(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 12, 2025

Formal Verification Unified Modeling Language
Statechart Using Enhancement Common Modeling
Language

Muhammad Amsyar Azwarrudin, Pathiah Abdul Samat, Norhayati Mohd Ali, Novia Indriaty Admodisastro

Faculty of Computer Science and Information Technology-Software Engineering Department,
Universiti Putra Malaysia, Serdang, Malaysia

Abstract—Modern systems are rapidly evolving and
increasing in complexity to satisfy growing requirements. Such
systems often incorporate multiple hierarchical statecharts
within their behavior modeling diagram, which significantly
complicates the verification process. To address this challenge,
the Common Modeling Language (CML) was introduced as an
intermediate modeling language for formal verification, serving
as a bridge between Unified Modeling Language (UML)
Statechart and the model checkers. However, CML supports
modeling only a single hierarchical statechart, which limits its
applicability to complex systems. This study introduces the
Enhancement Common Modeling Language (E-CML), an
extension of the CML, to support the verification of systems that
incorporate multiple hierarchical statecharts. We introduce the
group component in E-CML, comprising an initial state, a set of
states, transitions, triggers, and a region, to formally differentiate
the group components from superstates. We also propose new
translation rules to map E-CML into Symbolic Model Verifier
(SMV) syntax. E-CML operates through two main processes:
transformation and translation. The transformation process
transforms an XML Metadata Interchange (XMI) file into E-
CML, while the translation process translates E-CML to an
Input Symbolic Model Verifier (I-SMV) file. The system is
verified using the SMV model checker, with formal properties
specified in Computational Tree Logic (CTL) and represented in
the I-SMV file. The results demonstrate that the behavior
modeling diagram satisfies all formal properties, indicating that
E-CML provides an effective framework for the verification of
complex systems comprising multiple hierarchical statecharts.

Keywords—CML; E-CML; formal model
checkers; UML Statechart

verification;

I INTRODUCTION

The Unified Modeling Language (UML) Statechart is a
semi-formal modeling language widely used by software
engineers to describe the behavior of software systems,
whether simple or complex. In [1], the authors introduced the
UML Statechart, which has advanced elements that can
describe a complex system’s behavior. The simple system’s
behavior consists of a single hierarchical statechart and a few
modules to express the behavior. An example of a simple
system is a traffic light system [2], [3]. Meanwhile, the
complex system’s behavior consists of multiple hierarchical
statecharts and multiple modules to express it. The example of
complex systems is surgical consultation in the outpatient
clinic health system [4]. However, the UML Statechart lacks

formal semantics that ambiguously express the behavior
modeling. Recent research has addressed the problem that the
UML Statechart cannot be used for verification processes [5],
[6], even though software engineers widely use the UML
Statechart for modeling simple or complex systems. In [7], the
authors introduced the Extended Hierarchical Automata
(EHA), an extension of finite state machines that supports the
hierarchical structure and defines the operational semantics of
EHA. The EHA is one of the formal semantics behavior
modeling that represents the UML Statechart. Therefore, the
UML Statechart can be used for the verification process to
check the system’s correctness.

Consequently, model checking can be employed as a
verification method. Model checking is an automated process
for verifying the system’s behavior. However, it requires a
formal model and a formal temporal logic specification to
check the system’s correctness. If the model checker does not
produce a counterexample, the system is proven to satisfy its
requirements [8]. In this context, the Model-Based Software
Engineering (MBSE) approach enables the formalization of
semi-formal models into formal models through either direct or
indirect translation using translation rules. In the case of
indirect translation, the model is first transformed into an
intermediate modeling language. Examples of such
intermediate languages include the Common Modeling
Language (CML) [8], Gamma statechart [9], and Abstract
Rule-based [10]. CML is an intermediate modeling language
for formal verification, serving as a bridge between UML
Statechart and the model checkers.

Modern systems are rapidly evolving and increasing in
complexity to satisfy growing requirements. Such systems
often incorporate multiple hierarchical statecharts within their
behavior modeling diagram, which significantly complicates
the verification process. Therefore, recent research has
proposed numerous methods that can formalize the UML
Statechart [11], [12], [13], transforming it into a formal model
that can be used for the verification process. Nevertheless, with
the complexity of the systems developed nowadays, numerous
complex interactions are involved [13]. In [9] and [14], the
authors mentioned that integrative approaches are limited to
models with fewer modules or lack efficient compatibility with
formal verification and validation frameworks. Moreover,
reference [15] stated that the CML supports modeling only a
single hierarchical statechart, which limits its applicability to
complex systems. Therefore, both statements show that recent

640 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

approaches have focused on verifying a single hierarchical
statechart. However, modeling complex systems involves
multiple hierarchical statecharts. It is crucial to address CML’s
limitations and resolve this problem to ensure the correctness
of complex systems. Therefore, this study aims to propose an
enhancement of the CML that is capable of verifying systems
with multiple hierarchical statecharts, which represent the
complex behavior of the systems.

The remainder of this study is organized as follows:
Section Il reviews related works on formal modeling, semi-
formal modeling, theorem proving, model checking, MBSE,
and formal verification of UML Statechart, particularly for
multiple hierarchical statecharts. Section III presents the
research framework and the proposed method, which includes
the formal definition of E-CML and the development of new
translation rules. Section IV discusses the results and
discussion, illustrating the case study using the proposed
method. Section V provides a conclusion, summarizes the
findings, and outlines potential directions for future work.

II. RELATED WORKS

A. Formal Modeling

Formal modeling is an unambiguous language with precise
specification built using mathematical and formal methods
[16]. Therefore, the formal modeling can specify the
requirements, designs, and behavior of the system. It provides
the formal semantics of the systems. Examples of formal
modeling are Petri Nets, Vienna Development Method (VDM),
and Kripke structures. Petri Nets are directed, bipartite
multigraphs consisting of places, transitions, and arcs. Fuzzy
Petri Nets (FPN) are extensions of Petri Nets and are effective
in modeling uncertain biological systems. In [17], the authors
reviewed the FPN and categorised it into three types: basic
Fuzzy Petri Nets, Fuzzy Quantitative Petri Nets, and Petri Nets
with Fuzzy Kinetic Parameters. In [18], the authors proposed
an extension of Coloured Petri Nets (CPN) known as catalog-
nets (CLog-nets) to integrate business processes with different
data types. In [19], the authors utilized Petri Nets to generate
secure smart contracts in blockchain systems, enabling the
detection of deadlock at an early stage.

Recent studies have used the VDM language to model and
verify complex systems. VDM Specification Language (VDM-
SL) is a formal specification language with an extensive
executable subset and a toolbox that verifies models. In [20],
the authors mentioned that the VDM-SL is a robust
specification that can define the system’s functionality without
ambiguity. They proposed an approach that serves as a pre-
formal notation for the natural language specification before it
is implemented in VDM-SL. In [21], the authors proposed an
Internet of Things (IoT) based formal model for vehicle ad hoc
networks (VANETs) using VDM-SL. The proposed formal
model will be transformed into VDM-SL and verified using the
VDM toolbox to check the system’s correctness and absence of
deadlocks. Meanwhile, reference [22] introduced the first
approach to developing the formal semantics of a simulation
language in a VDM-SL. They proposed a RE: MODIYC that
can describe and examine the formal specification of VDM-SL
after initial implementation.

Vol. 16, No. 12, 2025

The Kripke structures are a mathematical model used in
model logic to represent the possible states and the
relationships among them. However, the Kripke structures
formalize model logic by extending classical propositional
logic with model operators such as necessity and possibility. In
[23], the authors proposed an alternative method that
transforms a given Kripke structure and the corresponding LTL
formal properties into a Buchi automaton, where the number of
accepting states is determined based on the LTL formal
properties. Meanwhile, reference [24] introduced an approach
to verify mobile-interactive systems. They model the properties
of dynamic interaction using Variable Petri Nets (VPN). The
VPN is transformed into the Kripke structures using a proposed
algorithm and verified with a model checker. In [25], the
authors proposed formalizing natural language using the UML
use case diagram with the Kripke structures. They use the
NuSMV model checker to verify whether the formal
specification is consistent with the Kripke structures model.
However, there are some previous studies that use semi-formal
modeling to model the systems.

B. Semi-Formal Modeling

Semi-formal modeling is an ambiguous language in which
the modeling lacks formal semantics, but it provides a better
understanding of modeling. Therefore, semi-formal modeling
is more popular than formal modeling because it does not
require as much time and effort to understand the model.
Examples of semi-formal modeling are UML and System
Modeling Language (SysML). The UML is a graphical
notation language used to define and document a system during
software development [26]. In [27], the authors introduced a
hierarchical modeling formalism based on UML Statechart
with generally distributed (GEN) durations, aimed at ensuring
modeling simplicity and efficient evaluation of steady-state or
transient behavior up to absorption. In contrast, reference [28]
used the new semantics of the UML Statechart to model the
digital watch. In [29], the authors proposed using a restricted
version of the Statechart (Revised Statechart) to model the
behavior of autonomous robotic surgery. In [30], the authors
used the UML Sequence Diagram to express the requirements
of safety-critical systems incrementally.

However, another semi-formal modeling is SysML, which
describes a hybrid system of hardware and software. SysML is
a graphical modeling language that is intuitive and widely used
for modeling complex systems, comprising hardware and
software. In [31], the authors proposed an approach to analyze
the safety of complex systems. They model the structure of the
system using the SysML Block Definition Diagram (BDD)
while utilizing the SysML State Machine Diagram to describe
the system’s behavior. In [32], the authors introduced the
transformation of the UML/SysML Activity Diagram to Petri
Nets. Meanwhile, reference [33] used the SysML Activity
Diagram to model the system’s behavior and transform the
model into the input language of the Next-generation Unifying
Symbolic Model Verifier (nuXmv) model checker. Therefore,
there are two types of modeling language, which are formal
modeling and semi-formal modeling. However, both models
require a formal verification approach to ensure their
correctness. Formal verification is the process of ensuring that

641 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

a system satisfies certain specifications, typically using two
approaches: theorem proving and model checking [34].

C. Theorem Proving

Theorem proving is a formal method that can establish the
validity of theorems. The model and specification of the
systems are described in a mathematical statement. The
verification process of theorem proving involves proving
theorems about the system using the rules of the inference
process. In [35], the authors introduced the automated prover
and proof assistant, GPT-f, to analyze the performance of the
Metamath formal language. In [36], the authors proposed the
transformation rules from the UML Activity Diagram to
Formal Calculus for Liveness and Zero state (FoCaLiZe), a
proof-based formal language, and verified the proof-based
formal language with the Zenon theorem prover. In [37], the
authors identified a barrier for researchers using machine
learning for theorem proving in Large Language Models
(LLMs). Therefore, they introduced LeanDojo, an open-source
Lean framework designed to overcome this barrier, which
enables researchers to utilize machine learning with LLMs to
enhance the effectiveness of theorem proving.

D. Model Checking

Model checking is one of the formal verification
approaches and an automated process for verifying the
behavior of a software system. The model checking approach
requires a formal model and a formal temporal logic
specification to check the correctness of the systems. In [11],
the authors enhanced their previous work by formalizing the
concurrent element of the UML Statechart, which involves
multiple hierarchical statecharts. In [38], the authors used
Maude as the formal language for the Internet of Things (IoT)
software systems. They use Maude’s model checker and Linear
Temporal Logic (LTL) specification to verify the IoT software
system. Meanwhile, reference [33] utilized the nuXmv to
verify Autonomous Artificial Pancreas Systems (AAPS). They
used the LTL specification in the nuXmv model checker to
verify the APPS system. The model checking approach is
widely used due to the MBSE technique, which enables the
formalization of modeling language through a process. The
transformation process has two types: direct transformation and
indirect transformation, which require an intermediate
language for the indirect transformation.

E. Model-Based Software Engineering

MBSE provides a platform that enables the definition of
complex, multidisciplinary systems. However, the MBSE
approach requires formal verification to ensure the correctness
of complex systems. Therefore, the MBSE approach provides
transformation rules to transform the model, either direct

Vol. 16, No. 12, 2025

transformation or indirect transformation. Some previous
studies use the direct transformation in their approaches.

In [39], the authors identified that the UML State Machine
Diagram lacks formal semantics. Therefore, they proposed
direct transformation rules from UML State Machine Diagram
to Petri Nets and verified them with the Time Petri Nets
Analyzer (TINA) to check correctness, safety, and liveness. In
[31], the authors verified the Integrated Modular Avionic
(IMA) system by proposing the direct transformation rules.
They transform the SysML BDD and SysML State Machine
Diagram into the input language of the NuSMV model
checker. Meanwhile, reference [13] also introduced direct
transformation rules from the SysML State Machine Diagram
to the input language of the NuSMV model checker for
verifying the driving control system. Although both research
utilize the SysML State Machine Diagram, their approaches
and direct transformation rules differ slightly.

However, some previous studies use the indirect
transformation, which introduces an intermediate language to
solve their problems. In [8], the authors introduced the CML,
an intermediate language to formalize the UML Statechart.
They proposed transformation rules to transform the UML
Statechart into the CML and translation rules to translate the
CML into the input language of the SMV model checker. In
[9], the authors proposed the Gamma Statechart, an
intermediate language that uses the formal semantics of
Yakindu Statechart. They also proposed translation rules to
translate the Gamma Statechart into Timed Automata (TA). In
[14], the authors proposed transformation rules to transform the
SysML State Machine Diagram to the Gamma Statechart. They
also proposed the translation rules to translate the Gamma
Statechart into the Uppsala Time Automata Laboratory
(UPPAAL). Meanwhile, reference [10] used the Abstract
Rules-based language as an intermediate language to formalize
the UML State Machine Diagram. Previous studies show that
most researchers utilize the UML Statechart and SysML State
Machine Diagram. However, they may not encompass all
elements of the UML Statechart that can represent a complex
system.

F. Formal Verification of UML Statechart

Table 1 illustrates previous studies related to the formal
verification of UML Statechart. We consider approaches that
use either direct transformation or indirect transformation. We
also examine which elements of the UML Statechart are
addressed in these approaches. Our focus is on the system
complexity, which can be decomposed into multiple modules.
Therefore, we consider whether the approaches handle a single
hierarchical statechart or multiple hierarchical statecharts. The
symbols are indicated as “/” and “X” refer to “have” and “have
not”, respectively.

TABLE I. PREVIOUS STUDIES RELATED TO THE FORMAL VERIFICATION OF UML STATECHART

Journals | Intermediate Language Approach Transformation Rules Single Hierarchical Statechart Multiple Hierarchical Statechart
[15] CML Indirect / / X

[11] X Direct / / X

[12] X Direct / / /

9] Gamma Statechart Indirect X / /

[13] Abstract Rule-based Indirect X / X

[31] X Direct / / X

642 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Some previous studies [15], [9], [13] used an intermediate
language to formalize UML Statechart. They employed the
indirect transformation approach to verify the models and
proposed a few transformation rules to transform the UML
Statechart into the intermediate language and subsequently
translate it into the model checker’s formal model. However,
two of these studies [9], [13] used an intermediate language
without specifying whether they applied the translation rules in
their approaches. The remaining studies [11], [12], [31] did not
use an intermediate language; instead, they employed the direct
transformation approach, which transforms the UML Statechart
directly into the formal model. They also proposed a few
transformation rules to guide this transformation.

As mentioned earlier, we focus on system complexity.
Most previous studies have addressed a single hierarchical
statechart, which represents a relatively simple system.
However, only two studies have considered multiple
hierarchical statesharts, despite modem systems being built
with considerable complexity. Therefore, this observation
motivates us to focus on verifying systems with multiple
hierarchical statecharts using an indirect transformation
approach. Specifically, we aim to enhance the CML by
introducing new elements into its formal definition and by
creating new translation rules that define multiple hierarchical
statecharts and complex systems. The following section will
explain the research framework and proposed method.

III. PROPOSED METHOD

A. Research Framework

Fig. 1 illustrates the research framework for the proposed
method. It involves four processes: 1) Modeling the UML
Statechart. 2) Exporting to XML Metadata Interchange (XMI)
format. 3) Transforming XMI to Enhancement Common
Modeling Language (E-CML). 4) Translating E-CML to Input
Symbolic Model Verifier (I-SMV).

Process (1) Modeling the UML Statechart: The behavior of
the system is modeled with the UML Statechart by using the
Altova UModel software. The Altova UModel software
enables modeling of UML Statechart features, including
composite state, orthogonal state, history pseudostate (deep and
shallow), and inter-level transitions. Process (2) Exporting the
UML Statechart to XMI format: The Altova UModel software
provides features for exporting the UML Statechart into the
XMI format. In the XMI format, there are <region>,
<subvertex>, <transition>, and <trigger> tags that refer to the
regions, states, transitions, and triggers of the UML Statechart,
respectively. Process (3) Transforming XMI to E-CML: The
transformation process is based on the tag elements from the
XMI format and the formal definition of E-CML. The
<region> tags are transformed into the region. The
<subvertex> tags are transformed into the state. The
<transition> tags are transformed into the transition, and the
<trigger> tags are transformed into the trigger. Process (4)
Translating E-CML to I-SMV: The translation process is based
on the formal definition of I-SMV. Four translation rules are
involved in this process, which translate the elements of E-
CML into the elements of [-SMV.

Vol. 16, No. 12, 2025

UML Statechart export XML Metadata
» Interchange
(Altova Uhodel) (3XMT)
transform
Input Symbolic translate Enhancement
Model Checker - Common Modeling
(I-8M V) Language (E-CML)

Fig. 1. Research framework.

B. Enhancement of Common Modeling Language

The E-CML is an extension of the CML based on the
features of the UML Statecharts. Definition 1 defines the
formal definition of E-CML as follows:

Definition 1: Enhancement Common Modeling Language
E-CML =<8, So, S, G, T, Regions, L, Gp, R>
Where:

S =finite set of states, where each state, s, is declared one
of the two types: {AND, OR}.

So = set of initial states (So S S). So forms a valid initial
transition relation.

Sc = set of states that form a valid state configuration.
G = finite set of triggers.

T = finite set of transition relations, T=Sx Gx S’.
Regions = finite set of regions.

Gp =finite set of group components. Each group
component consists of states, an initial state, triggers,
transitions, and a region. Gp = <S, So, S, G, T,
Regions>.

L= S — Gp’ is the group component-level function. If
Gp’ € L(S), then Gp’ is an immediate descendant of
S. The function of L describes the hierarchical state of
the model.

R = relation between the superstate and group
components, Gp.

There are two types of E-CML states: AND and OR. The
AND state models concurrency by composing multiple
simultaneous group components, Gp. The AND state is a
superstate for the group components, Gp, of the statechart that
are concurrently active. The descendants of the AND state
must always be the OR state. The OR state is a state that
supports one of the states inside another, providing a hierarchy
in the behavior model. The OR state has states related to each
other by an exclusive OR relationship. The leaf states of the E-
CML must always be OR states. Each OR state has its region.

643 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Each region is represented as the group component, Gp, in E-
CML, consisting of the initial state, So, states, S, transitions, T,
triggers, G, and the region. This also includes the outermost
region represented as a group component, Gp. At runtime, E-
CML allows multiple active states, referred to as a state
configuration, Sc. A state configuration, Sc, always contains
one state from the AND state and all states from the OR states.

Fig. 2 illustrates an example of the UML Statechart model
that consists of multiple hierarchical statecharts. It shows there
are basic states (A, D, G, H, I, J, M, N, O, and P), AND states
(B and C), and OR states (E, F, K, and L). B state contains two
OR states (E and F), E state contains two basic states (G and
H), and the F state contains two basic states (I and J).
Meanwhile, the C state contains two OR states (K and L), the
K state contains two basic states (M and N), and the L state
contains two basic states (O and P).

The operation of the E-CML is described using the step
semantics. The state configuration, S¢, of E-CML starts with
the initial state, So. In E-CML, when the state configuration, Se,
includes a composite AND state, all of its regions are active
concurrently. Each region typically behaves like an OR state,
meaning exactly one substate within each region is active at
any time.

For example, the state configuration for the AND states in
Fig. 2 should be (B, G, I) or (B, H, J) and (C, M, O) or (C, N,

Vol. 16, No. 12, 2025

P). In E-CML, a transition will always occur at each step in
each active state configuration, Sc. An implicit transition is
triggered if no explicitly modeled transitions are enabled. The
synchronization of E-CML allows it to be flattened into
sequential automata, preserving the formal model semantics.
Each single flattened component E-CML is equivalent to a
sequential automaton [6].

Fig. 3 illustrates the flattened hierarchical E-CML structure
of the UML Statechart model in Fig. 2.

Therefore, the single flattened component E-CML is known
as the group component, Gp, in Fig. 3 as follows:

Gp_1=({A,B,C,D}, A, {El, E2, E7, E8, E13, E14}, {(A,
El, B), (B, E2, A), (B, E7, O), (C, E8, B), (C, E3,
B), (C, E13, D), (D, E14, C)}, Region 1)

Gp 2 = ({G, H}, G, {E3, E4}, {(G, E3, H), (H, E4, G)},
Region 2)

Gp_3=({LJ}, L, {E5, E6}, {(I, ES, J), (J, E6, I)}, Region
3)

Gp_4 = ({M, N}, M, {E9, E10}, {(M, E9, N), (N, EI0,
M)}, Region 4)

Gp 5 = ({0, P}, O, {E11, E12}, {(O, El1, P), (P, E12,
0)}, Region 5)

B c
£ E3 K E9
E1 E7 >
R G H M N E13
D
D E4 E10 f—
E2 M E14
_____________________________________ E8 e
3
E5 L E11
>] 0 p
E6 E12
Fig.2. UML Statechart model.
Gp-1
E1l E7 E13
Lewvel 1 A -
< 8 € e D
E2 Ea —— El4
Gp-2 Sp-3 Gp-4 Gp-5
Lewvel 2 E3
ES
ES E11
G H 3 ™M I
N o b
E4 EG
E10 12

Fig. 3. Flattened hierarchical E-CML structure.

The sequence of elements in the group component, Gp,
follows the sequence of variables in the formal definition of the
group component, Gp, as given in Definition 1. The group
component, Gp, interacts through events. In the following step,
an event may trigger a transition in the system’s synchronous

group component, Gp. If the event triggers a transition from a
state and the result is a group component, Gp, then the state is
referred to as a superstate. For example, B is the superstate of
Gp_2 and Gp_3, while C is the superstate of Gp 4 and Gp 5.

This situation creates inter-level transitions. The inter-level

644 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

transitions cross hierarchy boundaries. If a transition leaves a
superstate, the firing of all transitions containing the group
components, Gp, of the superstate is suppressed, as represented
by the dotted line in Fig. 3. This creates the relations, R,
between the superstate and group components, Gp. Therefore,
the group component level function, L, is created. The
superstate’s group component level function, L, is Level 1. The
descendant of the superstate’s group component level function,
L, is Level 2. Therefore, the relation, R, between superstate and
group components, Gp, is defined as follows:

Gp_2: receive a message from Gp 1
Gp_3: receive a message from Gp_1
Gp_4: receive a message from Gp_1
Gp_5: receive a message from Gp_ 1

Gp_1: receive a message from Gp 2, Gp 3, Gp 4, and
Gp_4

In the E-CML, there are two processes involved:
transforming the UML Statechart to the E-CML and translating
the E-CML to the I-SMV. Therefore, we use the formal
definition of I-SMV that is defined by [6]. The formal
definition of [-SMV is as follows:

Definition 2: Input Symbolic Model Verifier
I-SMV =<M, V, N, Y>

Where:

M = set of finite modules

V = set of finite state variables

N = set of next states

Y = relation between modules

The I-SMV is modular. The high-level module is called the
main module, while the other modules are known as sub-
modules. In a module, M, there are state variables, V, to
describe the module. A state evolves from one state to another
through a next operator, N. The relation, Y, between one
module and another is described by using a set of parameters.
A set of rules guides the translation from E-CML to [-SMV.

C. Translation Rules of Enhancement of Common Modeling

Language

Based on Definition 2, several rules of translation are
created to map the E-CML, which is the source model, to the I-
SMV, the target model. The translation from the source model
to the target model can be defined by using a set of rules [31].
In the I-SMV, the group component, Gp, of E-CML
corresponds to the module, M. The set of states, S, and triggers,
G, corresponds to the state variables, V. The transitions, T,
correspond to the next state, N. Lastly, the relation, R, between
the superstate and group components, Gp, corresponds to the
relation between modules, Y. The translation rules for mapping
the E-CML to the I-SMV are defined as follows:

Rule 1 (Module): Let Grp be the set of group components
in the E-CML. Each Grp; € Grp is modeled as a module
declaration in I-SMV as follows:

Vol. 16, No. 12, 2025

Module Grpi (argsi, ,argi)
where,i=1,....,n,and n is the maximum integer.

If Grpi € Grp does not exist, then the execution must be
terminated. In I-SMV, argjrefers to the actual parameter of a
module within the main module.

Rule 2 (Variable): Let St be the set of states and Gr be the
set of triggers in the E-CML, Sti € St is declared inside a
module as follows:

Sti:si,....,snt1; if Stis an integer type

Sti: {s1,....,sa};if Stis enumerated type

Sti: {}; if St is a Boolean type

Gr; € Gris declared inside a module as follows:
Gri: gi,. ..., gar; if Gr is an integer type

Gri: {g1,...., g}; if Gr is enumerated type

Gri: {}; if Gr is a Boolean type

Rule 2 is used if and only if the represented module exists
and either St # {} or Gr # {}.

Rule 3 (State change): Tr be the set of transitions. In E-
CML, state changes may occur with or without a trigger, Gr.
This implies changes between the source state, Ss, and the
target state, St, with or without the presence of the trigger. The
state changes in I-SMV are defined as follows:

next (St): =
case {
Tri: St; if gr € Gr, Gr # {}
Tri: Ss; if gr € Gr, Gr # {}
default St;
15
The first statement defines the state changes caused by

triggered transitions, while the second statement defines the
state changes caused by null-triggered transitions.

Rule 4 (Relation between modules): Let St-Grpy.Rs, St-
Grpe.Re, St-Grpa.R4, and St-Grpe.Re are state variables for Grp..
Let St-Grpa.Ra is the state variable for Grps, Grpe, Grpd, and
Grpe. The relation between those levels is defined as follows:

Module main()

St-Grps : Grps (St-Grpa.Ra);
St-Grp. : Grpe (St-Grpa.Ra);
St-Grpa : Grpd (St-Grpa.Ra);
St-Grpe : Grpe (St-Grpa.Ra);
St-Grpa : Grpa (St-Grpa.Ra);

St-Grpa, St-Grps, St-Grpe, St-Grpd, and St-Grpe are state
variables in the main module. In I-SMV, the arguments to a
module are defined by the state variable of the destination
message, followed by the state variable ofthe source message.

645 |Page

www.ijacsa.thesai.org

(IJACSA)

IV. RESULTS AND DISCUSSION

In this section, we implement the E-CML for the Surgical
Consultation in the Outpatient Clinic Health System as the case
study. In general, doctors will refer patients for surgical
consultation if they believe the underlying health condition can
be effectively treated through surgery. Following the referral,
the outpatient clinic schedules an appointment with the surgeon
and arranges for samples to be collected if further diagnostic
tests are required. The surgeon evaluates the necessity for an
operation by analysing symptoms and test results during the
consultations. Following a decision to proceed, the patient is
registered on a surgical wait list to ensure an appropriate time
is booked for use of the operating room. Before surgery, the
patient may be educated by the surgeon about the procedure.
When the operating room is already booked, the patient waits
for their scheduled surgery date. Fig. 4 illustrates the UML
Statechart Surgical Consultation in the Outpatient Clinic
Health System.

Fig. 4 illustrates that there are two AND states (“Receiving
referral” and “Receiving treatment”) and four OR states (
“Appointment”, “Diagnostic Test”, “Surgical Waiting List”,
and “Education”). There are three basic states at the outermost
region (“Waiting for referral to clinic”, “At consultation”, and
“Operation booked”), two basic states at the “Appointment”
state (“Pending 1”7 and “Booked”), two basic states at the
“Diagnostic Test” state (“Pending 2 and “Sample taken”), two
basic states at the “Surgical Waiting List” state (“Pending 3”

International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

and “On waiting list”), and two basic states at the “Education”
state (“Pending 4” and “Educated”). This model has five
regions; each OR state has one region, and the other region is
the outermost region. Fig. 5 illustrates the flattened hierarchical
E-CML structure for the Surgical Consultation in the
Outpatient Clinic Health System.

Based on Fig. 5, each flattened is referring to the group
component, Gp, and is defined as follows:

Gp_1 = ({Waiting for referral to clinic, Receiving referral,
At consultation, Receiving treatment, Operation booked},
Waiting for referral to clinic, {referral to clinic, patient referral
at clinic, treatment decided, booked operation}, {(Waiting for
referral to clinic, referral to clinic, Receiving referral),
(Receiving referral, patient referral at clinic, At consultation),
(At consultation, treatment decided, Receiving treatment),
(Receiving treatment, booked operation, Operation booked)},
Region 1).

Gp 2 = ({Pending 1, Booked}, Pending 1, {make
booking}, {(Pending 1, make booking, Booked)}, Region 2)

Gp_3 = ({Pending 2, Sample taken}, Pending 2, {take
sample}, {(Pending 2, take sample, Sample taken)}, Region 3)

Gp_ 4 = ({Pending 3, On waiting list}, Pending 3,
{register}, {(Pending 3, register, On waiting list)}, Region 4)

Gp_5 = ({Pending 4, Educated}, Pending 4, {educate},
{(Pending 4, educate, Educated)}, Region 5)

A QVaiting for referral to diniD SR : ,——-9{ At consullation : : Operation booked

e e e] o e s B »
sl ide ol oo * patient referral at dlinit treatment decided - - " | booked operation’
e e \/
/ Receiving referral iy Receiving treatment
Appointment Surgical Waiting List
make booking register
Pending 1 @ Pending 3 On waiting fist
Diagnostic Test Education
take sample educate
Pending 2 Sample taken 2 Pending 4 Educated
. -
Fig.4. UML Statechart surgical consultation in the outpatient clinic health system.
Gp_1
referral patient referral treatment o booked Operati
Level 1 Waiting for to clinic Receiving at clinic At i decided Receiving operation Eeri Izn
referral to clinic referral consultation treatment ooke
Gp_2 Gp_3 Gp_4 Gp_5
Appointment Diagnostic Test Surgical Waiting List Education
Level 2 pendin make . take . st on) educate
g booking Booked pending sample Sample Pending | register waiting Pending ,| Educated
1 » 2 »| taken 3 . 4 "
list
Fig.5. Flattened hierarchical E-CML structure for surgical consultation in the outpatient clinic health system.

646 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

The relation, R, between superstate and group components,
Gp, is defined as follows:

Gp_2: receive a message from Gp_1
Gp_3: receive a message from Gp_1
Gp_4: receive a message from Gp_1
Gp_5: receive a message from Gp_1

Gp_1: receive a message from Gp 2, Gp 3, Gp 4, and
Gp 4

We use the translation rules of E-CML (Rule 1-4) to
translate the E-CML into the I-SMV. Rule 1: Each group
component, Gp, in E-CML is translated to the module’s name
in the I-SMV, followed by the list of arguments. Each
module’s arguments are based on the relation, R, which is
translated in Rule 4. Therefore, the modules are defined as
follows:

MODULE Gp 2 (gp 1)
MODULE Gp 3 (gp_1)
MODULE Gp 4 (gp 1)
MODULE Gp 5 (gp_1)
MODULE Gp_1 (gp_2,gp 3, gp_4,gp_5)

Rule 2 is regarding the variables declared for each module.
All states, S, and triggers, G, in E-CML are defined as follows:

MODULEGp 2 (gp_ 1)
VAR
state: {Pending 1, Booked};
trigger2: {make booking};
MODULE Gp 3 (gp_1)
VAR
state: {Pending 2, Sample taken};
trigger3: {take sample};
MODULE Gp 4 (gp_1)
VAR
state: {Pending 3, On waiting list};
triggerd: {register};
MODULEGp 5 (gp_1)
VAR
state: {Pending 4, Educated};
trigger5: {educate};
MODULEGp 1 (gp_ 1)
VAR

state: { Waiting for referral to clinic, Receiving
referral, At consultation, Receiving treatment,
Operation booked};

Vol. 16, No. 12, 2025

trigger6: {referral to clinic, patient referral at clinic,
treatment decided, booked operation};

Rule 3 is regarding the transitions, T, in the E-CML, which
are translated to the next (state) in the I-SMV. Therefore, the
next (state) in the I-SMV is defined as follows:

MODULE Gp_2 (gp_1)

next (state):= case

((state = Pending 1) & (trigger2 = make
booking)): Booked;

1: state;
esac;

MODULE Gp_3 (gp_1)

next (state):= case

((state = Pending 2) & (trigger3 = take sample)):
Sample taken;

1: state;
esac;

MODULE Gp_4 (gp_1)

next (state):= case

((state = Pending 3) & (triggerd = register)): On
waiting list;

1: state;
esac;

MODULE Gp_5 (gp_1)

next (state):= case

((state = Pending 4) & (trigger5 = educate)):
Educated,;

1: state;
esac;

MODULE Gp 1 (gp 2,gp 3,gp 4,gp 5)

next (state):= case

((state = Waiting for referral to clinic) & (trigger6 =
referral to clinic)): Receiving referral;

((state = Receiving referral) & (trigger7 = patient
referral at clinic)): At consultation;

((state = At consultation) & (trigger8 = treatment
decided)): Receiving treatment;

647 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

((state = Receiving treatment) & (trigger9 = booked
operation)): Operation booked;

1: state;
esac;

Rule 4 is regarding the relation, R, between superstate and
group components, Gp, in E-CML. In -SMV, Rule 4 is
translated into MODULE main. The state variable of the
MODULE main is defined as a call module for the
corresponding group component. The arguments in each call
module are the state variable of the source state, followed by its
message passing. The relation between modules is defined as
follows:

MODULE main:
VAR
gp_2:Gp_2 (gp_1);
gp_3:Gp_3 (gp_1);
gp_4: Gp_4 (gp_1);
gp_5:Gp_5 (gp_1);
gp_1: Gp_1 (gp_2,8p_3, gp_4,gp_5);

Based on the relation between modules above, gp 2, gp 3,
gp_4, and gp 5 are state variables used as arguments for the
module in Gp_1. The gp 1 is the state variable for the modules
in Gp 2, Gp_3, Gp 4, and Gp 5. We use the SMV model
checker to verify the UML Statechart in Fig. 4. The formalized
properties need to be specified on the “SPEC” keyword in the

Vol. 16, No. 12, 2025

I-SMV file. Table II shows the list of formalized properties,
descriptions, and the results.

A. Discussion

In this section, we discuss and explain the results that were
obtained from the proposed method. All the formalized
properties, which cover the multiple hierarchical statecharts,
are verified as TRUE. P1 is verified as TRUE because the
specification defines that the patient can book an appointment
and take the diagnostic test in the future, even though the
patient is not waiting for the referral. P2 is verified as TRUE
because the specification states that the patient always receives
a consultation from the doctor after completing the booking
appointment and taking the diagnostic sample test. P3 is
verified as TRUE because the specification defines that the
patient can always book the operation date after registering on
the waiting list and getting education about the surgery from
the surgeon. P4 is verified as TRUE because the specification
defines that the patient can be on the waiting list for an
operation and can receive education about the surgery from the
surgeon after the patient receives a consultation from the
surgeon.

According to reference [15], correctness is defined as
adherence to the specifications and the way software behaves
when these correctness specifications are applied. The results
indicate that E-=CML can serve as an effective intermediate
language, as the verification of the specifications returned a
result of TRUE. Moreover, E-=CML is able to verify complex
systems that have multiple hierarchical statecharts, which are a
common feature for modern complex systems.

TABLEII. FORMALIZED PROPERTIES, DESCRIPTIONS, AND RESULTS
Property Description CTL Result
| e o Y P A Lt~ Wi for ol chi) b
future PP g & (gp_2.state =Booked & gp_3.state = Sample_taken)) True
A patient who completes a booking and has taken a sample | AG (gp_2.state = Booked & gp 3.state = Sample_taken) — EF
P2 : . L . - . - - True
for a diagnostic test is eligible for a consultation. (gp_1.state =At consultation)
A patient registered for the operation and received education | AG ((gp_4.state = On_waiting_list & gp_5.state = Educated) — EF
P3 . - .= — - True
from the surgeon can book the operation date. (gp_1.state =Operation_booked))
The patler'lt. whpm the surgeon has consulte'd can be placed AG ((gp_lstate = At consultation) — EF (gp 4state =
P4 on the waiting list for the operation and receive education on D - - True
. On_waiting_list & gp_5.state = Educated))
the operation.

TABLE III. COMPARISON OF THE E-CML WITH THE OTHER APPROACHES
Method Approach Intermediate Language Substate Orthogonal State History State (depp/shallow)
E-CML Indirect transformation E-CML / / X
Colored Petri Nets [11] Direct transformation - / / /
Gamma Statechart [9] Indirect transformation Gamma Statechart / X X

Table III illustrates a comparison between E-CML and
other approaches. We compare E-CML with the approaches
proposed in [11] and [9]. We also consider the UML Statechart
elements covered by each approach during the verification
process. The symbols “/” and “X” indicate “supported” and
“not supported”, respectively.

In [11], the authors proposed a method based on a direct
transformation approach, which transforms one model into
another without using an intermediate language. The authors

utilized UML Statechart to express the system’s behavior and
formalized it into the CPN. This approach uses the
transformation rules to map the elements of the UML
Statechart to CPN. In contrast, E-CML provides a formal
definition that represents the elements of the UML Statechart.
It also includes transformation rules to transform E-CML into
an I-SMV file, which is used as the input language for the
verification process with the SMV model checker. The E-CML
helps and encourages the user to apply the model checking
method without requiring knowledge of SMV syntax or CPN.

648 |[Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

As discussed, both approaches are capable of verifying
multiple hierarchical statecharts. However, some UML
Statechart elements are not included in E-CML, whereas they
are included in the approach proposed in [11], such as history
state (deep and shallow).

Meanwhile, reference [9] proposed a method based on an
indirect transformation approach, which same approach used
by E-CML and requires an intermediate language. The authors
utilized UML Statechart to express the system’s behavior and
transformed it into the TA. This approach also considers the
transformation of ports in the physical components. In contrast,
E-CML focuses only on behavioral aspects and does not
transform or include physical components. As discussed, both
approaches are capable of verifying multiple hierarchical
statecharts. However, some UML Statechart elements are not
included in the approach proposed in [9], whereas they are
included in E-CML, such as orthogonal states. Nevertheless,
both approaches do not include the history state (deep and
shallow).

V. CONCLUSION

This study presents a proposed solution for verifying
complex systems that are inherently more intricate and difficult
to verify. Modem systems often incorporate multiple
hierarchical statecharts within their behavior modeling
diagram, which significantly complicates the verification
process. Therefore, E-=CML, an enhancement of CML, helps
the users verify complex systems with multiple hierarchical
statecharts and ensure their correctness. E-CML introduces
group components comprising an initial state, a set of states,
transitions, triggers, and a region, to formally differentiate the
group components from superstates. It creates new translation
rules to define multiple hierarchical statecharts and complex
systems that relate to the group components. E-CML
demonstrates that it can verify the formalized properties of
multiple hierarchical statecharts model. As a result, all of the
formalized properties are verified as TRUE. Thus, E-=CML
enables verification of unverified complex systems. However,
E-CML has a limitation in that it cannot verify the history
states, including either the deep or shallow pseudostate. This
feature is an important element of the UML Statechart that can
represent the behavior of complex systems. Some modemn
systems also include a history state in the behavioral models to
store the last active state, such as in air conditioning systems.
Therefore, it is important to enhance E-CML to include all
UML Statechart elements capable of representing complex
systems. This enhancement will enable the verification of all
types of complex systems built today.

ACKNOWLEDGMENT

This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

REFERENCES

[1] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8, 231-274.
https://doi.org/10.1016/0167-6423(87)90035-9.

[2] Samat, P. A., Zin, A. M., & Shukur, Z. (2011). Analysis of the model
checkers’ input languages for modeling traffic light systems. Journal of

(3]

(4]

(5]

(6]

[7]

(8]

]

[12]

[13]

[15]

[16]

[17]

[18

[}

Vol. 16, No. 12, 2025

Computer Science, 225-233.

https://doi.org/10.3844/jcssp.2011.225.233.

Souri, A., Ali, M., & Norouzi, M. (2012). Analyzing SMV & UPPAAL
model checkers in real-time systems. AWERProcedia Information
Technology & Computer Science, 1,631-639.

Vasilakis, C., Lecznarowicz, D., & Lee, C. (2008). Application of UML
to the modeling of health care system: An introduction and literature
survey. International Journal of Healthcare Information Systems and

Informatics, 3(4), 39-52. https://doi.org/10.4018/jhisi.2008100103.

Khalid, M., Zafar, N. A, Afzaal, H., Latif, S., Hassan, S., & Rehman, A.
(2019). Automated UML-based formal model of E-Health system. In
2019 13th International Conference on Mathematics, Actuarial Science,
Computer Science and Statistics (MACS) (pp- 1-6).
https://doi.org/10.1109/MACS48846.2019.9024830.

Muhamad, Z. H., Abdulmonim, D. A., & Alathari, B. (2019). An
integration of UML use case diagram and activity diagram with Z
language for formalization of library management system. International
Journal of Electrical and Computer Engineering, 9(4), 3069-3076.
https://doi.org/10.11591/ijece.v9i4.pp3069-3076.

Mikk, E., Lakhnech, Y., & Siegel, M. (1997). Hierarchical automata as
model for statecharts (extended abstract). In R. K. Shyamasundar & K.
Ueda (Eds.), Advances in computing science—ASIAN 97 (Lecture Notes
in Computer Science, Vol. 1345). Springer. https://doi.org/10.1007/3-
540-63875-X_52.

Samat, P. A.,, & Zin, A. M. (2012). Common modeling language for
model checkers. Journal of Computer Science, 8(1), 99-106.
https://doi.org/10.3844/jcssp.2012.99.106.

Molnar, V., Graics, B., Vords, A., Majzik, I., & Varrd, D. (2018). The
Gamma statechart composition framework: Design, verification, and
code generation for component-based reactive systems. In Proceedings

of the 40th International Conference on Software Engineering:
Companion (pp. 113—116). https://doi.org/10.1145/3183440.3183489.

Grobelna, I. (2020). Formal verification of control modules in cyber-
physical systems. Sensors, 20(18), Article 5154.
https://doi.org/10.3390/s20185154.

André, E., Benmoussa, M. M., & Choppy, C. (2015). Formalising
concurrent UML state machines using coloured Petri nets. In V.-H.
Nguyen, A.-C. Le, & V.-N. Huynh (Eds.), Knowledge and Systems
Engineering (pp.473-486). Springer. https://doi.org/10.1007/978-3-319-
11680-8_38.

Guo, C., Ren, S., Jiang, Y., Wu, P, Sha, L., & Jr, R. B. B. (2016).
Transforming medical best practice guidelines to executable and
verifiable statechart models. In 2016 ACM/IEEE 7th International
Conference on Cyber-Physical Systems (ICCPS) (pp. 1-10).
https://doi.org/10.1109/ICCPS.2016.7479121.

Mabhani, M., Rizzo, D., Paredis, C., & Wang, Y. (2021). Automatic
formal verification of SysML state machine diagrams for vehicular
control systems. SAE Technical Paper. SAE Intemational
https://doi.org/10.4271/2021-01-0260.

Horvath, B., Molnar, V., Andolfato, L., & Gomes, 1. (2020). Model
checking as a service: Towards pragmatic hidden formal methods. In
ACM/IEEE 23rd International Conference on Model Driven
Engineering Languages and Systems (MODELS "20 Companion) (pp. 1—
5). https://doi.org/10.1145/3417990.3421407.

Samat, P. A., Azwarrudin, M. A., Mohd, N., & Admodisastro, N.
(2021). Verifying the correctness of UML Statechart outpatient clinic
based on Common Modeling Language and SMV. The International
Journal of Integrated Engineering, 13(5), 137-145.
https://doi.org/10.30880/ijie.2021.13.05.015.

Singh, A., Parizi, R. M., Zhang, Q., Choo, K.-K. R., & Dehghantanha,
A. (2020). Blockchain smart contracts formalization: Approaches and
challenges to address vulnerabilities. Computers & Security, 88, Article
101654. https://doi.org/10.1016/j.cose.2019.101654.

Liu, F., Heiner, M., & Gilbert, D. (2020). Fuzzy Petrinets for modelling
of uncertain biological systems. Briefings in Bioinformatics, 21(1), 198—
210. https://doi.org/10.1093/bib/bby118.

Ghilardi, S., Gianola, A., Montali, M., & Rivkin, A. (2020). Petri nets
with parameterised data: Modelling and verification. In D. Fahland, C.
Ghidini, J. Becker, & M. Dumas (Eds.), Business Process Management

7).

649 |Page

www.ijacsa.thesai.org

[19]

[20]

—
NS}
—_

—

[22]

[23

—

[24]

[25]

[26]

[27]

(28]

(IJACSA) International Journal of Advanced Computer Science and Applications,

(BPM) 2020. Lecture Notes in Computer Science, 12168 (pp. 55-74).
Springer. https://doi.org/10.1007/978-3-030-58666-9 4.

Zupan, N., Kasinathan, P., Cuellar, J., & Sauer, M. (2020). Secure smart
contract generation based on Petri nets. In R. da Rosa Ringhi, A. M.
Alberti, & M. Singh (Eds.), Blockchain Technology for Industry 4.0 (pp.
73-98). Springer. https://doi.org/10.1007/978-981-15-1137-0_4.

Oda, T., Kusakabe, S., Chang, H.-M., & Larsen, P. G. (2022). VDM-SL
in action: A FRAM-based approach to contextualise formal
specification. In H. D. Macedo & K. Pierce (Eds.), Proceedings of the
20th International Overture Workshop (pp- 5-18).
https://doi.org/10.48550/arXiv.2208.10233.

Igbal, S., Zafar, N. A., Ali, T., & Alkhammash, E. H. (2022). Efficient
ToT-based formal model for vehicle-life interaction in VANETSs using
VDM-SL. Energies, 15(3). https://doi.org/10.3390/en15031013.

Oda, T., Dur, G., Ducasse, S., & Macedo, H. D. (2023).
Implementation-first approach of developing formal semantics of a
simulation language in VDM-SL (arXiv:2303.14944). arXiv.
https://doi.org/10.48550/arXiv.2303.14944.

Rungsetthaphat, N., & Vatanawood, W. (2023). Transformation of
Kripke structure with linear temporal logic formula to Biichi automata.
In 2023 27th International Computer Science and Engineering
Conference (ICSEC) (pp- 1-5). IEEE.
https://doi.org/10.1109/ICSEC59635.2023.10329762.

Yang, R., Ding, Z., Guo, T., Pan, M., & Jiang, C. (2022). Model
checking of variable Petri nets by using the Kripke structure. /EEE
Transactions on Systems, Man, and Cybernetics: Systems, 52(2), 7774—
7786. https://doi.org/10.1109/TSMC.2022.3163741.

Zaman, Q. uz, Nadeem, A., & Sindhu, M. A. (2020). Formalizing the
use case model: A model-based approach. PLoS ONE, 15(4).
https://doi.org/10.1371/journalpone.0231534.

Kog, H., Erdogan, A. M., Barjakly, Y., & Peker, S. (2021). UML
diagrams in software engineering research: A systematic literature
review. Proceedings 2021.

https://doi.org/10.3390/proceedings2021074013.
Carnevali, L., German, R., Santoni, F., & Vicario, E. (2022).
Compositional analysis of hierarchical UML statecharts. IEEE
Transactions on Software Engineering, 48(12), 4762-4788.

https://doi.org/10.1109/TSE.2021.3125720.

Exelmans, J., Van Mierlo, S., & Vangheluwe, H. (2022). A statecharts
interpreter and compiler with semantic variability. In ACM/IEEE 25th
International Conference on Model Driven Engineering Languages and

[29

—

[30]

[34

[}

135

[}

136

[t}

[37]

[38]

Vol. 16, No. 12, 2025

Systems (MODELS 22
https://doi.org/10.1145/3550356.3561569.

Falezza, F., Piccinelli, N., De Rossi, G., Roberti, A., Kronreif, G., Setti,
F., Fiorini, P., Fellow, L., & Muradore, R. (2021). Modeling of surgical
procedures using statecharts for semi-autonomous robotic surgery. /EEE
Transactions on Medical Robotics and Bionics, 3(4), 888-899.
https://doi.org/10.1109/TMRB.2021.3110676.

Chen, X., Mallet, F., & Liu, X. (2020). Formally verifying sequence
diagrams for safety critical systems. In International Symposium on
Theoretical Aspects of Software Engineering (TASE) 2020 (pp. 217—
224). https://doi.org/10.1109/TASE49443.2020.00037.

Wang, H., Zhong, D., Zhao, T., & Ren, F. (2019). Integrating model
checking with SysML in complex system safety analysis. JEEE Access,
7,16561-16571. https://doiorg/10.1109/ACCESS.2019.2892745.

Huang, E., McGinnis, L. F., & Mitchell, S. W. (2020). Verifying SysML
activity diagrams using formal transformation to Petri nets. Systems
Engineering, 23(1), 118—135. https://doi.org/10.1002/sys.21524.

Staskal, O., Simac, J., Swayne, L., & Rozier, K. Y. (2022). Translating
SysML activity diagrams for nuXmv verification of an autonomous
pancreas. 2022 [EEE 46th Annual Computers, Software, and
Applications Conference (COMPSAC) (pp- 1637-1642).
https://doi.org/10.1109/COMPSAC54236.2022.00260.

Mahmoud, A. T., Mohammed, A. A., Ayman, M., Medhat, W., Selim,
S., Zayed, H., Yousef, A. H., & Elaraby, N. (2024). Formal verification
of code conversion: A comprehensive survey. Technologies, 12(12), 1—
28. https://doi.org/10.3390/technologies12120244.

Polu, S., & Sutskever, 1. (2020). Generative language modeling for
automated theorem proving. arXiv.
https://doi.org/10.48550/arXiv.2009.03393.

Abbas, M., Rioboo, R., Ben-Yelles, C., & Snook, C. F. (2021). Formal
modeling and verification of UML activity diagrams (UAD) with
FoCaLiZe. Journal of Systems Architecture, 114(September 2020),
101911. https://doi.org/10.1016/j.sysarc.2020.101911.

Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song, P., Yu, S., Godil,
S., Prenger, R., & Anandkumar, A. (2023). LeanDojo : Theorem proving
with retrieval-augmented language models. 37th Conference on Neural
Information ~ Processing ~ System (NeurlPS 2023), 1-40.
https://doi.org/https://doi.org/10.48550/arXiv.2306.15626.

Fortas, A., Kerkouche, E., & Chaoui, A. (2022). Formal verification of
IoT applications using rewriting logic: An MDE-based approach.

Science of Computer Programming, 222, 102859.
https://doi.org/10.1016/j.scico.2022.102859.

Companion). ACM.

650 |Page

www.ijacsa.thesai.org

