelet front end that systematically selects
denoising configurations (wavelet basis, decomposition depth,
and thresholding decisions) to maintain robustness as noise
conditions and SNR vary. By reporting both accuracy and
computational cost within the same controlled paradigm, the
study provides practical guidance on robustness-efficiency
trade-offs for real-time and resource-constrained MV cable
monitoring.

II. WAVELET DENOISING

Wavelet-domain denoising is a common front end for PD
processing because the DWT provides a multiresolution
representation that can attenuate broadband noise while
separating narrowband or tonal interference from impulsive
components. In practice, DWT denoising is highly sensitive to
three coupled design choices: the mother wavelet (basis), the
decomposition depth, and the threshold estimation and
shrinkage rule. Parameter settings that work well under one
measurement condition can degrade when SNR drops or when
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the interference spectrum changes, either by leaving residual
noise that obscures weak impulses or by over-suppressing high-
frequency coefficients and shifting the apparent onset that
carries timing information [15]. Recent studies consistently
report strong dependence on wavelet family, decomposition
level, and threshold strategy, and show that the best
configuration depends on the dominant noise type and
measurement modality, so a single static setting is rarely robust
across scenarios [16], [17].

To reducethis sensitivity, several adaptive or optimization-
driven wavelet schemes have been explored in PD-related
applications. Representative directions include sub-band
identification or segmentation guided by impulsiveness
indicators, such as spectral-kurtogram-guided approaches that
emphasize informative bands and suppress noise-dominated
coefficients [22], optimized wavelet denoising for recovering
weak events in low-amplitude measurements [23], and adaptive
parameter optimization in wavelet-threshold denoising, where
optimization algorithms select threshold-related parameters
based on the field noise level and a denoising quality objective
[24]. Other work has emphasized robustness to translation
effects and threshold estimation, such as shift-invariant wavelet
denoising with empirical Bayes thresholding for low-SNR UHF
PD wavefront detection and event segmentation [25]. While
these approaches demonstrate the value of adaptivity, they often
optimize denoising quality in isolation, or adapt only a subset of
the wavelet design space, without explicitly constraining the
solution to preserve ToA-critical timing cues that govern
downstream localization fidelity [25].

Against this background, the novelty of ADO is an
optimization-driven wavelet selection strategy that is explicitly
designed for localization readiness. ADO performs optimization
per signal realization, meaning each noisy PD waveform is
processed independently, and it searches a predefined candidate
set of mother wavelets, decomposition levels, and threshold
configurations (threshold estimator and shrinkage rule) [21]. For
each candidate configuration, the signal is denoised and
evaluated using an objective function that balances suppression
of WGN and DSI residuals with preservation of ToA-relevant
structure by penalizing timing distortion of the earliest
wavefront, for example, onset shift or correlation-lag deviation
relative to the pre-denoising waveform. The final configuration
is chosen using a minimum-cost rule, selecting the option that
bestsatisfies this denoising-timing trade-off for the currentnoise
realization. This bounded, discrete search avoids offline
training, adapts directly to changing interference statistics, and
improves robustness by discouraging over-denoising solutions
that appear clean in energy terms, but distort the first-arrival
features that localization depends on [15-17], [21].

III.  PD SIGNALS AND NOISE MODELING

Fig. 1 illustrates the online PD location system for power
cables, which employs a multi-end measurement scheme to
estimate the position of PD events. Three PD sensors, denoted
A, B, and C, are installed along an underground cable at equal
spacing of 2.5 km to capture the propagating PD pulse at each
location. A substation receiver running the PD localization
algorithm is connected to these sensors. When a PD event
occurs, the pulse travels along the cable and is recorded as sigA,
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sigB, and sigC, and the algorithm estimates the PD source
location by comparing the signals’ arrival times and waveform
characteristics.

PD location
algorithm
sigA sigB sigC
ooo
e

PD Sourc
|
Qx]—z.s km2.5 km

[PD Sensor A| [PD Sensor B| |PD Sensor C|

Fig. 1. Schematic representation of an online PD location estimation system
fora power cable.

Fig. 2 presents the overall study workflow designed to
isolate the effect of the denoising frontend on PD localization.
Noisy PDsignals corruptedby WGN and DSl are firstprocessed
by one of the three denoisers (ADO, ANN, or FNN). The
denoised outputs are subsequently fed into the same fixed PD
localization backend to ensure a fair comparison, and
performance is evaluated using localization accuracy, F1 score,
and execution time to assess robustness and computational

efficiency.
_[ Denoising Front Ends ]_,

ADO
| (Adaptive DWT)

Noisy PD Signals

WGN & DSI ANN PD Location

Algorithms

Contamination J i (Multilayer NN)

FNN
¥ (Feedforward NN)

Fig.2. Study workflow for benchmarking ADO against ANN and FNN
under a fixed PD localization backend.

For simulation and localization analysis, the high-frequency
PD pulse is modeled using Eq. (1) [8], which serves as the
reference waveform:

s(t) = Ale @1t cos(wyt — @) — e 722 cos(@)] (D

where, A is the amplitude coefficient, fixed at0.01; a; and a
are damping factors set to 1 Ms! and 10 Ms™!, respectively;
wq = 2mfy is the angular frequency of the damped oscillation;
f;4 is chosen as 1 MHz; and the phase term ¢ is given by

tan‘l(wd/az).

PD signal propagation along the cable is simulated with a
sampling frequency fs of 100 MHz. The propagationvelocity, vt
is obtained from Eq. (2) and then adjusted using laboratory
experiments ona MV three-core cable (50 mm? Cu/XLPE/PVC,
8.7/15 kV), which yields an experimental value of 156 m/us [8].
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Here, v, is the speed of electromagnetic waves in free space
(300 m/ps); € is the effective permittivity of the insulation and
semiconductor layers of the cable.

To approximate realistic operating conditions, the simulated
PD signals are corrupted by two typical interference sources:
WGN and DSI. WGN is a broadband random noise with a
Gaussian amplitude distribution and a flat power spectral
density, representing thermal and electronic noise commonly
present in measurement equipment. DSI is a narrowband
periodic disturbance modeled as one or more sinusoidal
components, capturing interference from power electronic
devices, communication carriers, and other periodic emissions.
WGN is generated in MATLAB, and its level is varied from 0
dB to -20 dB in -2 dB steps. DSI is applied at four discrete
frequencies (600 kHz, 800 kHz, 1.5 MHz, and 5 MHz) with
amplitudes ranging from 0.05 mV to 0.55 mV in 0.05 mV
increments [8]. The DSI waveform is given by Eq. (3):

DSI(t) = A,WZN 2nfit 3)
t=1

The SNR of the noise-contaminated PD signals is then
computed using Eq. (4) and Eq. (5), as in [8]:

A z
SNR = ( stgnal) (4)

Anoise

where, Ag;gnq 1s the amplitude of the PD signal, and 4,
is the amplitude of the added noise. The corresponding SNR in
decibels is:

SNR,; = 10l0g,,(SNR) 5)

IV. DENOISING METHODS

This study evaluates the proposed ADO denoising front end
against two learning-based baselines, ANN and FNN, chosen to
serve a clearbenchmarking purposeratherthanonly practicality.
ANN represents a higher-capacity neural denoiser that can
model more complex nonlinear mappings, while FNN provides
a lightweight alternative with reduced model complexity and
different generalization behavior; together, they bracket a
realistic range of neural denoising designs and allow us to test
whether the localization performance limits arise from the
learningparadigmitself or frommodel capacity and complexity.
ADO is coupled to localization through its explicit goal of
preserving ToA information: its adaptive DWT decomposition,
wavelet selection, and thresholding are optimized to retain the
earliest PD wavefront and sharp leading-edge transients while
suppressing WGN and DSI. The denoised outputs are then
passed unchanged into a fixed, identical ToA-based localization
backend forall methods, so any change in estimated PD location
is attributable to how well the denoiser preserves ToA-critical
features rather than to differences in the localization algorithm.

A. Absolute Difference Optimization (ADO) Technique

Algorithm 1 presents the proposed ADO-based adaptive
DWT denoising [21] procedure for PD signals, where the
decomposition level is selected automatically to support
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subsequent peak detection and ToA-based localization. A noisy
observation is first formed by superimposing a synthetic clean
PD waveform with mixed interference so that a clean reference
remains available for objective evaluation. The noisy signal is
constructed as Eq. (6):

x[n] = spp[n] + wyey[nl+ dpg[n], (6)
n=1,...,N,

where, spp, [1n] is the clean PD waveform, wy, ;y [1] denotes
broadband WGN, and d¢;[n] represents DSI. This mixed noise
model reflects practical environments, where both wideband
background noise and narrowband harmonic or switching
components coexist.

Algorithm 1: ADO-based adaptive DWT denoising for PD
signals

Initialize

Define wavelet type:
wav « 'db3'

Define decomposition-level search range:
Lmin « 1
Lmax < 10

Set tracking variables for optimal level:
bestADO « +oo
bestLevel «— Lmin
bestSignal «— empty

Compute

Signal modelling (synthetic PD + noise):
Generate clean PD waveform s PD
Generate white Gaussian noise WGN
Generate discrete spectral interference DSI
Form noisy signal:

x <—s_PD + WGN + DSI

Set initial decomposition level:

L < Lmin

While (L < Lmax) do
Apply DWT at level L:
[cA L,cD L]« DWT(x, wav, level =L)

Denoising stage (reconstruct signal):
y_L « ReconstructDenoisedSignal(cA L, cD L)

Peak detection (MATLAB findpeaks):
peaks L « findpeaks(y L)

Compute absolute difference (AD):
AD_L « ComputeAbsoluteDifference(peaks L,
referencePeaks)

Calculate ADO factor:
ADO L « ComputeADOFactor(AD L)

Check if current ADO is the minimum so far:
if ADO_L <bestADO then
bestADO «—— ADO L
bestLevel « L
bestSignal «—y L
end

Increment decomposition level:

Vol. 16, No. 12, 2025

L—L+1
End

End

Output

Denoised PD signal § «<— bestSignal at optimal decomposition
level bestLevel,

which is subsequently used for PD peak detection and
localization.

For each candidate DWT decomposition level L € [1,10],
the noisy signal x[n] is transformed using a fixed mother
wavelet (Daubechies 3, db3), and the wavelet coefficients. The
level-L DWT can be written as Eq. (7):

x[n] == {alkl,d;lk| j = 1,...,L} %

where, a, |k| are the approximation coefficients at level L
and d;|k| are the detail coefficients at intermediate levels
decomposition level j. After applying the chosen coefficient
modificationor thresholdingstrategy, the denoised signal y, [n]
is reconstructed through the inverse DWT as Eq. (8):

yi[nl = IDWT(a, k], d,k|....,d,]k]) ®)

The role of decomposition level L is to balance suppression
and preservation: shallow decompositions may leave residual
high-frequency noise, whereas excessively deep decompositions
can over-smooth narrow PD impulses and distort the first
arrival.

Each reconstructed signal y; [n], is then evaluated using
peak features that are directly relevant to localization. PD peaks

are extracted using MATLAB findpeaks, producing {p Li}?:l‘ ,
and compared against reference peaks {pre f_i}?il derived from
the clean signal. The discrepancy is quantified by an absolute
difference (AD) measure in Eq. (9).

M
AD, = leL,i - Pref,i| 9
i=1

Absolute differences are preferred over squared errors
becausetheyremainin theoriginal units (samples or amplitude),
making them directly related to practical timing and localization
deviations.

The AD measure is then condensed into an ADO factor,
which serves as the scalar objective for decomposition level
selection, as in Eq. (10):

ADO, = |AD, — K| (10)

where, K = 0.505 is an empirically chosen reference that
represents a balanced operating point betweennoise suppression
and retention of PD peak structure. The optimal decomposition
level is the one that minimizes ADO, ; lower values correspond
to more faithful preservation of PD characteristics.

The algorithm iterates over all candidate levels L =
1,..., L computing AD O, for each. A running minimum is
maintained as Eq. (11):
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ADO, = min ADO,,
1<L=<Lmax 11
L* = argmin ADO,, an
L

where, L* denotes the optimal decomposition level.
Whenever a new level yields ADO, < ADO,,;,, the
correspondingdenoisedsignal y; [n] is stored as the current best
candidate. Once all levels have been tested, the algorithm
outputs Eq. (12):

y[n] = yi[n] (12)

as the final denoisedsignal for subsequent PD peak detection
and localization.

The ADO configuration is deliberately constrained to keep
the method interpretable and computationally efficient, while
still preserving ToA-critical content. The db3 wavelet is fixed
because its compact support and pulse-like morphology match
impulsive PD transients and help protect the sharp leading edge
required by the fixed localization backend. The bounded search
L =1 to 10 provides sufficient multi-resolution flexibility to
isolate PD-dominated sub-bands under mixed WGN and DSI
without an excessive runtime increase, since cost scales mainly
with record length and the number of tested levels. Finally,
selecting L* via the peak-based ADO objective links denoising
to the fidelity of PD peak reconstruction, reducing over-
smoothingand timeshifting that would otherwise propagate into
ToA error and degraded localization.

B. Artificial Neural Network (ANN) Technique

Algorithm2 implements an ANN-based window-to-window
denoising scheme for PD signals, where a fully connected
multilayer perceptron is used as a data-driven frontend to map
noisy PD waveform segments to their clean counterparts on a
frame-by-frame basis. The ANN is included as a representative
learning based denoiser that can learn nonlinear signal noise
relationships while remaining lighter than convolutional or
recurrent models, which makes it suitable for long records and
potential embedded deployment. The denoised output y[n]is
subsequently passed to the same fixed peak detection and ToA-
based localization backend used throughout this study, so the
impact of ANN denoising is assessed directly through its effect
on timing and localization outcomes.

Algorithm 2: ANN-based window-to-window denoising for
PD signals

Initialize
Input noisy PD signal x, trained ANN denoiser net,
window length win and hop size hop
Set N « length(x)
Allocate reconstruction buffer yrec[1..N] « 0
Allocate overlap counter wsum[1..N] « 0
Choose small constant € to avoid division by zero

Compute
Reshape x to a column vector

Compute mean px < mean(x) and standard deviation ox «—
std(x) + &
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Normalize input signal:
forn=1to N do
z[n] « (x[n] — px) / ox
end
Compute number of frames:
nFrames « 1 + floor((N — win) / hop)
If nFrames < 1 then

Set § «— x and terminate the algorithm

While (frames remain to be processed) do
For each frame index k =1 to nFrames do

Determine frame boundaries:
a«<—1+(k-1)*hop
b« a+win—1
if b>Nthenb < N

Extract normalized frame:
zK «— z[a : b]

Apply ANN denoiser:

Yk « net(zk)

Accumulate output via overlap—add:
yrec[a : b] < yrec[a : b] + §k
wsum|a : b] « wsum[a : b] + 1

end

Forn=1to N do
if wsum[n] =0 then wsum[n] « 1
Compute averaged normalized estimate:
Z[n] « yrec[n] / wsum[n]
De-normalize to original scale:
y[n] « Z[n] * ox + px
end

End

Output

Denoised PD signal §, which is subsequently used for peak
detection and PD localization. For multiple channels (A, B, C),
the same procedure is applied independently to each signal.

Let [n], n=1, ..., N, denote the noisy PD signal. As
summarized in Algorithm 2, the method begins with global
normalization to stabilize the input distribution. The sample

mean and standard deviation are computed as Eq. (13) and
Eq. (14):

N
1
o= ) xln] (13)
n=1
0y = | TN (xn] — )2t (14)

where, € is a small constant to avoid division by zero. The
normalized sequence is shown in Eq. (15):

z[n] = ad L e (15)

Ox

626 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

This step reduces sensitivity to absolute amplitude variation
between realizations and channels, which helps ANN training
converge more reliably and improves generalization when PD
magnitude changes across operating conditions.

The normalized signal [n] is segmented into overlapping
frames of length win withhop size hop.In this implementation,
win = 512 samples and hop= 256 samples (50% overlap) were
selectedto capture the PD pulse andits local noise context while
keeping the ANN input dimension and parameter count
manageable. The overlap condition hop < win reduces
blocking artifacts and ensures that pulses near frame boundaries
are fully represented in at least one frame, which improves
reconstruction continuity and ToA stability. For each frame
index k, the frame boundaries are defined by Eq. (16):

a, =1+ (k— 1hop,
. . (16)
b, = min(a; + win —1,N),
and the corresponding frame is shown in Eq. (17).

z = [z[ay],..., zla,]]" (17)

Each frame z; is processed by a trained multi-layer ANN
implementing the mapping as Eq. (18):

Vi = fo(2zx) (18)

where, f,(.) is a sequence of affine transformations and
nonlinear activations parameterized by weights and biases 6.
The network is trained offline using noisy—clean frame pairs by
minimizing a mean-squared error (MSE) loss, as shown in
Eq. (19):

K
1 .
9 =7 ) oGy = yeon |1, (19)
k=1

which encourages faithful reconstruction of PD pulse shape
and amplitude that drive reliable peak picking and ToA
estimation in the subsequent localization stage.

The frame-wise outputs are finally recombined using an
overlap-add to obtain a continuous denoised waveform. A
reconstruction buffer y,...[n] and overlap counter w,,,, [n] are
accumulated over all frames. The final normalized estimate is
then computed as Eq. (20):

2[n] = Yreclnl
" ax Wy 1), 1)

(20)

and the denoised signal in the original scale is recovered via
de-normalization in Eq. (21):

y[nl= 2[n]oy + py 2D

The same procedure is applied independently to each
measurement channel, which avoids mixing channel-specific
responses and helps maintain consistent inter-sensor timing
behavior for localization.

For ANN training, the parameter settings were selected to
balance model capacity, training stability, and coverage of
realistic noise conditions. The ANN denoiser is a small fully
connected network withtwo hiddenlayers (128 and 64 neurons),
which is large enough to learnthe nonlinear mapping from noisy
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frames z, to denoised frames ¥, in Algorithm2, while keeping
the model lightweight. Training uses the scaled conjugate
gradient solver (trainscg) to obtain stable convergence for this
regression task. To control overfitting and keep training time
predictable, training is capped at 150 epochs with validation-
based early stopping (max_fail = 6) using an 80/10/10 split for
training, validation, and testing. Generalization is encouraged by
generating 600 noisy—clean frame pairs across multiple SNR
conditions (20,10,5,0,and —5 dB) using AWGN with measured
signal power, and by adding multi tone discrete spectral
interference at 0.6, 0.8, 1.5, and 5 MHz with an amplitude of
0.20 mV so the network learns to handle both broadband and
narrowband  disturbances. Finally, per-shot z-score
normalization during dataset generation reduces sensitivity to
amplitude scaling, and a fixed random seed (rng(42,'twister'))
ensures the training results are reproducible.

C. Feedforward Neural Network (FNN) Technique

Algorithm 3 summarizes the FNN-based window-to-
window denoising procedure for PD signals. The FNN is
included as a lightweight counterpart to the multi-layer ANN
denoiser: it follows the same framing, normalization, and
overlap-add reconstruction steps, and it uses the same
windowing settings and noise-condition ranges as the ANN for
a fair comparison. The key difference is that the FNN adopts a
shallower fully connected architecture with fewer hidden units
and parameters, which reduces execution time and memory
demand while still learning the core nonlinear mapping from
noisy frames to denoised PD frames. This design allows the
study to isolate theeffect of model capacity on denoising quality
and, ultimately, on peak preservation and localization
performance.

Algorithm 3: FNN-based window-to-window denoising for
PD signals

Initialize
Input noisy PD signal x, trained FNN denoiser net,
window length win and hop size hop
Set N « length(x)
Allocate reconstruction buffer yrec[1..N] « 0
Allocate overlap counter wsum[1..N] « 0
Choose small constant € to avoid division by zero

Compute
Reshape x to a column vector
Compute mean px «— mean(x) and standard deviation ox «—
std(x) + &
Normalize input signal:
forn=1to N do
z[n] « (x[n] — px) / ox
end
Compute number of frames:
nFrames « 1 + floor((N — win) / hop)
If nFrames < 1 then
Set § « x and terminate the algorithm

While (frames remain to be processed) do
For each frame index k =1 to nFrames do
Update
Determine frame boundaries:
a«<—1+(k-1)*hop
b«—a+win—1
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if b>Nthenb N

Extract normalized frame:
zk «— z[a : b]

Apply FNN denoiser:
vk « net(zk)

Accumulate output via overlap—add:
yrec[a : b] < yrec[a : b] + §k
wsum|a : b] « wsum[a : b] + 1

Update and analyze
Forn=1to N do
If wsum[n] =0 then wsum|[n] « 1
Compute averaged normalized estimate:
Z[n] « yrec[n] / wsum[n]
De-normalize to original scale:
y[n] « 2[n] * ox + px
end

If (denoising is required for multiple PD channels) then
Repeat the above procedure for each channel (A, B, C)
with its
corresponding noisy input and trained FNN
End if

End
Output

Denoised PD signal § for subsequent peak detection and
localization

Let [n], n=1, ..., N, denote the noisy PD signal. The FNN
pipeline adopts exactly the same global normalization, framing,
and overlap-add reconstruction strategy as the ANN method,
using Eq. (13) to Eq. (17) for preprocessing and Eq. (20) to
Eq. (21) for recombination and de-normalization. This ensures
that both denoisers operate on identically scaled inputs and
produce outputs in the same physical units, enabling a fair
comparison.

For each frame z,, the trained FNN denoiser that applies a
relatively shallow nonlinear mapping as Eq. (22):

Ik = 9o (zx) (22)

where, gy(.) denotes a fully connected network with a
reduced number of layers and neurons compared with the ANN.
A typical realization uses a single hidden layer, as shown in
Eq. (23):

h = oW,z +by),

(23)
Pk =Wyh +b,

where, ¢(+) is a nonlinear activation function (e.g., ReLU),
and ¢ = {W,;,b,;,W,,b,} is the parameter set. As with the
ANN, the FNN is trained offline on noisy-clean frame pairs by
minimizing the MSE loss in Eq. (19). However, because ¢
contains substantially fewer parameters than the ANN’s 6, the
FNN exhibits lower computational cost, reduced memory
footprint, and a lower risk of overfitting. In the PD denoising
context, this can be beneficial when the training dataset is
limited or when the deployment environment requires fast
inference and deterministic latency.
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After frame-wise processing, the FNN outputs y, are
merged using the same overlap-add and de-normalization steps
as the ANN formulation, yielding the final denoised signal
y¥[n]. For multi-channel PD measurements, the procedure is
applied independently to each channel. Overall, the FNN-based
scheme preserves the ANN’s signal processing structure, while
offering a leaner network architecture tailored to scenarios
where reduced latency, energy consumption, and
implementation complexity are prioritized.

V. RESULTS AND DISCUSSION

The ADO, ANN, and FNN pipelines were evaluated in
MATLAB on an Intel® Core™15-5200U CPU @ 2.2 GHz with
16 GB RAM using four complementary metrics: execution time,
PE, MedAE, and F1-score. The simulations employed a multi-
end measurement setup alonga 2.5 km cable with a fixed true
PD location, and the signals were corrupted by composite noise
comprising WGN and DSI. This multi-end configuration
reflects practical online monitoring architectures that estimate
PD location from ToA differences between sensors, while WGN
and DSI represent broadband stochastic noise and narrowband
interference, respectively. For each noisy realization, the
denoised outputs from each pipeline were passed to the same
localization method, ensuring that performance differences
could be attributed solely to the denoising front end.

Execution time was measured using MATLAB’s tic/toc
around the full denoising-localization chain, providing a direct
estimate of computational costunder identical hardware and
software conditions.

The PE quantifies the relative deviation of the estimated PD
location from the true location and is defined as Eq. (24):

% Error

_ | PDlocyye — PDloce| < 100% (24)
PDloci,,

where, PDloc . 1s the actual PD position, and PDloc,; is
the estimated PD location. PE is used because it normalizes the
error to the cable length, allowing fair comparison across
different cable spansand giving utilities an intuitive indication
of how far, in percentage terms, the estimate deviates from the
true fault location when planning sectionalized repairs.

MedAE measures the typical magnitude of localization
errors across Monte Carlo trials and is given by Eq. (25):

MedAE = median (|P; — 4; |),

i=12...N 25)

where, P; and 4; are the estimated and true PD locations for
the i-th trial, and N is the total number of realizations. MedAE
is chosen instead of mean absolute error (MAE) because the
median is far less sensitive to occasional extreme mis-
localizations that may occur under very severe noise or rare
algorithm failures. It therefore provides a robust indicator of the
typical performance.

Finally, the F1-Score recasts localization into a tolerance-
based detection problem. A trial is counted as a correct
localization (positive)ifthe absoluteerror lies withina tolerance
window of 100 m. Binary labels are formed accordingly, and
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the F1-Scoreis computed from precision (P) and recall (R) as
Eq. (26) to Eq. (28):

Fis _ 2 x (Precision x Recall) 26)
CoTe = precision + Recall

where,
Precision
True Positives 27
- True Positives + False Positives
True ositives

Recall = True Positives + False Negatives 29

Here, true positives correspond to trials where the estimated
location falls within 100 m of the true PD position, while false
negatives are trials outside this tolerance. This tolerance-based
F1-Score is used because, in field practice, operators are less
concerned with centimeter-level accuracy than with confining
the fault to a sufficiently short cable section that can be isolated
and inspected. By combining precision and recall under an
engineering-relevant tolerance, the F1-Score provides a
practical, balanced measure of good localization, penalizing
both missedacceptable localizations and large mis-localizations.

A. Execution Time

Fig. 3 compares the execution time of the ADO, ANN, and
FNN denoising pipelines over SNR levels from 9.78 dB to -
10.34 dB using the same dataset and computing setup. FNN is
consistently the fastest method, with a mean runtime of about
619 s versus 729 s for ANN and 853 s for ADO, giving average
savings of roughly 15% and 27%, respectively. FNN runtimes
drop from around 680-720 s at high SNR to about 475-500s at
the lowest SNR, while ANN shows the widest variability (about
508-837 s formost SNRs) and a clear spike to roughly 1113 s at
-2.38 dB. ADOremains the slowest, but is comparatively stable
across SNR, ranging from about 751 s to 989 s. Overall, all
pipelines are complete within approximately 475-1115 s,
indicating suitability for offline or semi-real-time PD analysis.
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Fig. 3. Comparison of execution time for ADO-, ANN-, and FNN-based
denoising pipelines over SNR levels ranging from 9.78 dB to —10.34 dB.

The runtime behavior reflects different computational cost
drivers that matter for deployment. FNN’s shallow architecture
and small parameter count reduce per-epoch cost and typically
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converge quickly, which suits edge monitoring where latency,
power, and throughput are dominant constraints, provided ToA
fidelity is preserved. ANN offers intermediate speed but can be
sensitive to the optimization landscape, leading to unpredictable
delays that complicate buffering and scheduling. ADO is slower
because it repeatedly performs multi-level DWT
decompositions and reconstructions while searching across
candidate configurations, but its latency is more predictable
because itis mainly governed by signal length and the size of
the search.

In practical PD localization systems, denoiser selection
should therefore balance robustness, ToA preservation,
computational budget, and operating constraints. FNN is
appropriate for resource-limited, near-sensor screening when
low latency is essential and uncertain windows can be flagged
for later verification. ADO is better suited to offline
diagnostics, periodic batch processing, or harsh EMI and low-
SNR environments where timing fidelity and robustness
outweigh runtime. A hybrid strategy is often most effective in
utility monitoring: run FNN or ANN for continuous screening
and invoke ADO selectively for low-confidence cases, low-
SNR intervals, or high-value assets, improving reliability
without paying ADO’s full computational cost on every record.

For ADO, the dominant cost driver is search breadth (the
number of tested decomposition levels and wavelet options),
followed by signal length and windowing; restricting the search
or processing a shorter pulse-centered window reduces runtime
but can reduce robustness if the earliest wavefront is not
retained. Threshold strength and selection-criterion tightness
also trade off against timing fidelity, since overly aggressive
settings risk smoothing or shifting first arrivals. For ANN and
FNN, model size governs per-epoch cost, while training
controls such as maximum epochs and early-stopping patience
drive runtime variability; tightening these improves
predictability but may degrade denoising if overly restrictive.
Acrossall pipelines, the key design principleis to tune the front
end to preserve the earliest PD wavefront and minimize ToA
shift, since this ultimately governs end-to-end localization
accuracy.

B. Percentage Error (PE)

Fig. 4 comparesthe PE of ADO, ANN, and FNN from 9.78
dBto-10.34dB. ADOis consistently the most accurate, keeping
PE between 0.0078% and 0.278% and staying below 0.03% for
all SNR > —4.06 dB. In contrast, ANN and FNN start at about
9.2% and 9.0% at 9.78 dB, remain above 4.7% under moderate
noise,andrise sharply below -4 dBtoroughly21.4%and 22.5%
at-10.34 dB. Consistent with this robustness, Table I shows that
ADO selects lower decomposition levels (1-3) at higher SNR
and shifts to deeper levels (4-5) as noise increases, keeping the
estimated PD location close to 2000 m even in the most
challenging cases.

These PE trends indicate that localization accuracy is
dominated by timing fidelity rather than denoising strength
alone. The large errors of ANN and FNN, even when SNR is
high, imply that small reconstruction distortions can shift the
effective ToA. In ToA-based MV cable localization, a one-to-
two sample shift can translate into metres of location error, so
smoothing or altering the first-arrival structure can degrade

629 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

localization despite producing visually clean signals. ADO’s
near-zero PE over moderate and high SNR, and only modest
degradation at very low SNR, suggests thatits wavelet-domain
processing preserves ToA-critical features more reliably as
interference changes.
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Fig. 4. Comparison of PE for ADO-, ANN-, and FNN-based denoising
pipelines over SNR levels ranging from 9.78 dB to —10.34 dB.

TABLE I. ANALYSIS OF AD, ADO, AND PD LOCALIZATION ERROR
ACROSS VARYING DWT DECOMPOSITION LEVELS AT A FIXED SNR OF -10.34
DB (WGN = -20 DB AND DSI =0.55 MV)

Estimated PD. Decomp

(S(;\];]; AD ADO Lo:)al:ion L](:jiigl(') " Level

(m) @) | OWD
9.7812 0.5590 | 0.0540 | 1999.8439 0.0078 1
6.3698 0.4056 | 0.0056 | 1999.8439 0.0078 2
5.0484 03108 | 0.0892 | 1999.8439 0.0078 3
3.0471 0.3833 | 0.0167 | 1999.8439 0.0078 3
0.2003 0.4892 | 0.0892 | 1999.7401 0.0130 3
-0.9005 0.2566 | 0.1434 | 1999.5320 0.0234 4
-2.3772 0.3090 | 0.0910 | 1999.5320 0.0234 4
-4.0638 0.3597 | 0.0403 | 1999.5260 0.0237 4
-6.0967 0.4430 | 0.0430 | 2000.9960 0.0498 4
-8.7425 0.2855 | 0.1145 | 2002.6000 0.1300 5
-10.34 0.2900 | 0.1322 | 2005.5600 0.278 5

For system design, ADO is the safest default for field
deployment when noise conditions are uncertain and accurate
localization is required, since it maintains near-perfect accuracy
down to -4.06 dB and remains below 0.3% PE at -10.34 dB.
When computing is severely limited and approximate
localization is acceptable, a lightweight neural front end such as
FNN can be used for screening, with low-confidence or low-
SNR windows escalated to ADO before producing the final
location estimate. If ANN or FNN must serve as the primary
front end, their evaluation and training should explicitly include
timing-based criteria, because waveform similarity alone may
not reflect ToA shifts thatdrive localization error. At low SNR,
the deeper decomposition selected by ADO has a clear physical
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interpretation because finer subband separation helps preserve
PD-dominated components, while suppressing broadband noise
and interference.

For ADO, decomposition level is the dominant factor
because it determines subband separation and ToA
preservation; fixing the level (for example, always level 3)
would likely increase PE at low SNR by reducing adaptability.
Threshold strength and the AD/ADO selection criterion form a
second lever, balancing residual interference suppression
against the risk of attenuating the earliest wavefront, while the
search breadth across wavelets and levels trades robustness
against computation. For ANN/FNN, the loss function and
training target are most influential, as smoothness-driven
objectives such as MSE can blur transients and shift arrival
time, whereas timing-aware losses or first-arrival weighting
better protect localization-critical structure. Model capacity and
training-test mismatch also affect performance, but the
observed PE gap suggests that improving neural localization
requires explicit timing-preserving design and training data that
match expected EMI and SNR conditions.

C. Median Absolute Error (MedAE)

Fig. 5 compares the MedAE of ADO, ANN, and FNN across
SNR levels from 9.78 dB to -10.34 dB. ADO performs best
throughout, maintaining MedAE = 0.000 m for all SNR >
0.2 dB and increasing only to about 0.3-0.8 m when SNR
becomes negative. In contrast, ANN and FNN produce much
larger MedAE at every SNR point, starting around 65-117 m at
high SNR and rising to roughly 280-800 m as noise increases.
Their curves are nearly identical, indicating a shared limitation
in maintaining precise timing under noisy conditions.
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Fig.5. Comparison of MedAE for ADO-, ANN-, and FNN-based denoising
pipelines over SNR levels ranging from 9.78 dB to —10.34 dB.

MedAE is especially informative for PD localization
because itrepresents typical field performanceratherthanbeing
driven by occasional outliers. ADO’s near-zero MedAE at
moderate and high SNR implies that its denoising preserves the
leading-edge timing needed for accurate time-difference-of-
arrival estimation, so at least half of the events are localized
essentially at the true position within the model’s resolution.
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Even at negative SNR, ADO remaining below 1 m indicates
strong protection of ToA-critical features against time shifting
as interference increases. By contrast, the large MedAE of
ANN and FNN suggests a systematic failure mode, where
smoothingand broadening of impulsive PD transientsintroduce
timingbias and jitter thatare amplified into large location errors
by the ToA backend.

These findings translate into clear deployment guidance.
For high-confidence localization that supports maintenance
actions such as joint targeting and dig planning, ADO should
be the primary denoising front end because it keeps typical
errors near zero at non-negative SNR and within sub-meter
levels even in noise-dominated regimes. ANN or FNN are only
suitable when the goal is rapid event screening rather than
precise localization, and should be paired with safeguards such
as confidence scoring and escalation of difficult or low-SNR
windows to an ADO pass before finalizing a location estimate.
More broadly, ADO’s stability across SNR makes it the safer
default in MV underground networks, where noise conditions
can vary significantly across assets and operating states.

For ADO, the decomposition level and its selection rule are
mostcritical, since deeper decomposition at low SNR improves
subband separation and helps preserve the first-arrival
structure; fixingthe level(e.g.,always level 2 or 3) would likely
increase MedAE under negative SNR. Threshold magnitude is
the next key lever because over-thresholding can attenuate the
earliest wavefront, while under-thresholding leaves timing-
corrupting interference, and mother wavelet choice affects how
well sharp edges are preserved. For ANN/FNN, the dominant
factor is the training objective and loss weighting, as standard
reconstruction losses promote smoothing and can shift arrival
time; timing-aware lossesthat emphasizethe first-arrival region
are therefore the most direct route to reducing MedAE.
Training-test mismatch, noise diversity, and model capacity
also matter, but improving localization requires explicitly
timing-preserving design rather than network size reduction
alone.

D. Fl-Score

Table Il summarizes precision, recall, and F1-score for the
ADO, ANN, and FNN denoising-detection pipelines from 9.78
dBto-10.34dB. ADOachieves an F1-score of 1.0000 from 9.78
dB down to -4.06 dB with precision and recall both equal to
1.0000. Even under severe noise (-6.10 dB to -10.34 dB), ADO
remains strong with F1-scores between 0.9787 and 0.9950,
driven by precision=1.0000 and only a modestrecall drops to
0.9583-0.9900. In contrast, ANN and FNN show much lower
F1-scores across all SNRs; although their precision stays at
1.0000,recallis limited (0.45-0.56 athigher SNR) and collapses
at low SNR (0.03-0.08), reducing F1 to below 0.17 and as low
as 0.0667 at-10.34 dB.

These detection trends directly affect PD localization
because reliable localization requires consistent event capture,
and missed detections reduce event coverage, create gaps in
activity timelines, and decrease the likelihood of obtaining
ToA-informative wavefront segments needed by the
localization backend. In this sense, the F1-score is a gating
metric for localization readiness. ADO’s near-unity F1 across
the full SNR range indicates that it preserves PD-noise
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separability under both WGN and DSI after denoising, while
the small recall reduction at the lowest SNR reflects a
controlled trade-off, where stronger suppression occasionally
removes marginal PD components, but does not materially
reduce event capture.

TABLEII. COMPARISON OF PRECISION, RECALL, AND F1-SCORE FOR
ADO, ANN, AND FNN DENOISING-DETECTION PIPELINES OVER VARYING
SNR CONDITIONS IN PD EVENT DETECTION

F1 score of F1 score of F1 score of
SNR (dB) ADO ANN FNN
1.0000 0.6207 0.6207
9.7812 (P =1.0000, (P =1.0000, (P =1.0000,
R =1.0000) R =10.4500) R =10.4500)
1.0000 0.6301 0.6301
6.3698 (P =1.0000, (P =1.0000, (P =1.0000,
R =1.0000) R =0.4600) R =0.4600)
1.0000 0.7179 0.7179
5.0484 (P =1.0000, (P =1.0000, (P =1.0000,
R =1.0000) R=0.5600) R =0.5600)
1.0000 0.7500 0.7500
3.0471 (P =1.0000, (P =1.0000, (P =1.0000,
R =1.0000) R =0.6000) R =0.6000)
1.0000 0.7578 0.7578
0.2003 (P =1.0000, (P =1.0000, (P =1.0000,
R =1.0000) R=0.6100) R=0.6100)
1.0000 0.7226 0.7226
-0.9005 (P =1.0000, (P =1.0000, (P =1.0000,
R =1.0000) R=0.5657) R=0.5657)
1.0000 0.6222 0.6222
-2.3772 (P =1.0000, (P =1.0000, (P =1.0000,
R =1.0000) R=0.4516) R=0.4516)
1.0000 0.3960 0.3960
-4.0638 (P =1.0000, (P =1.0000, (P =1.0000,
R =1.0000) R =10.2469) R =0.2469)
0.9950 0.1538 0.1538
-6.0967 (P =1.0000, (P =1.0000, (P =1.0000,
R =0.9900) R =0.0833) R=0.0833)
0.9948 0.1639 0.1639
-8.7425 (P =1.0000, (P =1.0000, (P =1.0000,
R =0.9896) R =0.0893) R =0.0893)
0.9787 0.0667 0.0667
-10.3400 (P =1.0000, (P =1.0000, (P =1.0000,
R =0.9583) R =0.0345) R =0.0345)

From a deployment perspective, the perfect-precision but
low-recall behavior of ANN and FNN is problematic as a
primary trigger in many field settings. While detected events
are almostalways correct, many true PD events are missed even
athigh SNR, andrecall collapsesunder noise, whichcan falsely
suggest low PD activity and bias downstream localization
toward only the strongest pulses. For condition monitoring,
where missed PD events areunacceptable, ADO is therefore the
preferred front-end because it maintains a near-balanced
precision-recall profile across wide SNR variation. Where
compute and power constraints motivate neural methods,
ANN/FNN are better used as low-latency screeners in a two-
stage workflow, with ADO applied selectively to buffered
windows during suspected activity, low-SNR periods, or low-
confidence cases to recover missed events before localization.

For ADO, threshold aggressiveness is the key lever at low
SNR: tightening thresholds preserves precision but can reduce
recall by suppressing weak PD components, so recall is
typically the first metric to move under threshold scaling,
Decomposition level selection and mother wavelet choice also
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affect separability, because subband isolation and morphology
matching determine whether PD transients remain distinct
enough to cross the decision threshold under interference;
fixingthe level rather than adaptingit would likely reducerecall
atlow SNR. For ANN/FNN, the dominant driveris the decision
threshold and calibration, since precision = 1.0000 implies
overly conservative triggering; lowering the threshold can raise
recall, but must be paired with false-alarm control. Training
objectives that penalize missed detections and broader training
noise diversity across realistic WGN and DSI conditions are
also critical, because the recall collapses at very low SNR
indicates sensitivity to training-test mismatch.

VI. CONCLUSION AND RECOMMENDATIONS

This study shows that denoising is a core element of MV
cable PD localization because it directly govems timing
integrity and, therefore, the reliability of ToA-based estimates.
Usinga controlled benchmark in which only the denoising front
end is varied while the localization backend is kept fixed, the
key message is that localization improves when the denoiser
preserves the earliest PD wavefront features under interference,
rather than simply reducing overall noise energy. From a design
standpoint, a deterministic and training-free adaptive wavelet
front end such as ADO is recommended when robust, high-
confidence localization is required across changing noise
conditions, because it adapts to the observed interference while
discouraging timing distortion that would otherwise propagate
into localization error. When computational speed and
simplicity are the dominant constraints, a lightweight neural
option such as the FNN can be considered as an efficiency-
oriented alternative, but its robustness should be verified under
the expected field noise variability instead of being assumed
from laboratory-like conditions. These implications are
especially relevant for low-cost monitoring hardware, since the
evaluation was performed on a modest CPU platform
representative of practical embedded units rather than GPU-
accelerated workstations, where model handling and inference
overheads can limit the deployability of learning-based
pipelines. The main limitation is that the study relied on
MATLAB simulations with synthetic PD waveforms in a
controlled scenario and a noise model limited to WGN and DS],
so it cannot fully capture field variability such as joints,
reflections, multiple concurrent sources, sensor coupling
differences, and nonstationary interference. Future work should
therefore validate the conclusions using measured PD data from
real cable assets and defect types, and further optimize ADO for
embeddedimplementation through streamlined search strategies
and efficient realizations, with targeted acceleration where
available.
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