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Abstract—Modern systems are rapidly evolving and 

increasing in complexity to satisfy growing requirements. Such 

systems often incorporate multiple hierarchical statecharts 

within their behavior modeling diagram, which significantly 

complicates the verification process. To address this challenge, 

the Common Modeling Language (CML) was introduced as an 

intermediate modeling language for formal verification, serving 

as a bridge between Unified Modeling Language (UML) 

Statechart and the model checkers. However, CML supports 

modeling only a single hierarchical statechart, which limits its 

applicability to complex systems. This study introduces the 

Enhancement Common Modeling Language (E-CML), an 

extension of the CML, to support the verification of systems that 

incorporate multiple hierarchical statecharts. We introduce the 

group component in E-CML, comprising an initial state, a set of 

states, transitions, triggers, and a region, to formally differentiate 

the group components from superstates. We also propose new 

translation rules to map E-CML into Symbolic Model Verifier 

(SMV) syntax. E-CML operates through two main processes: 

transformation and translation. The transformation process 

transforms an XML Metadata Interchange (XMI) file into E-

CML, while the translation process translates E-CML to an 

Input Symbolic Model Verifier (I-SMV) file. The system is 

verified using the SMV model checker, with formal properties 

specified in Computational Tree Logic (CTL) and represented in 

the I-SMV file. The results demonstrate that the behavior 

modeling diagram satisfies all formal properties, indicating that 

E-CML provides an effective framework for the verification of 

complex systems comprising multiple hierarchical statecharts. 

Keywords—CML; E-CML; formal verification; model 

checkers; UML Statechart 

I. INTRODUCTION 

The Unified Modeling Language (UML) Statechart is a 
semi-formal modeling language widely used by software 
engineers to describe the behavior of software systems, 
whether simple or complex. In [1], the authors introduced the 
UML Statechart, which has advanced elements that can 
describe a complex system’s behavior. The simple system’s 
behavior consists of a single hierarchical statechart and a few 
modules to express the behavior. An example of a simple 
system is a traffic light system [2], [3]. Meanwhile, the 
complex system’s behavior consists of multiple hierarchical 
statecharts and multiple modules to express it. The example of 
complex systems is surgical consultation in the outpatient 
clinic health system [4]. However, the UML Statechart lacks 

formal semantics that ambiguously express the behavior 
modeling. Recent research has addressed the problem that the 
UML Statechart cannot be used for verification processes [5], 
[6], even though software engineers widely use the UML 
Statechart for modeling simple or complex systems. In [7], the 
authors introduced the Extended Hierarchical Automata 
(EHA), an extension of finite state machines that supports the 
hierarchical structure and defines the operational semantics of 
EHA. The EHA is one of the formal semantics behavior 
modeling that represents the UML Statechart. Therefore, the 
UML Statechart can be used for the verification process to 
check the system’s correctness. 

Consequently, model checking can be employed as a 
verification method. Model checking is an automated process 
for verifying the system’s behavior. However, it requires a 
formal model and a formal temporal logic specification to 
check the system’s correctness. If the model checker does not 
produce a counterexample, the system is proven to satisfy its 
requirements [8]. In this context, the Model-Based Software 
Engineering (MBSE) approach enables the formalization of 
semi-formal models into formal models through either direct or 
indirect translation using translation rules. In the case of 
indirect translation, the model is first transformed into an 
intermediate modeling language. Examples of such 
intermediate languages include the Common Modeling 
Language (CML) [8], Gamma statechart [9], and Abstract 
Rule-based [10]. CML is an intermediate modeling language 
for formal verification, serving as a bridge between UML 
Statechart and the model checkers. 

Modern systems are rapidly evolving and increasing in 
complexity to satisfy growing requirements. Such systems 
often incorporate multiple hierarchical statecharts within their 
behavior modeling diagram, which significantly complicates 
the verification process. Therefore, recent research has 
proposed numerous methods that can formalize the UML 
Statechart [11], [12], [13], transforming it into a formal model 
that can be used for the verification process. Nevertheless, with 
the complexity of the systems developed nowadays, numerous 
complex interactions are involved [13]. In [9] and [14], the 
authors mentioned that integrative approaches are limited to 
models with fewer modules or lack efficient compatibility with 
formal verification and validation frameworks. Moreover, 
reference [15] stated that the CML supports modeling only a 
single hierarchical statechart, which limits its applicability to 
complex systems. Therefore, both statements show that recent 
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approaches have focused on verifying a single hierarchical 
statechart. However, modeling complex systems involves 
multiple hierarchical statecharts. It is crucial to address CML’s 
limitations and resolve this problem to ensure the correctness 
of complex systems. Therefore, this study aims to propose an 
enhancement of the CML that is capable of verifying systems 
with multiple hierarchical statecharts, which represent the 
complex behavior of the systems. 

The remainder of this study is organized as follows: 
Section II reviews related works on formal modeling, semi-
formal modeling, theorem proving, model checking, MBSE, 
and formal verification of UML Statechart, particularly for 
multiple hierarchical statecharts. Section III presents the 
research framework and the proposed method, which includes 
the formal definition of E-CML and the development of new 
translation rules. Section IV discusses the results and 
discussion, illustrating the case study using the proposed 
method. Section V provides a conclusion, summarizes the 
findings, and outlines potential directions for future work. 

II. RELATED WORKS 

A. Formal Modeling 

Formal modeling is an unambiguous language with precise 
specification built using mathematical and formal methods 
[16]. Therefore, the formal modeling can specify the 
requirements, designs, and behavior of the system. It provides 
the formal semantics of the systems. Examples of formal 
modeling are Petri Nets, Vienna Development Method (VDM), 
and Kripke structures. Petri Nets are directed, bipartite 
multigraphs consisting of places, transitions, and arcs. Fuzzy 
Petri Nets (FPN) are extensions of Petri Nets and are effective 
in modeling uncertain biological systems. In [17], the authors 
reviewed the FPN and categorised it into three types: basic 
Fuzzy Petri Nets, Fuzzy Quantitative Petri Nets, and Petri Nets 
with Fuzzy Kinetic Parameters.  In [18], the authors proposed 
an extension of Coloured Petri Nets (CPN) known as catalog-
nets (CLog-nets) to integrate business processes with different 
data types. In [19], the authors utilized Petri Nets to generate 
secure smart contracts in blockchain systems, enabling the 
detection of deadlock at an early stage. 

Recent studies have used the VDM language to model and 
verify complex systems. VDM Specification Language (VDM-
SL) is a formal specification language with an extensive 
executable subset and a toolbox that verifies models. In [20], 
the authors mentioned that the VDM-SL is a robust 
specification that can define the system’s functionality without 
ambiguity. They proposed an approach that serves as a pre-
formal notation for the natural language specification before it 
is implemented in VDM-SL. In [21], the authors proposed an 
Internet of Things (IoT) based formal model for vehicle ad hoc 
networks (VANETs) using VDM-SL. The proposed formal 
model will be transformed into VDM-SL and verified using the 
VDM toolbox to check the system’s correctness and absence of 
deadlocks. Meanwhile, reference [22] introduced the first 
approach to developing the formal semantics of a simulation 
language in a VDM-SL. They proposed a RE: MODIYC that 
can describe and examine the formal specification of VDM-SL 
after initial implementation. 

The Kripke structures are a mathematical model used in 
model logic to represent the possible states and the 
relationships among them. However, the Kripke structures 
formalize model logic by extending classical propositional 
logic with model operators such as necessity and possibility. In 
[23], the authors proposed an alternative method that 
transforms a given Kripke structure and the corresponding LTL 
formal properties into a Buchi automaton, where the number of 
accepting states is determined based on the LTL formal 
properties. Meanwhile, reference [24] introduced an approach 
to verify mobile-interactive systems. They model the properties 
of dynamic interaction using Variable Petri Nets (VPN). The 
VPN is transformed into the Kripke structures using a proposed 
algorithm and verified with a model checker. In [25], the 
authors proposed formalizing natural language using the UML 
use case diagram with the Kripke structures. They use the 
NuSMV model checker to verify whether the formal 
specification is consistent with the Kripke structures model. 
However, there are some previous studies that use semi-formal 
modeling to model the systems. 

B. Semi-Formal Modeling 

Semi-formal modeling is an ambiguous language in which 
the modeling lacks formal semantics, but it provides a better 
understanding of modeling. Therefore, semi-formal modeling 
is more popular than formal modeling because it does not 
require as much time and effort to understand the model. 
Examples of semi-formal modeling are UML and System 
Modeling Language (SysML). The UML is a graphical 
notation language used to define and document a system during 
software development [26]. In [27], the authors introduced a 
hierarchical modeling formalism based on UML Statechart 
with generally distributed (GEN) durations, aimed at ensuring 
modeling simplicity and efficient evaluation of steady-state or 
transient behavior up to absorption. In contrast, reference [28] 
used the new semantics of the UML Statechart to model the 
digital watch. In [29], the authors proposed using a restricted 
version of the Statechart (Revised Statechart) to model the 
behavior of autonomous robotic surgery. In [30], the authors 
used the UML Sequence Diagram to express the requirements 
of safety-critical systems incrementally. 

However, another semi-formal modeling is SysML, which 
describes a hybrid system of hardware and software. SysML is 
a graphical modeling language that is intuitive and widely used 
for modeling complex systems, comprising hardware and 
software. In [31], the authors proposed an approach to analyze 
the safety of complex systems. They model the structure of the 
system using the SysML Block Definition Diagram (BDD) 
while utilizing the SysML State Machine Diagram to describe 
the system’s behavior. In [32], the authors introduced the 
transformation of the UML/SysML Activity Diagram to Petri 
Nets. Meanwhile, reference [33] used the SysML Activity 
Diagram to model the system’s behavior and transform the 
model into the input language of the Next-generation Unifying 
Symbolic Model Verifier (nuXmv) model checker. Therefore, 
there are two types of modeling language, which are formal 
modeling and semi-formal modeling. However, both models 
require a formal verification approach to ensure their 
correctness. Formal verification is the process of ensuring that 
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a system satisfies certain specifications, typically using two 
approaches: theorem proving and model checking [34]. 

C. Theorem Proving 

Theorem proving is a formal method that can establish the 
validity of theorems. The model and specification of the 
systems are described in a mathematical statement. The 
verification process of theorem proving involves proving 
theorems about the system using the rules of the inference 
process. In [35], the authors introduced the automated prover 
and proof assistant, GPT-f, to analyze the performance of the 
Metamath formal language. In [36], the authors proposed the 
transformation rules from the UML Activity Diagram to 
Formal Calculus for Liveness and Zero state (FoCaLiZe), a 
proof-based formal language, and verified the proof-based 
formal language with the Zenon theorem prover. In [37], the 
authors identified a barrier for researchers using machine 
learning for theorem proving in Large Language Models 
(LLMs). Therefore, they introduced LeanDojo, an open-source 
Lean framework designed to overcome this barrier, which 
enables researchers to utilize machine learning with LLMs to 
enhance the effectiveness of theorem proving. 

D. Model Checking 

Model checking is one of the formal verification 
approaches and an automated process for verifying the 
behavior of a software system. The model checking approach 
requires a formal model and a formal temporal logic 
specification to check the correctness of the systems. In [11], 
the authors enhanced their previous work by formalizing the 
concurrent element of the UML Statechart, which involves 
multiple hierarchical statecharts. In [38], the authors used 
Maude as the formal language for the Internet of Things (IoT) 
software systems. They use Maude’s model checker and Linear 
Temporal Logic (LTL) specification to verify the IoT software 
system. Meanwhile, reference [33] utilized the nuXmv to 
verify Autonomous Artificial Pancreas Systems (AAPS). They 
used the LTL specification in the nuXmv model checker to 
verify the APPS system. The model checking approach is 
widely used due to the MBSE technique, which enables the 
formalization of modeling language through a process. The 
transformation process has two types: direct transformation and 
indirect transformation, which require an intermediate 
language for the indirect transformation. 

E. Model-Based Software Engineering 

MBSE provides a platform that enables the definition of 
complex, multidisciplinary systems. However, the MBSE 
approach requires formal verification to ensure the correctness 
of complex systems. Therefore, the MBSE approach provides 
transformation rules to transform the model, either direct 

transformation or indirect transformation. Some previous 
studies use the direct transformation in their approaches. 

 In [39], the authors identified that the UML State Machine 
Diagram lacks formal semantics. Therefore, they proposed 
direct transformation rules from UML State Machine Diagram 
to Petri Nets and verified them with the Time Petri Nets 
Analyzer (TINA) to check correctness, safety, and liveness. In 
[31], the authors verified the Integrated Modular Avionic 
(IMA) system by proposing the direct transformation rules. 
They transform the SysML BDD and SysML State Machine 
Diagram into the input language of the NuSMV model 
checker. Meanwhile, reference [13] also introduced direct 
transformation rules from the SysML State Machine Diagram 
to the input language of the NuSMV model checker for 
verifying the driving control system. Although both research 
utilize the SysML State Machine Diagram, their approaches 
and direct transformation rules differ slightly. 

However, some previous studies use the indirect 
transformation, which introduces an intermediate language to 
solve their problems. In [8], the authors introduced the CML, 
an intermediate language to formalize the UML Statechart. 
They proposed transformation rules to transform the UML 
Statechart into the CML and translation rules to translate the 
CML into the input language of the SMV model checker. In 
[9], the authors proposed the Gamma Statechart, an 
intermediate language that uses the formal semantics of 
Yakindu Statechart. They also proposed translation rules to 
translate the Gamma Statechart into Timed Automata (TA). In 
[14], the authors proposed transformation rules to transform the 
SysML State Machine Diagram to the Gamma Statechart. They 
also proposed the translation rules to translate the Gamma 
Statechart into the Uppsala Time Automata Laboratory 
(UPPAAL). Meanwhile, reference [10] used the Abstract 
Rules-based language as an intermediate language to formalize 
the UML State Machine Diagram. Previous studies show that 
most researchers utilize the UML Statechart and SysML State 
Machine Diagram. However, they may not encompass all 
elements of the UML Statechart that can represent a complex 
system. 

F. Formal Verification of UML Statechart 

Table I illustrates previous studies related to the formal 
verification of UML Statechart. We consider approaches that 
use either direct transformation or indirect transformation. We 
also examine which elements of the UML Statechart are 
addressed in these approaches. Our focus is on the system 
complexity, which can be decomposed into multiple modules. 
Therefore, we consider whether the approaches handle a single 
hierarchical statechart or multiple hierarchical statecharts. The 
symbols are indicated as “/” and “X” refer to “have” and “have 
not”, respectively. 

TABLE I.  PREVIOUS STUDIES RELATED TO THE FORMAL VERIFICATION OF UML STATECHART 

Journals Intermediate Language Approach Transformation Rules Single Hierarchical Statechart Multiple Hierarchical Statechart 

[15] CML Indirect / / X 

[11] X Direct / / X 

[12] X Direct / / / 

[9] Gamma Statechart Indirect X / / 

[13] Abstract Rule-based Indirect X / X 

[31] X Direct / / X 
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Some previous studies [15], [9], [13] used an intermediate 
language to formalize UML Statechart. They employed the 
indirect transformation approach to verify the models and 
proposed a few transformation rules to transform the UML 
Statechart into the intermediate language and subsequently 
translate it into the model checker’s formal model. However, 
two of these studies [9], [13] used an intermediate language 
without specifying whether they applied the translation rules in 
their approaches. The remaining studies [11], [12], [31] did not 
use an intermediate language; instead, they employed the direct 
transformation approach, which transforms the UML Statechart 
directly into the formal model. They also proposed a few 
transformation rules to guide this transformation. 

As mentioned earlier, we focus on system complexity. 
Most previous studies have addressed a single hierarchical 
statechart, which represents a relatively simple system. 
However, only two studies have considered multiple 
hierarchical statesharts, despite modern systems being built 
with considerable complexity. Therefore, this observation 
motivates us to focus on verifying systems with multiple 
hierarchical statecharts using an indirect transformation 
approach. Specifically, we aim to enhance the CML by 
introducing new elements into its formal definition and by 
creating new translation rules that define multiple hierarchical 
statecharts and complex systems. The following section will 
explain the research framework and proposed method. 

III. PROPOSED METHOD 

A. Research Framework 

Fig. 1 illustrates the research framework for the proposed 
method. It involves four processes: 1) Modeling the UML 
Statechart. 2) Exporting to XML Metadata Interchange (XMI) 
format. 3) Transforming XMI to Enhancement Common 
Modeling Language (E-CML). 4) Translating E-CML to Input 
Symbolic Model Verifier (I-SMV). 

Process (1) Modeling the UML Statechart: The behavior of 
the system is modeled with the UML Statechart by using the 
Altova UModel software. The Altova UModel software 
enables modeling of UML Statechart features, including 
composite state, orthogonal state, history pseudostate (deep and 
shallow), and inter-level transitions. Process (2) Exporting the 
UML Statechart to XMI format: The Altova UModel software 
provides features for exporting the UML Statechart into the 
XMI format. In the XMI format, there are <region>, 
<subvertex>, <transition>, and <trigger> tags that refer to the 
regions, states, transitions, and triggers of the UML Statechart, 
respectively. Process (3) Transforming XMI to E-CML: The 
transformation process is based on the tag elements from the 
XMI format and the formal definition of E-CML. The 
<region> tags are transformed into the region. The 
<subvertex> tags are transformed into the state. The 
<transition> tags are transformed into the transition, and the 
<trigger> tags are transformed into the trigger. Process (4) 
Translating E-CML to I-SMV: The translation process is based 
on the formal definition of I-SMV. Four translation rules are 
involved in this process, which translate the elements of E-
CML into the elements of I-SMV. 

 
Fig. 1. Research framework. 

B. Enhancement of Common Modeling Language 

The E-CML is an extension of the CML based on the 
features of the UML Statecharts. Definition 1 defines the 
formal definition of E-CML as follows: 

Definition 1: Enhancement Common Modeling Language  

E-CML = <S, S0, Sc, G, T, Regions, L, Gp, R> 

Where: 

S =finite set of states, where each state, s, is declared one
  of the two types: {AND, OR}. 

S0 = set of initial states (S0 ⊆ S). S0 forms a valid initial 
  transition relation. 

Sc = set of states that form a valid state configuration. 

G = finite set of triggers. 

T = finite set of transition relations, T = S x G x S’. 

Regions = finite set of regions. 

Gp = finite set of group components. Each group 
  component consists of states, an initial state, triggers, 
  transitions, and a region. Gp = <S, S0, Sc, G, T, 
  Regions>. 

  

L =  S → Gp’ is the group component-level function. If 
  Gp’ ⊆ L(S), then Gp’ is an immediate descendant of 
  S. The function of L describes the hierarchical state of 
  the model. 

R =  relation between the superstate and group  
  components, Gp. 

There are two types of E-CML states: AND and OR. The 
AND state models concurrency by composing multiple 
simultaneous group components, Gp. The AND state is a 
superstate for the group components, Gp, of the statechart that 
are concurrently active. The descendants of the AND state 
must always be the OR state. The OR state is a state that 
supports one of the states inside another, providing a hierarchy 
in the behavior model. The OR state has states related to each 
other by an exclusive OR relationship. The leaf states of the E-
CML must always be OR states. Each OR state has its region. 
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Each region is represented as the group component, Gp, in E-
CML, consisting of the initial state, S0, states, S, transitions, T, 
triggers, G, and the region. This also includes the outermost 
region represented as a group component, Gp. At runtime, E-
CML allows multiple active states, referred to as a state 
configuration, Sc. A state configuration, Sc, always contains 
one state from the AND state and all states from the OR states. 

Fig. 2 illustrates an example of the UML Statechart model 
that consists of multiple hierarchical statecharts. It shows there 
are basic states (A, D, G, H, I, J, M, N, O, and P), AND states 
(B and C), and OR states (E, F, K, and L). B state contains two 
OR states (E and F), E state contains two basic states (G and 
H), and the F state contains two basic states (I and J). 
Meanwhile, the C state contains two OR states (K and L), the 
K state contains two basic states (M and N), and the L state 
contains two basic states (O and P). 

The operation of the E-CML is described using the step 
semantics. The state configuration, Sc, of E-CML starts with 
the initial state, S0. In E-CML, when the state configuration, Sc, 
includes a composite AND state, all of its regions are active 
concurrently. Each region typically behaves like an OR state, 
meaning exactly one substate within each region is active at 
any time. 

For example, the state configuration for the AND states in 
Fig. 2 should be (B, G, I) or (B, H, J) and (C, M, O) or (C, N, 

P). In E-CML, a transition will always occur at each step in 
each active state configuration, Sc. An implicit transition is 
triggered if no explicitly modeled transitions are enabled. The 
synchronization of E-CML allows it to be flattened into 
sequential automata, preserving the formal model semantics. 
Each single flattened component E-CML is equivalent to a 
sequential automaton [6]. 

Fig. 3 illustrates the flattened hierarchical E-CML structure 
of the UML Statechart model in Fig. 2. 

Therefore, the single flattened component E-CML is known 
as the group component, Gp, in Fig. 3 as follows: 

Gp_1 = ({A, B, C, D}, A, {E1, E2, E7, E8, E13, E14}, {(A, 
       E1, B), (B, E2, A), (B, E7, C), (C, E8, B), (C, E8, 
       B), (C, E13, D), (D, E14, C)}, Region 1) 

Gp_2 = ({G, H}, G, {E3, E4}, {(G, E3, H), (H, E4, G)}, 
       Region 2) 

Gp_3 = ({I, J}, I, {E5, E6}, {(I, E5, J), (J, E6, I)}, Region 
       3) 

Gp_4 = ({M, N}, M, {E9, E10}, {(M, E9, N), (N, E10, 
        M)}, Region 4) 

Gp_5 = ({O, P}, O, {E11, E12}, {(O, E11, P), (P, E12, 
        O)}, Region 5) 

 
Fig. 2. UML Statechart model. 

 
Fig. 3. Flattened hierarchical E-CML structure.

The sequence of elements in the group component, Gp, 
follows the sequence of variables in the formal definition of the 
group component, Gp, as given in Definition 1. The group 
component, Gp, interacts through events. In the following step, 
an event may trigger a transition in the system’s synchronous 

group component, Gp. If the event triggers a transition from a 
state and the result is a group component, Gp, then the state is 
referred to as a superstate. For example, B is the superstate of 
Gp_2 and Gp_3, while C is the superstate of Gp_4 and Gp_5. 
This situation creates inter-level transitions. The inter-level 
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transitions cross hierarchy boundaries. If a transition leaves a 
superstate, the firing of all transitions containing the group 
components, Gp, of the superstate is suppressed, as represented 
by the dotted line in Fig. 3. This creates the relations, R, 
between the superstate and group components, Gp. Therefore, 
the group component level function, L, is created. The 
superstate’s group component level function, L, is Level 1. The 
descendant of the superstate’s group component level function, 
L, is Level 2. Therefore, the relation, R, between superstate and 
group components, Gp, is defined as follows: 

Gp_2:  receive a message from Gp_1 

Gp_3:  receive a message from Gp_1 

Gp_4:  receive a message from Gp_1 

Gp_5:  receive a message from Gp_1 

Gp_1: receive a message from Gp_2, Gp_3, Gp_4, and 
     Gp_4 

In the E-CML, there are two processes involved: 
transforming the UML Statechart to the E-CML and translating 
the E-CML to the I-SMV. Therefore, we use the formal 
definition of I-SMV that is defined by [6]. The formal 
definition of I-SMV is as follows: 

Definition 2: Input Symbolic Model Verifier 

I-SMV = <M, V, N, Y>  

Where: 

M = set of finite modules 

V = set of finite state variables 

N = set of next states 

Y = relation between modules 

The I-SMV is modular. The high-level module is called the 
main module, while the other modules are known as sub-
modules. In a module, M, there are state variables, V, to 
describe the module. A state evolves from one state to another 
through a next operator, N. The relation, Y, between one 
module and another is described by using a set of parameters. 
A set of rules guides the translation from E-CML to I-SMV. 

C. Translation Rules of Enhancement of Common Modeling 

Language 

Based on Definition 2, several rules of translation are 
created to map the E-CML, which is the source model, to the I-
SMV, the target model. The translation from the source model 
to the target model can be defined by using a set of rules [31]. 
In the I-SMV, the group component, Gp, of E-CML 
corresponds to the module, M. The set of states, S, and triggers, 
G, corresponds to the state variables, V. The transitions, T, 
correspond to the next state, N. Lastly, the relation, R, between 
the superstate and group components, Gp, corresponds to the 
relation between modules, Y. The translation rules for mapping 
the E-CML to the I-SMV are defined as follows: 

Rule 1 (Module): Let Grp be the set of group components 
in the E-CML. Each Grpi ∊ Grp is modeled as a module 
declaration in I-SMV as follows: 

 Module Grpi (arg i, . . . . . , arg i+1) 

where, i = 1, . . . ., n, and n is the maximum integer. 

If Grpi ∊ Grp does not exist, then the execution must be 
terminated. In I-SMV, argi refers to the actual parameter of a 
module within the main module. 

Rule 2 (Variable): Let St be the set of states and Gr be the 
set of triggers in the E-CML, Sti ∊ St is declared inside a 
module as follows: 

 Sti : s1, . . . ., sn+1; if St is an integer type 

 Sti : {s1, . . . ., sn}; if St is enumerated type 

 Sti : {};      if St is a Boolean type 

 Gri  ∊ Gr is declared inside a module as follows: 

 Gri : g1, . . . ., gn+1; if Gr is an integer type 

 Gri : {g1, . . . ., gn}; if Gr is enumerated type 

 Gri : {};      if Gr is a Boolean type 

Rule 2 is used if and only if the represented module exists 
and either St ≠ {} or Gr ≠ {}. 

Rule 3 (State change): Tr be the set of transitions. In E-
CML, state changes may occur with or without a trigger, Gr. 
This implies changes between the source state, Ss, and the 
target state, St, with or without the presence of the trigger. The 
state changes in I-SMV are defined as follows: 

 next (St): = 

  case { 

   Tri: St; if gr ∊ Gr, Gr ≠ {} 

   Tri: Ss; if gr ∊ Gr, Gr ≠ {} 

   default St; 

  }; 

The first statement defines the state changes caused by 
triggered transitions, while the second statement defines the 
state changes caused by null-triggered transitions. 

Rule 4 (Relation between modules): Let St-Grpb.Rb, St-
Grpc.Rc, St-Grpd.Rd, and St-Grpe.Re are state variables for Grpa. 
Let St-Grpa.Ra is the state variable for Grpb, Grpc, Grpd, and 
Grpe. The relation between those levels is defined as follows: 

 Module main() 

 St-Grpb : Grpb (St-Grpa.Ra); 

 St-Grpc : Grpc (St-Grpa.Ra); 

 St-Grpd : Grpd (St-Grpa.Ra); 

 St-Grpe : Grpe (St-Grpa.Ra); 

 St-Grpa : Grpa (St-Grpa.Ra); 

St-Grpa, St-Grpb, St-Grpc, St-Grpd, and St-Grpe are state 
variables in the main module. In I-SMV, the arguments to a 
module are defined by the state variable of the destination 
message, followed by the state variable of the source message. 
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IV. RESULTS AND DISCUSSION 

In this section, we implement the E-CML for the Surgical 
Consultation in the Outpatient Clinic Health System as the case 
study. In general, doctors will refer patients for surgical 
consultation if they believe the underlying health condition can 
be effectively treated through surgery. Following the referral, 
the outpatient clinic schedules an appointment with the surgeon 
and arranges for samples to be collected if further diagnostic 
tests are required. The surgeon evaluates the necessity for an 
operation by analysing symptoms and test results during the 
consultations. Following a decision to proceed, the patient is 
registered on a surgical wait list to ensure an appropriate time 
is booked for use of the operating room. Before surgery, the 
patient may be educated by the surgeon about the procedure. 
When the operating room is already booked, the patient waits 
for their scheduled surgery date. Fig. 4 illustrates the UML 
Statechart Surgical Consultation in the Outpatient Clinic 
Health System. 

Fig. 4 illustrates that there are two AND states (“Receiving 
referral” and “Receiving treatment”) and four OR states ( 
“Appointment”, “Diagnostic Test”, “Surgical Waiting List”, 
and “Education”). There are three basic states at the outermost 
region (“Waiting for referral to clinic”, “At consultation”, and 
“Operation booked”), two basic states at the “Appointment” 
state (“Pending 1” and “Booked”), two basic states at the 
“Diagnostic Test” state (“Pending 2” and “Sample taken”), two 
basic states at the “Surgical Waiting List” state (“Pending 3” 

and “On waiting list”), and two basic states at the “Education” 
state (“Pending 4” and “Educated”). This model has five 
regions; each OR state has one region, and the other region is 
the outermost region. Fig. 5 illustrates the flattened hierarchical 
E-CML structure for the Surgical Consultation in the 
Outpatient Clinic Health System. 

Based on Fig. 5, each flattened is referring to the group 
component, Gp, and is defined as follows: 

Gp_1 = ({Waiting for referral to clinic, Receiving referral, 
At consultation, Receiving treatment, Operation booked}, 
Waiting for referral to clinic, {referral to clinic, patient referral 
at clinic, treatment decided, booked operation}, {(Waiting for 
referral to clinic, referral to clinic, Receiving referral), 
(Receiving referral, patient referral at clinic, At consultation), 
(At consultation, treatment decided, Receiving treatment), 
(Receiving treatment, booked operation, Operation booked)}, 
Region 1). 

Gp_2 = ({Pending 1, Booked}, Pending 1, {make 
booking}, {(Pending 1, make booking, Booked)}, Region 2) 

Gp_3 = ({Pending 2, Sample taken}, Pending 2, {take 
sample}, {(Pending 2, take sample, Sample taken)}, Region 3) 

Gp_4 = ({Pending 3, On waiting list}, Pending 3, 
{register}, {(Pending 3, register, On waiting list)}, Region 4) 

Gp_5 = ({Pending 4, Educated}, Pending 4, {educate}, 
{(Pending 4, educate, Educated)}, Region 5) 

 
Fig. 4. UML Statechart surgical consultation in the outpatient clinic health system. 

 
Fig. 5. Flattened hierarchical E-CML structure for surgical consultation in the outpatient clinic health system. 
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The relation, R, between superstate and group components, 
Gp, is defined as follows: 

Gp_2:  receive a message from Gp_1 

Gp_3:  receive a message from Gp_1 

Gp_4:  receive a message from Gp_1 

Gp_5:  receive a message from Gp_1 

Gp_1: receive a message from Gp_2, Gp_3, Gp_4, and 
     Gp_4 

We use the translation rules of E-CML (Rule 1-4) to 
translate the E-CML into the I-SMV. Rule 1: Each group 
component, Gp, in E-CML is translated to the module’s name 
in the I-SMV, followed by the list of arguments. Each 
module’s arguments are based on the relation, R, which is 
translated in Rule 4. Therefore, the modules are defined as 
follows: 

MODULE Gp_2 (gp_1) 

MODULE Gp_3 (gp_1) 

MODULE Gp_4 (gp_1) 

MODULE Gp_5 (gp_1) 

MODULE Gp_1 (gp_2, gp_3, gp_4, gp_5) 

Rule 2 is regarding the variables declared for each module. 
All states, S, and triggers, G, in E-CML are defined as follows: 

MODULE Gp_2 (gp_1) 

VAR 

 state:{Pending 1, Booked}; 

 trigger2:{make booking}; 

MODULE Gp_3 (gp_1) 

VAR 

 state:{Pending 2, Sample taken}; 

 trigger3:{take sample}; 

MODULE Gp_4 (gp_1) 

VAR 

 state:{Pending 3, On waiting list}; 

 trigger4:{register}; 

MODULE Gp_5 (gp_1) 

VAR 

 state:{Pending 4, Educated}; 

 trigger5:{educate}; 

MODULE Gp_1 (gp_1) 

VAR 

 state:{Waiting for referral to clinic, Receiving 
 referral, At consultation, Receiving treatment, 
 Operation booked}; 

 trigger6:{referral to clinic, patient referral at clinic, 
  treatment decided, booked operation}; 

Rule 3 is regarding the transitions, T, in the E-CML, which 
are translated to the next (state) in the I-SMV. Therefore, the 
next (state) in the I-SMV is defined as follows: 

MODULE Gp_2 (gp_1) 

….. 

next (state):= case 

 ((state = Pending 1) & (trigger2 = make  
  booking)): Booked; 

1: state; 

esac; 

MODULE Gp_3 (gp_1) 

….. 

next (state):= case 

 ((state = Pending 2) & (trigger3 = take sample)): 
  Sample taken; 

1: state; 

esac; 

MODULE Gp_4 (gp_1) 

….. 

next (state):= case 

 ((state = Pending 3) & (trigger4 = register)): On 
  waiting list; 

1: state; 

esac; 

MODULE Gp_5 (gp_1) 

….. 

next (state):= case 

 ((state = Pending 4) & (trigger5 = educate)): 
  Educated; 

1: state; 

esac; 

MODULE Gp_1 (gp_2, gp_3, gp_4, gp_5) 

….. 

next (state):= case 

 ((state = Waiting for referral to clinic) & (trigger6 = 
  referral to clinic)): Receiving referral; 

 ((state = Receiving referral) & (trigger7 = patient 
  referral at clinic)): At consultation; 

 ((state = At consultation) & (trigger8 = treatment 
  decided)): Receiving treatment; 
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 ((state = Receiving treatment) & (trigger9 = booked 
  operation)): Operation booked; 

1: state; 

esac; 

Rule 4 is regarding the relation, R, between superstate and 
group components, Gp, in E-CML. In -SMV, Rule 4 is 
translated into MODULE main. The state variable of the 
MODULE main is defined as a call module for the 
corresponding group component. The arguments in each call 
module are the state variable of the source state, followed by its 
message passing. The relation between modules is defined as 
follows: 

MODULE main: 

VAR 

 gp_2: Gp_2 (gp_1); 

 gp_3: Gp_3 (gp_1); 

 gp_4: Gp_4 (gp_1); 

 gp_5: Gp_5 (gp_1); 

 gp_1: Gp_1 (gp_2, gp_3, gp_4, gp_5); 

Based on the relation between modules above, gp_2, gp_3, 
gp_4, and gp_5 are state variables used as arguments for the 
module in Gp_1. The gp_1 is the state variable for the modules 
in Gp_2, Gp_3, Gp_4, and Gp_5. We use the SMV model 
checker to verify the UML Statechart in Fig. 4. The formalized 
properties need to be specified on the “SPEC” keyword in the 

I-SMV file. Table II shows the list of formalized properties, 
descriptions, and the results. 

A. Discussion 

In this section, we discuss and explain the results that were 
obtained from the proposed method. All the formalized 
properties, which cover the multiple hierarchical statecharts, 
are verified as TRUE. P1 is verified as TRUE because the 
specification defines that the patient can book an appointment 
and take the diagnostic test in the future, even though the 
patient is not waiting for the referral. P2 is verified as TRUE 
because the specification states that the patient always receives 
a consultation from the doctor after completing the booking 
appointment and taking the diagnostic sample test. P3 is 
verified as TRUE because the specification defines that the 
patient can always book the operation date after registering on 
the waiting list and getting education about the surgery from 
the surgeon. P4 is verified as TRUE because the specification 
defines that the patient can be on the waiting list for an 
operation and can receive education about the surgery from the 
surgeon after the patient receives a consultation from the 
surgeon. 

According to reference [15], correctness is defined as 
adherence to the specifications and the way software behaves 
when these correctness specifications are applied. The results 
indicate that E-CML can serve as an effective intermediate 
language, as the verification of the specifications returned a 
result of TRUE. Moreover, E-CML is able to verify complex 
systems that have multiple hierarchical statecharts, which are a 
common feature for modern complex systems. 

TABLE II.  FORMALIZED PROPERTIES, DESCRIPTIONS, AND RESULTS 

Property Description CTL Result 

P1 

A patient who is not waiting for a referral may be able to 

book an appointment and undergo the diagnostic tests in the 

future. 

AG (!(gp_1.state = Waiting_for_referral_to_clinic) → EF 

(gp_2.state = Booked & gp_3.state = Sample_taken)) 

 

True 

P2 
A patient who completes a booking and has taken a sample 

for a diagnostic test is eligible for a consultation. 

AG (gp_2.state = Booked & gp_3.state = Sample_taken) → EF 

(gp_1.state  =At_consultation) 
True 

P3 
A patient registered for the operation and received education 

from the surgeon can book the operation date. 

AG ((gp_4.state = On_waiting_list & gp_5.state = Educated) → EF 

(gp_1.state = Operation_booked)) 
True 

P4 

The patient whom the surgeon has consulted can be placed 

on the waiting list for the operation and receive education on 

the operation. 

AG ((gp_1.state = At_consultation) → EF (gp_4.state = 

On_waiting_list & gp_5.state = Educated)) 
True 

TABLE III.  COMPARISON OF THE E-CML WITH THE OTHER APPROACHES 

Method Approach Intermediate Language Substate Orthogonal State History State (depp/shallow) 

E-CML Indirect transformation E-CML / / X 

Colored Petri Nets [11] Direct transformation - / / / 

Gamma Statechart [9] Indirect transformation Gamma Statechart / X X 
 

Table III illustrates a comparison between E-CML and 
other approaches. We compare E-CML with the approaches 
proposed in [11] and [9]. We also consider the UML Statechart 
elements covered by each approach during the verification 
process. The symbols “/” and “X” indicate “supported” and 
“not supported”, respectively. 

In [11], the authors proposed a method based on a direct 
transformation approach, which transforms one model into 
another without using an intermediate language. The authors 

utilized UML Statechart to express the system’s behavior and 
formalized it into the CPN. This approach uses the 
transformation rules to map the elements of the UML 
Statechart to CPN. In contrast, E-CML provides a formal 
definition that represents the elements of the UML Statechart. 
It also includes transformation rules to transform E-CML into 
an I-SMV file, which is used as the input language for the 
verification process with the SMV model checker. The E-CML 
helps and encourages the user to apply the model checking 
method without requiring knowledge of SMV syntax or CPN. 
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As discussed, both approaches are capable of verifying 
multiple hierarchical statecharts. However, some UML 
Statechart elements are not included in E-CML, whereas they 
are included in the approach proposed in [11], such as history 
state (deep and shallow). 

Meanwhile, reference [9] proposed a method based on an 
indirect transformation approach, which same approach used 
by E-CML and requires an intermediate language. The authors 
utilized UML Statechart to express the system’s behavior and 
transformed it into the TA. This approach also considers the 
transformation of ports in the physical components. In contrast, 
E-CML focuses only on behavioral aspects and does not 
transform or include physical components. As discussed, both 
approaches are capable of verifying multiple hierarchical 
statecharts. However, some UML Statechart elements are not 
included in the approach proposed in [9], whereas they are 
included in E-CML, such as orthogonal states. Nevertheless, 
both approaches do not include the history state (deep and 
shallow). 

V. CONCLUSION 

This study presents a proposed solution for verifying 
complex systems that are inherently more intricate and difficult 
to verify. Modern systems often incorporate multiple 
hierarchical statecharts within their behavior modeling 
diagram, which significantly complicates the verification 
process. Therefore, E-CML, an enhancement of CML, helps 
the users verify complex systems with multiple hierarchical 
statecharts and ensure their correctness. E-CML introduces 
group components comprising an initial state, a set of states, 
transitions, triggers, and a region, to formally differentiate the 
group components from superstates. It creates new translation 
rules to define multiple hierarchical statecharts and complex 
systems that relate to the group components. E-CML 
demonstrates that it can verify the formalized properties of 
multiple hierarchical statecharts model. As a result, all of the 
formalized properties are verified as TRUE. Thus, E-CML 
enables verification of unverified complex systems. However, 
E-CML has a limitation in that it cannot verify the history 
states, including either the deep or shallow pseudostate. This 
feature is an important element of the UML Statechart that can 
represent the behavior of complex systems. Some modern 
systems also include a history state in the behavioral models to 
store the last active state, such as in air conditioning systems. 
Therefore, it is important to enhance E-CML to include all 
UML Statechart elements capable of representing complex 
systems. This enhancement will enable the verification of all 
types of complex systems built today. 
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