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Abstract—The rapid evolution of deep generative models has
facilitated the creation of ""Deepfakes", enabling the synthesis of
hyper-realistic facial manipulations that threaten the
trustworthiness of digital media. While forensic countermeasures
have been developed to identify these forgeries, deepfake detection
in real-world scenarios is severely hamperedby video compression
artifacts, which often obscure the subtle pixel-level traces
exploited by conventional Convolutional Neural Networks
(CNNs). This study introduces a robust detection framework
designed specifically to withstand the aggressive compression
inherent to social media dissemination. We present a hybrid 3D
architecture that integrates the local spatiotemporal feature
extraction capabilities of a 3D-ResNet-50 backbone with the global
context modeling of a temporal Video Vision Transformer. Unlike
frame-based or joint spatiotemporal attention approaches, the
proposed model performs fully video-level reasoning and utilizes
a factorized self-attention mechanism to decouple spatial and
temporal modeling, thereby preserving stable temporal cues
under compression while minimizing computational costs.
Experimental results on the compressed protocols of the
FaceForensics++ dataset as well as Celeb-DF-v2 and DFDC
datasets, including cross-dataset generalization evaluation,
validate the efficacy of this design, demonstrating that our method
achieves superior detection accuracy and generalization compared
to existing baselines, particularly on low-quality inputs.

Keywords—Deepfake detection; compressed deepfake videos;
low-quality deepfakes; 3D convolutional neural networks; Video
Vision Transformer

I INTRODUCTION

Recent advances in deep generative modeling have enabled
the creation of highly realistic synthetic audiovisual content,
givingrise to what are commonly referred to as deepfakes [1].
A deepfake is a piece of media; typically a video, image, or
audio clip, created or manipulated using deep neural networks
to convincingly imitate real individuals or events. Although the
term has become strongly associated with disinformation and
online abuse, the underlying technologies offer several
legitimate and beneficial applications [2]. These include
privacy-preserving data generation for machine learning,
synthetic training datasets for rare-event detection, improved
dubbing in film production, educational reenactments, and
assistive technologies for individuals with speech impairments.

Despite these positive uses, deepfakes pose significant
societal and security risks. High-fidelity manipulations can be
leveraged to spread political misinformation, facilitate identity

or financial fraud, generate non-consensual explicit content, or
erode public trust in digital media [3]. As generative models
continue to improvein resolution, coherence, and computational
efficiency, distinguishing authentic content from manipulated
media becomes increasingly challenging. The pervasive
dissemination of deepfake videos across social platforms
exacerbates this issue, contributing to large-scale
misinformation campaigns and undermining the reliability of
digital communication ecosystems.

In response to this adversarial landscape, the forensic
community has developed a variety of detection algorithms
designed to identify the subtle, distinct trace anomalies left by
generative models. However, a critical disparity exists between
the performance of these detectors in controlled environments
and their efficacy in real-world deployment [4]. While deepfake
generation has become increasingly sophisticated, often
outpacing conventional detection cues, the primary challenge in
practical application lies in the transmission medium itself. To
accommodate bandwidth constraints and storage limitations,
online distribution platforms routinely subject video content to
aggressive lossy compressionstandard H.264. This compression
process introduces a complex, two-fold impediment to forensic
analysis. First, the quantization inherent in lossy compression
acts as a low-pass filter, effectively smoothing out the high-
frequency noise patterns and subtle pixel-level artifacts that
many detectors rely upon as fingerprints of manipulation.
Second, the compression algorithms introduce their own
structural noise, such as blocking artifacts and ringing, which
can mask manipulation traces or mimic them, leading to
increased false positives. Consequently, the robustness of
existing state-of-the-art detectors degrades precipitously when
applied to low-quality, highly compressed media [5].
Addressing this vulnerability created by compression, remains
one of the most pressing open challenges in multimedia
forensics.

This study presents a fully video-level approach for robust
deepfake detection in highly compressed videos, a setting in
which conventional frame-based detectors often fail due to the
suppression of spatial and frequency-domain forensic cues.
While most existing detection methods process videos on a
frame-by-frame basis using 2D representations, contemporary
deepfake generation pipelines operate sequentially across time,
inherently introducing temporal patterns that persist even under
aggressive compression. Motivated by this mismatch, we
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formulate compression-robust deepfake detection as an end-to-
end spatiotemporal learning problem.

To this end, we propose a hybrid spatiotemporal architecture
that integrates the local representational capacity of a 3D
convolutional neural network (3D-CNN) with the global
temporal modelingcapability of a factorized self-attention video
vision transformer. By consistently operating in the 3D domain,
from feature extraction to long-range temporal reasoning, the
proposed model jointly captures localized spatiotemporal
artifacts and global temporal dependencies, enabling improved
robustness under severe compression and in-the-wild video
conditions.

The primary contributions of this work can be summarized
as follows:

e We introduce a fully video-level detection framework
that departs fromthe dominant frame-based paradigm by
employing a pretrained 3D-CNN backbone to extract
joint spatial-temporal representations directly from
video clips, allowing the model to exploit motion and
temporal coherence that remain informative in low-
quality, compressed video streams.

e We employ a factorized attention mechanism that
separately models spatial and temporal dependencies.
Ablation experiments demonstrate that this decoupled
formulation yields more robust performance than joint
spatiotemporal attention under severe compression,
suggesting that preserving distinct spatial and temporal
representations is beneficial for low-quality video
forensic analysis.

e We conduct extensive experiments including
comparisons with state-of-the-art spatial and frequency-
domain methods, and detailed ablation studies which
demonstrate that the proposed fully 3D spatiotemporal
approach achieves competitive performance under mild
compression and consistently superior robustness under
aggressive compression across multiple benchmarks.

The remainder of this study is structured as follows:
SectionII introduce deepfake generation and reviews existing
detection approaches. Section Il details the proposed hybrid
3D-CNN and transformer-based architecture. Section IV
describes the experimental setup and reports the results.
Section V providesdiscussion, analysis, andinsights. Section VI
concludes the study.

II. RELATED WORK

A. Deepfake Generation

Deepfake videos are commonly produced through deep
generative models thatlearn statistical representations of facial
structure, appearance, and motion. Early face-swapping systems
employed autoencoder-based architectures in which a shared
encoder mapped facial inputs into a latent representation, and
identity-specificdecoders reconstructed the manipulated output.
These methods enabled basic identity replacement, but were
often limited in realism.
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Subsequent advancements in generative adversarial
networks (GANSs) [6] and variational autoencoders (VAEs) [7]
marked a significant leap in synthesis quality. GAN-based
models introduced adversarial training mechanisms that
encouraged the generator to produce content indistinguishable
from real data, resulting in improved texture fidelity, lighting
realism, and temporal smoothness. More recently, diffusion
models have demonstrated state-of-the-art performance in
photorealistic image and video generation by iteratively
denoising latent representations and capturing fine-grained
visual structures.

These generative architectures underpin the two most
prevalent and impactful categories of facial manipulation: Face
Swap and Face Reenactment.

e Face Swap: This technique involves transferring the
facial identity ofa source individual onto a target person
within a video. Initial approaches relied heavily on
autoencoder architectures; however, recent advances
predominantly utilize generative adversarial networks
(GANSs) to achieve higher-quality and more seamless
facial replacements, surpassing the limitations of earlier
methods.

e Face Reenactment: Unlike identity transfer, face
reenactment manipulates the facial expressions, head
poses, and movements (such as mouth and eye
dynamics) of the target video to mimic those of a source
video, while preserving the target’s inherent identity.
This is commonly realized by extracting facial
landmarks or action units from the source and applying
them to the target, followed by a GAN-based synthesis
to produce photorealistic frames faithfully reflecting the
altered expressions and movements.

The rapid evolution of these generative technologies has
triggered an ongoing arms race between increasingly
sophisticated forgery techniques and the development of
advanced detection methodologies aimed at mitigating
emergingthreats posed by highly realistic digital manipulations.

B. Deepfake Detection Approaches

Despite continuous advancements, deepfake synthesis
methods remain bound by inherent architectural limitations
which, inevitably introduce subtle digital artifacts embedded
within manipulated media. These artifacts can be visually
identified within individual frames as spatial features, such as
unnatural facial textures or lighting inconsistencies.
Additionally, they may manifest as temporal features reflecting
unnatural movements or inconsistent transitions between
frames, includingirregular expressionsor blinking patterns. The
spatial and temporal cues, while often imperceptible to the
human visual system, provide critical forensic traces (ie.
fingerprints). The challenge of reliably detecting these traces has
givenriseto a diverse spectrum of detection methodologies and
approaches, which broadly fall into three main categories:
handcrafted-based feature, deep learning-based feature, and
multi modal approaches.
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Fig. 1.

1) Handcrafted-based features approach: This approach
exploits traditional forensic cues such as inconsistencies in
color blending, illumination, facial boundaries, and
compression artifacts. For instance, inconsistent head poses
indicate manipulation through unnatural geometric variations
[8]. Face warping artifacts, introduced by affine
transformations during deepfake synthesis, serve as
discriminative signals [9]. Detection of blending boundary
inconsistencies between the forged face and background is
addressed by the face X-ray technique [10]. Another line of
research leverages subtle physiological and behavioral
inconsistencies inherent in deepfakes. Eye blinking patterns,
typically involuntary and natural, are often absent or abnormal
in synthesized videos, providing temporal cues for detection
[11]. Heartbeat-induced photoplethysmographic (PPG) signals,
reflecting blood flow and skin color variations, are also lacking
in forgeries, effectively leveraged by Ciftci et al. [12].
Furthermore, phoneme-viseme mismatches, arising from a lack
of synchronization between audio phonemes and lip
movements (visemes), expose audiovisual inconsistencies
unique to manipulated content [13].

While handcrafted-based methods are effective against early
deepfakes, it often struggle to generalize to advanced generation
techniques.

2) Deep learning-based feature approach: Deep learning-
based feature approaches primarily leverage convolutional
neural networks (CNNs), vision transformers (ViTs) [14], and
hybrid spatiotemporal architectures to automatically leamn
discriminative representations. These models capture subtle
spatial distortions, temporal inconsistencies, and generator-
specific fingerprints that are typically imperceptible to human
observers, thereby enabling robust detection of deepfake
content. Afchar et al. [15] proposed MesoNet, a lightweight
CNN that targets mesoscopic spatial features for detecting
forged faces. Capsule-forensics [16] employed Capsule
networks, which are known by their ability to catch hierarchical
relationships and preserve spatial features better than

Illustration of the proposed deepfake detection system.

convolutional neural networks. F?Net is a dual-branch network
that captures both local and global frequency features,
employing a CNN for classification in deepfake detection [17].
SurFake model [18], which identifies manipulations by
analyzingthe surface geometry of faces to capture anomalies in
surface caused by the forging process. FreMask [19] is a
method that enhances deepfake detection by applying random
masks to frequency components during training. This
frequency-domain augmentation improves model robustness
and generalization. The work in [20] employs a learnable
uniform visibility matrix to guide the model in emphasizing
subtle, imperceptible artifacts that remain in videos even after
compression. Additionally, plug-and-play modules [21] with
adaptive notch filters specifically remove compression noise
while multi-task learning optimizes detection across domains,
boosting robustness.

Deep learning methods have become central in deepfake
detection due to their ability to autonomously learn intricate
spatial and temporal features thatreveal subtle manipulations.

3) Multimodal approach: Multimodal deepfake detection
approach integrates multiple sources of information, typically
combiningvisual and audiodata, to improve detectionaccuracy
and robustness. By fusing complementary features such as
facial expressions, lip movements, voice characteristics, and
audio-visual synchronization, these methods aim to capture
inconsistencies that are difficult to detect using single-modality
models. Salvi et al. [22] proposed an integrated system
combines CNN-based visual frame analysis with audio
spectrogram processing, jointly exploiting visual and auditory
cues to detect deepfakes. Gandhi et al. [23] introduced a
framework that jointly analyzes facial characteristics and mel-
spectrogram audio features using machine learning models,
achieving high detection accuracy by fusing these modalities.
Alsaeedi etal. [24] proposed a multimodal fusion mechanism
that integrates pre-trained audio, visual, and textual emotion
features, leveraging speech sentiment and facial expressions to
enhance detection robustness and accuracy.
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These multimodal methods demonstrate the power of
combining multiple modalities to detect subtle and sophisticated
deepfake manipulations.

III.  PROPOSED METHOD

To address the problem of performance degradation in
videos affected by compression, this study proposes an end-to-
end learning framework that transcends conventional frame-
level analysis. The model comprises two primary units: first, a
spatiotemporal feature extractor utilizing 3D convolutional
layers to process video segments of fixed spatial and temporal
dimensions; second, a transformer-based classifier that
leverages factorized attention mechanisms to effectively
integrate spatial and temporal features. This design enables the
model to robustly distinguish between authentic and
manipulated videos, maintaining high detection accuracy even
under varying compression levels and quality impairments.
Detailed architectural specifications are provided in the
following sections:

1) Feature extraction wunit: To extract robust
spatiotemporal representations from the input video sequences,
we employ a 3D-CNN backbone derived from the 3D-ResNet-
50 architecture [25]. This framework extends the standard
ResNet-50 into the temporal domain, utilizing three-
dimensional convolutional kernels to inherently model
volumetric video data.

Thebaselinearchitecture consistsof 50 layers organized into
four stages of residual bottleneck blocks. As illustrated in Fig. 1,
each bottleneck unit comprises a sequence of three
convolutional layers: a 1x1 convolution for dimensionality
reduction, a 3x3 convolution for joint spatial and temporal
features extraction, and a final 1 x1 convolution for restoring the
dimensionality. These layers are interleaved with Batch
Normalization (BN) and Rectified Linear Unit (ReLU)
activation functions. A residual skip connection bridges the
inputand output of eachblock, preserving signal integrity during
backpropagation and facilitating the convergence of deep
architectures. To ensure robust initialization, the model is
pretrained on the Kinetics-700 dataset [26], leveraging learned
weights optimized for large-scale action recognition.

To tailor this architecture specifically for the detection of
fine-grained manipulation artifacts, we introduce two critical
modifications: 1) Temporal Resolution Preservation: We
adjusted the stride of the initial max-pooling layer from the
default (2, 2, 2,) to (I, 2, 2). By removing the temporal
downsampling at this early stage, we preserve the full temporal
resolutionoftheinput sequence, allowingthe network to capture
subtle high-frequency frame-to-frame inconsistencies. 2) Mid-
Level Feature Extraction: We truncated the network by
removing the final residual block (Layer 4) and the fully
connected layer. Consequently, feature maps are extracted from
the output of the third residual block (Layer 3). Unlike the high-
level semantic abstractions found in Layer 4, Layer 3 features
retain the fine-grained spatiotemporal details essential for
identifying the minute artifacts introduced by neural rendering.

The video clip consists of t consecutive frames, denoted
as {I;, I, ..., I} where each frame I, is an RGB image of fixed
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spatial resolution; h and w represent the height and width of the
image,respectively. The correspondingclip’s labelis y € {0, 1},
where y =0 indicates an authentic (Real) video, while y=1
indicates a manipulated (Fake) video. The input tensor for the
network is represented by the following shape [see Eq. (1)]:

XeRBXCXTXHXW (1)

where, B denotes the batch size, C = 3 is the number of
input channels corresponding to the RGB image, T is the
temporal dimension (number of frames), and H = W represent
the height and width of each frame. The network processes this
input as a video volume producing a feature tensor of shape:

F=f(X) € RB*C*TH>W )

where,B =1, C'=1024,T' =16, H = W' =14, are
the batch size, channel, temporal, height, and width dimensions
of the output feature map, respectively. This tensor F
encapsulates spatiotemporal feature maps, encoding both spatial
pattems per frame and temporal dynamics across frames, and
serves as the input to the classification module.

2) Classification unit: The Vision Transformer (ViT) is a
transformer-based architecture designed for image recognition
tasks, which divides an input image into small patches and
processes themas a sequence oftokens. The core component of
ViT is the self-attention mechanism, which enables the model
to adaptively weight the importance of different patches in the
image by computing pairwise interactions. This mechanism
allows the transformer to capture long-range dependencies and
global context from the earliest layers, unlike convolutional
neural networks that rely on local receptive fields.

Our model leverages a factorized self-attention transformer
inspired by the Video Vision Transformer (ViViT) [27]
architecture. Unlike conventional Vision Transformers (ViT),
which operate on 2D patch embeddings extracted from
individual frames, the proposed transformer processes 3D patch
embeddings derived from the outputofa 3D-ResNet backbone,
enabling the modeling of volumetric spatiotemporal
representations. As illustrated in Fig. 1, the factorized self-
attention module decomposes self-attention into separate spatial
and temporal components: spatial self-attention is first applied
independently within each frame to capture local appearance
relationships, followed by temporal self-attention across frames
ateach spatial location to model motion and temporal dynamics.

While similar factorized attention designs have been
explored in prior video transformer architectures, their adoption
has largely been motivated by computational efficiency. In
contrast, our use of factorized spatial-temporal attention is
drivenby robustness considerations in compressed video. Under
aggressive compression, spatial features are disproportionately
degraded, whereas temporal structure oftenremains more stable.
By explicitly decoupling spatial and temporal attention, the
model avoids entangling corrupted spatial cues with temporal
reasoning. As confirmed by our ablation studies, this design
consistently outperforms joint spatiotemporal attention in highly
compressed settings, indicating that factorized attention is better
aligned with the characteristics of low-quality video forensic
analysis.
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The 3D-ResNet output features tensor F from Eq. (2) is
divided into nonoverlapping 3D patches across temporal and
spatial dimensions. Givena patch size (p,, p, p,,) Wherep;,pp,
, Dy are the temporal, height, and width dimensions of each
patch, respectively, the number of temporal patches N, and
spatial patches Ny is given by Eq. (3) and Eq. (4):

!

T
N. = — 3
r= 3)
H' w'

Ne = — X — 4

S Pn Pw ()

While the total number of patches is calculated by Eq. (5):
= I i X 5)

Each 3D patch x; for (i=1, ..., N) is then flattened into a

vector and linearly projected into a fixed-dimensional
embedding [see Eq. (6)]:

z; = E(x)) (6)

where, E ¢ R~ (© pemn) is a learnable matrix, B is the
batch size, and D is the embedding dimension. Thus, linearly
projected N patches form a sequence of discrete tokens as
follows [Eq. (7)]:

'9ZN]€RBXNXD (7)

An extra class token Z, and positional embedding P are
prepended and added as follows [Eq. (8)]:

Z':[chs; ZO] +P (8)

This patch embedding step converts the volumetric feature
maps into a tokenized sequence suitable for the architecture of
the video transformer.

Zy=1lz,,2,, ..

The transformer encoder processes the tokensZ’ with
alternating spatial and temporal self-attention blocks:

The spatial attentionis applied independently on tokens from
each temporal slice, modeling spatial relationships within each
frame as follows [Eq. (9)]:

Zgpa = Sp — attn(Z") e RE*Nrx NsxD (9)

Following the spatial attention, the temporal attention
integrates the spatial encodings across all temporal slices by
applying self-attention along the temporal dimension over the
class tokens output from the spatial attention. The output of the
temporal attention is given by Eq. (10):

Zimp = tmp — attn(Z,,) e REXNsxNrxD (1)

Finally, the output class token from the temporal attention
block is passed through a Multi-layer Perceptron (MLP) head
and sigmoid activation function to estimate probabilities for the
classes (Real vs. Fake) [see Eq. (11)]:

}7\ = G(MLP(ZCIS )) (1 1)
IV. EXPERIMENTS

A. Datasets

To evaluate the proposed model, experiments are conducted
on three widely used public deepfake detection benchmarks:
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FaceForensics++ (FF++) [28], Celeb-DF-v2 [29], and the
DeepFake Detection Challenge (DFDC) [30] dataset. These
datasets collectively cover controlled and in-the-wild scenarios,
multiple manipulation techniques, and varying levels of video
quality and compression.

1) FaceForensics++: FaceForensics++ (FF++) is a public
dataset containing 1,000 authentic videos collected from
YouTube and 4,000 manipulated videos generated using four
manipulation techniques: Deepfakes (DF), Face2Face (F2F),
FaceSwap (FS), and NeuralTextures (NT). The
FaceForensics++videos are compressedusingthe H.264 codec,
with each manipulation technique provided in three
compression variants: cO represents raw or uncompressed
videos, c23 represents high-quality videos with medium
compression, and c40 represents low-quality videos under a
high compression level. In this work, FF++ enables systematic
evaluation of detection robustness across different
manipulation types and compression regimes.

2) Celeb-DF-v2: This datasetis an extension of the original
Celeb-DF dataset, which consists of 590 real videos for 59
celebrities collected from YouTube and 5639 fake videos
generated from the real videos using an advanced face-
swapping technique. Compared to earlier datasets, Celeb-DF-
v2 exhibits significantly improved visual quality and reduced
synthesis artifacts, making it one of the most challenging
benchmarks for deepfake detection. The dataset is commonly
used to assess generalization performance under high-fidelity
manipulation conditions.

3) DeepFake Detection Challenge (DFDC): The
DeepFake Detection Challenge (DFDC) dataset is a large-scale
benchmark released as part ofa competition organized by Meta
(formerly Facebook). It containsover 128,000 videos generated
from 3,426 paid actors spanning diverse ethnicities, genders,
and age groups. Videos are captured under varying poses,
lighting conditions, and recording environments to reflect real-
world scenarios. Fake videos are generated using multiple
manipulation techniques, including face swapping and
expression manipulation.

In this work, DFDC is used exclusively to evaluate cross-
dataset generalization. Models are trained on the
FaceForensicst++ dataset and tested on DFDC without fine-
tuning, allowing assessment ofrobustness to unseen identities,
manipulation pipelines, and real-world capture conditions.

B. Dataset Preprocessing

The auxiliary preprocessing unit takes the raw input MP4
video and transforms it into a standardized data format suitable
for subsequent deepfake detection analysis. Initially, video
frames are extracted sequentially using the OpenCV (cv2)
library. For each extracted frame, the face detection and
localization are performed via the Multi-task Cascaded
Convolutional Networks (MTCNN) algorithm. The identified
facial regions are then cropped and uniformly resized to
224x224 pixels to ensure network compatibility.

To enhance model robustness and generalization, a
combination of both spatial augmentations (e.g., horizontal
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flipping, rotation, color jitter) and temporal augmentations (e.g.,
frame shuffling, dropouts) is applied. The face crops are then
normalized using the mean and standard deviation values
derived from the Kinetics dataset to standardize feature
distribution. The final output of this unit is a tensor representing
a face clip (a stack of T=16 cropped and processed frames) and
a corresponding ground-truth label tensor (indicating Real or
Fake) for supervised training.

C. Experimental Setup

All experiments were conducted onthe Google Colaboratory
(Colab) platform using Python 3.11.13 and PyTorch 2.6.0,
running on an NVIDIA L4 GPU. The model dimension was set
to 384, with 6 attention heads and an MLP dimension of 1536.
Training utilized the Adam optimizer with a learning rate of
1x10—4 and a weight decay of 1x10—3 to mitigate overfitting.
The Focal Loss function was employed with a focusing
parameter y=2 and balancing factor a=0.25. The model was
trained for up to 30 epochs with a batch size of 32. The best
checkpoint was selected based on performance. Evaluation
metrics reported include:

e Accuracy (ACC): This metric measures the proportion
of correct predictions (both true positives and true
negatives) out of the total number of predictions made.
IfTP,TN, FP,FN denote true positives, true negatives,
false positives, and false negatives, respectively.
Accuracy is calculated as:

TP+TN

Accuracy = ———
TP+TN+FP+FN

Accuracy reflects the overall correctness of the model’s
predictions but can be misleading on imbalanced datasets.

e Area Under the Curve (AUC): AUC is the area under
the Receiver Operating Characteristic (ROC) curve,
which plots the true positive rate (TP) against the false
positive rate (FP) at varying classification thresholds.
It quantifies the model's ability to distinguish between
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classes irrespective of any threshold. The AUC value
ranges from0to 1, with 0.5 representing arandom guess
and 1.0 a perfect classifier. Higher AUC values indicate
better model discrimination, especially useful for
imbalanced classes.

D. Results

1) Model performance: In this experiment, we evaluated
the effectiveness of the proposed model on detecting deepfake.
We trained and tested the model on FF++ (raw), which
composed of raw uncompressed videos, FF++ (high quality)
consists of videos with medium compression (c23), FF++ (low
quality), which includes videos with aggressive (c40)
compression level, and the Celeb-DF-v2 datasets. The results
of these experiments are presented in Table L

2) Comparative study: To evaluate the effectiveness of the
proposed model and establish a fair benchmark, a comparative
study was conducted involving six state-of-the-art methods:
Mesolnceptiond [15], F’'Net [17], SurFake [18], FreMask [19],
Unseen Artifacts [20], and Multi-domain [21]. These methods
were selected to represent a broad range of spatial-domain and
frequency-domain detectors, which primarily rely on frame-
level cues, enabling direct assessment of the benefit of explicit
temporal modeling in comparison to non-temporal approaches.
All models were trained and tested on four subsets of the
FaceForensicst++ (FF++) dataset, Deepfakes (DF), Face2Face
(F2F), FaceSwap (FS), and NeuralTextures (NT), with
consistent compression levels applied during both training and
testing. Performance metrics for the baseline methods were
cited from [21], ensuring consistency with previously
established evaluation protocols. Table II presents the
comparative performance results, while Fig. 2 further facilitates
comparative analysis by visualizing the detection performance
interms of AUC across the four subsets of the FaceForensics++
dataset.

TABLE L. PERFORMANCE OF THE PROPOSED MODEL ON FACEFORENSICS++ DATASET AT VARYING COMPRESSION LEVELS AND ON THE CELEB-DF-v2
DATASET
Dataset
FF++ (Raw) FF++ (High quality) FF++ (Low quality) CDF-yv2
ACC AUC ACC AUC ACC AUC ACC AUC
97.05 99.88 93.00 98.40 90.38 92.50 94.98 98.78
TABLE II. COMPARATIVE PERFORMANCE OF THE PROPOSED MODEL AND STATE-OF-THE-ART METHODS ON FACEFORENSICS++ SUBSETS
UNDER CONSISTENT COMPRESSION LEVELS IN TERMS OF ACCURACY
Dataset
Method DF F2F FS NT
C23 C40 C23 C40 C23 C40 C23 C40
Meso4 [15] 90.09 88.06 82.19 76.64 89.63 77.89 55.33 52.86
F-Net [17] 97.34 92.13 97.72 84.72 98.19 88.84 89.13 58.28
SurFake [18] 98.52 88.46 97.34 75.62 98.34 84.87 90.17 52.81
FreMask [19] 98.15 92.09 98.26 85.16 99.01 87.11 88.75 58.41
Unseen Artifacts [20] 98.14 94.19 98.12 87.12 97.32 88.14 89.23 64.81
Multi-domain [21] 99.02 95.17 98.58 86.87 99.22 90.19 91.80 70.37
Ours 96.79 94.29 98.93 91.07 97.50 91.43 92.86 76.79
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TABLE III. CROSS-DATASET EVALUATION IN TERMS OF (AUC) MODELS ARE TRAINED ON FF++ AND EVALUATED ON DFDC DATASET
Test dataset
Model Train dataset DFDC
Mesolnception4 56.42
F*-Net 63.72
SurFake 59.15
FreMask FF+ 68.23
Unseen Artifacts 64.81
Multi-domain 67.13
Ours 71.33

3) Cross-dataset evaluation: While our work objective is
to detect deepfake in a compressed video setting, we
additionally evaluated the generalization ability of our method
to detect unseen deepfake. Table IIl summarizes the cross-
dataset detection performance on the challenging DFDC test
set.

4) Ablation study: To evaluate the impact of key
components in the proposed model, several ablation studies

were conducted. These studies included evaluating: 1) the
choice between 2D and 3D convolutions for the backbone
model, 2) the impact of the transformer self-attention design,
and 3) the performance sensitivity to the patch size. The
experiments were conducted using the Deepfakes (DF) and
Face2Face (F2F) subsets under heavy compression, as they
represent the two main types of Deepfakes. The results of these
studies are presented in Table IV.

TABLEIV. AN ABLATION STUDY PERFORMANCE OF DIFFERENT CONFIGURATIONS ON DEEPFAKES (DF) AND FACE2FACE (FZF) DATASETS AT C40
DF F2F
Parameter Setup
ACC AUC ACC AUC
2D-ResNet50 89.64 95.17 75.36 84.57
Backbone
3D-ResNet50 93.93 97.83 82.50 91.16
Joint Self-attention Encoder 92.50 97.80 84.29 92.81
Self-Attention Design
Factorized Self-attention Encoder 94.29 98.43 91.07 94.94
a1,7,7) 92.50 96.21 86.43 93.41
Patch size
(1, 14, 14) 94.29 98.43 91.07 94.94
Hybrid Architecture 3D-Resnet50 + Factorized self-attention ViViT with patch size (1, 14, 14) 94.29 98.43 91.07 94.94
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Fig. 2. [Illustration of performance degradation on the four subsets of FF++ dataset, as compression increased from medium (c23) to aggressive (c40).
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V. DISCUSSION

From the extensive experimental work, we summarize our
key findings as follows:

The comparative results in Table II illustrate the
performance of the proposed method against representative
spatial-domain and frequency-domain detectors under both
medium (c23) and high (c40) compression settings across four
manipulation types. Under ¢23, most methods achieve strong
performance across datasets, indicating that moderate
compression preserves sufficient manipulation artifacts for
reliable detection. In this setting, the proposed method achieves
competitive performance comparable to state-of-the-art
approaches.

As compression increases to c40, a clear performance gap
emerges between frame-based detectors and methods that
explicitly leverage temporal information. While frequency-
based and multi-domain approaches maintain reasonable
performance on DeepFakes (DF) and FaceSwap (FS), their
detection accuracy degrades substantially on Face2Face (F2F)
and Neural Textures (NT), which involve more complex motion
and expression manipulations. In contrast, the proposed method
consistently achieves the highest performance on F2F and NT
under c40, with AUC improvements ofup to +5.72% compared
to the strongest baseline on NT.

This trend highlights the advantage of fully video-level
spatiotemporal modeling under aggressive compression. When
spatial and frequency-domain cues are suppressed by lossy
encoding, temporal inconsistencies remain more reliable
indicators of manipulation. By jointly leveraging a 3D
convolutional backbone and factorized temporal attention, the
proposed method is better suited to capture these cues, resulting
in improved robustness in low-quality video scenarios.

Table III reports the cross-dataset detection performance on
the DFDC dataset, where all models are trained on
FaceForensics++ and evaluated on an unseen dataset without
fine-tuning. Across all baselines, detection performance
decreases substantially compared to within-dataset evaluation,
reflecting the well-known domain gap between curated
benchmarks and in-the-wild deepfake content.

Despite this challenge, the proposed method achieves the
highest performance, with an AUC of 71.33%, outperforming
all compared approaches. This improvement indicates stronger
generalization to unseen identities, manipulation pipelines, and
real-world capture conditions. The observed gains can be
attributed to the model’s fully video-level spatiotemporal
modeling, which reduces reliance on dataset-specific spatial or
frequency artifacts that donot transfer well across domains. By
emphasizing temporal consistency cues, the proposed
architecture demonstrates improved robustness in cross-dataset
deepfake detection scenarios.

The ablation results in Table IV provide insight into the
contribution of each architectural component under heavy
compression. Replacing the 2D-ResNet50 backbone with a 3D-
ResNet50 yields a substantial improvement across both
manipulationtypes, increasing AUC from 95.17%t0 97.83%on
DeepFakes and from 84.57% to 91.16% on Face2Face. This
confirms that explicitly modeling temporal information at the
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feature extraction stage is critical forrobust deepfake detection
in compressed videos, where frame-level spatial cues are often
degraded.

The impact of the self-attention design is further evidenced
by comparing joint spatiotemporal attention with the proposed
factorized spatial-temporal attention. While joint attention
improves performance over convolution-only baselines,
factorized attention consistently achieves higher accuracy and
AUC, particularly on Face2Face, where AUC increases from
92.81% to 94.94%. This result suggests that decoupling spatial
and temporal attention enables more stable temporal reasoning
by preventing compression-corrupted spatial features from
dominating temporal modeling.

The effect of patch size is also evident, with larger
spatiotemporal patches (1, 14, 14) outperforming smaller ones
(1,7, 7). Larger patches capture richer contextual information
across both space and time, which is beneficial for detecting
subtle temporal inconsistencies under compression. Finally, the
complete hybrid architecture, combining a 3D backbone with
factorized self-attention and an optimized patch size, achieves
the best overall performance, validating the complementary role
of each design choice.

VI. CONCLUSION

In this work, we proposed a 3D spatiotemporal deepfake
detection framework that integrates a 3D convolutional
backbone with a vision transformer to enable fully video-level
reasoning. Unlike prior approaches that primarily rely on frame-
based spatial or frequency-domain cues, the proposed model
explicitly captures long-range temporal inconsistencies,
resulting in improved robustness under aggressive video
compression. The use of factorized spatial-temporal self-
attention further enhances detection reliability by decoupling
temporal modeling from compression-degraded spatial features.

Extensive experiments demonstrate that the proposed
approach achieves competitive or superior performance across
multiple manipulation types, particularly under low-quality
compression and in cross-dataset generalization settings. With
62.7 million parameters and a model size of 361 MB, the
proposed model is best suited for server-side or offline forensic
analysis, where robustness and accuracy are prioritized over
strict real-time constraints. Future work will focus on
improving computational efficiency and further enhancing
generalization to emerging deepfake generation techniques.

ACKNOWLEDGMENT

This research was conducted with the support of the
Organization for Women in Science for the Developing World
(OWSD), Swedish International Development Cooperation
Agency (Sida), and Putra Graduate Initiative Grant (Putra-IPS).

REFERENCES

[1] F.-A. Croitoru et al, “Deepfake Media Generation and Detection in the
Generative Al Era: A Survey and Outlook,” IEEE Trans Pattern Anal
Mach Intell, vol. 50, no. NO. 1, Nov. 2024, Accessed: Dec. 22, 2025.
[Online]. Available: https://arxiv.org/pdf/2411.19537

[2] N. Hynek, B. Gavurova, and M. Kubak, “Risks and benefits of artificial
intelligence deepfakes: Systematic review and comparison of public
attitudes in seven European Countries,” Journal of Innovation &

658 |Page

www.ijacsa.thesai.org



(3]

(4]

(5]

(6]

(7]

(8]

[°]

[10

-

[12]

[13]

[16]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Knowledge, vol. 10, no. 5, p. 100782, 2025, doi:

10.1016/J.J1K.2025.100782.

S. Singh and A. Dhumane, “Unmaskingdigital deceptions: An integrative
review of deepfake detection, multimedia forensics, and cybersecurity
challenges,” MethodsX, vol. 15, p. 103632, Dec. 2025, doi:
10.1016/J.MEX.2025.103632.

M. Alrashoud, “Deepfake video detection methods, approaches, and
challenges,” Alexandria Engineering Journal, vol. 125, pp.265-277, Jun.
2025, doi: 10.1016/J.AEJ.2025.04.007.

Y. Lu and T. Ebrahimi, “Assessment framework for deepfake detection
in real-world situations,” EURASIP Journal on Image and Video
Processing 2024 2024:1, vol. 2024, no. 1, pp. 6-, Feb. 2024, doi:
10.1186/S13640-024-00621-8.

1. J. Goodfellow et al., “Generative Adversarial Nets,” Adv Neural Inf
Process  Syst, pp. 2672-2680, 2014, [Online]. Available:
http://www.github.com/goodfeli/adversarial

Sep.

D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in
2nd International Conference on Leaming Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.,Dec. 2013. [Online]. Available: http://arxiv.org/abs/1312.6114

X. Yang, Y. Li, and S. Lyu, “Exposing Deep Fakes Using Inconsistent
Head Poses,” ICASSP, 1EEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, vol. 2019-May, pp. 8261—
8265, May 2019, doi: 10.1109/ICASSP.2019.8683164.

Li Y and Lyu S, “Exposing DeepFake Videos By Detecting Face Warping
Artifacts,” IEEE Conference on Computer Vision and Pattem
Recognition (CVPR) Workshops, pp. 1-6, Jun. 2019.

L.Lietal, “Face X-Ray forMore General Face Forgery Detection,” 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5000-5009, Jun. 2020, doi:
10.1109/CVPR42600.2020.00505.

Y. Li, M.C. Chang,and S. Lyu, “In Ictu Oculi: Exposing Al Created Fake
Videos by Detecting Eye Blinking,” International Workshop on
Information  Forensics and  Security, Jul. 2018, doi:
10.1109/WIFS.2018.8630787.

U. A. Ciftci, I. Demir, and L. Yin, “FakeCatcher: Detection of Synthetic
Portrait Videos using Biological Signals,” IEEE Trans Pattern AnalMach
Intell, pp. 1-1, Jul. 2020, doi: 10.1109/TPAMI.2020.3009287.

S. Agarwal, H. Farid, O. Fried, and M. Agrawala, “Detecting deep-fake
videos from phoneme-viseme mismatches,” IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops,
vol. 2020-June, pp- 2814-2822, Jun. 2020, doi:
10.1109/CVPRW50498.2020.00338.

A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale,” International Conference on Learning
Representations, 2020.

D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “MesoNet: A
compact facial video forgery detection network,” 10th IEEE International
Workshop on Information Forensics and Security, WIFS 2018, Jan.2019,
doi: 10.1109/WIFS.2018.8630761.

H. H. Nguyen, J. Yamagishi, and I. Echizen, “Capsule-forensics: Using
Capsule Networks to Detect Forged Imagesand Videos,” ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing -
Proceedings, vol. 2019-May, pp. 2307-2311, May 2019, doi:
10.1109/ICASSP.2019.8682602.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24

[}

[25]

[26]

[27]

(28]

[29]

(30]

Vol. 16, No. 12, 2025

Y. Qian, G. Yin, L. Sheng, Z. Chen,and J. Shao, “Thinking in Frequency:
Face Forgery Detection by Mining Frequency-Aware Clues,” Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12357
LNCS, pp. 86-103,2020, doi: 10.1007/978-3-030-58610-2_6.

A. Ciamarra, R. Caldelli, F. Becattini, L. Seidenari, and A. Del Bimbo,
“Deepfake detection by exploiting surface anomalies: the SurFake
approach.”

C. T. Doloriel and N. M. Cheung, “FREQUENCY MASKING FOR
UNIVERSAL DEEPFAKE DETECTION,” ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings,
pp- 13466-13470,2024, doi: 10.1109/ICASSP48485.2024.10446290.

S. Chhabra, K. Thakral, S. Mittal, M. Vatsa,and R. Singh, “Low-Quality
Deepfake Detection via Unseen Artifacts,” IEEE Transactions on
Artificial Intelligence, vol. 5, no. 4, pp. 15731585, Apr. 2024, doi:
10.1109/TAIL.2023.3299894.

Y. Wang, Q. Sun, D. Rong, and R. Geng, “Multi-domain awareness for
compressed deepfake videos detection over social networks guided by
common mechanisms between artifacts,” Computer Vision and Image
Understanding, vol. 247, p. 104072, Oct. 2024, doi:
10.1016/J.CVIU.2024.104072.

D. Salvi et al., “A Robust Approach to Multimodal Deepfake Detection,”
J  Imaging, vol 9, no. 6, p. 122, Jun. 2023, doi:
10.3390/JIMAGING9060122.

K. Gandhi, P. Kulkarni, T. Shah, P. Chaudhari, M. Narvekar, and K.
Ghag, “A Multimodal Framework for Deepfake Detection,” Journal of
Electrical Systems, Oct. 2024, doi: 10.53555/jes.v20i10s.6126.

A. Alsaeedi, A. AlMansour, and A. Jamal, “Audio-Visual Multimodal
Deepfake Detection Leveraging Emotional Recognition,” International
Journal of Advanced Computer Science and Applications, vol. 16, no. 6,
pp-213-226, Jun. 2025, doi: 10.14569/IJACSA.2025.0160622.

K. Hara, H. Kataoka, and Y. Satoh, “Can Spatiotemporal 3D CNNs
Retrace the History of 2D CNNs and ImageNet?,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattem
Recognition, pp- 65466555, Nov. 2017, doi:
10.1109/CVPR.2018.00685.

J. Carreira, E. Noland, C. Hillier, and A. Zisserman, “A Short Note on the
Kinetics-700 Human Action Dataset,” Oct. 2022, [Online]. Available:
http://arxiv.org/abs/1907.06987

A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lu¢i¢, and C. Schmid,
“ViViT: A Video Vision Transformer,” Proceedings of the IEEE
International Conference on Computer Vision, pp. 6816-6826, Mar.
2021, doi: 10.1109/ICCV48922.2021.00676.

A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M.
Niessner, “FaceForensics++: Learning to Detect Manipulated Facial
Images,” in 2019 IEEE/CVF International Conference on Computer
Vision (Iccecv), 1EEE, Oct. 2019,  pp. 1-11. doi:
10.1109/1CCV.2019.00009.

Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-DF: A Large-Scale
Challenging Dataset for DeepFake Forensics,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattem
Recognition, 3204-3213, 2020, doi:
10.1109/CVPR42600.2020.00327.

B. Dolhansky et al, “The DeepFake Detection Challenge (DFDC)
Dataset.,” arXiv: Computer Vision and Pattern Recognition, 2020.

659 |Page

www.ijacsa.thesai.org



