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Abstract—Access to essential cardiovascular parameters such
as heart rate (HR), heart rate variability (HRV), and blood
pressure (BP) remains limited in low-income and remote
populations, particularly among older adults in developing
regions. Continuous, simultaneous, and contact-free monitoring
of these parameters beyond close proximity can enhance early
detection, screening, and management of cardiovascular and
related conditions. This study presents a real-time, contact-free
health monitoring system based on millimeter-wave (mmWave)
FMCW radar, phase demodulation, and digital signal processing
(DSP), integrated with multimodal sensor fusion and artificial
intelligence (AI)-driven inference. Sub-millimeter chest wall
displacements are captured using radar in-phase and quadrature
(I/Q) signals to extract beat-to-beat physiological features,
including ECG-correlated waveform components, HR, and HRYV,
while non-invasive blood pressure is indirectly estimated using a
physics-informed adaptive learning framework. A custom Long
Short-Term Memory (LSTM) neural network is employed for
temporal smoothing and stabilization of HRV signals, improving
robustness under real-world conditions. The system is
implemented within a hybrid edge—cloud architecture, enabling
on-device inference for real-time monitoring and cloud-based
analytics for long-term analysis and integration. Clinical-like
validation conducted on over 100 adult participants
demonstrates measurement accuracy comparable to clinically
accepted reference devices, and statistical analysis confirms the
robustness and reliability of the proposed system.
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I.  INTRODUCTION

Cardiovascular diseases (CVDs) remain among the leading
causes of morbidity and mortality worldwide, accounting for a
significant proportion of sudden cardiac deaths and long-term
disability [1]. Early detection and continuous monitoring of
cardiovascular function are therefore critical for preventive
care, timely intervention, and effective disease management.
Key physiological indicators such as heart rate (HR), heart rate
variability (HRV), and blood pressure (BP) provide essential
insights into cardiac health, autonomic nervous system
regulation, and overall physiological resilience [2].
Abnormalities in these parameters—such as arrhythmias,
reduced HRV, or sustained hypertension—are strongly

associated with increased risk of stroke, heart failure, and other
chronic conditions.

Despite their clinical importance, continuous and
simultaneous monitoring of HR, HRV, and BP remains
difficult to achieve in a practical, scalable manner, particularly
in low-income, rural, and resource-constrained settings.
Conventional measurement techniques, including
electrocardiography (ECG), photoplethysmography (PPG) [3],
and cuff-based sphygmomanometers, require physical contact
with the subject and are often episodic, obtrusive, or dependent
on trained personnel. These constraints limit their suitability
for long-term monitoring, mass screening, and deployment in
mobile or community-based healthcare programs. Additionally,
contact-based systems pose challenges related to hygiene,
patient comfort, and compliance, especially in elderly
populations and infectious-disease scenarios.

Recent advances in contactless sensing technologies have
opened new possibilities for non-invasive physiological
monitoring. Radar-based systems, particularly those operating
in the millimeter-wave (mmWave) spectrum, can detect sub-
millimeter chest wall displacements caused by cardiac and
respiratory activity, enabling remote measurement of vital
signs without physical contact. Several studies have
demonstrated the feasibility of using radar, cameras, or
acoustic sensors to estimate heart rate and respiration.
However, existing approaches remain limited in clinical
applicability. Many focus on single-parameter estimation, rely
on extensive subject-specific calibration, or exhibit reduced
robustness under real-world conditions involving motion
artifacts, environmental interference, or physiological
variability. Most notably, accurate contactless estimation of
blood pressure continues to be an unresolved challenge, with
prior methods often depending on pulse transit time (PTT)
models, multiple synchronized sensors, or regression-based
techniques that may not generalize well across populations.

This disconnects between clinical requirements—namely,
reliable, continuous, and multi-parameter cardiovascular
monitoring and the capabilities of existing contactless systems
represent a critical research gap. There is a lack of integrated,
field-deployable platforms capable of simultaneously
extracting HR, HRV, and BP from a single sensing modality,
while maintaining medical-grade accuracy, interpretability, and
scalability. Furthermore, many reported solutions remain at a
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proof-of-concept stage and do not address system-level
considerations such as real-time processing, deployment in
non-controlled environments, or integration with digital health
infrastructure.

A. Research Objectives

In response to the identified limitations of existing
contactless cardiovascular monitoring approaches, this study
aims to investigate the feasibility of a single, contact-free
radar-based sensing system combined with multimodal sensor
fusion and adaptive artificial intelligence for accurate, real-time
estimation of heart rate (HR), heart rate variability (HRV), and
blood pressure (BP) in clinical-like and real-world
environments, without reliance on physical contact or wearable
sensors.

The primary objective of this research is to design, develop,
and experimentally validate a contact-free cardiovascular
monitoring platform that integrates millimetre-wave radar
sensing, advanced digital signal processing, and Al-driven
inference within a hybrid edge—cloud architecture. Specifically,
the study seeks to:

e Extract beat-to-beat cardiac features from radar in-phase
and  quadrature (I/Q) signals using physics-guided
signal processing techniques;

e Improve the stability and robustness of HR and HRV
estimation through temporal modelling based on Long
Short-Term Memory (LSTM) networks;

e Estimate blood pressure indirectly from radar-derived
cardiac waveform features using adaptive leaming
methods, without the use of cuff-based measurements;
and

e Evaluate system performance through comparative
validation against clinically accepted reference devices
under controlled and semi-controlled conditions.

B. Contribution and Significance

The proposed approach advances deployable contactless
cardiovascular monitoring by translating laboratory-scale
sensing into an integrated, system-level solution. By combining
radar-based sensing with adaptive learning and multimodal
sensor fusion, the platform supports concurrent estimation of
multiple cardiovascular parameters using a single, non-
intrusive device. A hybrid edge—cloud architecture enables
low-latency, real-time inference at the point of care while
supporting scalable cloud-based analytics for longitudinal and
population-level assessment. Collectively, this work establishes
a practical, scalable framework for hygienic, continuous
cardiovascular monitoring in distributed, resource-constrained
healthcare environments beyond conventional clinical settings
and equitable access.

C. Organization of the Study

The remainder of this study is structured as follows:
Section II discusses the motivation for -contact-free
cardiovascular monitoring. Section III reviews existing
contactless monitoring techniques, identifies their limitations,
and positions the proposed approach relative to prior work
while highlighting its novel contributions. Section IV details
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the system architecture, sensing framework, and signal
processing methodology. Section V presents experimental
results and clinical validation. Section VI explores future
research directions and potential applications. Section VII
addresses data privacy and ethical considerations, and
Section VIII concludes the study.

II.  MOTIVATION FOR CONTACT -FREE MEASUREMENT OF
HR, HRV, BP, AND OTHER VITALS IN THIS RESEARCH

With advancements in medical devices, there is a growing
demand to measure multiple vital and non-vital parameters
simultaneously with a single device. However, current
scientific and engineering limitations often necessitate multiple
devices, complicating the process. This research aims to
develop a non-invasive, hygienic, and efficient contactless
method for measuring blood pressure and other vitals,
enhancing patient comfort, reducing infection risk, and
enabling continuous remote monitoring. To achieve this,
innovative techniques are required to accurately capture vitals
without altering established scientific frameworks. This study
focuses on the contactless measurement of derived parameters,
which can improve safety, comfort, and efficiency across
various fields. The proposed method is particularly valuable in
healthcare and holds promise for industrial, consumer, medical,
and enterprise applications. By enabling indirect parameter
measurement, this research seeks to drive innovation across
multiple sectors. Specifically, it demonstrates how the radar
signals can be used to measure heart rate (HR), heart rate
variability (HRV), blood pressure (BP), and other dynamic
vitals. Using a sensor fusion approach, the system processes
data from sensors and transducers to provide accurate
physiological insights through advanced digital signal
processing and phase demodulation techniques.

In this research, the I (In Phase) and Q (Quadrature)
components form the basis of complex signal representation,
widely used in signal processing, communications, and radar
systems. For orthogonal receiver radar with I/Q channels,
phase information is obtained using arctangent demodulation,
providing critical data for precise parameter estimation.

III. LITERATURE REVIEW

A. Existing Approaches

The evolution of radar-based, contactless systems for health
monitoring holds transformative potential in non-invasive,
patient-centered  care.  Building upon  conventional
technologies, recent research explores the unique benefits and
expanded applications of radar systems, particularly in
environments where physical contact with sensors may be
undesirable or impractical. Zhang et al. [4] introduced "Radar-
Beat", a breakthrough radar-based system capable of
continuous beat-by-beat heart rate monitoring. The system
leverages radar signals to measure heart rate accurately, even in
dynamic settings where traditional contact-based methods
might fail, marking a significant advancement for healthcare
monitoring in real-life scenarios. Similarly, Maji et al. [5]
explored an alternative approach using standard RGB cameras
for contactless heart rate monitoring, which, while less costly
and more accessible than radar, generally lacks the precision
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radar provides in tracking vital signs reliably in non-static
environments.

The development of millimeter wave radar has been
especially influential in expanding the possibilities for real-
time, contactless vital sign monitoring. Gao et al. [6]
demonstrated the effectiveness of millimeter wave radar for
tracking both heart rate and respiratory rate simultaneously.
The study highlights radar's versatility and its applications in
healthcare settings, where it can offer reliable, real-time
monitoring without requiring any physical contact, thereby
enhancing both patient comfort and data accuracy. Deep
learning integration further amplifies radar-based systems'
capabilities, as explored by Ni et al. [7], who reviewed deep
learning approaches to contactless heart rate measurement. By
leveraging machine learning algorithms, these systems can
adapt to varying signal conditions, significantly reducing noise
and improving measurement accuracy, even in non-ideal
conditions.

Radar-based health monitoring systems are further enriched
through hybrid solutions that incorporate Al, camera, and radar
technologies for a more robust measurement approach.
Kolosov et al. [8] demonstrated a camera-based system
enhanced by Al for monitoring heart and respiratory rates.
Such multi-sensor setups, which combine data from both radar
and camera sources, increase the reliability of readings,
addressing potential challenges associated with either
technology alone. Expanding the scope of contactless
monitoring to more accessible technologies, Wang et al. [9]
illustrated the use of smart speakers for heart rhythm
monitoring, showcasing the flexibility of contactless
technology to adapt to household devices. This expands the use
of contactless systems into home environments, offering a
convenient solution for ongoing monitoring outside clinical
settings.

Further innovations in wearable and radar-based
monitoring were presented by De Pinho Ferreira et al. [10],
who reviewed non-invasive heart rate monitoring for wrist-
wom devices, providing insights into the growing role of
wearable applications for real-time health monitoring.
Similarly, Esgalhado et al. [11] evaluated heart rate variability
(HRV) derived from ECG and PPG signals, emphasizing the
effectiveness of multimodal approaches that improve accuracy
by drawing from multiple sources of physiological data. Zhang
et al. [12] took this concept further by employing a CNN-
LSTM model to detect arthythmias in medical IoT systems,
illustrating deep learning’s value in enhancing diagnostic
capabilities by detecting subtle patterns in heart rate data that
may indicate health risks.

Radar technology has made strides in signal processing
methods that enhance measurement accuracy. Park and
Lubecke [13] developed a critical technique involving
arctangent demodulation with DC offset compensation for
Doppler radar systems, improving the precision of heart rate
detection by isolating vital signals from noise and background
interferences. Further refinement of signal accuracy in radar
systems was achieved by Sameera et al. [14], who worked on
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reducing respiratory harmonics within heart signal analysis.
This is crucial for radar-based systems to accurately distinguish
heart rate data from respiratory noise, improving the system's
overall effectiveness in diverse monitoring environments.

Nonlinear HRV analysis has also contributed to a deeper
understanding of heart rate dynamics in patients with
cardiovascular disease. Krstacic et al. [15] examined HRV’s
nonlinear dynamics in patients with coronary artery disease,
illustrating how complex HRV behaviour can serve as a critical
indicator of cardiovascular health and disease progression.
Similarly, Kondo et al. [16] investigated laser-based
monitoring of chest wall movements, presenting a promising
alternative for non-contact respiratory rate tracking. This
further validates radar's complementary role in continuous
respiratory monitoring, especially in high-risk or critically ill
patient scenarios where accurate respiratory tracking is vital.

Wearable technologies for HRV monitoring have also
progressed, as evidenced by Eguchi and Aoki [17], who
developed R-R interval editing techniques for single-channel
ECG devices. This is essential in wearable applications, as it
ensures data reliability by providing clean, precise HRV
measurements even in continuous monitoring scenarios.
Longitudinal studies such as Schroeder’s [18] study on HRV
determinants in the Atherosclerosis Risk in Communities Study
provided foundational insights into how HRV changes over
time can signal early indicators of cardiovascular disease,
supporting the utility of continuous monitoring in preventive
care.

Patented advancements have also driven innovation in
radar-based health monitoring. KRS [19, 20] proposed adaptive
learning-based techniques for radar signal enhancement, which
enable the system to dynamically adjust and enhance input
features based on rank and event-driven causes. This adaptive
capability represents a major leap toward intelligent monitoring
systems that can self-optimize for accuracy in real-time
scenarios. Schellenberger et al. [21] contributed to this field by
providing a clinically recorded radar dataset with synchronized
reference sensor signals, an invaluable resource for developing,
validating, and training radar-based health monitoring
algorithms.

The application of ultra-wideband radar, particularly in
paediatric and early childhood health monitoring, is another
area of emerging interest. Arasteh et al. [22] utilized ultra-
wideband radar for simultaneous monitoring of respiratory and
heart rates in young children, achieving high accuracy by
implementing a deep transfer leaming approach. This study
underscores radar’s potential for non-intrusive monitoring in
sensitive populations, like infants and young children, where
conventional methods may not be feasible. Finally, Udupa et
al. [23] investigated the applicability of HR and HRV in mental
health assessments, finding that HRV can indicate autonomic
dysfunction in patients with major depression. This connection
between HRV and mental health broadens radar’s applicability,
potentially allowing healthcare providers to monitor
psychological as well as physiological health indicators non-
invasively.
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B. Comparative Evaluation of Existing Approaches and
Novel Contributions of the Present Study

Our research work represents a significant departure from
prior art, introducing a clinically validated, scalable, and Al-
driven contactless health monitoring system suited for low-
resource and mobile healthcare settings. Existing academic and
commercial efforts in radar-based vital sign monitoring often
depend on pulse transit time (PTT) models or signal regression
techniques requiring multiple sensors or calibration. Prior
works—such as those by Mase et al. (2011), Kim & Ling
(2017) [24], and Huang et al. (2016)—struggle with limited
accuracy under dynamic, real-world conditions. In contrast, the
presented system enables real-time blood pressure estimation
using a single radar by extracting dynamic PQRS waveform
segments from micro chest wall displacements. This bypasses
the need for PTT calibration and enhances diagnostic precision
using physics-informed modelling. A custom Long Short-Term
Memory (LSTM) model, implemented in C++, ensures
temporal smoothing of heart rate variability signals under
fluctuating conditions. Unlike deep-learning-only prototypes
such as the Smart Health mmWave Radar (UT Austin) and
Convolution Neural Network (CNN) based models, Li et al.
(2021), this system fuses empirical and Al-driven inference for
robustness and interpretability. Patents like US11,076,522B2
(UC) and US10,995,684B2 (Google) disclose radar-based BP
estimation, yet none offer a unified signal processing
framework for simultaneous extraction of over 18 parameters
in a validated field-deployable device. Additionally, unlike
exploratory  efforts like Project Soli (Google) or
WO02022174460A1 (Huawei). This work has achieved
Technology Readiness Level (TRL) 7 through multi-site
functional validation. To the best of the authors’ knowledge, it
represents the first integrated platform that combines single-
radar PQRS waveform generation, physics-guided modelling,
hybrid Al processing (on-device and cloud), and multimodal
sensor fusion. The system’s industrial scalability is supported
by seven patent applications, with regulatory submissions
currently in progress through the US FDA 510(k) pathway
under the Class B medical device category. No prior academic
or commercial effort, to the authors’ knowledge, demonstrates
a comparable combination of parameter richness, medical-
grade accuracy, model transparency, and operational readiness.
These distinctions represent a significant advancement toward
scalable, contact-free health monitoring platforms designed for
integration into large-scale public health systems.

IV. METHODOLOGY

Although contactless monitoring of vital signs has been
investigated across various research domains, the presented
system represents a distinct advancement through its emphasis
on clinical-grade accuracy at short-range, person-specific
distances (1.25-1.75 meters). The solution combines radar-
based physiological sensing with adaptive signal processing
and machine learing, including a purpose-built Long Short-
Term Memory (LSTM) neural network for real-time signal
stabilization. Integration with a hybrid edge-cloud framework
facilitates continuous, secure, and remote access to health data,
enabling deployment in primary care centers, mobile clinics,
and underserved healthcare environments.
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In this research, a multi-sensor framework was employed
that integrates multi-point temperature sensors, multimedia
sensors, transducers, and millimeter-wave (mmWave) radar, all
operating within the Industrial, Scientific, and Medical (ISM)
radio bands. These sensors were deployed in compact
integrated circuit (IC) packages, with all electronics custom-
designed by Impilo Sensys and certified under CE (Conformité
Européenne) and FCC (Federal Communications Commission)
standards, and are lead (Pb)-free. The radar module utilizes
Frequency-Modulated Continuous Wave (FMCW) technology
and operates at 120 GHz (Indie Semiconductor). The study
primarily focuses on three ISM-band ICs functioning at
approximately 24 GHz, 61 GHz, and 120 GHz. The mmWave
radar modules are responsible for non-contact measurement of
human heart rate (HR), heart rate variability (HRV), and blood
pressure (BP).

Due to intellectual property and regulatory considerations,
detailed electronic schematics have been limited to block-level
architecture, as shown in Fig. 1 and Fig. 2. Technical
schematics can be made available to the editorial board under
confidentiality agreements, if required.

A. Test Population

Clinical validation of the system was conducted at
renowned tertiary care hospitals in Bengaluru, India, involving
a diverse cohort of over 100 adult participants aged 18 to 88
years. The study included both healthy individuals and patients
with known health conditions, provided they could remain still
for at least two minutes. Exclusion criteria included individuals
with implanted cardiac devices, movement disorders, or those
undergoing beta-blocker therapies.

To ensure data privacy, only anonymized vital and non-
vital parameters are shared publicly. The radar and reference
signals are one-dimensional electrical signals, inherently
preserving participant anonymity. Full datasets can be made
available upon request under appropriate ethical data sharing
agreements. Additionally, a live system demonstration with a
volunteer subject can be arranged by the corresponding author
for interested researchers.

B. Reference Instrument

A medical-grade pulse oximeter and stethoscope were used
to measure heart rate, while a sphygmomanometer (BP cuff)
was employed to measure blood pressure, serving as reference
tools to validate our findings.

C. System Architecture and Sensing Framework

In alignment with the global shift toward proactive,
decentralized, and digitally enabled healthcare, this research
presents a contact-free, Al-powered health screening and
monitoring system. Rather than a product promotion, the
system serves as an illustrative example of a scalable medical
device ecosystem built on artificial intelligence, sensor fusion,
and hybrid edge-cloud architecture. It features a tablet-sized,
portable device capable of real-time, contactless measurement
of over 18 physiological parameters, including heart rate,
respiratory rate, SpO, non-invasive blood pressure, and heart
rate variability. Central to the system is a proprietary Al
foundation model, HealthGPT, operating in two modes:
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HealthGPT Lite for on-device inference and HealthGPT Pro
for cloud-based contextual analysis. The platform is designed
for standalone use or integration with external medical devices
and health records, offering localized data visualization and
secure cloud synchronization. Validated in clinical-like
settings, the system has achieved Technology Readiness Level
(TRL) 7.0, confirming its suitability for real-world healthcare
deployment.

Inside the system enclosure, a tightly integrated sensor
fusion framework is implemented, comprising intelligent
computing hardware and analytical software modules. As
illustrated in Fig. 1, this framework includes two primary
subsystems: 1) a radar-based sensing unit and 2) a
complementary suite of sensors contributing to nmultimodal
data fusion. The radar subsystem operates within the Industrial,
Scientific, and Medical (ISM) radio bands and is configured to
initiate signal acquisition upon receiving a predefined trigger
frequency. A 16-bit Analog-to-Digital Converter (ADC)
samples incoming radar signals at a programmable sampling
frequency, initiating processing of a defined number of data
samples.

Computing
device
(ADSP,

AT wifi,
Bluetooth,
GPS and
other
ports)

\ [ - ] [Wg;w’ H o ]H\ /

Fig. 1. Integrated sensor fusion architecture forhealth monitoring using radar
and auxiliary sensors.

Signal strength is optimized using an Auto Gain Control
(AGC) mechanism, and DC offset cancellation is performed
when enabled. A Phase-Locked Loop (PLL) ensures frequency
stability during operation. The acquired radar data is
downsampled and processed through a Hanning window
function to reduce spectral leakage, followed by a Fast Fourier
Transform (FFT) with selectable lengths of 128, 256, 512, or
1024 points, depending on the sampling rate and ramp
duration. From the FFT output, signal features such as
magnitude and phase are extracted for target characterization.
Target detection is performed using a Constant False Alarm
Rate (CFAR) algorithm, which applies tuneable parameters
including CFAR window size, guard bands, and threshold
levels to suppress noise and false positives.

Both raw and transformed radar data are transmitted to an
embedded computing device running a Linux operating
system. This device also receives inputs from additional
sensing modalities such as infrared sensors, camera modules,
and air quality sensors via separate ADC interfaces. The
aggregated multimodal data is processed using digital signal
processing (DSP) algorithms and machine leamming (ML)
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models to infer vital and non-vital health parameters through
direct and indirect computational methods.

A custom web-based application is deployed locally on the
device for real-time visualization and interaction. This interface
also enables secure bidirectional communication with a hybrid
cloud server, facilitating extended analytics, secure storage,
and integration within this system platform’s white-labelled
device architecture.

D. MM Wave Radar Setup

The primary approach of Frequency Modulated Continuous
Wave (FMCW) radar-based vital sign detection is to measure
chest vibrations resulting from the mechanical effects of
breathing and the cardiac cycle. The heartbeat signal typically
has a fundamental frequency between 0.75 Hz and 2.5 Hz (45
to 150 beats per minute) and an amplitude of approximately
0.45 mm from the chest. In contrast, the breathing signal has a
fundamental frequency between 0.1 and 0.7 Hz (6 to 42 breaths
per minute) with an amplitude range of 3.5 mm to 11.5 mm. In
this research, we present results obtained using a 120 GHz
radar system from Indie Semiconductor FFO GmbH.

The general block diagram of the radar system is shown in
Fig. 2. The antennas, labelled T(x) and R(x), correspond to the
transmit and receive channels, respectively. A frequency-
modulated radio frequency (RF) signal is emitted toward the
subject’s chest for non-contact physiological sensing.

( o
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Fig.2. Block diagram of a radar system to measure heart rate and heart rate
variability wirelessly.

The received signal is first pre-processed before being sent
to an analog-to-digital converter (ADC) and is then transmitted
to digital signal processing (DSP) and other modules for
further analysis.

The radar transmits signal T(t) via T(x) antenna to the
subject at a distance oﬂo :

T(t) = A;COS(2rf t + O(t)) (1)

where, f is the carrier frequency, A, is the power

T
amplitude and @( ) is the phase noise from waveform

generator.

Chest displacement caused by breathing and heartbeat is
measured through phase modulation in the received signal,
yielding a signal that encapsulates the effects of both breathing
and heartbeat.
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R(t) is the signal which the radar receives after it is
reflected by the subject’s chest displacement:

R(t) = AgCOS(2mf t — 4m %2 — 4n¥ +0(t—22) (2)

where, A 5 is the received power, A is the carrier
wavelength, ¢ is the speed of light in free space, X( f) is the
chest wall movement due to heartbeat and respiration, and
H( 1-2d,/ c) is the phase noise with a delay &fd / ¢

The same T(x) is used as local oscillator (LO) signal to
down-convert R(t) to baseband B(t):

B(t) = cos (6, + 4152 + A 6(1)) 3)

where, 6, = 4md,/} + ois the summation of phase shift

from the nominal distance ¢ and at the reflection surface,

aQ
AO(H) =0(1) — 9( t—2d )/ C) is the residual phase noise.

E. Experimental Procedure

The test subject is seated between 1.25 mand 1.75 m from
the radar device, with a medical-grade pulse oximeter and
blood pressure monitor attached in accordance with standard
clinical protocols. Data collected by the radar over a one-
minute interval is processed through a series of digital signal
processing (DSP) steps. These include adaptive filtering, phase
demodulation, and feature extraction, followed by a Fast
Fourier Transform (FFT) for frequency domain analysis.

To enhance temporal stability and reduce physiological
noise, a customized Long Short-Term Memory (LSTM) neural
network developed in C and C++ is employed for post-
processing. Final results are transmitted securely to a hybrid
cloud platform, enabling remote access to derived metrics such
as heart rate (HR), heart rate variability (HRV), blood pressure
(BP), and other auxiliary parameters from any connected
device. Fig. 3 illustrates the overall architecture of the hybrid
cloud integration.

Hybrid
Cloud

(o]
0

o -
R(5) O

screen «——

accessing data from Hybrid

Tex cloud on any device

Device

User accessing data

from mohile phone

Fig.3. Overview of device architecture and hybrid cloud integration flow.

Vol. 16, No. 12, 2025

The radar subsystem operates across widely accessible ISM
frequency bands at 24 GHz, 61 GHz, and 120 GHz, capturing
minute chest wall displacements associated with cardiac and
respiratory activity. Signals within the 0.75-2.5 Hz range
(corresponding to 45 150 BPM) are segmented into 10-second
windows, producing six HR estimations per minute. These
radar readings are then fused with auxiliary sensor data,
including motion, temperature, and air quality, using an
adaptive signal fusion framework. In future work, this
multimodal sensing framework is expected to enable not only
the estimation of primary vital parameters (HR, HRV, and BP)
but also the inference of secondary physiological indicators,
such as stress levels, brain health, mental health and fatigue
states.

Preprocessing begins with phase demodulation using an
arctangent-based algorithm that incorporates noise suppression
mechanisms. This is followed by baseband conversion and
adaptive bandpass filtering to isolate relevant physiological
signals. FFT is applied to extract frequency-domain features,
while template matching identifies PQRS or PQRST waveform
patterns in the time domain. These extracted features are then
passed to the LSTM module for signal stabilization and used in
the system’s indirect BP estimation module, thereby
maintaining both high signal fidelity and diagnostic accuracy.

F. Temporal Smoothing Using LSTM

To address signal noise, motion artifacts, and temporal
inconsistencies inherent in radar-derived HR measurements,
the authors developed a C++ based LSTM neural network.
Operating on 10-second radar-derived HR segments, the
LSTM model was chosen over conventional smoothing
techniques due to its ability to learn and retain both short- and
long-term dependencies. This approach enhances the stability
of HRV signals, which are further used to estimate BP and
assess physiological variability under real-world conditions.

Each 10-second radar-derived reading is scaled by dividing
the value by 100 to normalize it below 1 and is then fed into
the LSTM model. The LSTM operates in three iterations, each
using four consecutive readings: the first iteration uses readings
values in a sequence 1, 2, 3, and 4; the second uses 2, 3, 4, and
5; and the third uses 3, 4, 5, and 6. Each iteration generates a
predicted HR value, and the final output is calculated as the
average of these three predictions. This iterative approach
ensures the stabilization of the final HR value by smoothing
out any inconsistencies ornoise present in the raw radar data.

The internal structure of the LSTM node, as shown in
Fig. 4, consists of a forget gate, input gate, and output gate,
which collaboratively regulate the flow of information through
the network. This architecture enables the LSTM to retain
relevant pattens and discard noise, ensuring robust and
accurate heart rate predictions. The LSTM’s role in refining
and stabilizing the HR output is integral to the system’s ability
to provide reliable and medically accurate real-time
monitoring.

In this LSTM model, the Long-Term Memory (LTM) and
Short-Term Memory (STM) values generated from the first
iteration are passed forward to the next iteration, along with a
new set of four HR readings. This allows the model to build
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upon the prior memory states, incorporating information from
previous HR data to enhance accuracy and stability in the
output. Specifically, the LTM and STM values calculated from
readings 1, 2, 3, and 4 in the first iteration serve as the initial
memory states for the next set of inputs (readings 2, 3, 4, and
5) in the second iteration. This process is repeated across
iterations, with each successive iteration updating and carrying
forward the LTM and STM values, thereby reinforcing the
model’s understanding of temporal patterns in the data. Fig. 5
provides a visual of this iterative process, illustrating how the
memory states are updated and propagated, ultimately ensuring
a stabilized output across multiple LSTM iterations.

(without bias 20d weight, so gradient
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Fig. 4. Single LSTM node showing the flow of data.
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Fig. 5. Multiple iteration of the LSTM model.

G. Blood Pressure Estimation: A Physics-Informed Al
Approach

A systematic approach was presented for estimating blood
pressure (BP) parameters from reflected radar signals, enabling
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fully contactless monitoring. This methodology integrates
fundamental scientific principles with adaptive artificial
intelligence and advanced digital signal processing (DSP)
techniques. As illustrated in Fig. 6, the process involves a
series of signal transformations and algorithmic steps designed
to extract vital cardiovascular information without the use of
physical probes or direct contact with the subject.

e 2

The transmitter sends a signal to the individual, and the receiver
captures the reflected signal. from the person.

v

The system will pre-process the signal and perform baseband
processing to extract the in-phase signal.

v

Transform the time-domain signal into anotherdomain, such as the
frequency domain, for further analysis.

v

Apply a window function to the signal to reduce spectral leakage.

( )
Apply an optimalbandpass filter to isolate the heartrate and heart
rate variability (HRV) sign.

Measure the heart rate of the person from HRV.

\\ J

v

[ Measure the persons heart rate from HRV.

v

Identify the P, Q, R, S, and T points in the HRV signal and
measure the magnitude of the height of the P and R distance, P
and S distance, and P and T distance.

v

-
Systolic blood pressure = (height of P and R distance) * J

(acceleration due to gravity) * (density of blood) * (constant(k): a
function of live heart rate)

v

Diastolic blood pressure = (height of P and S distance orPand T
distance) * (acceleration due to gravity) * (density of blood) *
(constant (k): a function of live heart rate)

v

To fine-tune the gold standard blood pressure value foran
individual, artificial intelligence is used based on the values
obtained over certain duration.

Fig. 6. Step-by-step method and data flow for measuring blood pressure
wirelessly without any contact.

The radar system continuously tracks heart rate variability
(HRV) signals to identify PQRST intervals, which are then
analysed using adaptive learning DSP algorithms. From these
features, systolic and diastolic pressures are estimated using the
following equations:
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Systolic blood pressure = (height of P and R distance(#)) *
(acceleration due to gravity(g)) * (density of blood(p)) *

(constant(k): a function of live heart rate)  (4)

Diastolic blood pressure = (height of P and S distance or P and
T distance (h)) * (acceleration due to gravity(g)) * (density of
blood (p)) * (constant(k): a function of live heart rate) (5)

Here, 4 denotes the amplitude difference between specific
cardiac waveform peaks, g is the gravitational acceleration, p is
the blood density, and & is a constant dynamically derived
from an adaptive learning Al model, which depends on the live
heart rate value. This indirect estimation technique has been
validated against a conventional sphygmomanometer,
achieving measurement accuracy in the 90 to 98% range, as
detailed in Table II.

H. User Experience and Operational Simplicity

Although supported by advanced Al and digital signal
processing backends, the system is designed to offer a
straightforward, hygienic, and contactless user experience.
Users interact with the system via an integrated touchscreen
interface or a mobile application, with measurements obtained
while the individual remains seated within the operational
range—without the need for physical contact or wearable
sensors. This user-centric, non-intrusive design makes the
system particularly suitable for deployment in eldercare
facilities, infectious disease control scenarios, primary care
centers, and community health programs.

The actual device, as shown in Fig. 7, is compact—
approximately the size of a traditional tablet—making it both
portable and unobtrusive.

Fig. 7. Contactless health screening product.

For each measurement session, the reference person (RP)
or subject follows a simple and repeatable protocol to ensure
accurate and consistent readings:

e The RP is seated in front of the radar and sensor-
enabled device, as illustrated in Fig. 8.

e Prior to starting, the RP should ensure their bladder is
nearly empty and relax for at least 5 minutes to stabilize
physiological parameters.
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e The RP should sit upright on a chair, facing the device
at a distance of 1.1 to 1.75 meters, with both feet flat on
the floor and legs uncrossed.

e The RP is encouraged to take a few deep breaths, then
continue with normal, relaxed breathing throughout the
measurement period.

e Measurements are recorded for a minimum of 2
minutes, extendable to 5, 10, or 15 minutes based on the
use case.

e The recorded values are displayed in real time via the
user interface (UI), as shown in Fig. 9, and are also
transmitted to the RP’s mobile device and uploaded to
the cloud for secure, remote access and further analysis.

e To ensure consistency and long-term reliability, the
procedure should be repeated daily at approximately the
same time.

Fig. 8 shows the live demonstration of the device. The
device includes a screen that displays the data. Additionally,
any other device can access the same data via the hybrid cloud,
ensuring flexibility and remote monitoring capabilities.

Divi - Test subject
/ Sessonaeng whose heart rate is
z of Radar to z
ik being measured
'I measure heart Rate

Android Tablet
accessing the data
via hybrid cloud

Fig. 8. Live demo of the device. (Subject is the co-author, journal is free to
use their image and associated data in publication).

The device screen, as shown in Fig. 9, displays the heart
rate, BP and other vitals

-
.

Images

Unmute

Download d 6 e - HRV
Analytics Aiigics

Fig. 9. Device screen showing heart rate, BP and other vitals.
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1. Heart Rate Variability

The number of beats per minute is referred to as the heart
rate, measured in beats per minute (BPM). Heart rate
variability (HRV) represents the variation in the time intervals
between consecutive heartbeats. HRV is visualized by the
changes in R-R intervals over time, as shown in Fig. 10.

1000
< 825 ms P
NBPM

800 1 R

600 |

400 +

Amplitude (mm/mv)

2240 1

Fig. 10. Heart rate variability (HRV) visualized with R-R interval changes.

Heart rate variability (HRV) is a critical marker of
autonomic nervous system function, providing valuable
insights into an individual’s cardiovascular fitness and stress
levels. Fig. 12 illustrates a graphical representation of a heart
rate variability (HRV) meter, displaying live HRV data along
with the activities of the sympathetic nervous system (SNS)
and the autonomic nervous system (ANS).

On the left side of the diagram, the variations and activities
of the SNS are shown, highlighting its role in controlling the
"fight-or-flight" response, such as reactions to fear, anxiety, or
being startled. Typically, the SNS signals the adrenal glands to
release adrenaline, leading to an increase in heart rate (HR) and
blood pressure (BP).

On the right side, the ANS is depicted as regulating the
"rest-and-digest" response, which counteracts the effects of the
SNS. The diagram also outlines three conditions: rest, previous
status, and live (current) status.

Low HRV is often linked to an increased risk of
cardiovascular disease, as it indicates a reduced ability of the
heart to adapt to changing physiological demands. Conversely,
higher HRV reflects better cardiovascular health and a more
flexible, responsive autonomic system. Fig. 11 illustrates
human age variation as a function of heart rate variability
(HRV), with the green-colored region representing the normal
recommended values.

o1 |
%1 |

|

T
SR I R R P R
Age (years)

Fig. 11. Age variation as a Function of Heart Rate Variability (HRV).

V. RESULTS

The proposed contact-free, radar-based health monitoring
system demonstrates strong potential for accurate, non-

Vol. 16, No. 12, 2025

intrusive estimation of key physiological parameters, including
heart rate (HR), heart rate variability (HRV), and blood
pressure (BP). Validation was performed on more than one
hundred adult participants aged 18 to 88 years, using both the
authors’ vitals and those of external volunteers. Clinical -grade
reference instruments—a Class B BP monitor, a manual
sphygmomanometer (gold standard), a pulse oximeter, and a
stethoscope—served as comparative benchmarks. The
consolidated quantitative outcomes for HR and BP are
summarized in Table I and Table II, respectively.

Under controlled indoor conditions (ambient temperature
18°C-32°C in an air-conditioned setting), the system achieved
90%-98% accuracy for BP estimation relative to the
sphygmomanometer and 90%-95% accuracy for HR
estimation compared with pulse oximeter and stethoscope
readings. Each participant underwent three consecutive daily
measurements to ensure statistical rigor and account for day-to-
day variability.

A comprehensive quantitative analysis was performed to
evaluate agreement, correlation, and precision. Bland—Altman
plots demonstrated strong agreement between the contactless
device and reference instruments. Pearson and Spearman
correlation coefficients confirmed both linear and monotonic
relationships between measured and gold-standard values.
Additionally, Mean Absolute Error (MAE) with 95%
confidence intervals provided insight into the system’s
consistency and repeatability. These findings were
benchmarked against state-of-the-art radar-based literature and
certified clinical devices, offering a robust comparative
framework for assessing real-world applicability.

The system is implemented on a portable, tablet-sized
platform integrating radar sensing, multimodal sensor fusion,
signal processing, embedded Al models, and hybrid edge—
cloud connectivity. This architecture enables real-time
inference and supports longitudinal monitoring. The adaptive
inference framework further enhances contextual interpretation
of physiological signals while maintaining user simplicity and
fully non-contact operation.

i

| |

Previous Live
Current

1 i

I L y

Live  Previous Rest : Rest
Currant H

Autonomic Mervous

System [{ANS) controls your Rest
and digest (RD) response and it
5 opposite to SNS.

Sympathetic Narvous System
(SNS) contrals Fight or Flight
Response - scared, startled, or
anxious.

When a body is in 3 state of

rest, parasympathetic division of
ANS predominates.

It slows our HR and BP,
promotes digestion and other
activities that conserve energy
and promote relaxation.

SNS signals your adrenal glands
to release adrenalinge. This raises
HR and BP.

Fig. 12. Live heart rate variability (HRV) with SNS and ANS activities.
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TABLE I. TEST RESULTS: COMPARISON OF HEART RATE MEASUREMENTS FROM OUR DEVICE AND REFERENCE DEVICES (BEFORE AND AFTER APPLYING
LSTM MODEL): HEART RATE (HR), BEATS PER MINUTE (BPM), LONG SHORT-TERM MEMORY (LSTM)

Description HR fneasured using HR 'measured using HR from our radar HR from our radar Accuracy w.r.to Acct'lracy w.r.to

Candidates/ medical grade Pulse medical grade blood based contactless based contactless medlcal'grade medical grade B
Subjects. Oximeter pressure (BP) and method. met‘hod, pulse oximeter. and HR meter.

(BPM) HR meter (BPM) (BPM) (BPM) with LSTM (%) (%).

Subject 1 81 80 72 76.33 94.23 95.41

Subject 2 89 91 82 81 91.01 89.01

Subject 3 78 77 73 76 97.43 98.70

Subject 4 70 74 70 68 97.14 91.89

Subject 5 91 89 88 70 76.92 78.65

Subject 6 92 95 88 87 94.56 91.57

Subject 7 61 62 57 60 98.36 96.77

Subject 8 62 67 60 61 98.38 91.04

Subject 9 67 64 62 62 92.53 96.87

Subject 10 77 77 74 75 97.40 97.40

Subject 11 90 89 88 88 97.77 98.87

Subject 12 92 90 82 87 94.56 96.66

Subject 13 93 91 88 89 95.69 97.80

Subject 14 99 100 94 94 94.94 94.00

Subject 15 102 105 98 99 97.05 94.28

Subject 16 65 68 61 64 98.46 94.11

Subject 17 67 67 67 66 98.50 98.50

Subject 18 78 79 76 73 93.58 92.40

Subject 19 84 85 78 81 96.42 95.29

Subject 20 89 92 85 84 94.38 91.30

Note: We conducted clinical trials for this experiment at renowned hospitals in India with several test candidates. Due to data privacy concerns, we are only disclosing the data of the authors and a few selected
subjects. However, researchers can contact the corresponding author for a live demo of the research work for validation.

TABLE II. TEST RESULTS: COMPARISON OF BLOOD PRESSURE (BP) MEASUREMENT FROM OUR DEVICE AND REFERENCE DEVICES BEFORE AND AFTER
APPLYING THE LONG SHORT-TERM MEMORY (LSTM) TEST DURATION: 2 MINUTES

Deseripti BP measured using BP measured using . BP measured using Accuracy w.r.to Accuracy w.r.to
escription R . BP measured using BP meter. sphygmomanometer)

Candidates/ medical grade BP medical grade contactless method contac?less‘meth.od (systolic Gold standard.
Subjects. meter. sphygmomanometer. | o i giaseolicy | (SYStolic/diastolic) /diastolic) (systolic /diastolic)

(systolic /diastolic) (systolic / diastolic) with LSTM (%) (%).

Subject 1 120/ 84 118/80 116/82 117/81 97/96 99/98

Subject 2 180/110 170/ 105 173/98 168/95 93/86 98/90

Subject 3 130/85 140/87 122/80 123/84 94/98 87/96

Subject 4 125/84 125/90 118/87 122 /80 97/95 97/88

Subject 5 110/75 115/80 102/75 108 /70 98/93 93/87

Subject 6 145/95 150/100 140 /85 142/90 97/ 94 94/90

Subject 7 175/115 180/ 115 175/115 173 /113 98/98 96/98

Subject 8 125/85 118/90 116/82 115/82 92/96 97/91

Subject 9 170/120 180/105 163/98 165/95 97/ 79 91/90

Subject 10 140/95 145/90 122/80 133/85 95/89 91/94

Subject 11 185/110 175/105 173 /98 168 /100 90/90 94/98

Subject 12 135/85 140/87 122/80 123/84 91/98 87/96

Subject 13 110 /75 115/80 102/75 108 /70 98/93 93/87

Subject 14 135/85 140/87 122/80 123/84 91/98 87/96

Subject 15 120/ 84 118/82 116/82 117/81 97/96 97/98

Subject 16 170/110 170/ 105 163/98 168/95 98/86 98/90

Subject 17 115/75 125/80 102/75 108 /70 93/93 86/87

Subject 18 165/110 170/105 155/98 162/102 98/92 95/97

Subject 9 130/85 140/87 122/80 123/84 94/98 87/96

Subject 20 120/ 88 118/85 116/82 117/81 97/92 99/95

Note: We conducted clinical trials for this experiment at renowned hospitals in India with several test candidates. Due to data privacy concerns, we are only disclosing the data of the authors and a few selected
subjects. However, researchers can contact the corresponding author for a live demo of the research work for validation.
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From a translational standpoint, the system has reached
Technology Readiness Level (TRL) 7, having undergone
functional validation and demonstrating readiness for
controlled real-world deployment. Regulatory assessments and
hospital-based evaluations are underway to advance clinical
translation.

Despite its encouraging performance, certain limitations
remain. The validation was restricted to adults, controlled
posture, and short-range indoor operation, which may limit
generalizability to dynamic or high-motion environments,
paediatric populations, or broader demographic groups.
Residual noise and motion artifacts, inherent to radar-based
sensing, can still influence measurements. Ongoing work
focuses on improving digital signal processing pipelines,
minimizing internal and external artifacts, and refining real-
time deep learning models to enhance robustness and statistical
confidence.

Collectively, the results confirm the feasibility of contact-
free estimation of cardiovascular parameters from micro chest
wall displacements without wearable sensors or cuff-based
methods. This represents a significant advance in remote and
continuous health monitoring. Continued research and broader
community validation are encouraged to further develop and
expand this promising approach.

VI. FUTURE WORKS

The future of medical devices is moving towards compact,
portable, and contact-free systems that can securely integrate
personal health data into hybrid cloud environments. This shift
emphasizes the need for continuous, non-invasive monitoring
solutions, adaptable across clinical, public, and home settings.
Upcoming research will focus on new algorithms, multi-sensor
integration, and enhanced radar signal processing to improve
these devices’ capabilities.

A. Advanced Algorithms for Comprehensive Monitoring

Research in advanced algorithms will be essential to
capture multiple health parameters—heart rate, variability,
blood pressure, glucose levels, and more, with high accuracy.
These algorithms will need to account for environmental
complexities, handling multiple persons, ensuring accurate,
real-time, contactless readings, even in varied conditions.

B. Enhanced Accuracy with Multi-Radar Interference

Experiments with multi-radar interference techniques will
boost the precision of complex measurements, such as blood
pressure and respiration rates. Testing these in high-
interference settings, like public areas, will provide robust,
reliable radar-based monitoring and help optimize both direct
and indirect measurement methods.

C. Parameter Modeling and Dependency Analysis

Studying the interdependencies between physiological
parameters offers deeper insight into personalized health
trends. This research will support the design of monitoring
devices that adapt to individual variability, enhancing the
precision and relevance of health assessments.

D. Expanding Use Cases
Contactless monitoring has wide applications, including:
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e Proactive Health Monitoring for Aging Populations:
Accessible devices for early health indicators could
support independent living for seniors.

e C(linical and Non-Clinical Use: Psychiatry, yoga, and
fitness settings can use these devices to track mental
and physical well-being.

e Military and Industry Applications: Military personnel
monitoring and machine health tracking (Industry
4.0/5.0) are emerging fields for this technology.

e Financial Services: Health data integration in loan and
insurance processes offers new avenues for risk
assessment and underwriting.

E. Miniaturization and Mobile Integration

Embedding compact monitoring modules into mobile
devices will make health screening universally accessible. This
requires miniaturized sensors that maintain high performance
while optimizing power use, leading to future smartphones and
wearables with advanced health-monitoring capabilities.

VII. DATA PrRIVACY, ETHICS, RESEARCH WORK DEMO

1) Data privacy: This study exclusively uses the vital and
non-vital parameters of the authors. Additionally, the method
has been validated with data from over 100 subjects at leading
hospitals in India, with all personally identifiable information
removed. The radar and reference signals used are one-
dimensional electrical signals, ensuring a high level of
anonymity.

2) Data availability: The validated test data used for this
research, obtained from ImpiloVista and other gold-standard
medical devices, are available from the corresponding author
upon reasonable request.

3) Ethics statement: In the initial phase, data were
collected solely from the researchers themselves. All
mmWave radars operate within the ISM band, and all
electronic components used are CE and FCC compliant.

4) Product demo and supplementary materials: Upon
request, the corresponding author can arrange a live
demonstration of our research findings using the complete
system with a subject for interested researchers.

5) Ethics and consent to participate declarations: We
confirm that all methods were conducted in accordance with
relevant guidelines and regulations, including the Declaration
of Helsinki and applicable local regulatory standards. This
study involved the use of medically approved international
Industrial, Scientific, and Medical (ISM) band radar and
medical-grade sensors, classified as a Class B medical
product, without administering medication or inserting probes
into the participants' bodies. All data were collected from
subjects at a l-meter distance with prior informed consent,
ensuring strict privacy and confidentiality.

VIII. CONCLUSION

This research presents a novel, non-invasive method for
accurate, real-time measurement of heart rate (HR), heart rate

670 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

variability (HRV), blood pressure (BP), and other vital signs
from a distance, offering dynamic and continuous monitoring
without physical contact. By leveraging the same signal, HRV
can be derived, providing insights into brain-heart interactions
critical for optimal health and supporting real-time adjustments
for well-being. Through advanced sensor fusion techniques,
this study demonstrates a reliable, efficient approach to indirect
measurement of both vital and non-vital parameters,
positioning contactless health monitoring as a promising
advancement for remote and continuous healthcare.
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