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Abstract—Access to essential cardiovascular parameters such 

as heart rate (HR), heart rate variability (HRV), and blood 

pressure (BP) remains limited in low-income and remote 

populations, particularly among older adults in developing 

regions. Continuous, simultaneous, and contact-free monitoring 

of these parameters beyond close proximity can enhance early 

detection, screening, and management of cardiovascular and 

related conditions. This study presents a real-time, contact-free 

health monitoring system based on millimeter-wave (mmWave) 

FMCW radar, phase demodulation, and digital signal processing 

(DSP), integrated with multimodal sensor fusion and artificial 

intelligence (AI)-driven inference. Sub-millimeter chest wall 

displacements are captured using radar in-phase and quadrature 

(I/Q) signals to extract beat-to-beat physiological features, 

including ECG-correlated waveform components, HR, and HRV, 

while non-invasive blood pressure is indirectly estimated using a 

physics-informed adaptive learning framework. A custom Long 

Short-Term Memory (LSTM) neural network is employed for 

temporal smoothing and stabilization of HRV signals, improving 

robustness under real-world conditions. The system is 

implemented within a hybrid edge–cloud architecture, enabling 

on-device inference for real-time monitoring and cloud-based 

analytics for long-term analysis and integration. Clinical-like 

validation conducted on over 100 adult participants 

demonstrates measurement accuracy comparable to clinically 

accepted reference devices, and statistical analysis confirms the 

robustness and reliability of the proposed system. 
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I. INTRODUCTION 

Cardiovascular diseases (CVDs) remain among the leading 
causes of morbidity and mortality worldwide, accounting for a 
significant proportion of sudden cardiac deaths and long-term 
disability [1]. Early detection and continuous monitoring of 
cardiovascular function are therefore critical for preventive 
care, timely intervention, and effective disease management. 
Key physiological indicators such as heart rate (HR), heart rate 
variability (HRV), and blood pressure (BP) provide essential 
insights into cardiac health, autonomic nervous system 
regulation, and overall physiological resilience [2]. 
Abnormalities in these parameters—such as arrhythmias, 
reduced HRV, or sustained hypertension—are strongly 

associated with increased risk of stroke, heart failure, and other 
chronic conditions. 

Despite their clinical importance, continuous and 
simultaneous monitoring of HR, HRV, and BP remains 
difficult to achieve in a practical, scalable manner, particularly 
in low-income, rural, and resource-constrained settings. 
Conventional measurement techniques, including 
electrocardiography (ECG), photoplethysmography (PPG) [3], 
and cuff-based sphygmomanometers, require physical contact 
with the subject and are often episodic, obtrusive, or dependent 
on trained personnel. These constraints limit their suitability 
for long-term monitoring, mass screening, and deployment in 
mobile or community-based healthcare programs. Additionally, 
contact-based systems pose challenges related to hygiene, 
patient comfort, and compliance, especially in elderly 
populations and infectious-disease scenarios. 

Recent advances in contactless sensing technologies have 
opened new possibilities for non-invasive physiological 
monitoring. Radar-based systems, particularly those operating 
in the millimeter-wave (mmWave) spectrum, can detect sub-
millimeter chest wall displacements caused by cardiac and 
respiratory activity, enabling remote measurement of vital 
signs without physical contact. Several studies have 
demonstrated the feasibility of using radar, cameras, or 
acoustic sensors to estimate heart rate and respiration. 
However, existing approaches remain limited in clinical 
applicability. Many focus on single-parameter estimation, rely 
on extensive subject-specific calibration, or exhibit reduced 
robustness under real-world conditions involving motion 
artifacts, environmental interference, or physiological 
variability. Most notably, accurate contactless estimation of 
blood pressure continues to be an unresolved challenge, with 
prior methods often depending on pulse transit time (PTT) 
models, multiple synchronized sensors, or regression-based 
techniques that may not generalize well across populations. 

This disconnects between clinical requirements—namely, 
reliable, continuous, and multi-parameter cardiovascular 
monitoring and the capabilities of existing contactless systems 
represent a critical research gap. There is a lack of integrated, 
field-deployable platforms capable of simultaneously 
extracting HR, HRV, and BP from a single sensing modality, 
while maintaining medical-grade accuracy, interpretability, and 
scalability. Furthermore, many reported solutions remain at a 
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proof-of-concept stage and do not address system-level 
considerations such as real-time processing, deployment in 
non-controlled environments, or integration with digital health 
infrastructure. 

A. Research Objectives 

In response to the identified limitations of existing 
contactless cardiovascular monitoring approaches, this study 
aims to investigate the feasibility of a single, contact-free 
radar-based sensing system combined with multimodal sensor 
fusion and adaptive artificial intelligence for accurate, real-time 
estimation of heart rate (HR), heart rate variability (HRV), and 
blood pressure (BP) in clinical-like and real-world 
environments, without reliance on physical contact or wearable 
sensors. 

The primary objective of this research is to design, develop, 
and experimentally validate a contact-free cardiovascular 
monitoring platform that integrates millimetre-wave radar 
sensing, advanced digital signal processing, and AI-driven 
inference within a hybrid edge–cloud architecture. Specifically, 
the study seeks to: 

• Extract beat-to-beat cardiac features from radar in-phase 
and   quadrature (I/Q) signals using physics-guided 
signal processing techniques; 

• Improve the stability and robustness of HR and HRV 
estimation through temporal modelling based on Long 
Short-Term Memory (LSTM) networks; 

• Estimate blood pressure indirectly from radar-derived 
cardiac waveform features using adaptive learning 
methods, without the use of cuff-based measurements; 
and 

• Evaluate system performance through comparative 
validation against clinically accepted reference devices 
under controlled and semi-controlled conditions. 

B. Contribution and Significance 

The proposed approach advances deployable contactless 
cardiovascular monitoring by translating laboratory-scale 
sensing into an integrated, system-level solution. By combining 
radar-based sensing with adaptive learning and multimodal 
sensor fusion, the platform supports concurrent estimation of 
multiple cardiovascular parameters using a single, non-
intrusive device. A hybrid edge–cloud architecture enables 
low-latency, real-time inference at the point of care while 
supporting scalable cloud-based analytics for longitudinal and 
population-level assessment. Collectively, this work establishes 
a practical, scalable framework for hygienic, continuous 
cardiovascular monitoring in distributed, resource-constrained 
healthcare environments beyond conventional clinical settings 
and equitable access. 

C. Organization of the Study 

The remainder of this study is structured as follows: 
Section II discusses the motivation for contact-free 
cardiovascular monitoring. Section III reviews existing 
contactless monitoring techniques, identifies their limitations, 
and positions the proposed approach relative to prior work 
while highlighting its novel contributions. Section IV details 

the system architecture, sensing framework, and signal 
processing methodology. Section V presents experimental 
results and clinical validation. Section VI explores future 
research directions and potential applications. Section VII 
addresses data privacy and ethical considerations, and 
Section VIII concludes the study. 

II. MOTIVATION FOR CONTACT -FREE MEASUREMENT OF 

HR, HRV, BP, AND OTHER VITALS IN THIS RESEARCH 

With advancements in medical devices, there is a growing 
demand to measure multiple vital and non-vital parameters 
simultaneously with a single device. However, current 
scientific and engineering limitations often necessitate multiple 
devices, complicating the process. This research aims to 
develop a non-invasive, hygienic, and efficient contactless 
method for measuring blood pressure and other vitals, 
enhancing patient comfort, reducing infection risk, and 
enabling continuous remote monitoring. To achieve this, 
innovative techniques are required to accurately capture vitals 
without altering established scientific frameworks. This study 
focuses on the contactless measurement of derived parameters, 
which can improve safety, comfort, and efficiency across 
various fields. The proposed method is particularly valuable in 
healthcare and holds promise for industrial, consumer, medical, 
and enterprise applications. By enabling indirect parameter 
measurement, this research seeks to drive innovation across 
multiple sectors. Specifically, it demonstrates how the radar 
signals can be used to measure heart rate (HR), heart rate 
variability (HRV), blood pressure (BP), and other dynamic 
vitals. Using a sensor fusion approach, the system processes 
data from sensors and transducers to provide accurate 
physiological insights through advanced digital signal 
processing and phase demodulation techniques. 

In this research, the I (In Phase) and Q (Quadrature) 
components form the basis of complex signal representation, 
widely used in signal processing, communications, and radar 
systems.  For orthogonal receiver radar with I/Q channels, 
phase information is obtained using arctangent demodulation, 
providing critical data for precise parameter estimation. 

III. LITERATURE REVIEW 

A. Existing Approaches 

The evolution of radar-based, contactless systems for health 
monitoring holds transformative potential in non-invasive, 
patient-centered care. Building upon conventional 
technologies, recent research explores the unique benefits and 
expanded applications of radar systems, particularly in 
environments where physical contact with sensors may be 
undesirable or impractical. Zhang et al. [4] introduced "Radar-
Beat", a breakthrough radar-based system capable of 
continuous beat-by-beat heart rate monitoring. The system 
leverages radar signals to measure heart rate accurately, even in 
dynamic settings where traditional contact-based methods 
might fail, marking a significant advancement for healthcare 
monitoring in real-life scenarios. Similarly, Maji et al. [5] 
explored an alternative approach using standard RGB cameras 
for contactless heart rate monitoring, which, while less costly 
and more accessible than radar, generally lacks the precision 
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radar provides in tracking vital signs reliably in non-static 
environments. 

The development of millimeter wave radar has been 
especially influential in expanding the possibilities for real-
time, contactless vital sign monitoring. Gao et al. [6] 
demonstrated the effectiveness of millimeter wave radar for 
tracking both heart rate and respiratory rate simultaneously. 
The study highlights radar's versatility and its applications in 
healthcare settings, where it can offer reliable, real-time 
monitoring without requiring any physical contact, thereby 
enhancing both patient comfort and data accuracy. Deep 
learning integration further amplifies radar-based systems' 
capabilities, as explored by Ni et al. [7], who reviewed deep 
learning approaches to contactless heart rate measurement. By 
leveraging machine learning algorithms, these systems can 
adapt to varying signal conditions, significantly reducing noise 
and improving measurement accuracy, even in non-ideal 
conditions. 

Radar-based health monitoring systems are further enriched 
through hybrid solutions that incorporate AI, camera, and radar 
technologies for a more robust measurement approach. 
Kolosov et al. [8] demonstrated a camera-based system 
enhanced by AI for monitoring heart and respiratory rates. 
Such multi-sensor setups, which combine data from both radar 
and camera sources, increase the reliability of readings, 
addressing potential challenges associated with either 
technology alone. Expanding the scope of contactless 
monitoring to more accessible technologies, Wang et al. [9] 
illustrated the use of smart speakers for heart rhythm 
monitoring, showcasing the flexibility of contactless 
technology to adapt to household devices. This expands the use 
of contactless systems into home environments, offering a 
convenient solution for ongoing monitoring outside clinical 
settings. 

Further innovations in wearable and radar-based 
monitoring were presented by De Pinho Ferreira et al. [10], 
who reviewed non-invasive heart rate monitoring for wrist-
worn devices, providing insights into the growing role of 
wearable applications for real-time health monitoring. 
Similarly, Esgalhado et al. [11] evaluated heart rate variability 
(HRV) derived from ECG and PPG signals, emphasizing the 
effectiveness of multimodal approaches that improve accuracy 
by drawing from multiple sources of physiological data. Zhang 
et al. [12] took this concept further by employing a CNN-
LSTM model to detect arrhythmias in medical IoT systems, 
illustrating deep learning’s value in enhancing diagnostic 
capabilities by detecting subtle patterns in heart rate data that 
may indicate health risks. 

Radar technology has made strides in signal processing 
methods that enhance measurement accuracy. Park and 
Lubecke [13] developed a critical technique involving 
arctangent demodulation with DC offset compensation for 
Doppler radar systems, improving the precision of heart rate 
detection by isolating vital signals from noise and background 
interferences. Further refinement of signal accuracy in radar 
systems was achieved by Sameera et al. [14], who worked on 

reducing respiratory harmonics within heart signal analysis. 
This is crucial for radar-based systems to accurately distinguish 
heart rate data from respiratory noise, improving the system's 
overall effectiveness in diverse monitoring environments. 

Nonlinear HRV analysis has also contributed to a deeper 
understanding of heart rate dynamics in patients with 
cardiovascular disease. Krstacic et al. [15] examined HRV’s 
nonlinear dynamics in patients with coronary artery disease, 
illustrating how complex HRV behaviour can serve as a critical 
indicator of cardiovascular health and disease progression. 
Similarly, Kondo et al. [16] investigated laser-based 
monitoring of chest wall movements, presenting a promising 
alternative for non-contact respiratory rate tracking. This 
further validates radar's complementary role in continuous 
respiratory monitoring, especially in high-risk or critically ill 
patient scenarios where accurate respiratory tracking is vital. 

Wearable technologies for HRV monitoring have also 
progressed, as evidenced by Eguchi and Aoki [17], who 
developed R-R interval editing techniques for single-channel 
ECG devices. This is essential in wearable applications, as it 
ensures data reliability by providing clean, precise HRV 
measurements even in continuous monitoring scenarios. 
Longitudinal studies such as Schroeder’s [18] study on HRV 
determinants in the Atherosclerosis Risk in Communities Study 
provided foundational insights into how HRV changes over 
time can signal early indicators of cardiovascular disease, 
supporting the utility of continuous monitoring in preventive 
care. 

Patented advancements have also driven innovation in 
radar-based health monitoring. KRS [19, 20] proposed adaptive 
learning-based techniques for radar signal enhancement, which 
enable the system to dynamically adjust and enhance input 
features based on rank and event-driven causes. This adaptive 
capability represents a major leap toward intelligent monitoring 
systems that can self-optimize for accuracy in real-time 
scenarios. Schellenberger et al. [21] contributed to this field by 
providing a clinically recorded radar dataset with synchronized 
reference sensor signals, an invaluable resource for developing, 
validating, and training radar-based health monitoring 
algorithms. 

The application of ultra-wideband radar, particularly in 
paediatric and early childhood health monitoring, is another 
area of emerging interest. Arasteh et al. [22] utilized ultra-
wideband radar for simultaneous monitoring of respiratory and 
heart rates in young children, achieving high accuracy by 
implementing a deep transfer learning approach. This study 
underscores radar’s potential for non-intrusive monitoring in 
sensitive populations, like infants and young children, where 
conventional methods may not be feasible. Finally, Udupa et 
al. [23] investigated the applicability of HR and HRV in mental 
health assessments, finding that HRV can indicate autonomic 
dysfunction in patients with major depression. This connection 
between HRV and mental health broadens radar’s applicability, 
potentially allowing healthcare providers to monitor 
psychological as well as physiological health indicators non-
invasively. 
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B. Comparative Evaluation of Existing Approaches and 

Novel Contributions of the Present Study 

Our research work represents a significant departure from 
prior art, introducing a clinically validated, scalable, and AI-
driven contactless health monitoring system suited for low-
resource and mobile healthcare settings. Existing academic and 
commercial efforts in radar-based vital sign monitoring often 
depend on pulse transit time (PTT) models or signal regression 
techniques requiring multiple sensors or calibration. Prior 
works—such as those by Mase et al. (2011), Kim & Ling 
(2017) [24], and Huang et al. (2016)—struggle with limited 
accuracy under dynamic, real-world conditions. In contrast, the 
presented system enables real-time blood pressure estimation 
using a single radar by extracting dynamic PQRS waveform 
segments from micro chest wall displacements. This bypasses 
the need for PTT calibration and enhances diagnostic precision 
using physics-informed modelling. A custom Long Short-Term 
Memory (LSTM) model, implemented in C++, ensures 
temporal smoothing of heart rate variability signals under 
fluctuating conditions. Unlike deep-learning-only prototypes 
such as the Smart Health mmWave Radar (UT Austin) and 
Convolution Neural Network (CNN) based models, Li et al. 
(2021), this system fuses empirical and AI-driven inference for 
robustness and interpretability. Patents like US11,076,522B2 
(UC) and US10,995,684B2 (Google) disclose radar-based BP 
estimation, yet none offer a unified signal processing 
framework for simultaneous extraction of over 18 parameters 
in a validated field-deployable device. Additionally, unlike 
exploratory efforts like Project Soli (Google) or 
WO2022174460A1 (Huawei).  This work has achieved 
Technology Readiness Level (TRL) 7 through multi-site 
functional validation. To the best of the authors’ knowledge, it 
represents the first integrated platform that combines single-
radar PQRS waveform generation, physics-guided modelling, 
hybrid AI processing (on-device and cloud), and multimodal 
sensor fusion. The system’s industrial scalability is supported 
by seven patent applications, with regulatory submissions 
currently in progress through the US FDA 510(k) pathway 
under the Class B medical device category. No prior academic 
or commercial effort, to the authors’ knowledge, demonstrates 
a comparable combination of parameter richness, medical-
grade accuracy, model transparency, and operational readiness. 
These distinctions represent a significant advancement toward 
scalable, contact-free health monitoring platforms designed for 
integration into large-scale public health systems. 

IV. METHODOLOGY 

Although contactless monitoring of vital signs has been 
investigated across various research domains, the presented 
system represents a distinct advancement through its emphasis 
on clinical-grade accuracy at short-range, person-specific 
distances (1.25–1.75 meters). The solution combines radar-
based physiological sensing with adaptive signal processing 
and machine learning, including a purpose-built Long Short-
Term Memory (LSTM) neural network for real-time signal 
stabilization. Integration with a hybrid edge-cloud framework 
facilitates continuous, secure, and remote access to health data, 
enabling deployment in primary care centers, mobile clinics, 
and underserved healthcare environments. 

In this research, a multi-sensor framework was employed 
that integrates multi-point temperature sensors, multimedia 
sensors, transducers, and millimeter-wave (mmWave) radar, all 
operating within the Industrial, Scientific, and Medical (ISM) 
radio bands. These sensors were deployed in compact 
integrated circuit (IC) packages, with all electronics custom-
designed by Impilo Sensys and certified under CE (Conformité 
Européenne) and FCC (Federal Communications Commission) 
standards, and are lead (Pb)-free. The radar module utilizes 
Frequency-Modulated Continuous Wave (FMCW) technology 
and operates at 120 GHz (Indie Semiconductor). The study 
primarily focuses on three ISM-band ICs functioning at 
approximately 24 GHz, 61 GHz, and 120 GHz. The mmWave 
radar modules are responsible for non-contact measurement of 
human heart rate (HR), heart rate variability (HRV), and blood 
pressure (BP). 

Due to intellectual property and regulatory considerations, 
detailed electronic schematics have been limited to block-level 
architecture, as shown in Fig. 1 and Fig. 2. Technical 
schematics can be made available to the editorial board under 
confidentiality agreements, if required. 

A. Test Population 

Clinical validation of the system was conducted at 
renowned tertiary care hospitals in Bengaluru, India, involving 
a diverse cohort of over 100 adult participants aged 18 to 88 
years. The study included both healthy individuals and patients 
with known health conditions, provided they could remain still 
for at least two minutes. Exclusion criteria included individuals 
with implanted cardiac devices, movement disorders, or those 
undergoing beta-blocker therapies. 

To ensure data privacy, only anonymized vital and non-
vital parameters are shared publicly. The radar and reference 
signals are one-dimensional electrical signals, inherently 
preserving participant anonymity. Full datasets can be made 
available upon request under appropriate ethical data sharing 
agreements. Additionally, a live system demonstration with a 
volunteer subject can be arranged by the corresponding author 
for interested researchers. 

B. Reference Instrument 

A medical-grade pulse oximeter and stethoscope were used 
to measure heart rate, while a sphygmomanometer (BP cuff) 
was employed to measure blood pressure, serving as reference 
tools to validate our findings. 

C. System Architecture and Sensing Framework 

In alignment with the global shift toward proactive, 
decentralized, and digitally enabled healthcare, this research 
presents a contact-free, AI-powered health screening and 
monitoring system. Rather than a product promotion, the 
system serves as an illustrative example of a scalable medical 
device ecosystem built on artificial intelligence, sensor fusion, 
and hybrid edge-cloud architecture. It features a tablet-sized, 
portable device capable of real-time, contactless measurement 
of over 18 physiological parameters, including heart rate, 
respiratory rate, SpO₂, non-invasive blood pressure, and heart 
rate variability. Central to the system is a proprietary AI 
foundation model, HealthGPT, operating in two modes: 
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HealthGPT Lite for on-device inference and HealthGPT Pro 
for cloud-based contextual analysis. The platform is designed 
for standalone use or integration with external medical devices 
and health records, offering localized data visualization and 
secure cloud synchronization. Validated in clinical-like 
settings, the system has achieved Technology Readiness Level 
(TRL) 7.0, confirming its suitability for real-world healthcare 
deployment. 

Inside the system enclosure, a tightly integrated sensor 
fusion framework is implemented, comprising intelligent 
computing hardware and analytical software modules. As 
illustrated in Fig. 1, this framework includes two primary 
subsystems: 1) a radar-based sensing unit and 2) a 
complementary suite of sensors contributing to multimodal 
data fusion. The radar subsystem operates within the Industrial, 
Scientific, and Medical (ISM) radio bands and is configured to 
initiate signal acquisition upon receiving a predefined trigger 
frequency. A 16-bit Analog-to-Digital Converter (ADC) 
samples incoming radar signals at a programmable sampling 
frequency, initiating processing of a defined number of data 
samples. 

 
Fig. 1. Integrated sensor fusion architecture for health monitoring using radar 

and auxiliary sensors. 

Signal strength is optimized using an Auto Gain Control 
(AGC) mechanism, and DC offset cancellation is performed 
when enabled. A Phase-Locked Loop (PLL) ensures frequency 
stability during operation. The acquired radar data is 
downsampled and processed through a Hanning window 
function to reduce spectral leakage, followed by a Fast Fourier 
Transform (FFT) with selectable lengths of 128, 256, 512, or 
1024 points, depending on the sampling rate and ramp 
duration. From the FFT output, signal features such as 
magnitude and phase are extracted for target characterization. 
Target detection is performed using a Constant False Alarm 
Rate (CFAR) algorithm, which applies tuneable parameters 
including CFAR window size, guard bands, and threshold 
levels to suppress noise and false positives. 

Both raw and transformed radar data are transmitted to an 
embedded computing device running a Linux operating 
system. This device also receives inputs from additional 
sensing modalities such as infrared sensors, camera modules, 
and air quality sensors via separate ADC interfaces. The 
aggregated multimodal data is processed using digital signal 
processing (DSP) algorithms and machine learning (ML) 

models to infer vital and non-vital health parameters through 
direct and indirect computational methods. 

A custom web-based application is deployed locally on the 
device for real-time visualization and interaction. This interface 
also enables secure bidirectional communication with a hybrid 
cloud server, facilitating extended analytics, secure storage, 
and integration within this system platform’s white-labelled 
device architecture. 

D. MM Wave Radar Setup 

The primary approach of Frequency Modulated Continuous 
Wave (FMCW) radar-based vital sign detection is to measure 
chest vibrations resulting from the mechanical effects of 
breathing and the cardiac cycle. The heartbeat signal typically 
has a fundamental frequency between 0.75 Hz and 2.5 Hz (45 
to 150 beats per minute) and an amplitude of approximately 
0.45 mm from the chest. In contrast, the breathing signal has a 
fundamental frequency between 0.1 and 0.7 Hz (6 to 42 breaths 
per minute) with an amplitude range of 3.5 mm to 11.5 mm. In 
this research, we present results obtained using a 120 GHz 
radar system from Indie Semiconductor FFO GmbH. 

The general block diagram of the radar system is shown in 
Fig. 2. The antennas, labelled T(x) and R(x), correspond to the 
transmit and receive channels, respectively. A frequency-
modulated radio frequency (RF) signal is emitted toward the 
subject’s chest for non-contact physiological sensing. 

 
Fig. 2. Block diagram of a radar system to measure heart rate and heart rate 

variability wirelessly. 

The received signal is first pre-processed before being sent 
to an analog-to-digital converter (ADC) and is then transmitted 
to digital signal processing (DSP) and other modules for 
further analysis. 

The radar transmits signal T(t) via T(x) antenna to the 
subject at a distance of  : 

𝑇(𝑡) = 𝐴𝑇𝐶𝑂𝑆(2𝜋𝑓 𝑡 + 𝜃(𝑡))                  (1) 

where,  is the carrier frequency,  is the power 

amplitude and  is the phase noise from waveform 

generator. 

Chest displacement caused by breathing and heartbeat is 
measured through phase modulation in the received signal, 
yielding a signal that encapsulates the effects of both breathing 
and heartbeat. 
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R(t) is the signal which the radar receives after it is 
reflected by the subject’s chest displacement: 

𝑅(𝑡) ≅ 𝐴𝑅𝐶𝑂𝑆(2𝜋𝑓 𝑡 − 4𝜋
𝑑0

ℷ
− 4𝜋

𝑥(𝑡)

ℷ
+ 𝜃(𝑡 − 2

𝑑0

𝑐
))    (2) 

where,  is the received power,  is the carrier 

wavelength,  is the speed of light in free space,  is the 
chest wall movement due to heartbeat and respiration, and 

 is the phase noise with a delay of . 

The same T(x) is used as local oscillator (LO) signal to 
down-convert R(t) to baseband B(t): 

𝐵(𝑡) = cos (𝜃0 + 4𝜋
𝑥(𝑡)

ℷ
+△ 𝜃(𝑡))           (3) 

where,   𝜃0 = 4𝜋𝑑0/ℷ + ℴis the summation of phase shift 
from the nominal distance  and at the reflection surface, 

 is the residual phase noise. 

E. Experimental Procedure 

The test subject is seated between 1.25 m and 1.75 m from 
the radar device, with a medical-grade pulse oximeter and 
blood pressure monitor attached in accordance with standard 
clinical protocols. Data collected by the radar over a one-
minute interval is processed through a series of digital signal 
processing (DSP) steps. These include adaptive filtering, phase 
demodulation, and feature extraction, followed by a Fast 
Fourier Transform (FFT) for frequency domain analysis. 

To enhance temporal stability and reduce physiological 
noise, a customized Long Short-Term Memory (LSTM) neural 
network developed in C and C++ is employed for post-
processing. Final results are transmitted securely to a hybrid 
cloud platform, enabling remote access to derived metrics such 
as heart rate (HR), heart rate variability (HRV), blood pressure 
(BP), and other auxiliary parameters from any connected 
device. Fig. 3 illustrates the overall architecture of the hybrid 
cloud integration. 

 
Fig. 3. Overview of device architecture and hybrid cloud integration flow. 

The radar subsystem operates across widely accessible ISM 
frequency bands at 24 GHz, 61 GHz, and 120 GHz, capturing 
minute chest wall displacements associated with cardiac and 
respiratory activity. Signals within the 0.75–2.5 Hz range 
(corresponding to 45 150 BPM) are segmented into 10-second 
windows, producing six HR estimations per minute. These 
radar readings are then fused with auxiliary sensor data, 
including motion, temperature, and air quality, using an 
adaptive signal fusion framework. In future work, this 
multimodal sensing framework is expected to enable not only 
the estimation of primary vital parameters (HR, HRV, and BP) 
but also the inference of secondary physiological indicators, 
such as stress levels, brain health, mental health and fatigue 
states. 

 

Preprocessing begins with phase demodulation using an 
arctangent-based algorithm that incorporates noise suppression 
mechanisms. This is followed by baseband conversion and 
adaptive bandpass filtering to isolate relevant physiological 
signals. FFT is applied to extract frequency-domain features, 
while template matching identifies PQRS or PQRST waveform 
patterns in the time domain. These extracted features are then 
passed to the LSTM module for signal stabilization and used in 
the system’s indirect BP estimation module, thereby 
maintaining both high signal fidelity and diagnostic accuracy. 

F. Temporal Smoothing Using LSTM 

To address signal noise, motion artifacts, and temporal 
inconsistencies inherent in radar-derived HR measurements, 
the authors developed a C++ based LSTM neural network. 
Operating on 10-second radar-derived HR segments, the 
LSTM model was chosen over conventional smoothing 
techniques due to its ability to learn and retain both short- and 
long-term dependencies. This approach enhances the stability 
of HRV signals, which are further used to estimate BP and 
assess physiological variability under real-world conditions. 

Each 10-second radar-derived reading is scaled by dividing 
the value by 100 to normalize it below 1 and is then fed into 
the LSTM model. The LSTM operates in three iterations, each 
using four consecutive readings: the first iteration uses readings 
values in a sequence 1, 2, 3, and 4; the second uses 2, 3, 4, and 
5; and the third uses 3, 4, 5, and 6. Each iteration generates a 
predicted HR value, and the final output is calculated as the 
average of these three predictions. This iterative approach 
ensures the stabilization of the final HR value by smoothing 
out any inconsistencies or noise present in the raw radar data. 

The internal structure of the LSTM node, as shown in 
Fig. 4, consists of a forget gate, input gate, and output gate, 
which collaboratively regulate the flow of information through 
the network. This architecture enables the LSTM to retain 
relevant patterns and discard noise, ensuring robust and 
accurate heart rate predictions. The LSTM’s role in refining 
and stabilizing the HR output is integral to the system’s ability 
to provide reliable and medically accurate real-time 
monitoring. 

In this LSTM model, the Long-Term Memory (LTM) and 
Short-Term Memory (STM) values generated from the first 
iteration are passed forward to the next iteration, along with a 
new set of four HR readings. This allows the model to build 
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upon the prior memory states, incorporating information from 
previous HR data to enhance accuracy and stability in the 
output. Specifically, the LTM and STM values calculated from 
readings 1, 2, 3, and 4 in the first iteration serve as the initial 
memory states for the next set of inputs (readings 2, 3, 4, and 
5) in the second iteration. This process is repeated across 
iterations, with each successive iteration updating and carrying 
forward the LTM and STM values, thereby reinforcing the 
model’s understanding of temporal patterns in the data. Fig. 5 
provides a visual of this iterative process, illustrating how the 
memory states are updated and propagated, ultimately ensuring 
a stabilized output across multiple LSTM iterations. 

 
Fig. 4. Single LSTM node showing the flow of data. 

 
Fig. 5. Multiple iteration of the LSTM model. 

G. Blood Pressure Estimation: A Physics-Informed AI 

Approach 

A systematic approach was presented for estimating blood 
pressure (BP) parameters from reflected radar signals, enabling 

fully contactless monitoring. This methodology integrates 
fundamental scientific principles with adaptive artificial 
intelligence and advanced digital signal processing (DSP) 
techniques. As illustrated in Fig. 6, the process involves a 
series of signal transformations and algorithmic steps designed 
to extract vital cardiovascular information without the use of 
physical probes or direct contact with the subject. 

 
Fig. 6. Step-by-step method and data flow for measuring blood pressure 

wirelessly without any contact. 

The radar system continuously tracks heart rate variability 
(HRV) signals to identify PQRST intervals, which are then 
analysed using adaptive learning DSP algorithms. From these 
features, systolic and diastolic pressures are estimated using the 
following equations: 

The transmitter sends a signal to the individual, and the receiver 

captures the reflected signal. from the person. 

The system will pre-process the signal and perform baseband 

processing to extract the in-phase signal. 

Transform the time-domain signal into another domain, such as the 

frequency domain, for further analysis. 

Apply an optimal bandpass filter to isolate the heart rate and heart 

rate variability (HRV) sign. 

Measure the heart rate of the person from HRV. 

 

Identify the P, Q, R, S, and T points in the HRV signal and 

measure the magnitude of the height of the P and R distance, P 

and S distance, and P and T distance. 

 

Systolic blood pressure = (height of P and R distance) * 

(acceleration due to gravity) * (density of blood) * (constant(k): a  

function of live heart rate) 

Diastolic blood pressure = (height of P and S distance or P and T 

distance) * (acceleration due to gravity) * (density of blood) * 

(constant (k): a  function of live heart rate) 

 

To fine-tune the gold standard blood pressure value for an 

individual, artificial intelligence is used based on the values 

obtained over certain duration. 

 

Apply a window function to the signal to reduce spectral leakage. 

 

Measure the persons heart rate from HRV. 
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Systolic blood pressure = (height of P and R distance(h)) * 

(acceleration due to gravity(g)) * (density of blood(ρ)) *  

(constant(k): a function of live heart rate)       (4) 

Diastolic blood pressure = (height of P and S distance or P and 
T distance (h)) * (acceleration due to gravity(g)) * (density of 

blood (ρ)) * (constant(k): a function of live heart rate)  (5) 

Here, h denotes the amplitude difference between specific 
cardiac waveform peaks, g is the gravitational acceleration, ρ is 
the blood density, and k   is a constant dynamically derived 
from an adaptive learning AI model, which depends on the live 
heart rate value. This indirect estimation technique has been 
validated against a conventional sphygmomanometer, 
achieving measurement accuracy in the 90 to 98% range, as 
detailed in Table II. 

H. User Experience and Operational Simplicity 

Although supported by advanced AI and digital signal 
processing backends, the system is designed to offer a 
straightforward, hygienic, and contactless user experience. 
Users interact with the system via an integrated touchscreen 
interface or a mobile application, with measurements obtained 
while the individual remains seated within the operational 
range—without the need for physical contact or wearable 
sensors. This user-centric, non-intrusive design makes the 
system particularly suitable for deployment in eldercare 
facilities, infectious disease control scenarios, primary care 
centers, and community health programs. 

The actual device, as shown in Fig. 7, is compact—
approximately the size of a traditional tablet—making it both 
portable and unobtrusive. 

 
Fig. 7. Contactless health screening product. 

For each measurement session, the reference person (RP) 
or subject follows a simple and repeatable protocol to ensure 
accurate and consistent readings: 

• The RP is seated in front of the radar and sensor-
enabled device, as illustrated in Fig. 8. 

• Prior to starting, the RP should ensure their bladder is 
nearly empty and relax for at least 5 minutes to stabilize 
physiological parameters. 

• The RP should sit upright on a chair, facing the device 
at a distance of 1.1 to 1.75 meters, with both feet flat on 
the floor and legs uncrossed. 

• The RP is encouraged to take a few deep breaths, then 
continue with normal, relaxed breathing throughout the 
measurement period. 

• Measurements are recorded for a minimum of 2 
minutes, extendable to 5, 10, or 15 minutes based on the 
use case. 

• The recorded values are displayed in real time via the 
user interface (UI), as shown in Fig. 9, and are also 
transmitted to the RP’s mobile device and uploaded to 
the cloud for secure, remote access and further analysis. 

• To ensure consistency and long-term reliability, the 
procedure should be repeated daily at approximately the 
same time. 

Fig. 8 shows the live demonstration of the device. The 
device includes a screen that displays the data. Additionally, 
any other device can access the same data via the hybrid cloud, 
ensuring flexibility and remote monitoring capabilities. 

 

Fig. 8. Live demo of the device. (Subject is the co-author, journal is free to 

use their image and associated data in publication). 

The device screen, as shown in Fig. 9, displays the heart 
rate, BP and other vitals 

 

Fig. 9. Device screen showing heart rate, BP and other vitals. 
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I. Heart Rate Variability 

The number of beats per minute is referred to as the heart 
rate, measured in beats per minute (BPM). Heart rate 
variability (HRV) represents the variation in the time intervals 
between consecutive heartbeats. HRV is visualized by the 
changes in R-R intervals over time, as shown in Fig. 10. 

 
Fig. 10. Heart rate variability (HRV) visualized with R-R interval changes. 

Heart rate variability (HRV) is a critical marker of 
autonomic nervous system function, providing valuable 
insights into an individual’s cardiovascular fitness and stress 
levels. Fig. 12 illustrates a graphical representation of a heart 
rate variability (HRV) meter, displaying live HRV data along 
with the activities of the sympathetic nervous system (SNS) 
and the autonomic nervous system (ANS). 

On the left side of the diagram, the variations and activities 
of the SNS are shown, highlighting its role in controlling the 
"fight-or-flight" response, such as reactions to fear, anxiety, or 
being startled. Typically, the SNS signals the adrenal glands to 
release adrenaline, leading to an increase in heart rate (HR) and 
blood pressure (BP). 

On the right side, the ANS is depicted as regulating the 
"rest-and-digest" response, which counteracts the effects of the 
SNS. The diagram also outlines three conditions: rest, previous 
status, and live (current) status. 

Low HRV is often linked to an increased risk of 
cardiovascular disease, as it indicates a reduced ability of the 
heart to adapt to changing physiological demands. Conversely, 
higher HRV reflects better cardiovascular health and a more 
flexible, responsive autonomic system. Fig. 11 illustrates 
human age variation as a function of heart rate variability 
(HRV), with the green-colored region representing the normal 
recommended values. 

 

Fig. 11. Age variation as a Function of Heart Rate Variability (HRV). 

V. RESULTS 

The proposed contact-free, radar-based health monitoring 
system demonstrates strong potential for accurate, non-

intrusive estimation of key physiological parameters, including 
heart rate (HR), heart rate variability (HRV), and blood 
pressure (BP). Validation was performed on more than one 
hundred adult participants aged 18 to 88 years, using both the 
authors’ vitals and those of external volunteers. Clinical-grade 
reference instruments—a Class B BP monitor, a manual 
sphygmomanometer (gold standard), a pulse oximeter, and a 
stethoscope—served as comparative benchmarks. The 
consolidated quantitative outcomes for HR and BP are 
summarized in Table I and Table II, respectively. 

Under controlled indoor conditions (ambient temperature 
18°C–32°C in an air-conditioned setting), the system achieved 
90%–98% accuracy for BP estimation relative to the 
sphygmomanometer and 90%–95% accuracy for HR 
estimation compared with pulse oximeter and stethoscope 
readings. Each participant underwent three consecutive daily 
measurements to ensure statistical rigor and account for day-to-
day variability. 

A comprehensive quantitative analysis was performed to 
evaluate agreement, correlation, and precision. Bland–Altman 
plots demonstrated strong agreement between the contactless 
device and reference instruments. Pearson and Spearman 
correlation coefficients confirmed both linear and monotonic 
relationships between measured and gold-standard values. 
Additionally, Mean Absolute Error (MAE) with 95% 
confidence intervals provided insight into the system’s 
consistency and repeatability. These findings were 
benchmarked against state-of-the-art radar-based literature and 
certified clinical devices, offering a robust comparative 
framework for assessing real-world applicability. 

The system is implemented on a portable, tablet-sized 
platform integrating radar sensing, multimodal sensor fusion, 
signal processing, embedded AI models, and hybrid edge–
cloud connectivity. This architecture enables real-time 
inference and supports longitudinal monitoring. The adaptive 
inference framework further enhances contextual interpretation 
of physiological signals while maintaining user simplicity and 
fully non-contact operation. 

 

Fig. 12. Live heart rate variability (HRV) with SNS and ANS activities. 
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TABLE I.  TEST RESULTS: COMPARISON OF HEART RATE MEASUREMENTS FROM OUR DEVICE AND REFERENCE DEVICES (BEFORE AND AFTER APPLYING 

LSTM MODEL): HEART RATE (HR), BEATS PER MINUTE (BPM), LONG SHORT-TERM MEMORY (LSTM) 

Description 

Candidates/ 

Subjects. 

HR measured using 

medical grade Pulse 

Oximeter 

(BPM) 

HR measured using 

medical grade blood 

pressure (BP) and 

HR meter (BPM) 

HR from our radar 

based contactless 

method. 

(BPM) 

HR from our radar 

based contactless 

method, 

(BPM) with LSTM 

Accuracy w.r.to 

medical grade 

pulse oximeter. 

( %) 

Accuracy w.r.to 

medical grade B 

and HR meter. 

(%). 

Subject 1 81 80 72 76.33 94.23 95.41 

Subject 2 89 91 82 81 91.01 89.01 

Subject 3 78 77 73 76 97.43 98.70 

Subject 4 70 74 70 68 97.14 91.89 

Subject 5 91 89 88 70 76.92 78.65 

Subject 6 92 95 88 87 94.56 91.57 

Subject 7 61 62 57 60 98.36 96.77 

Subject 8 62 67 60 61 98.38 91.04 

Subject 9 67 64 62 62 92.53 96.87 

Subject 10 77 77 74 75 97.40 97.40 

Subject 11 90 89 88 88 97.77 98.87 

Subject 12 92 90 82 87 94.56 96.66 

Subject 13 93 91 88 89 95.69 97.80 

Subject 14 99 100 94 94 94.94 94.00 

Subject 15 102 105 98 99 97.05 94.28 

Subject 16 65 68 61 64 98.46 94.11 

Subject 17 67 67 67 66 98.50 98.50 

Subject 18 78 79 76 73 93.58 92.40 

Subject 19 84 85 78 81 96.42 95.29 

Subject 20 89 92 85 84 94.38 91.30 

Note: We conducted clinical trials for this experiment at renowned hospitals in India with several test candidates. Due to data privacy concerns, we are only disclosing the data of the authors and a few selected 
subjects. However, researchers can contact the corresponding author for a live demo of the research work for validation.  

TABLE II.  TEST RESULTS: COMPARISON OF BLOOD PRESSURE (BP) MEASUREMENT FROM OUR DEVICE AND REFERENCE DEVICES BEFORE AND AFTER 

APPLYING THE LONG SHORT-TERM MEMORY (LSTM) TEST DURATION: 2 MINUTES 

Description 

Candidates/ 

Subjects. 

BP measured using 

medical grade BP 

meter. 

(systolic /diastolic) 

BP measured using 

medical grade 

sphygmomanometer. 

(systolic / diastolic) 

BP measured using 

contactless method 

(systolic /diastolic) 

BP measured using 

contactless method 

(systolic /diastolic) 

with LSTM 

Accuracy w.r.to 

BP meter. 

(systolic 

/diastolic) 

( %) 

Accuracy w.r.to 

sphygmomanometer) 

Gold standard. 

(systolic /diastolic) 

( %). 

Subject 1 120 / 84 118 / 80 116 / 82 117 / 81 97/96 99/98 

Subject 2 180 / 110 170 / 105 173 / 98 168 / 95 93/86 98/90 

Subject 3 130/85 140/87 122/80 123/84 94/98 87/96 

Subject 4 125/84 125/90 118/87 122 /80 97/95 97/88 

Subject 5 110 /75 115 / 80 102 / 75 108 /70 98/ 93 93/87 

Subject 6 145 / 95 150 /100 140 /85 142 / 90 97/ 94 94/ 90 

Subject 7 175 / 115 180 / 115 175 / 115 173 /113 98/98 96/98 

Subject 8 125 / 85 118 / 90 116 / 82 115 / 82 92/96 97/91 

Subject 9 170 / 120 180 / 105 163 / 98 165 / 95 97/ 79 91/90 

Subject 10 140/95 145/ 90 122/80 133/85 95/89 91/94 

Subject 11 185 / 110 175 / 105 173 / 98 168 / 100 90/90 94/98 

Subject 12 135/85 140/87 122/80 123/84 91/98 87/96 

Subject 13 110 /75 115 / 80 102 / 75 108 /70 98/93 93/87 

Subject 14 135/85 140/87 122/80 123/84 91/98 87/96 

Subject 15 120 / 84 118 / 82 116 / 82 117 / 81 97/96 97/98 

Subject 16 170 / 110 170 / 105 163 / 98 168 / 95 98/86 98/90 

Subject 17 115 /75 125 / 80 102 / 75 108 /70 93/93 86/87 

Subject 18 165 / 110 170 / 105 155 / 98 162 / 102 98/92 95/97 

Subject 9 130/85 140/87 122/80 123/84 94/98 87/96 

Subject 20 120 / 88 118 / 85 116 / 82 117 / 81 97/92 99/95 

Note: We conducted clinical trials for this experiment at renowned hospitals in India with several test candidates. Due to data privacy concerns, we are only disclosing the data of the authors and a few selected 
subjects. However, researchers can contact the corresponding author for a live demo of the research work for validation.  
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From a translational standpoint, the system has reached 
Technology Readiness Level (TRL) 7, having undergone 
functional validation and demonstrating readiness for 
controlled real-world deployment. Regulatory assessments and 
hospital-based evaluations are underway to advance clinical 
translation. 

Despite its encouraging performance, certain limitations 
remain. The validation was restricted to adults, controlled 
posture, and short-range indoor operation, which may limit 
generalizability to dynamic or high-motion environments, 
paediatric populations, or broader demographic groups. 
Residual noise and motion artifacts, inherent to radar-based 
sensing, can still influence measurements. Ongoing work 
focuses on improving digital signal processing pipelines, 
minimizing internal and external artifacts, and refining real-
time deep learning models to enhance robustness and statistical 
confidence. 

Collectively, the results confirm the feasibility of contact-
free estimation of cardiovascular parameters from micro chest 
wall displacements without wearable sensors or cuff-based 
methods. This represents a significant advance in remote and 
continuous health monitoring. Continued research and broader 
community validation are encouraged to further develop and 
expand this promising approach. 

VI. FUTURE WORKS 

The future of medical devices is moving towards compact, 
portable, and contact-free systems that can securely integrate 
personal health data into hybrid cloud environments. This shift 
emphasizes the need for continuous, non-invasive monitoring 
solutions, adaptable across clinical, public, and home settings. 
Upcoming research will focus on new algorithms, multi-sensor 
integration, and enhanced radar signal processing to improve 
these devices’ capabilities. 

A. Advanced Algorithms for Comprehensive Monitoring 

Research in advanced algorithms will be essential to 
capture multiple health parameters—heart rate, variability, 
blood pressure, glucose levels, and more, with high accuracy. 
These algorithms will need to account for environmental 
complexities, handling multiple persons, ensuring accurate, 
real-time, contactless readings, even in varied conditions. 

B. Enhanced Accuracy with Multi-Radar Interference 

Experiments with multi-radar interference techniques will 
boost the precision of complex measurements, such as blood 
pressure and respiration rates. Testing these in high-
interference settings, like public areas, will provide robust, 
reliable radar-based monitoring and help optimize both direct 
and indirect measurement methods. 

C. Parameter Modeling and Dependency Analysis 

Studying the interdependencies between physiological 
parameters offers deeper insight into personalized health 
trends. This research will support the design of monitoring 
devices that adapt to individual variability, enhancing the 
precision and relevance of health assessments. 

D. Expanding Use Cases 

Contactless monitoring has wide applications, including: 

• Proactive Health Monitoring for Aging Populations: 
Accessible devices for early health indicators could 
support independent living for seniors. 

• Clinical and Non-Clinical Use: Psychiatry, yoga, and 
fitness settings can use these devices to track mental 
and physical well-being. 

• Military and Industry Applications: Military personnel 
monitoring and machine health tracking (Industry 
4.0/5.0) are emerging fields for this technology. 

• Financial Services: Health data integration in loan and 
insurance processes offers new avenues for risk 
assessment and underwriting. 

E. Miniaturization and Mobile Integration 

Embedding compact monitoring modules into mobile 
devices will make health screening universally accessible. This 
requires miniaturized sensors that maintain high performance 
while optimizing power use, leading to future smartphones and 
wearables with advanced health-monitoring capabilities. 

VII. DATA PRIVACY, ETHICS, RESEARCH WORK DEMO 

1) Data privacy: This study exclusively uses the vital and 

non-vital parameters of the authors. Additionally, the method 

has been validated with data from over 100 subjects at leading 

hospitals in India, with all personally identifiable information 

removed. The radar and reference signals used are one-

dimensional electrical signals, ensuring a high level of 

anonymity. 

2) Data availability: The validated test data used for this 

research, obtained from ImpiloVista and other gold-standard 

medical devices, are available from the corresponding author 

upon reasonable request. 

3) Ethics statement: In the initial phase, data were 

collected solely from the researchers themselves. All 

mmWave radars operate within the ISM band, and all 

electronic components used are CE and FCC compliant. 

4) Product demo and supplementary materials: Upon 

request, the corresponding author can arrange a live 

demonstration of our research findings using the complete 

system with a subject for interested researchers. 

5) Ethics and consent to participate declarations: We 

confirm that all methods were conducted in accordance with 

relevant guidelines and regulations, including the Declaration 

of Helsinki and applicable local regulatory standards. This 

study involved the use of medically approved international 

Industrial, Scientific, and Medical (ISM) band radar and 

medical-grade sensors, classified as a Class B medical 

product, without administering medication or inserting probes 

into the participants' bodies. All data were collected from 

subjects at a 1-meter distance with prior informed consent, 

ensuring strict privacy and confidentiality. 

VIII. CONCLUSION 

This research presents a novel, non-invasive method for 
accurate, real-time measurement of heart rate (HR), heart rate 
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variability (HRV), blood pressure (BP), and other vital signs 
from a distance, offering dynamic and continuous monitoring 
without physical contact. By leveraging the same signal, HRV 
can be derived, providing insights into brain-heart interactions 
critical for optimal health and supporting real-time adjustments 
for well-being. Through advanced sensor fusion techniques, 
this study demonstrates a reliable, efficient approach to indirect 
measurement of both vital and non-vital parameters, 
positioning contactless health monitoring as a promising 
advancement for remote and continuous healthcare. 
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