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Abstract—Accurate partial discharge (PD) localization in 

medium-voltage (MV) power cables is essential for condition-

based maintenance, yet it remains unreliable when PD pulses are 

masked by broadband noise and narrowband interference. The 

novelty of this work is a controlled denoiser-to-localization 

benchmarking framework that isolates the denoising front end, 

while keeping the downstream PD detection and localization 

backend fixed, allowing localization differences to be attributed 

solely to denoising decisions. Within this fixed-backend paradigm, 

an optimization-driven Adaptive Denoising Optimization (ADO) 

method is introduced as an adaptive discrete wavelet transform 

(DWT) front end that systematically selects the mother wavelet, 

decomposition level, and threshold parameters to preserve time-

of-arrival (ToA) critical wavefront features rather than only 

maximizing noise suppression. ADO is evaluated against two 

learning-based denoisers, a multilayer artificial neural network 

(ANN) and a lightweight feedforward neural network (FNN), 

using MATLAB simulations of synthetic PD pulses corrupted by 

white Gaussian noise (WGN) and discrete spectral interference 

(DSI) over SNRs from 9.78 dB to -10.34 dB. Performance is 

quantified using execution time, percentage localization error 

(PE), median absolute localization error (MedAE), and F1 score. 

Results show that ADO delivers the most robust localization 

fidelity, maintaining near-zero PE above -6 dB, keeping PE below 

0.3% at -10.34 dB, achieving sub-metre MedAE, and sustaining F1 

close to 1.0 across noise levels. In contrast, FNN is the fastest 

option, reducing runtime by approximately 15% versus ANN and 

27% versus ADO, highlighting a practical robustness-efficiency 

trade-off for real-time MV cable monitoring. 
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I. INTRODUCTION 

Partial discharge (PD) in medium-voltage (MV) power 
cables is a well-established indicator of insulation deterioration. 
If PD is not detected and localized reliably, degradation can 
accelerate, outage risk increases, and maintenance and 
replacement costs rise. Accurate localization remains 
challenging because PD pulses are short, broadband, and 
nonstationary, and are easily distorted or masked by background 
noise and electromagnetic interference (EMI). As a result, recent 
studies have combined physics-informed localization with 
advanced signal analytics, including time-of-arrival (ToA) 
formulations that account for cable propagation effects such as 
skin effect and semiconducting layers [1], reviews of ultra-high-

frequency (UHF) PD signal processing and machine learning 
[2], electromagnetic time reversal (EMTR) methods for online 
MV cable localization with very low error [3], deep models for 
PD pattern recognition in cable accessories and sensing arrays 
[4], [5], and unsupervised deep learning for separating multiple 
PD sources in other high-voltage assets [6]. Collectively, this 
literature confirms the importance of PD localization, while also 
showing that realistic interference remains a primary barrier to 
dependable field deployment. 

This barrier is closely tied to a common assumption 
embedded in many localization backends, including ToA, time-
domain reflectometry (TDR), and correlation-based estimators: 
the first-arriving PD wavefront can be extracted clearly enough 
to preserve timing cues. In field-like MV cable monitoring, this 
assumption often fails because measurements are frequently 
contaminated by white Gaussian noise (WGN) and discrete 
spectral interference (DSI), which can shift, smooth, or obscure 
the onset used for ToA estimation. Prior studies and surveys 
highlight that noise strongly constrains PD feature extraction 
and localization fidelity [2], [7], including efforts to separate PD 
from EMI under WGN and DSI conditions [8] and analyses 
showing that timing-based methods degrade in long cables when 
propagation effects and noise jointly distort the pulse [9]. These 
findings motivate denoising as a critical front-end stage, since 
overall localization error can be dominated by preprocessing 
rather than by the mathematical form of the backend estimator. 

Wavelet-domain denoising, particularly discrete wavelet 
transforms (DWT) processing, is widely used in PD analysis 
because it is well matched to transient multiscale signals and 
provides time-frequency localization of impulsive events [10-
14]. However, conventional DWT denoising typically relies on 
fixed choices of mother wavelet, decomposition level, and 
thresholding rule that are tuned to a specific dataset or laboratory 
condition. When the interference spectrum changes or the 
signal-to-noise ratio (SNR) deteriorates, fixed settings may 
leave residual noise that masks the first wavefront, or they may 
distort PD timing through mismatched wavelet bases and over-
thresholding [15]. Recent investigations further show that 
denoising quality is highly sensitive to the wavelet family, 
decomposition depth, and threshold strategy, and that the best 
configuration varies with the dominant noise type, implying that 
no single static setting is consistently optimal across operating 
conditions [16], [17]. In parallel, learning-based denoisers such 
as artificial neural networks (ANNs) and related deep 
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architectures can learn nonlinear noise suppression mappings 
and have reported strong denoising performance [18-20]. 
Nevertheless, their effectiveness can degrade when test noise 
statistics differ from training conditions, and their computational 
footprint may be undesirable for online or embedded 
monitoring, especially when robustness is required at very low 
SNR. 

Despite this broad literature, systematic evaluation of 
denoiser-to-localization coupling under severe WGN and DSI 
conditions, including very low SNR, remains limited, 
particularly in controlled studies, where the localization backend 
is held fixed. Many reported improvements modify both the 
denoising stage and the localization logic, or change feature 
extraction and decision thresholds, which makes it difficult to 
attribute performance gains specifically to the denoiser. This 
confounding limit practical guidance for selecting a deployable 
denoising front end, especially when the design goal is not only 
noise suppression but also preservation of ToA-critical timing 
features that directly determine localization accuracy. 

To address this gap, this study adopts a controlled 
benchmarking framework that varies only the denoising front 
end while keeping the downstream localization backend 
identical across all pipelines. This design removes backend-
dependent influences such as different ToA pickers, correlation 
rules, or post-processing heuristics, so changes in localization 
accuracy, detection reliability, and runtime can be attributed 
directly to the denoiser. Within this fixed-backend setting, the 
proposed adaptive DWT-based Adaptive Denoising 
Optimization (ADO) [21] is evaluated against two learning-
based benchmarks, a multilayer ANN and a lightweight 
feedforward neural network (FNN), using synthetic PD signals 
contaminated by WGN and DSI over SNRs from 9.78 dB to -
10.34 dB. Performance is quantified using percentage 
localization error (PE), median absolute localization error 
(MedAE), F1 score, and execution time, enabling direct 
assessment of how denoising affects ToA-critical timing 
preservation and, consequently, localization fidelity under 
severe interference. The novelty is twofold: 1) establishing an 
explicit denoiser-to-localization coupling evaluation under a 
fixed localization backend, and 2) introducing an optimization-
driven adaptive wavelet front end that systematically selects 
denoising configurations (wavelet basis, decomposition depth, 
and thresholding decisions) to maintain robustness as noise 
conditions and SNR vary. By reporting both accuracy and 
computational cost within the same controlled paradigm, the 
study provides practical guidance on robustness-efficiency 
trade-offs for real-time and resource-constrained MV cable 
monitoring. 

II. WAVELET DENOISING 

Wavelet-domain denoising is a common front end for PD 
processing because the DWT provides a multiresolution 
representation that can attenuate broadband noise while 
separating narrowband or tonal interference from impulsive 
components. In practice, DWT denoising is highly sensitive to 
three coupled design choices: the mother wavelet (basis), the 
decomposition depth, and the threshold estimation and 
shrinkage rule. Parameter settings that work well under one 
measurement condition can degrade when SNR drops or when 

the interference spectrum changes, either by leaving residual 
noise that obscures weak impulses or by over-suppressing high-
frequency coefficients and shifting the apparent onset that 
carries timing information [15]. Recent studies consistently 
report strong dependence on wavelet family, decomposition 
level, and threshold strategy, and show that the best 
configuration depends on the dominant noise type and 
measurement modality, so a single static setting is rarely robust 
across scenarios [16], [17]. 

To reduce this sensitivity, several adaptive or optimization-
driven wavelet schemes have been explored in PD-related 
applications. Representative directions include sub-band 
identification or segmentation guided by impulsiveness 
indicators, such as spectral-kurtogram-guided approaches that 
emphasize informative bands and suppress noise-dominated 
coefficients [22], optimized wavelet denoising for recovering 
weak events in low-amplitude measurements [23], and adaptive 
parameter optimization in wavelet-threshold denoising, where 
optimization algorithms select threshold-related parameters 
based on the field noise level and a denoising quality objective 
[24]. Other work has emphasized robustness to translation 
effects and threshold estimation, such as shift-invariant wavelet 
denoising with empirical Bayes thresholding for low-SNR UHF 
PD wavefront detection and event segmentation [25]. While 
these approaches demonstrate the value of adaptivity, they often 
optimize denoising quality in isolation, or adapt only a subset of 
the wavelet design space, without explicitly constraining the 
solution to preserve ToA-critical timing cues that govern 
downstream localization fidelity [25]. 

Against this background, the novelty of ADO is an 
optimization-driven wavelet selection strategy that is explicitly 
designed for localization readiness. ADO performs optimization 
per signal realization, meaning each noisy PD waveform is 
processed independently, and it searches a predefined candidate 
set of mother wavelets, decomposition levels, and threshold 
configurations (threshold estimator and shrinkage rule) [21]. For 
each candidate configuration, the signal is denoised and 
evaluated using an objective function that balances suppression 
of WGN and DSI residuals with preservation of ToA-relevant 
structure by penalizing timing distortion of the earliest 
wavefront, for example, onset shift or correlation-lag deviation 
relative to the pre-denoising waveform. The final configuration 
is chosen using a minimum-cost rule, selecting the option that 
best satisfies this denoising-timing trade-off for the current noise 
realization. This bounded, discrete search avoids offline 
training, adapts directly to changing interference statistics, and 
improves robustness by discouraging over-denoising solutions 
that appear clean in energy terms, but distort the first-arrival 
features that localization depends on [15-17], [21]. 

III. PD SIGNALS AND NOISE MODELING 

Fig. 1 illustrates the online PD location system for power 
cables, which employs a multi-end measurement scheme to 
estimate the position of PD events. Three PD sensors, denoted 
A, B, and C, are installed along an underground cable at equal 
spacing of 2.5 km to capture the propagating PD pulse at each 
location. A substation receiver running the PD localization 
algorithm is connected to these sensors. When a PD event 
occurs, the pulse travels along the cable and is recorded as sigA, 
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sigB, and sigC, and the algorithm estimates the PD source 
location by comparing the signals’ arrival times and waveform 
characteristics. 

 
Fig. 1. Schematic representation of an online PD location estimation system 

for a power cable. 

Fig. 2 presents the overall study workflow designed to 
isolate the effect of the denoising front end on PD localization. 
Noisy PD signals corrupted by WGN and DSI are first processed 
by one of the three denoisers (ADO, ANN, or FNN). The 
denoised outputs are subsequently fed into the same fixed PD 
localization backend to ensure a fair comparison, and 
performance is evaluated using localization accuracy, F1 score, 
and execution time to assess robustness and computational 
efficiency. 

 
Fig. 2. Study workflow for benchmarking ADO against ANN and FNN 

under a fixed PD localization backend. 

For simulation and localization analysis, the high-frequency 
PD pulse is modeled using Eq. (1) [8], which serves as the 
reference waveform: 

𝑠(t) = A[e−a1t cos(wdt − φ)− e
−a2t cos(φ)] (1) 

where, A is the amplitude coefficient, fixed at 0.01; a1 and a2 
are damping factors set to 1 Ms-1 and 10 Ms-1, respectively; 
wd  = 2πfd is the angular frequency of the damped oscillation; 
fd  is chosen as 1 MHz; and the phase term φ is given by 

tan−1(
wd

a2⁄ ). 

PD signal propagation along the cable is simulated with a 
sampling frequency fs of 100 MHz. The propagation velocity, vf, 
is obtained from Eq. (2) and then adjusted using laboratory 
experiments on a MV three-core cable (50 mm² Cu/XLPE/PVC, 
8.7/15 kV), which yields an experimental value of 156 m/μs [8]. 

vf =
vs
√ε
⁄  (2) 

Here, vs  is the speed of electromagnetic waves in free space 
(300 m/μs); ε is the effective permittivity of the insulation and 
semiconductor layers of the cable. 

To approximate realistic operating conditions, the simulated 
PD signals are corrupted by two typical interference sources: 
WGN and DSI. WGN is a broadband random noise with a 
Gaussian amplitude distribution and a flat power spectral 
density, representing thermal and electronic noise commonly 
present in measurement equipment. DSI is a narrowband 
periodic disturbance modeled as one or more sinusoidal 
components, capturing interference from power electronic 
devices, communication carriers, and other periodic emissions. 
WGN is generated in MATLAB, and its level is varied from 0 
dB to -20 dB in -2 dB steps. DSI is applied at four discrete 
frequencies (600 kHz, 800 kHz, 1.5 MHz, and 5 MHz) with 
amplitudes ranging from 0.05 mV to 0.55 mV in 0.05 mV 
increments [8]. The DSI waveform is given by Eq. (3): 

𝐷𝑆𝐼(𝑡)  =  𝐴𝑚𝑎𝑥∑ 2
𝑁

𝑡=1
𝜋𝑓𝑖𝑡 (3) 

The SNR of the noise-contaminated PD signals is then 
computed using Eq. (4) and Eq. (5), as in [8]: 

𝑆𝑁𝑅 = (
𝐴𝑠𝑖𝑔𝑛𝑎𝑙
𝐴𝑛𝑜𝑖𝑠𝑒

)
2

 (4) 

where, 𝐴𝑠𝑖𝑔𝑛𝑎𝑙 is the amplitude of the PD signal, and 𝐴𝑛𝑜𝑖𝑠𝑒 
is the amplitude of the added noise. The corresponding SNR in 
decibels is: 

𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10(𝑆𝑁𝑅) (5) 

IV. DENOISING METHODS 

This study evaluates the proposed ADO denoising front end 
against two learning-based baselines, ANN and FNN, chosen to 
serve a clear benchmarking purpose rather than only practicality. 
ANN represents a higher-capacity neural denoiser that can 
model more complex nonlinear mappings, while FNN provides 
a lightweight alternative with reduced model complexity and 
different generalization behavior; together, they bracket a 
realistic range of neural denoising designs and allow us to test 
whether the localization performance limits arise from the 
learning paradigm itself or from model capacity and complexity. 
ADO is coupled to localization through its explicit goal of 
preserving ToA information: its adaptive DWT decomposition, 
wavelet selection, and thresholding are optimized to retain the 
earliest PD wavefront and sharp leading-edge transients while 
suppressing WGN and DSI. The denoised outputs are then 
passed unchanged into a fixed, identical ToA-based localization 
backend for all methods, so any change in estimated PD location 
is attributable to how well the denoiser preserves ToA-critical 
features rather than to differences in the localization algorithm. 

A. Absolute Difference Optimization (ADO) Technique 

Algorithm 1 presents the proposed ADO-based adaptive 
DWT denoising [21] procedure for PD signals, where the 
decomposition level is selected automatically to support 
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subsequent peak detection and ToA-based localization. A noisy 
observation is first formed by superimposing a synthetic clean 
PD waveform with mixed interference so that a clean reference 
remains available for objective evaluation. The noisy signal is 
constructed as Eq. (6): 

𝑥[𝑛]  = 𝑠𝑃𝐷[𝑛] + 𝑤𝑊𝐺𝑁[𝑛] + 𝑑𝐷𝑆𝐼[𝑛],
𝑛 =  1, . . . , 𝑁, 

(6) 

where, 𝑠𝑃𝐷[𝑛] is the clean PD waveform, 𝑤𝑊𝐺𝑁[𝑛] denotes 
broadband WGN, and 𝑑𝐷𝑆𝐼[𝑛] represents DSI. This mixed noise 
model reflects practical environments, where both wideband 
background noise and narrowband harmonic or switching 
components coexist. 

Algorithm 1: ADO-based adaptive DWT denoising for PD 
signals 

Initialize 
    Define wavelet type: 
        wav ← 'db3' 

    Define decomposition-level search range: 
        Lmin ← 1 
        Lmax ← 10 
    Set tracking variables for optimal level: 

        bestADO ← +∞ 
        bestLevel ← Lmin 
        bestSignal ← empty 
 
Compute 

    Signal modelling (synthetic PD + noise): 
        Generate clean PD waveform s_PD 

        Generate white Gaussian noise WGN 
        Generate discrete spectral interference DSI 

        Form noisy signal: 
            x ← s_PD + WGN + DSI 
    Set initial decomposition level: 
        L ← Lmin 

 
While (L ≤ Lmax) do 
    Apply DWT at level L: 
        [cA_L, cD_L] ← DWT(x, wav, level = L) 

 
    Denoising stage (reconstruct signal): 

        y_L ← ReconstructDenoisedSignal(cA_L, cD_L) 
 

    Peak detection (MATLAB findpeaks): 
        peaks_L ← findpeaks(y_L) 

 
    Compute absolute difference (AD): 

        AD_L ← ComputeAbsoluteDifference(peaks_L, 
referencePeaks) 
 
    Calculate ADO factor: 

        ADO_L ← ComputeADOFactor(AD_L) 
 
    Check if current ADO is the minimum so far: 

        if ADO_L < bestADO then 

            bestADO ← ADO_L 
            bestLevel ← L 
            bestSignal ← y_L 
        end 

 
    Increment decomposition level: 

        L ← L + 1 
End 
 
End 

 

Output 
    Denoised PD signal ŷ ← bestSignal at optimal decomposition 
level bestLevel, 

    which is subsequently used for PD peak detection and 

localization. 
 

For each candidate DWT decomposition level 𝐿 ∈  [1, 10], 
the noisy signal 𝑥[𝑛] is transformed using a fixed mother 
wavelet (Daubechies 3, db3), and the wavelet coefficients. The 
level-𝐿 DWT can be written as Eq. (7): 

𝑥[𝑛] 
𝐷𝑊𝑇
→  {𝑎𝐿|𝑘|, 𝑑𝑗|𝑘|   𝑗 =  1, . . . , 𝐿} (7) 

where, 𝑎𝐿|𝑘|  are the approximation coefficients at level 𝐿 
and 𝑑𝑗|𝑘|   are the detail coefficients at intermediate levels 

decomposition level j. After applying the chosen coefficient 
modification or thresholding strategy, the denoised signal 𝑦𝐿[𝑛]  
is reconstructed through the inverse DWT as Eq. (8): 

𝑦𝐿[𝑛] = 𝐼𝐷𝑊𝑇(𝑎𝐿|𝑘|, 𝑑1|𝑘|, . . . , 𝑑𝐿|𝑘|) (8) 

The role of decomposition level 𝐿 is to balance suppression 
and preservation: shallow decompositions may leave residual 
high-frequency noise, whereas excessively deep decompositions 
can over-smooth narrow PD impulses and distort the first 
arrival. 

Each reconstructed signal 𝑦𝐿[𝑛], is then evaluated using 
peak features that are directly relevant to localization. PD peaks 

are extracted using MATLAB findpeaks, producing {𝑝𝐿,𝑖}𝑖=1
𝑀

. , 

and compared against reference peaks {𝑝𝑟𝑒𝑓,𝑖}𝑖=1
𝑀

 derived from 

the clean signal. The discrepancy is quantified by an absolute 
difference (AD) measure in Eq. (9). 

𝐴𝐷𝐿 =∑|𝑝𝐿,𝑖  − 𝑝𝑟𝑒𝑓,𝑖|

𝑀

𝑖=1

 (9) 

Absolute differences are preferred over squared errors 
because they remain in the original units (samples or amplitude), 
making them directly related to practical timing and localization 
deviations. 

The AD measure is then condensed into an ADO factor, 
which serves as the scalar objective for decomposition level 
selection, as in Eq. (10): 

𝐴𝐷𝑂𝐿 = |𝐴𝐷𝐿  −  𝐾| (10) 

where, K = 0.505 is an empirically chosen reference that 
represents a balanced operating point between noise suppression 
and retention of PD peak structure. The optimal decomposition 
level is the one that minimizes 𝐴𝐷𝑂𝐿 ; lower values correspond 
to more faithful preservation of PD characteristics. 

The algorithm iterates over all candidate levels 𝐿 =
 1, . . . , 𝐿𝑚𝑎𝑥, computing 𝐴𝐷𝑂𝐿 for each. A running minimum is 
maintained as Eq. (11): 
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𝐴𝐷𝑂𝐿 = 𝑚𝑖𝑛⏟
1≤𝐿≤𝐿𝑚𝑎𝑥

 𝐴𝐷𝑂𝐿 ,   

𝐿∗ =  𝑎𝑟𝑔 𝑚𝑖𝑛⏟
𝐿

 𝐴𝐷𝑂𝐿 ,  

 

(11) 

 

where, 𝐿∗  denotes the optimal decomposition level. 
Whenever a new level yields  𝐴𝐷𝑂𝐿  <  𝐴𝐷𝑂𝑚𝑖𝑛 ,  the 
corresponding denoised signal 𝑦𝐿[𝑛] is stored as the current best 
candidate. Once all levels have been tested, the algorithm 
outputs Eq. (12): 

𝑦[𝑛] =  𝑦𝐿∗[𝑛]   (12) 

as the final denoised signal for subsequent PD peak detection 
and localization. 

The ADO configuration is deliberately constrained to keep 
the method interpretable and computationally efficient, while 
still preserving ToA-critical content. The db3 wavelet is fixed 
because its compact support and pulse-like morphology match 
impulsive PD transients and help protect the sharp leading edge 
required by the fixed localization backend. The bounded search 
𝐿 = 1 to 10 provides sufficient multi-resolution flexibility to 
isolate PD-dominated sub-bands under mixed WGN and DSI 
without an excessive runtime increase, since cost scales mainly 
with record length and the number of tested levels. Finally, 
selecting 𝐿∗ via the peak-based ADO objective links denoising 
to the fidelity of PD peak reconstruction, reducing over-
smoothing and time shifting that would otherwise propagate into 
ToA error and degraded localization. 

B. Artificial Neural Network (ANN) Technique 

Algorithm 2 implements an ANN-based window-to-window 
denoising scheme for PD signals, where a fully connected 
multilayer perceptron is used as a data-driven front end to map 
noisy PD waveform segments to their clean counterparts on a 
frame-by-frame basis. The ANN is included as a representative 
learning based denoiser that can learn nonlinear signal noise 
relationships while remaining lighter than convolutional or 
recurrent models, which makes it suitable for long records and 
potential embedded deployment. The denoised output 𝑦[𝑛]is 
subsequently passed to the same fixed peak detection and ToA-
based localization backend used throughout this study, so the 
impact of ANN denoising is assessed directly through its effect 
on timing and localization outcomes. 

Algorithm 2: ANN-based window-to-window denoising for 
PD signals 

Initialize 

    Input noisy PD signal x, trained ANN denoiser net, 

           window length win and hop size hop 

    Set N ← length(x) 

    Allocate reconstruction buffer yrec[1..N] ← 0  

    Allocate overlap counter   wsum[1..N] ← 0  

    Choose small constant ε to avoid division by zero  

 

Compute 

    Reshape x to a column vector 

    Compute mean μx ← mean(x) and standard deviation σx ← 

std(x) + ε 

    Normalize input signal: 

        for n = 1 to N do 

            z[n] ← (x[n] − μx) / σx 

        end 

    Compute number of frames: 

        nFrames ← 1 + floor((N − win) / hop) 

    If nFrames < 1 then 

        Set ŷ ← x and terminate the algorithm 

 

While (frames remain to be processed) do 

    For each frame index k = 1 to nFrames do 

        Determine frame boundaries: 

            a ← 1 + (k − 1) * hop 

            b ← a + win − 1 

            if b > N then b ← N 

        Extract normalized frame: 

            zk ← z[a : b] 

        Apply ANN denoiser: 

            ŷk ← net(zk) 

        Accumulate output via overlap–add: 

            yrec[a : b] ← yrec[a : b] + ŷk 

            wsum[a : b] ← wsum[a : b] + 1 

    end 

 

    For n = 1 to N do 

        if wsum[n] = 0 then wsum[n] ← 1 

        Compute averaged normalized estimate: 

            ẑ[n] ← yrec[n] / wsum[n] 

        De-normalize to original scale: 

            ŷ[n] ← ẑ[n] * σx + μx 

    end 

 

End 

 

Output 

    Denoised PD signal ŷ, which is subsequently used for peak 
detection and PD localization. For multiple channels (A, B, C), 

the same procedure is applied independently to each signal. 
 

Let [𝑛], 𝑛=1, …, 𝑁, denote the noisy PD signal. As 
summarized in Algorithm 2, the method begins with global 
normalization to stabilize the input distribution. The sample 
mean and standard deviation are computed as Eq. (13) and 
Eq. (14):  

𝜇𝑥 =
1

𝑁
∑𝑥[𝑛]

𝑁

𝑛=1

 (13) 

𝜎𝑥 = √
1

𝑁−1
∑ (𝑥[𝑛] − 𝜇𝑥)

2𝑁
𝑛=1 +𝜀 (14) 

where, 𝜀 is a small constant to avoid division by zero. The 
normalized sequence is shown in Eq. (15): 

𝑧[𝑛] =
𝑥[𝑛] −𝜇𝑥

𝜎𝑥
+𝜀 (15) 
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This step reduces sensitivity to absolute amplitude variation 
between realizations and channels, which helps ANN training 
converge more reliably and improves generalization when PD 
magnitude changes across operating conditions. 

The normalized signal [𝑛] is segmented into overlapping 
frames of length 𝑤𝑖𝑛 with hop size ℎ𝑜𝑝. In this implementation, 
win = 512 samples and hop = 256 samples (50% overlap) were 
selected to capture the PD pulse and its local noise context while 
keeping the ANN input dimension and parameter count 
manageable. The overlap condition ℎ𝑜𝑝 <  𝑤𝑖𝑛  reduces 
blocking artifacts and ensures that pulses near frame boundaries 
are fully represented in at least one frame, which improves 
reconstruction continuity and ToA stability. For each frame 
index k, the frame boundaries are defined by Eq. (16): 

𝑎𝑘 = 1 + (𝑘 − 1)ℎ𝑜𝑝, 

 𝑏𝑘 = 𝑚𝑖𝑛(𝑎𝑘+𝑤𝑖𝑛 − 1,𝑁),  
(16) 

and the corresponding frame is shown in Eq. (17). 

𝑧𝑘 = [𝑧[𝑎𝑘], . . . , 𝑧[𝑎𝑘]]
𝑇  (17) 

Each frame 𝑧𝑘 is processed by a trained multi-layer ANN 
implementing the mapping as Eq. (18): 

𝑦𝑘 = 𝑓𝜃(𝑧𝑘)  (18) 

where, 𝑓𝜃(. ) is a sequence of affine transformations and 
nonlinear activations parameterized by weights and biases θ. 
The network is trained offline using noisy–clean frame pairs by 
minimizing a mean-squared error (MSE) loss, as shown in 
Eq. (19): 

𝑦𝑘 =
1

𝐾
∑‖𝑓𝜃(𝑧𝑘

𝑛𝑜𝑖𝑠𝑦)− 𝑦𝑘
𝑐𝑙𝑒𝑎𝑛  ‖

2

2
𝐾

𝑘=1

,  (19) 

which encourages faithful reconstruction of PD pulse shape 
and amplitude that drive reliable peak picking and ToA 
estimation in the subsequent localization stage. 

The frame-wise outputs are finally recombined using an 
overlap-add to obtain a continuous denoised waveform. A 
reconstruction buffer 𝑦𝑟𝑒𝑐[𝑛] and overlap counter 𝑤𝑠𝑢𝑚[𝑛] are 
accumulated over all frames. The final normalized estimate is 
then computed as Eq. (20): 

𝑧̂[𝑛] =
𝑦𝑟𝑒𝑐[𝑛]

𝑚𝑎𝑥(𝑤𝑠𝑢𝑚[𝑛],1)
  (20) 

and the denoised signal in the original scale is recovered via 
de-normalization in Eq. (21): 

𝑦[𝑛] = 𝑧̂[𝑛]𝜎𝑥  + 𝜇𝑥  (21) 

The same procedure is applied independently to each 
measurement channel, which avoids mixing channel-specific 
responses and helps maintain consistent inter-sensor timing 
behavior for localization. 

For ANN training, the parameter settings were selected to 
balance model capacity, training stability, and coverage of 
realistic noise conditions. The ANN denoiser is a small fully 
connected network with two hidden layers (128 and 64 neurons), 
which is large enough to learn the nonlinear mapping from noisy 

frames 𝑧𝑘 to denoised frames  𝑦𝑘 in Algorithm 2, while keeping 
the model lightweight. Training uses the scaled conjugate 
gradient solver (trainscg) to obtain stable convergence for this 
regression task. To control overfitting and keep training time 
predictable, training is capped at 150 epochs with validation-
based early stopping (max_fail = 6) using an 80/10/10 split for 
training, validation, and testing. Generalization is encouraged by 
generating 600 noisy–clean frame pairs across multiple SNR 
conditions (20, 10, 5, 0, and −5 dB) using AWGN with measured 
signal power, and by adding multi tone discrete spectral 
interference at 0.6, 0.8, 1.5, and 5 MHz with an amplitude of 
0.20 mV so the network learns to handle both broadband and 
narrowband disturbances. Finally, per-shot z-score 
normalization during dataset generation reduces sensitivity to 
amplitude scaling, and a fixed random seed (rng(42,'twister')) 
ensures the training results are reproducible. 

C. Feedforward Neural Network (FNN) Technique 

Algorithm 3 summarizes the FNN-based window-to-
window denoising procedure for PD signals. The FNN is 
included as a lightweight counterpart to the multi-layer ANN 
denoiser: it follows the same framing, normalization, and 
overlap-add reconstruction steps, and it uses the same 
windowing settings and noise-condition ranges as the ANN for 
a fair comparison. The key difference is that the FNN adopts a 
shallower fully connected architecture with fewer hidden units 
and parameters, which reduces execution time and memory 
demand while still learning the core nonlinear mapping from 
noisy frames to denoised PD frames. This design allows the 
study to isolate the effect of model capacity on denoising quality 
and, ultimately, on peak preservation and localization 
performance. 

Algorithm 3: FNN-based window-to-window denoising for 
PD signals 

Initialize 
    Input noisy PD signal x, trained FNN denoiser net, 
           window length win and hop size hop 
    Set N ← length(x) 

    Allocate reconstruction buffer yrec[1..N] ← 0  
    Allocate overlap counter   wsum[1..N] ← 0  
    Choose small constant ε to avoid division by zero  

 

Compute 
    Reshape x to a column vector 
    Compute mean μx ← mean(x) and standard deviation σx ← 
std(x) + ε 

    Normalize input signal: 

        for n = 1 to N do 
            z[n] ← (x[n] − μx) / σx 
        end 

    Compute number of frames: 
        nFrames ← 1 + floor((N − win) / hop) 
    If nFrames < 1 then 
        Set ŷ ← x and terminate the algorithm 

 
While (frames remain to be processed) do 
    For each frame index k = 1 to nFrames do 

        Update 

            Determine frame boundaries: 
                a ← 1 + (k − 1) * hop 
                b ← a + win − 1 
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                if b > N then b ← N 
            Extract normalized frame: 
                zk ← z[a : b] 
            Apply FNN denoiser: 

                ŷk ← net(zk) 

            Accumulate output via overlap–add: 
                yrec[a : b] ← yrec[a : b] + ŷk 
                wsum[a : b] ← wsum[a : b] + 1 

 
    Update and analyze 
        For n = 1 to N do 
            If wsum[n] = 0 then wsum[n] ← 1 

            Compute averaged normalized estimate: 
                ẑ[n] ← yrec[n] / wsum[n] 
            De-normalize to original scale: 
                ŷ[n] ← ẑ[n] * σx + μx 

        end 
 

        If (denoising is required for multiple PD channels) then 
            Repeat the above procedure for each channel (A, B, C) 

with its 
            corresponding noisy input and trained FNN 
        End if 
 

End 

 
Output 
    Denoised PD signal ŷ for subsequent peak detection and 

localization 
  

Let [𝑛], 𝑛=1, …, 𝑁, denote the noisy PD signal. The FNN 
pipeline adopts exactly the same global normalization, framing, 
and overlap-add reconstruction strategy as the ANN method, 
using Eq. (13) to Eq. (17) for preprocessing and Eq. (20) to 
Eq. (21) for recombination and de-normalization. This ensures 
that both denoisers operate on identically scaled inputs and 
produce outputs in the same physical units, enabling a fair 
comparison. 

For each frame 𝑧𝑘, the trained FNN denoiser that applies a 
relatively shallow nonlinear mapping as Eq. (22): 

𝑦𝑘 = 𝑔∅(𝑧𝑘) (22) 

where, 𝑔∅(.)  denotes a fully connected network with a 
reduced number of layers and neurons compared with the ANN. 
A typical realization uses a single hidden layer, as shown in 
Eq. (23): 

ℎ =  𝜑(𝑊1𝑧𝑘  + 𝑏1),   

𝑦𝑘 = 𝑊2ℎ + 𝑏2 
(23) 

where, 𝜑(⋅) is a nonlinear activation function (e.g., ReLU), 
and ϕ = {𝑊1 , 𝑏1 ,𝑊2 , 𝑏2}  is the parameter set. As with the 
ANN, the FNN is trained offline on noisy-clean frame pairs by 
minimizing the MSE loss in Eq. (19). However, because ϕ 
contains substantially fewer parameters than the ANN’s 𝜃, the 
FNN exhibits lower computational cost, reduced memory 
footprint, and a lower risk of overfitting. In the PD denoising 
context, this can be beneficial when the training dataset is 
limited or when the deployment environment requires fast 
inference and deterministic latency. 

After frame-wise processing, the FNN outputs 𝑦𝑘  are 
merged using the same overlap-add and de-normalization steps 
as the ANN formulation, yielding the final denoised signal 
𝑦[𝑛].  For multi-channel PD measurements, the procedure is 
applied independently to each channel. Overall, the FNN-based 
scheme preserves the ANN’s signal processing structure, while 
offering a leaner network architecture tailored to scenarios 
where reduced latency, energy consumption, and 
implementation complexity are prioritized. 

V. RESULTS AND DISCUSSION 

The ADO, ANN, and FNN pipelines were evaluated in 
MATLAB on an Intel® Core™ i5-5200U CPU @ 2.2 GHz with 
16 GB RAM using four complementary metrics: execution time, 
PE, MedAE, and F1-score. The simulations employed a multi-
end measurement setup along a 2.5 km cable with a fixed true 
PD location, and the signals were corrupted by composite noise 
comprising WGN and DSI. This multi-end configuration 
reflects practical online monitoring architectures that estimate 
PD location from ToA differences between sensors, while WGN 
and DSI represent broadband stochastic noise and narrowband 
interference, respectively. For each noisy realization, the 
denoised outputs from each pipeline were passed to the same 
localization method, ensuring that performance differences 
could be attributed solely to the denoising front end. 

Execution time was measured using MATLAB’s tic/toc 
around the full denoising-localization chain, providing a direct 
estimate of computational cost under identical hardware and 
software conditions. 

The PE quantifies the relative deviation of the estimated PD 
location from the true location and is defined as Eq. (24): 

% 𝐸𝑟𝑟𝑜𝑟 

=
| 𝑃𝐷𝑙𝑜𝑐𝑡𝑟𝑢𝑒−𝑃𝐷𝑙𝑜𝑐𝑒𝑠𝑡|

𝑃𝐷𝑙𝑜𝑐𝑡𝑟𝑢𝑒
×100% 

(24) 

where, 𝑃𝐷𝑙𝑜𝑐𝑡𝑟𝑢𝑒 is the actual PD position, and 𝑃𝐷𝑙𝑜𝑐𝑒𝑠𝑡 is 
the estimated PD location. PE is used because it normalizes the 
error to the cable length, allowing fair comparison across 
different cable spans and giving utilities an intuitive indication 
of how far, in percentage terms, the estimate deviates from the 
true fault location when planning sectionalized repairs. 

MedAE measures the typical magnitude of localization 
errors across Monte Carlo trials and is given by Eq. (25): 

𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝑃𝑖  − 𝐴𝑖 |),
𝑖 =  1, 2, . . . , 𝑁 

(25) 

where, 𝑃𝑖 and 𝐴𝑖 are the estimated and true PD locations for 
the 𝑖-th trial, and 𝑁 is the total number of realizations. MedAE 
is chosen instead of mean absolute error (MAE) because the 
median is far less sensitive to occasional extreme mis-
localizations that may occur under very severe noise or rare 
algorithm failures. It therefore provides a robust indicator of the 
typical performance. 

Finally, the F1-Score recasts localization into a tolerance-
based detection problem. A trial is counted as a correct 
localization (positive) if the absolute error lies within a tolerance 
window of ±100 m. Binary labels are formed accordingly, and 
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the F1-Score is computed from precision (P) and recall (R) as 
Eq. (26) to Eq. (28):  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (26) 

where, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(27) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (28) 

Here, true positives correspond to trials where the estimated 
location falls within ±100 m of the true PD position, while false 
negatives are trials outside this tolerance. This tolerance-based 
F1-Score is used because, in field practice, operators are less 
concerned with centimeter-level accuracy than with confining 
the fault to a sufficiently short cable section that can be isolated 
and inspected. By combining precision and recall under an 
engineering-relevant tolerance, the F1-Score provides a 
practical, balanced measure of good localization, penalizing 
both missed acceptable localizations and large mis-localizations. 

A. Execution Time 

Fig. 3 compares the execution time of the ADO, ANN, and 
FNN denoising pipelines over SNR levels from 9.78 dB to -
10.34 dB using the same dataset and computing setup. FNN is 
consistently the fastest method, with a mean runtime of about 
619 s versus 729 s for ANN and 853 s for ADO, giving average 
savings of roughly 15% and 27%, respectively. FNN runtimes 
drop from around 680-720 s at high SNR to about 475-500 s at 
the lowest SNR, while ANN shows the widest variability (about 
508-837 s for most SNRs) and a clear spike to roughly 1113 s at 
-2.38 dB. ADO remains the slowest, but is comparatively stable 
across SNR, ranging from about 751 s to 989 s. Overall, all 
pipelines are complete within approximately 475-1115 s, 
indicating suitability for offline or semi-real-time PD analysis. 

 
Fig. 3. Comparison of execution time for ADO-, ANN-, and FNN-based 

denoising pipelines over SNR levels ranging from 9.78 dB to −10.34 dB . 

The runtime behavior reflects different computational cost 
drivers that matter for deployment. FNN’s shallow architecture 
and small parameter count reduce per-epoch cost and typically 

converge quickly, which suits edge monitoring where latency, 
power, and throughput are dominant constraints, provided ToA 
fidelity is preserved. ANN offers intermediate speed but can be 
sensitive to the optimization landscape, leading to unpredictable 
delays that complicate buffering and scheduling. ADO is slower 
because it repeatedly performs multi-level DWT 
decompositions and reconstructions while searching across 
candidate configurations, but its latency is more predictable 
because it is mainly governed by signal length and the size of 
the search. 

In practical PD localization systems, denoiser selection 
should therefore balance robustness, ToA preservation, 
computational budget, and operating constraints. FNN is 
appropriate for resource-limited, near-sensor screening when 
low latency is essential and uncertain windows can be flagged 
for later verification. ADO is better suited to offline 
diagnostics, periodic batch processing, or harsh EMI and low-
SNR environments where timing fidelity and robustness 
outweigh runtime. A hybrid strategy is often most effective in 
utility monitoring: run FNN or ANN for continuous screening 
and invoke ADO selectively for low-confidence cases, low-
SNR intervals, or high-value assets, improving reliability 
without paying ADO’s full computational cost on every record. 

For ADO, the dominant cost driver is search breadth (the 
number of tested decomposition levels and wavelet options), 
followed by signal length and windowing; restricting the search 
or processing a shorter pulse-centered window reduces runtime 
but can reduce robustness if the earliest wavefront is not 
retained. Threshold strength and selection-criterion tightness 
also trade off against timing fidelity, since overly aggressive 
settings risk smoothing or shifting first arrivals. For ANN and 
FNN, model size governs per-epoch cost, while training 
controls such as maximum epochs and early-stopping patience 
drive runtime variability; tightening these improves 
predictability but may degrade denoising if overly restrictive. 
Across all pipelines, the key design principle is to tune the front 
end to preserve the earliest PD wavefront and minimize ToA 
shift, since this ultimately governs end-to-end localization 
accuracy. 

B. Percentage Error (PE) 

Fig. 4 compares the PE of ADO, ANN, and FNN from 9.78 
dB to -10.34 dB. ADO is consistently the most accurate, keeping 
PE between 0.0078% and 0.278% and staying below 0.03% for 
all 𝑆𝑁𝑅 ≥  −4.06 𝑑𝐵. In contrast, ANN and FNN start at about 
9.2% and 9.0% at 9.78 dB, remain above 4.7% under moderate 
noise, and rise sharply below -4 dB to roughly 21.4% and 22.5% 
at -10.34 dB. Consistent with this robustness, Table I shows that 
ADO selects lower decomposition levels (1–3) at higher SNR 
and shifts to deeper levels (4–5) as noise increases, keeping the 
estimated PD location close to 2000 m even in the most 
challenging cases. 

These PE trends indicate that localization accuracy is 
dominated by timing fidelity rather than denoising strength 
alone. The large errors of ANN and FNN, even when SNR is 
high, imply that small reconstruction distortions can shift the 
effective ToA. In ToA-based MV cable localization, a one-to-
two sample shift can translate into metres of location error, so 
smoothing or altering the first-arrival structure can degrade 
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localization despite producing visually clean signals. ADO’s 
near-zero PE over moderate and high SNR, and only modest 
degradation at very low SNR, suggests that its wavelet-domain 
processing preserves ToA-critical features more reliably as 
interference changes. 

 
Fig. 4. Comparison of PE for ADO-, ANN-, and FNN-based denoising 

pipelines over SNR levels ranging from 9.78 dB to −10.34 dB . 

TABLE I.  ANALYSIS OF AD, ADO, AND PD LOCALIZATION ERROR 

ACROSS VARYING DWT DECOMPOSITION LEVELS AT A FIXED SNR OF -10.34 

DB (WGN = -20 DB AND DSI = 0.55 MV) 

SNR 

(dB) 
AD ADO 

Estimated 

PD 

Location 

(m) 

PD 

Location 

Error 

(%) 

Decomp 

Level 

(DWT) 

9.7812 0.5590 0.0540 1999.8439 0.0078 1 

6.3698 0.4056 0.0056 1999.8439 0.0078 2 

5.0484 0.3108 0.0892 1999.8439 0.0078 3 

3.0471 0.3833 0.0167 1999.8439 0.0078 3 

0.2003 0.4892 0.0892 1999.7401 0.0130 3 

-0.9005 0.2566 0.1434 1999.5320 0.0234 4 

-2.3772 0.3090 0.0910 1999.5320 0.0234 4 

-4.0638 0.3597 0.0403 1999.5260 0.0237 4 

-6.0967 0.4430 0.0430 2000.9960 0.0498 4 

-8.7425 0.2855 0.1145 2002.6000 0.1300 5 

-10.34 0.2900 0.1322 2005.5600 0.278 5 

For system design, ADO is the safest default for field 
deployment when noise conditions are uncertain and accurate 
localization is required, since it maintains near-perfect accuracy 
down to -4.06 dB and remains below 0.3% PE at -10.34 dB. 
When computing is severely limited and approximate 
localization is acceptable, a lightweight neural front end such as 
FNN can be used for screening, with low-confidence or low-
SNR windows escalated to ADO before producing the final 
location estimate. If ANN or FNN must serve as the primary 
front end, their evaluation and training should explicitly include 
timing-based criteria, because waveform similarity alone may 
not reflect ToA shifts that drive localization error. At low SNR, 
the deeper decomposition selected by ADO has a clear physical 

interpretation because finer subband separation helps preserve 
PD-dominated components, while suppressing broadband noise 
and interference. 

For ADO, decomposition level is the dominant factor 
because it determines subband separation and ToA 
preservation; fixing the level (for example, always level 3) 
would likely increase PE at low SNR by reducing adaptability. 
Threshold strength and the AD/ADO selection criterion form a 
second lever, balancing residual interference suppression 
against the risk of attenuating the earliest wavefront, while the 
search breadth across wavelets and levels trades robustness 
against computation. For ANN/FNN, the loss function and 
training target are most influential, as smoothness-driven 
objectives such as MSE can blur transients and shift arrival 
time, whereas timing-aware losses or first-arrival weighting 
better protect localization-critical structure. Model capacity and 
training-test mismatch also affect performance, but the 
observed PE gap suggests that improving neural localization 
requires explicit timing-preserving design and training data that 
match expected EMI and SNR conditions. 

C. Median Absolute Error (MedAE) 

Fig. 5 compares the MedAE of ADO, ANN, and FNN across 
SNR levels from 9.78 dB to -10.34 dB. ADO performs best 
throughout, maintaining MedAE = 0.000 m for all 𝑆𝑁𝑅 ≥
 0.2 𝑑𝐵 and increasing only to about 0.3-0.8 m when SNR 
becomes negative. In contrast, ANN and FNN produce much 
larger MedAE at every SNR point, starting around 65-117 m at 
high SNR and rising to roughly 280-800 m as noise increases. 
Their curves are nearly identical, indicating a shared limitation 
in maintaining precise timing under noisy conditions. 

 
Fig. 5. Comparison of MedAE for ADO-, ANN-, and FNN-based denoising 

pipelines over SNR levels ranging from 9.78 dB to −10.34 dB . 

MedAE is especially informative for PD localization 
because it represents typical field performance rather than being 
driven by occasional outliers. ADO’s near-zero MedAE at 
moderate and high SNR implies that its denoising preserves the 
leading-edge timing needed for accurate time-difference-of-
arrival estimation, so at least half of the events are localized 
essentially at the true position within the model’s resolution. 
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Even at negative SNR, ADO remaining below 1 m indicates 
strong protection of ToA-critical features against time shifting 
as interference increases. By contrast, the large MedAE of 
ANN and FNN suggests a systematic failure mode, where 
smoothing and broadening of impulsive PD transients introduce 
timing bias and jitter that are amplified into large location errors 
by the ToA backend. 

These findings translate into clear deployment guidance. 
For high-confidence localization that supports maintenance 
actions such as joint targeting and dig planning, ADO should 
be the primary denoising front end because it keeps typical 
errors near zero at non-negative SNR and within sub-meter 
levels even in noise-dominated regimes. ANN or FNN are only 
suitable when the goal is rapid event screening rather than 
precise localization, and should be paired with safeguards such 
as confidence scoring and escalation of difficult or low-SNR 
windows to an ADO pass before finalizing a location estimate. 
More broadly, ADO’s stability across SNR makes it the safer 
default in MV underground networks, where noise conditions 
can vary significantly across assets and operating states. 

For ADO, the decomposition level and its selection rule are 
most critical, since deeper decomposition at low SNR improves 
subband separation and helps preserve the first-arrival 
structure; fixing the level (e.g., always level 2 or 3) would likely 
increase MedAE under negative SNR. Threshold magnitude is 
the next key lever because over-thresholding can attenuate the 
earliest wavefront, while under-thresholding leaves timing-
corrupting interference, and mother wavelet choice affects how 
well sharp edges are preserved. For ANN/FNN, the dominant 
factor is the training objective and loss weighting, as standard 
reconstruction losses promote smoothing and can shift arrival 
time; timing-aware losses that emphasize the first-arrival region 
are therefore the most direct route to reducing MedAE. 
Training-test mismatch, noise diversity, and model capacity 
also matter, but improving localization requires explicitly 
timing-preserving design rather than network size reduction 
alone. 

D. F1-Score 

Table II summarizes precision, recall, and F1-score for the 
ADO, ANN, and FNN denoising-detection pipelines from 9.78 
dB to -10.34 dB. ADO achieves an F1-score of 1.0000 from 9.78 
dB down to -4.06 dB with precision and recall both equal to 
1.0000. Even under severe noise (-6.10 dB to -10.34 dB), ADO 
remains strong with F1-scores between 0.9787 and 0.9950, 
driven by precision = 1.0000 and only a modest recall drops to 
0.9583-0.9900. In contrast, ANN and FNN show much lower 
F1-scores across all SNRs; although their precision stays at 
1.0000, recall is limited (0.45-0.56 at higher SNR) and collapses 
at low SNR (0.03-0.08), reducing F1 to below 0.17 and as low 
as 0.0667 at -10.34 dB. 

These detection trends directly affect PD localization 
because reliable localization requires consistent event capture, 
and missed detections reduce event coverage, create gaps in 
activity timelines, and decrease the likelihood of obtaining 
ToA-informative wavefront segments needed by the 
localization backend. In this sense, the F1-score is a gating 
metric for localization readiness. ADO’s near-unity F1 across 
the full SNR range indicates that it preserves PD-noise 

separability under both WGN and DSI after denoising, while 
the small recall reduction at the lowest SNR reflects a 
controlled trade-off, where stronger suppression occasionally 
removes marginal PD components, but does not materially 
reduce event capture. 

TABLE II.  COMPARISON OF PRECISION, RECALL, AND F1-SCORE FOR 

ADO, ANN, AND FNN DENOISING–DETECTION PIPELINES OVER VARYING 

SNR CONDITIONS IN PD EVENT DETECTION 

SNR (dB) 
F1 score of 

ADO 

F1 score of 

ANN 

F1 score of 

FNN 

9.7812 

1.0000 

(P = 1.0000, 

R = 1.0000) 

0.6207 

(P = 1.0000, 

R = 0.4500) 

0.6207 

(P = 1.0000, 

R = 0.4500) 

6.3698 

1.0000 

(P = 1.0000, 

R = 1.0000) 

0.6301 

(P = 1.0000, 

R = 0.4600) 

0.6301 

(P = 1.0000, 

R = 0.4600) 

5.0484 

1.0000 

(P = 1.0000, 

R = 1.0000) 

0.7179 

(P = 1.0000, 

R = 0.5600) 

0.7179 

(P = 1.0000, 

R = 0.5600) 

3.0471 

1.0000 

(P = 1.0000, 

R = 1.0000) 

0.7500 

(P = 1.0000, 

R = 0.6000) 

0.7500 

(P = 1.0000, 

R = 0.6000) 

0.2003 

1.0000 

(P = 1.0000, 

R = 1.0000) 

0.7578 

(P = 1.0000, 

R = 0.6100) 

0.7578 

(P = 1.0000, 

R = 0.6100) 

-0.9005 

1.0000 

(P = 1.0000, 

R = 1.0000) 

0.7226 

(P = 1.0000, 

R = 0.5657) 

0.7226 

(P = 1.0000, 

R = 0.5657) 

-2.3772 

1.0000 

(P = 1.0000, 

R = 1.0000) 

0.6222 

(P = 1.0000, 

R = 0.4516) 

0.6222 

(P = 1.0000, 

R = 0.4516) 

-4.0638 

1.0000 

(P = 1.0000, 

R = 1.0000) 

0.3960 

(P = 1.0000, 

R = 0.2469) 

0.3960 

(P = 1.0000, 

R = 0.2469) 

-6.0967 

0.9950 

(P = 1.0000, 

R = 0.9900) 

0.1538 

(P = 1.0000, 

R = 0.0833) 

0.1538 

(P = 1.0000, 

R = 0.0833) 

-8.7425 

0.9948 

(P = 1.0000, 

R = 0.9896) 

0.1639 

(P = 1.0000, 

R = 0.0893) 

0.1639 

(P = 1.0000, 

R = 0.0893) 

-10.3400 

0.9787 

(P = 1.0000, 

R = 0.9583) 

0.0667 

(P = 1.0000, 

R = 0.0345) 

0.0667 

(P = 1.0000, 

R = 0.0345) 

From a deployment perspective, the perfect-precision but 
low-recall behavior of ANN and FNN is problematic as a 
primary trigger in many field settings. While detected events 
are almost always correct, many true PD events are missed even 
at high SNR, and recall collapses under noise, which can falsely 
suggest low PD activity and bias downstream localization 
toward only the strongest pulses. For condition monitoring, 
where missed PD events are unacceptable, ADO is therefore the 
preferred front-end because it maintains a near-balanced 
precision-recall profile across wide SNR variation. Where 
compute and power constraints motivate neural methods, 
ANN/FNN are better used as low-latency screeners in a two-
stage workflow, with ADO applied selectively to buffered 
windows during suspected activity, low-SNR periods, or low-
confidence cases to recover missed events before localization. 

For ADO, threshold aggressiveness is the key lever at low 
SNR: tightening thresholds preserves precision but can reduce 
recall by suppressing weak PD components, so recall is 
typically the first metric to move under threshold scaling. 
Decomposition level selection and mother wavelet choice also 
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affect separability, because subband isolation and morphology 
matching determine whether PD transients remain distinct 
enough to cross the decision threshold under interference; 
fixing the level rather than adapting it would likely reduce recall 
at low SNR. For ANN/FNN, the dominant driver is the decision 
threshold and calibration, since precision = 1.0000 implies 
overly conservative triggering; lowering the threshold can raise 
recall, but must be paired with false-alarm control. Training 
objectives that penalize missed detections and broader training 
noise diversity across realistic WGN and DSI conditions are 
also critical, because the recall collapses at very low SNR 
indicates sensitivity to training-test mismatch. 

VI. CONCLUSION AND RECOMMENDATIONS 

This study shows that denoising is a core element of MV 
cable PD localization because it directly governs timing 
integrity and, therefore, the reliability of ToA-based estimates. 
Using a controlled benchmark in which only the denoising front 
end is varied while the localization backend is kept fixed, the 
key message is that localization improves when the denoiser 
preserves the earliest PD wavefront features under interference, 
rather than simply reducing overall noise energy. From a design 
standpoint, a deterministic and training-free adaptive wavelet 
front end such as ADO is recommended when robust, high-
confidence localization is required across changing noise 
conditions, because it adapts to the observed interference while 
discouraging timing distortion that would otherwise propagate 
into localization error. When computational speed and 
simplicity are the dominant constraints, a lightweight neural 
option such as the FNN can be considered as an efficiency-
oriented alternative, but its robustness should be verified under 
the expected field noise variability instead of being assumed 
from laboratory-like conditions. These implications are 
especially relevant for low-cost monitoring hardware, since the 
evaluation was performed on a modest CPU platform 
representative of practical embedded units rather than GPU-
accelerated workstations, where model handling and inference 
overheads can limit the deployability of learning-based 
pipelines. The main limitation is that the study relied on 
MATLAB simulations with synthetic PD waveforms in a 
controlled scenario and a noise model limited to WGN and DSI, 
so it cannot fully capture field variability such as joints, 
reflections, multiple concurrent sources, sensor coupling 
differences, and nonstationary interference. Future work should 
therefore validate the conclusions using measured PD data from 
real cable assets and defect types, and further optimize ADO for 
embedded implementation through streamlined search strategies 
and efficient realizations, with targeted acceleration where 
available. 
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