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Abstract—The rapid evolution of deep generative models has 

facilitated the creation of "Deepfakes", enabling the synthesis of 

hyper-realistic facial manipulations that threaten the 

trustworthiness of digital media. While forensic countermeasures 

have been developed to identify these forgeries, deepfake detection 

in real-world scenarios is severely hampered by video compression 

artifacts, which often obscure the subtle pixel-level traces 

exploited by conventional Convolutional Neural Networks 

(CNNs). This study introduces a robust detection framework 

designed specifically to withstand the aggressive compression 

inherent to social media dissemination. We present a hybrid 3D 

architecture that integrates the local spatiotemporal feature 

extraction capabilities of a 3D-ResNet-50 backbone with the global 

context modeling of a temporal Video Vision Transformer. Unlike 

frame-based or joint spatiotemporal attention approaches, the 

proposed model performs fully video-level reasoning and utilizes 

a factorized self-attention mechanism to decouple spatial and 

temporal modeling, thereby preserving stable temporal cues 

under compression while minimizing computational costs. 

Experimental results on the compressed protocols of the 

FaceForensics++ dataset as well as Celeb-DF-v2 and DFDC 

datasets, including cross-dataset generalization evaluation, 

validate the efficacy of this design, demonstrating that our method 

achieves superior detection accuracy and generalization compared 

to existing baselines, particularly on low-quality inputs. 

Keywords—Deepfake detection; compressed deepfake videos; 

low-quality deepfakes; 3D convolutional neural networks; Video 
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I. INTRODUCTION 

Recent advances in deep generative modeling have enabled 
the creation of highly realistic synthetic audiovisual content, 
giving rise to what are commonly referred to as deepfakes [1]. 
A deepfake is a piece of media; typically a video, image, or 
audio clip, created or manipulated using deep neural networks 
to convincingly imitate real individuals or events. Although the 
term has become strongly associated with disinformation and 
online abuse, the underlying technologies offer several 
legitimate and beneficial applications [2]. These include 
privacy-preserving data generation for machine learning, 
synthetic training datasets for rare-event detection, improved 
dubbing in film production, educational reenactments, and 
assistive technologies for individuals with speech impairments. 

Despite these positive uses, deepfakes pose significant 
societal and security risks. High-fidelity manipulations can be 
leveraged to spread political misinformation, facilitate identity 

or financial fraud, generate non-consensual explicit content, or 
erode public trust in digital media [3]. As generative models 
continue to improve in resolution, coherence, and computational 
efficiency, distinguishing authentic content from manipulated 
media becomes increasingly challenging. The pervasive 
dissemination of deepfake videos across social platforms 
exacerbates this issue, contributing to large-scale 
misinformation campaigns and undermining the reliability of 
digital communication ecosystems. 

In response to this adversarial landscape, the forensic 
community has developed a variety of detection algorithms 
designed to identify the subtle, distinct trace anomalies left by 
generative models. However, a critical disparity exists between 
the performance of these detectors in controlled environments 
and their efficacy in real-world deployment [4]. While deepfake 
generation has become increasingly sophisticated, often 
outpacing conventional detection cues, the primary challenge in 
practical application lies in the transmission medium itself. To 
accommodate bandwidth constraints and storage limitations, 
online distribution platforms routinely subject video content to 
aggressive lossy compression standard H.264. This compression 
process introduces a complex, two-fold impediment to forensic 
analysis. First, the quantization inherent in lossy compression 
acts as a low-pass filter, effectively smoothing out the high-
frequency noise patterns and subtle pixel-level artifacts that 
many detectors rely upon as fingerprints of manipulation. 
Second, the compression algorithms introduce their own 
structural noise, such as blocking artifacts and ringing, which 
can mask manipulation traces or mimic them, leading to 
increased false positives. Consequently, the robustness of 
existing state-of-the-art detectors degrades precipitously when 
applied to low-quality, highly compressed media [5]. 
Addressing this vulnerability created by compression, remains 
one of the most pressing open challenges in multimedia 
forensics. 

This study presents a fully video-level approach for robust 
deepfake detection in highly compressed videos, a setting in 
which conventional frame-based detectors often fail due to the 
suppression of spatial and frequency-domain forensic cues. 
While most existing detection methods process videos on a 
frame-by-frame basis using 2D representations, contemporary 
deepfake generation pipelines operate sequentially across time, 
inherently introducing temporal patterns that persist even under 
aggressive compression. Motivated by this mismatch, we 
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formulate compression-robust deepfake detection as an end-to-
end spatiotemporal learning problem. 

To this end, we propose a hybrid spatiotemporal architecture 
that integrates the local representational capacity of a 3D 
convolutional neural network (3D-CNN) with the global 
temporal modeling capability of a factorized self-attention video 
vision transformer. By consistently operating in the 3D domain, 
from feature extraction to long-range temporal reasoning, the 
proposed model jointly captures localized spatiotemporal 
artifacts and global temporal dependencies, enabling improved 
robustness under severe compression and in-the-wild video 
conditions. 

The primary contributions of this work can be summarized 
as follows: 

• We introduce a fully video-level detection framework 
that departs from the dominant frame-based paradigm by 
employing a pretrained 3D-CNN backbone to extract 
joint spatial–temporal representations directly from 
video clips, allowing the model to exploit motion and 
temporal coherence that remain informative in low-
quality, compressed video streams. 

• We employ a factorized attention mechanism that 
separately models spatial and temporal dependencies. 
Ablation experiments demonstrate that this decoupled 
formulation yields more robust performance than joint 
spatiotemporal attention under severe compression, 
suggesting that preserving distinct spatial and temporal 
representations is beneficial for low-quality video 
forensic analysis. 

• We conduct extensive experiments including 
comparisons with state-of-the-art spatial and frequency-
domain methods, and detailed ablation studies which 
demonstrate that the proposed fully 3D spatiotemporal 
approach achieves competitive performance under mild 
compression and consistently superior robustness under 
aggressive compression across multiple benchmarks. 

The remainder of this study is structured as follows: 
Section II introduce deepfake generation and reviews existing 
detection approaches. Section III details the proposed hybrid 
3D-CNN and transformer-based architecture. Section IV 
describes the experimental setup and reports the results. 
Section V provides discussion, analysis, and insights. Section VI 
concludes the study. 

II. RELATED WORK 

A. Deepfake Generation 

Deepfake videos are commonly produced through deep 
generative models that learn statistical representations of facial 
structure, appearance, and motion. Early face-swapping systems 
employed autoencoder-based architectures in which a shared 
encoder mapped facial inputs into a latent representation, and 
identity-specific decoders reconstructed the manipulated output. 
These methods enabled basic identity replacement, but were 
often limited in realism. 

Subsequent advancements in generative adversarial 
networks (GANs) [6] and variational autoencoders (VAEs) [7] 
marked a significant leap in synthesis quality. GAN-based 
models introduced adversarial training mechanisms that 
encouraged the generator to produce content indistinguishable 
from real data, resulting in improved texture fidelity, lighting 
realism, and temporal smoothness. More recently, diffusion 
models have demonstrated state-of-the-art performance in 
photorealistic image and video generation by iteratively 
denoising latent representations and capturing fine-grained 
visual structures. 

These generative architectures underpin the two most 
prevalent and impactful categories of facial manipulation: Face 
Swap and Face Reenactment. 

• Face Swap: This technique involves transferring the 
facial identity of a source individual onto a target person 
within a video. Initial approaches relied heavily on 
autoencoder architectures; however, recent advances 
predominantly utilize generative adversarial networks 
(GANs) to achieve higher-quality and more seamless 
facial replacements, surpassing the limitations of earlier 
methods. 

• Face Reenactment: Unlike identity transfer, face 
reenactment manipulates the facial expressions, head 
poses, and movements (such as mouth and eye 
dynamics) of the target video to mimic those of a source 
video, while preserving the target’s inherent identity. 
This is commonly realized by extracting facial 
landmarks or action units from the source and applying 
them to the target, followed by a GAN-based synthesis 
to produce photorealistic frames faithfully reflecting the 
altered expressions and movements. 

The rapid evolution of these generative technologies has 
triggered an ongoing arms race between increasingly 
sophisticated forgery techniques and the development of 
advanced detection methodologies aimed at mitigating 
emerging threats posed by highly realistic digital manipulations. 

B. Deepfake Detection Approaches 

Despite continuous advancements, deepfake synthesis 
methods remain bound by inherent architectural limitations 
which, inevitably introduce subtle digital artifacts embedded 
within manipulated media. These artifacts can be visually 
identified within individual frames as spatial features, such as 
unnatural facial textures or lighting inconsistencies. 
Additionally, they may manifest as temporal features reflecting 
unnatural movements or inconsistent transitions between 
frames, including irregular expressions or blinking patterns. The 
spatial and temporal cues, while often imperceptible to the 
human visual system, provide critical forensic traces (i.e. 
fingerprints). The challenge of reliably detecting these traces has 
given rise to a diverse spectrum of detection methodologies and 
approaches, which broadly fall into three main categories: 
handcrafted-based feature, deep learning-based feature, and 
multi modal approaches. 
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Fig. 1. Illustration of the proposed deepfake detection system. 

1) Handcrafted-based features approach: This approach 

exploits traditional forensic cues such as inconsistencies in 

color blending, illumination, facial boundaries, and 

compression artifacts. For instance, inconsistent head poses 

indicate manipulation through unnatural geometric variations 

[8]. Face warping artifacts, introduced by affine 

transformations during deepfake synthesis, serve as 

discriminative signals [9]. Detection of blending boundary 

inconsistencies between the forged face and background is 

addressed by the face X-ray technique [10]. Another line of 

research leverages subtle physiological and behavioral 

inconsistencies inherent in deepfakes. Eye blinking patterns, 

typically involuntary and natural, are often absent or abnormal 

in synthesized videos, providing temporal cues for detection 

[11]. Heartbeat-induced photoplethysmographic (PPG) signals, 

reflecting blood flow and skin color variations, are also lacking 

in forgeries, effectively leveraged by Ciftci et al. [12]. 

Furthermore, phoneme-viseme mismatches, arising from a lack 

of synchronization between audio phonemes and lip 

movements (visemes), expose audiovisual inconsistencies 

unique to manipulated content [13]. 

While handcrafted-based methods are effective against early 
deepfakes, it often struggle to generalize to advanced generation 
techniques. 

2) Deep learning-based feature approach: Deep learning-

based feature approaches primarily leverage convolutional 

neural networks (CNNs), vision transformers (ViTs) [14], and 

hybrid spatiotemporal architectures to automatically learn 

discriminative representations. These models capture subtle 

spatial distortions, temporal inconsistencies, and generator-

specific fingerprints that are typically imperceptible to human 

observers, thereby enabling robust detection of deepfake 

content. Afchar et al. [15] proposed MesoNet, a lightweight 

CNN that targets mesoscopic spatial features for detecting 

forged faces. Capsule-forensics [16] employed Capsule 

networks, which are known by their ability to catch hierarchical 

relationships and preserve spatial features better than 

convolutional neural networks. F3Net is a dual-branch network 

that captures both local and global frequency features, 

employing a CNN for classification in deepfake detection [17]. 

SurFake model [18], which identifies manipulations by 

analyzing the surface geometry of faces to capture anomalies in 

surface caused by the forging process. FreMask [19] is a 

method that enhances deepfake detection by applying random 

masks to frequency components during training. This 

frequency-domain augmentation improves model robustness 

and generalization. The work in [20] employs a learnable 

uniform visibility matrix to guide the model in emphasizing 

subtle, imperceptible artifacts that remain in videos even after 

compression. Additionally, plug-and-play modules [21] with 

adaptive notch filters specifically remove compression noise 

while multi-task learning optimizes detection across domains, 

boosting robustness. 

Deep learning methods have become central in deepfake 
detection due to their ability to autonomously learn intricate 
spatial and temporal features that reveal subtle manipulations. 

3) Multimodal approach: Multimodal deepfake detection 

approach integrates multiple sources of information, typically 

combining visual and audio data, to improve detection accuracy 

and robustness. By fusing complementary features such as 

facial expressions, lip movements, voice characteristics, and 

audio-visual synchronization, these methods aim to capture 

inconsistencies that are difficult to detect using single-modality 

models. Salvi et al. [22] proposed an integrated system 

combines CNN-based visual frame analysis with audio 

spectrogram processing, jointly exploiting visual and auditory 

cues to detect deepfakes. Gandhi et al. [23] introduced a 

framework that jointly analyzes facial characteristics and mel-

spectrogram audio features using machine learning models, 

achieving high detection accuracy by fusing these modalities. 

Alsaeedi et al. [24] proposed a multimodal fusion mechanism 

that integrates pre-trained audio, visual, and textual emotion 

features, leveraging speech sentiment and facial expressions to 

enhance detection robustness and accuracy. 
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These multimodal methods demonstrate the power of 
combining multiple modalities to detect subtle and sophisticated 
deepfake manipulations. 

III. PROPOSED METHOD 

To address the problem of performance degradation in 
videos affected by compression, this study proposes an end-to-
end learning framework that transcends conventional frame-
level analysis. The model comprises two primary units: first, a 
spatiotemporal feature extractor utilizing 3D convolutional 
layers to process video segments of fixed spatial and temporal 
dimensions; second, a transformer-based classifier that 
leverages factorized attention mechanisms to effectively 
integrate spatial and temporal features. This design enables the 
model to robustly distinguish between authentic and 
manipulated videos, maintaining high detection accuracy even 
under varying compression levels and quality impairments. 
Detailed architectural specifications are provided in the 
following sections: 

1) Feature extraction unit: To extract robust 

spatiotemporal representations from the input video sequences, 

we employ a 3D-CNN backbone derived from the 3D-ResNet-

50 architecture [25]. This framework extends the standard 

ResNet-50 into the temporal domain, utilizing three-

dimensional convolutional kernels to inherently model 

volumetric video data. 

The baseline architecture consists of 50 layers organized into 
four stages of residual bottleneck blocks. As illustrated in Fig. 1, 
each bottleneck unit comprises a sequence of three 
convolutional layers: a 1×1 convolution for dimensionality 
reduction, a 3×3 convolution for joint spatial and temporal 
features extraction, and a final 1×1 convolution for restoring the 
dimensionality. These layers are interleaved with Batch 
Normalization (BN) and Rectified Linear Unit (ReLU) 
activation functions. A residual skip connection bridges the 
input and output of each block, preserving signal integrity during 
backpropagation and facilitating the convergence of deep 
architectures. To ensure robust initialization, the model is 
pretrained on the Kinetics-700 dataset [26], leveraging learned 
weights optimized for large-scale action recognition. 

To tailor this architecture specifically for the detection of 
fine-grained manipulation artifacts, we introduce two critical 
modifications: 1) Temporal Resolution Preservation: We 
adjusted the stride of the initial max-pooling layer from the 
default (2, 2, 2,) to (1, 2, 2). By removing the temporal 
downsampling at this early stage, we preserve the full temporal 
resolution of the input sequence, allowing the network to capture 
subtle high-frequency frame-to-frame inconsistencies. 2) Mid-
Level Feature Extraction: We truncated the network by 
removing the final residual block (Layer 4) and the fully 
connected layer. Consequently, feature maps are extracted from 
the output of the third residual block (Layer 3). Unlike the high-
level semantic abstractions found in Layer 4, Layer 3 features 
retain the fine-grained spatiotemporal details essential for 
identifying the minute artifacts introduced by neural rendering. 

The video clip consists of t  consecutive frames, denoted 
as {I1, I2, …, It} where each frame Ii is an RGB image of fixed 

spatial resolution; ℎ and 𝑤 represent the height and width of the 
image, respectively. The corresponding clip’s label is y ϵ {0, 1}, 
where y = 0 indicates an authentic (Real) video, while y=1 
indicates a manipulated (Fake) video. The input tensor for the 
network is represented by the following shape [see Eq. (1)]: 

X ∈ RB × C × T × H × W         (1) 

where, B  denotes the batch size, C = 3 is the number of 
input channels corresponding to the RGB image, T is the 
temporal dimension (number of frames), and H = W represent 
the height and width of each frame. The network processes this 
input as a video volume producing a feature tensor of shape: 

F=f(X) ϵ RB ×C'×T'×H'×W'

                       (2) 

where, 𝐵 = 1,  𝐶′ = 1024, 𝑇′ = 16 , 𝐻′ = 𝑊′ = 14 , are 
the batch size, channel, temporal, height, and width dimensions 
of the output feature map, respectively. This tensor F 
encapsulates spatiotemporal feature maps, encoding both spatial 
patterns per frame and temporal dynamics across frames, and 
serves as the input to the classification module. 

2) Classification unit: The Vision Transformer (ViT) is a 
transformer-based architecture designed for image recognition 
tasks, which divides an input image into small patches and 
processes them as a sequence of tokens. The core component of 
ViT is the self-attention mechanism, which enables the model 
to adaptively weight the importance of different patches in the 
image by computing pairwise interactions. This mechanism 
allows the transformer to capture long-range dependencies and 
global context from the earliest layers, unlike convolutional 
neural networks that rely on local receptive fields. 

Our model leverages a factorized self-attention transformer 
inspired by the Video Vision Transformer (ViViT) [27] 
architecture. Unlike conventional Vision Transformers (ViT), 
which operate on 2D patch embeddings extracted from 
individual frames, the proposed transformer processes 3D patch 
embeddings derived from the output of a 3D-ResNet backbone, 
enabling the modeling of volumetric spatiotemporal 
representations. As illustrated in Fig. 1, the factorized self-
attention module decomposes self-attention into separate spatial 
and temporal components: spatial self-attention is first applied 
independently within each frame to capture local appearance 
relationships, followed by temporal self-attention across frames 
at each spatial location to model motion and temporal dynamics. 

While similar factorized attention designs have been 
explored in prior video transformer architectures, their adoption 
has largely been motivated by computational efficiency. In 
contrast, our use of factorized spatial–temporal attention is 
driven by robustness considerations in compressed video. Under 
aggressive compression, spatial features are disproportionately 
degraded, whereas temporal structure often remains more stable. 
By explicitly decoupling spatial and temporal attention, the 
model avoids entangling corrupted spatial cues with temporal 
reasoning. As confirmed by our ablation studies, this design 
consistently outperforms joint spatiotemporal attention in highly 
compressed settings, indicating that factorized attention is better 
aligned with the characteristics of low-quality video forensic 
analysis. 
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The 3D-ResNet output features tensor  𝐹  from Eq. (2) is 
divided into nonoverlapping 3D patches across temporal and 
spatial dimensions. Given a patch size (p

t
, p

h
, p

w
), where 𝑝𝑡 , 𝑝ℎ 

, 𝑝𝑤  are the temporal, height, and width dimensions of each 
patch, respectively, the number of temporal patches 𝑁𝑇  and 
spatial patches 𝑁𝑆 is given by Eq. (3) and Eq. (4): 

𝑁𝑇  =  
𝑇′

𝑝𝑡
           (3) 

𝑁𝑆  =  
𝐻′

𝑝ℎ
 × 

𝑊′

𝑝𝑤
                 (4) 

While the total number of patches is calculated by Eq. (5): 

N =  
T'

pt

 × 
H'

ph

 × 
W'

pw

                                 (5) 

Each 3D patch xi for (i = 1, ..., N)  is then flattened into a 
vector and linearly projected into a fixed-dimensional 
embedding [see Eq. (6)]: 

𝑧𝑖  =  𝐸(𝑥𝑖)                                 (6) 

where, E ϵ R
D × (C'  ∙ pt ∙ ph ∙ pw

)
 is a learnable matrix, B is the 

batch size, and D is the embedding dimension. Thus, linearly 
projected N  patches form a sequence of discrete tokens as 
follows [Eq. (7)]: 

𝑍0 = [z1 , z2 , …, zN ] ϵ R
B × N × D               (7) 

An extra class token Zcls  and positional embedding P are 
prepended and added as follows [Eq. (8)]:  

Z'=[zcls; Z0] +P                          (8) 

This patch embedding step converts the volumetric feature 
maps into a tokenized sequence suitable for the architecture of 
the video transformer. 

The transformer encoder processes the tokens Z’ with 
alternating spatial and temporal self-attention blocks: 

The spatial attention is applied independently on tokens from 
each temporal slice, modeling spatial relationships within each 
frame as follows [Eq. (9)]: 

               𝑍𝑠𝑝𝑎 = 𝑆𝑝 − 𝑎𝑡𝑡𝑛(𝑍′) 𝜖 ℝ𝐵 × 𝑁𝑇 × 𝑁𝑆 ×𝐷           () 

Following the spatial attention, the temporal attention 
integrates the spatial encodings across all temporal slices by 
applying self-attention along the temporal dimension over the 
class tokens output from the spatial attention. The output of the 
temporal attention is given by Eq. (10): 

𝑍𝑡𝑚𝑝 = 𝑡𝑚𝑝 − 𝑎𝑡𝑡𝑛(𝑍𝑠𝑝𝑎) 𝜖 ℝ𝐵 × 𝑁𝑆 × 𝑁𝑇 ×𝐷      (10) 

Finally, the output class token from the temporal attention 
block is passed through a Multi-layer Perceptron (MLP) head 
and sigmoid activation function to estimate probabilities for the 
classes (Real vs. Fake) [see Eq. (11)]: 

y  ̂ = σ(MLP(Zcls  ))                       (11) 

IV. EXPERIMENTS 

A. Datasets 

To evaluate the proposed model, experiments are conducted 
on three widely used public deepfake detection benchmarks: 

FaceForensics++ (FF++) [28], Celeb-DF-v2 [29], and the 
DeepFake Detection Challenge (DFDC) [30] dataset. These 
datasets collectively cover controlled and in-the-wild scenarios, 
multiple manipulation techniques, and varying levels of video 
quality and compression. 

1) FaceForensics++: FaceForensics++ (FF++) is a public 

dataset containing 1,000 authentic videos collected from 

YouTube and 4,000 manipulated videos generated using four 

manipulation techniques: Deepfakes (DF), Face2Face (F2F), 

FaceSwap (FS), and NeuralTextures (NT). The 

FaceForensics++ videos are compressed using the H.264 codec, 

with each manipulation technique provided in three 

compression variants: c0 represents raw or uncompressed 

videos, c23 represents high-quality videos with medium 

compression, and c40 represents low-quality videos under a 

high compression level. In this work, FF++ enables systematic 

evaluation of detection robustness across different 

manipulation types and compression regimes. 

2) Celeb-DF-v2: This dataset is an extension of the original 

Celeb-DF dataset, which consists of 590 real videos for 59 

celebrities collected from YouTube and 5639 fake videos 

generated from the real videos using an advanced face-

swapping technique. Compared to earlier datasets, Celeb-DF-

v2 exhibits significantly improved visual quality and reduced 

synthesis artifacts, making it one of the most challenging 

benchmarks for deepfake detection. The dataset is commonly 

used to assess generalization performance under high-fidelity 

manipulation conditions. 

3) DeepFake Detection Challenge (DFDC): The 

DeepFake Detection Challenge (DFDC) dataset is a large-scale 

benchmark released as part of a competition organized by Meta 

(formerly Facebook). It contains over 128,000 videos generated 

from 3,426 paid actors spanning diverse ethnicities, genders, 

and age groups. Videos are captured under varying poses, 

lighting conditions, and recording environments to reflect real-

world scenarios. Fake videos are generated using multiple 

manipulation techniques, including face swapping and 

expression manipulation. 

In this work, DFDC is used exclusively to evaluate cross-
dataset generalization. Models are trained on the 
FaceForensics++ dataset and tested on DFDC without fine-
tuning, allowing assessment of robustness to unseen identities, 
manipulation pipelines, and real-world capture conditions. 

B. Dataset Preprocessing 

The auxiliary preprocessing unit takes the raw input MP4 
video and transforms it into a standardized data format suitable 
for subsequent deepfake detection analysis. Initially, video 
frames are extracted sequentially using the OpenCV (cv2) 
library. For each extracted frame, the face detection and 
localization are performed via the Multi-task Cascaded 
Convolutional Networks (MTCNN) algorithm. The identified 
facial regions are then cropped and uniformly resized to 
224×224 pixels to ensure network compatibility. 

To enhance model robustness and generalization, a 
combination of both spatial augmentations (e.g., horizontal 
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flipping, rotation, color jitter) and temporal augmentations (e.g., 
frame shuffling, dropouts) is applied. The face crops are then 
normalized using the mean and standard deviation values 
derived from the Kinetics dataset to standardize feature 
distribution. The final output of this unit is a tensor representing 
a face clip (a stack of T=16 cropped and processed frames) and 
a corresponding ground-truth label tensor (indicating Real or 
Fake) for supervised training. 

C. Experimental Setup 

All experiments were conducted on the Google Colaboratory 
(Colab) platform using Python 3.11.13 and PyTorch 2.6.0, 
running on an NVIDIA L4 GPU. The model dimension was set 
to 384, with 6 attention heads and an MLP dimension of 1536. 
Training utilized the Adam optimizer with a learning rate of 
1×10−4 and a weight decay of 1×10−3 to mitigate overfitting. 
The Focal Loss function was employed with a focusing 
parameter γ=2 and balancing factor α=0.25. The model was 
trained for up to 30 epochs with a batch size of 32. The best 
checkpoint was selected based on performance. Evaluation 
metrics reported include: 

• Accuracy (ACC): This metric measures the proportion 
of correct predictions (both true positives and true 
negatives) out of the total number of predictions made. 
If 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁  denote true positives, true negatives, 
false positives, and false negatives, respectively. 
Accuracy is calculated as: 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Accuracy reflects the overall correctness of the model’s 
predictions but can be misleading on imbalanced datasets. 

• Area Under the Curve (AUC): AUC is the area under 
the Receiver Operating Characteristic (ROC) curve, 
which plots the true positive rate (𝑇𝑃) against the false 
positive rate (𝐹𝑃) at varying classification thresholds. 
It quantifies the model's ability to distinguish between 

classes irrespective of any threshold. The AUC value 
ranges from 0 to 1, with 0.5 representing a random guess 
and 1.0 a perfect classifier. Higher AUC values indicate 
better model discrimination, especially useful for 
imbalanced classes. 

D. Results 

1) Model performance: In this experiment, we evaluated 

the effectiveness of the proposed model on detecting deepfake. 

We trained and tested the model on FF++ (raw), which 

composed of raw uncompressed videos, FF++ (high quality) 

consists of videos with medium compression (c23), FF++ (low 

quality), which includes videos with aggressive (c40) 

compression level, and the Celeb-DF-v2 datasets. The results 

of these experiments are presented in Table I. 

2) Comparative study: To evaluate the effectiveness of the 

proposed model and establish a fair benchmark, a comparative 

study was conducted involving six state-of-the-art methods: 

MesoInception4 [15], F3Net [17], SurFake [18], FreMask [19], 

Unseen Artifacts [20], and Multi-domain [21]. These methods 

were selected to represent a broad range of spatial-domain and 

frequency-domain detectors, which primarily rely on frame-

level cues, enabling direct assessment of the benefit of explicit 

temporal modeling in comparison to non-temporal approaches. 

All models were trained and tested on four subsets of the 

FaceForensics++ (FF++) dataset, Deepfakes (DF), Face2Face 

(F2F), FaceSwap (FS), and NeuralTextures (NT), with 

consistent compression levels applied during both training and 

testing. Performance metrics for the baseline methods were 

cited from [21], ensuring consistency with previously 

established evaluation protocols. Table II presents the 

comparative performance results, while Fig. 2 further facilitates 

comparative analysis by visualizing the detection performance 

in terms of AUC across the four subsets of the FaceForensics++ 

dataset. 

TABLE I.  PERFORMANCE OF THE PROPOSED MODEL ON FACEFORENSICS++ DATASET AT VARYING COMPRESSION LEVELS AND ON THE CELEB-DF-V2 

DATASET 

Dataset 

FF++          (Raw) FF++              (High quality) FF++                (Low quality) CDF-v2 

ACC AUC ACC AUC ACC AUC ACC AUC 

97.05 99.88 93.00 98.40 90.38 92.50 94.98 98.78 

TABLE II.  COMPARATIVE PERFORMANCE OF THE PROPOSED MODEL AND STATE-OF-THE-ART METHODS ON FACEFORENSICS++ SUBSETS                                 

UNDER CONSISTENT COMPRESSION LEVELS IN TERMS OF ACCURACY 

Method 

Dataset 

DF F2F FS NT 

C23 C40 C23 C40 C23 C40 C23 C40 

Meso4 [15] 90.09 88.06 82.19 76.64 89.63 77.89 55.33 52.86 

F3-Net [17] 97.34 92.13 97.72 84.72 98.19 88.84 89.13 58.28 

SurFake [18] 98.52 88.46 97.34 75.62 98.34 84.87 90.17 52.81 

FreMask [19] 98.15 92.09 98.26 85.16 99.01 87.11 88.75 58.41 

Unseen Artifacts [20] 98.14 94.19 98.12 87.12 97.32 88.14 89.23 64.81 

Multi-domain [21] 99.02 95.17 98.58 86.87 99.22 90.19 91.80 70.37 

Ours 96.79 94.29 98.93 91.07 97.50 91.43 92.86 76.79 
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TABLE III.  CROSS-DATASET EVALUATION IN TERMS OF (AUC) MODELS ARE TRAINED ON FF++ AND EVALUATED ON DFDC DATASET 

Model Train dataset 
Test dataset 

DFDC 

MesoInception4 

FF++ 

56.42 

F3-Net 63.72 

SurFake 59.15 

FreMask 68.23 

Unseen Artifacts 64.81 

Multi-domain 67.13 

Ours 71.33 
 

3) Cross-dataset evaluation: While our work objective is 

to detect deepfake in a compressed video setting, we 

additionally evaluated the generalization ability of our method 

to detect unseen deepfake. Table III summarizes the cross-

dataset detection performance on the challenging DFDC test 

set. 

4) Ablation study: To evaluate the impact of key 

components in the proposed model, several ablation studies 

were conducted. These studies included evaluating: 1) the 

choice between 2D and 3D convolutions for the backbone 

model, 2) the impact of the transformer self-attention design, 

and 3) the performance sensitivity to the patch size. The 

experiments were conducted using the Deepfakes (DF) and 

Face2Face (F2F) subsets under heavy compression, as they 

represent the two main types of Deepfakes. The results of these 

studies are presented in Table IV. 

TABLE IV.  AN ABLATION STUDY PERFORMANCE OF DIFFERENT CONFIGURATIONS ON DEEPFAKES (DF) AND FACE2FACE (F2F) DATASETS AT C40 

Parameter Setup 
DF F2F 

ACC AUC ACC AUC 

Backbone 
2D-ResNet50 89.64 95.17 75.36 84.57 

3D-ResNet50 93.93 97.83 82.50 91.16 

Self-Attention Design 
Joint Self-attention Encoder 92.50 97.80 84.29 92.81 

Factorized Self-attention Encoder 94.29 98.43 91.07 94.94 

Patch size 
(1, 7, 7) 92.50 96.21 86.43 93.41 

(1, 14, 14) 94.29 98.43 91.07 94.94 

Hybrid Architecture 3D-Resnet50 + Factorized self-attention ViViT with patch size (1, 14, 14) 94.29 98.43 91.07 94.94 

 
Fig. 2. Illustration of performance degradation on the four subsets of FF++ dataset , as compression increased from medium (c23) to aggressive (c40). 
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V. DISCUSSION 

From the extensive experimental work, we summarize our 
key findings as follows: 

The comparative results in Table II illustrate the 
performance of the proposed method against representative 
spatial-domain and frequency-domain detectors under both 
medium (c23) and high (c40) compression settings across four 
manipulation types. Under c23, most methods achieve strong 
performance across datasets, indicating that moderate 
compression preserves sufficient manipulation artifacts for 
reliable detection. In this setting, the proposed method achieves 
competitive performance comparable to state-of-the-art 
approaches. 

As compression increases to c40, a clear performance gap 
emerges between frame-based detectors and methods that 
explicitly leverage temporal information. While frequency-
based and multi-domain approaches maintain reasonable 
performance on DeepFakes (DF) and FaceSwap (FS), their 
detection accuracy degrades substantially on Face2Face (F2F) 
and NeuralTextures (NT), which involve more complex motion 
and expression manipulations. In contrast, the proposed method 
consistently achieves the highest performance on F2F and NT 
under c40, with AUC improvements of up to +5.72% compared 
to the strongest baseline on NT. 

This trend highlights the advantage of fully video-level 
spatiotemporal modeling under aggressive compression. When 
spatial and frequency-domain cues are suppressed by lossy 
encoding, temporal inconsistencies remain more reliable 
indicators of manipulation. By jointly leveraging a 3D 
convolutional backbone and factorized temporal attention, the 
proposed method is better suited to capture these cues, resulting 
in improved robustness in low-quality video scenarios. 

Table III reports the cross-dataset detection performance on 
the DFDC dataset, where all models are trained on 
FaceForensics++ and evaluated on an unseen dataset without 
fine-tuning. Across all baselines, detection performance 
decreases substantially compared to within-dataset evaluation, 
reflecting the well-known domain gap between curated 
benchmarks and in-the-wild deepfake content. 

Despite this challenge, the proposed method achieves the 
highest performance, with an AUC of 71.33%, outperforming 
all compared approaches. This improvement indicates stronger 
generalization to unseen identities, manipulation pipelines, and 
real-world capture conditions. The observed gains can be 
attributed to the model’s fully video-level spatiotemporal 
modeling, which reduces reliance on dataset-specific spatial or 
frequency artifacts that do not transfer well across domains. By 
emphasizing temporal consistency cues, the proposed 
architecture demonstrates improved robustness in cross-dataset 
deepfake detection scenarios. 

The ablation results in Table IV provide insight into the 
contribution of each architectural component under heavy 
compression. Replacing the 2D-ResNet50 backbone with a 3D-
ResNet50 yields a substantial improvement across both 
manipulation types, increasing AUC from 95.17% to 97.83% on 
DeepFakes and from 84.57% to 91.16% on Face2Face. This 
confirms that explicitly modeling temporal information at the 

feature extraction stage is critical for robust deepfake detection 
in compressed videos, where frame-level spatial cues are often 
degraded. 

The impact of the self-attention design is further evidenced 
by comparing joint spatiotemporal attention with the proposed 
factorized spatial–temporal attention. While joint attention 
improves performance over convolution-only baselines, 
factorized attention consistently achieves higher accuracy and 
AUC, particularly on Face2Face, where AUC increases from 
92.81% to 94.94%. This result suggests that decoupling spatial 
and temporal attention enables more stable temporal reasoning 
by preventing compression-corrupted spatial features from 
dominating temporal modeling. 

The effect of patch size is also evident, with larger 
spatiotemporal patches (1, 14, 14) outperforming smaller ones 
(1, 7, 7). Larger patches capture richer contextual information 
across both space and time, which is beneficial for detecting 
subtle temporal inconsistencies under compression. Finally, the 
complete hybrid architecture, combining a 3D backbone with 
factorized self-attention and an optimized patch size, achieves 
the best overall performance, validating the complementary role 
of each design choice. 

VI. CONCLUSION 

In this work, we proposed a 3D spatiotemporal deepfake 
detection framework that integrates a 3D convolutional 
backbone with a vision transformer to enable fully video-level 
reasoning. Unlike prior approaches that primarily rely on frame-
based spatial or frequency-domain cues, the proposed model 
explicitly captures long-range temporal inconsistencies, 
resulting in improved robustness under aggressive video 
compression. The use of factorized spatial–temporal self-
attention further enhances detection reliability by decoupling 
temporal modeling from compression-degraded spatial features. 

Extensive experiments demonstrate that the proposed 
approach achieves competitive or superior performance across 
multiple manipulation types, particularly under low-quality 
compression and in cross-dataset generalization settings. With 

62.7 million parameters and a model size of 361 MB, the 
proposed model is best suited for server-side or offline forensic 
analysis, where robustness and accuracy are prioritized over 
strict real-time constraints. Future work will focus on 
improving computational efficiency and further enhancing 

generalization to emerging deepfake generation techniques. 
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