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Abstract—This study presents a formal Systematic Literature
Review (SLR) to address a critical methodological question in
robotics research: "Which simulator is most suitable for a given
Deep Reinforcement Learning (DRL) algorithm and mobile
robot navigation task?'" The choice of a simulation environment
profoundly impacts policy robustness, data efficiency, and sim-
to-real transfer, yet the community has lacked an evidence-based
guide for this decision. Following PRISMA guidelines, we
methodically searched and analyzed 87 peer-reviewed studies
published between January 2020 and June 2025 to map the
contemporary research landscape. Our synthesis introduces a
novel, theory-informed taxonomy that classifies simulators into
three archetypes based on their empirical use. Archetype I, ROS-
centric standards (e.g., Gazebo), are chosen for algorithmic
novelty with low-dimensional sensor inputs. Archetype II,
versatile platforms (e.g., CoppeliaSim), are favored for rapid
prototyping. Archetype III, GPU-native engines (e.g., NVIDIA
Isaac Sim), have emerged for large-scale, perception-heavy
challenges, leveraging photorealism and parallelization to
mitigate the perception gap and enable zero-shot transfer. This
review reveals a paradigm shift towards data-driven
methodologies and culminates in a prescriptive decision-making
framework, transforming simulator selection from an incidental
detail into a strategic choice.
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I.  INTRODUCTION

The autonomous navigation of mobile robots remains a
cornerstone challenge in robotics, with Deep Reinforcement
Learning (DRL) emerging as a powerful paradigm for learing
adaptive control policies directly from sensor data [1].
However, the data-intensive nature of DRL makes training on
physical hardware impractical due to time, cost, and safety
constraints [2], [3], making simulation an indispensable tool.
This reliance on simulation introduces the pervasive "sim-to-
real gap"—the discrepancy between simulation and reality that
hinders policy transfer [4]. The choice of simulator is therefore
a foundational methodological decision, as it dictates the
available strategies for mitigating this gap, defines the fidelity
of sensor models (the "perception gap"), and sets the
performance ceiling for data collection, which is critical for
modern DRL algorithms [5], [6]. Despite the existence of
numerous simulators, researchers lack a systematic, evidence-
based guide to inform their selection, often leading to a
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methodological mismatch between the tool and the research
objective. This study addresses this significant void by
conducting a formal Systematic Literature Review (SLR) to
provide a data-driven answer to the central research question:
"Which simulator should a researcher choose for a specific
DRL algorithm and mobile robot navigation task?"

While prior surveys have provided excellent overviews of
DRL algorithms for navigation [7] or sim-to-real techniques
[8], they are largely simulator-agnostic. They identify the sim-
to-real gap as a key challenge, but do not offer a comparative
analysis of the simulation tools themselves as the primary
variable influencing research outcomes. Our work is
fundamentally different. By employing a formal SLR
methodology focused specifically on the simulator, we move
beyond simple cataloging to provide a novel, archetype-based
synthesis. This approach allows us to uncover causal links
between simulator choice, research focus (e.g., algorithmic
novelty vs. perception challenges), and the adopted sim-to-real
strategy—insights that remain obscured in conventional
narrative reviews. We frame our resulting taxonomy not as a
mere descriptive grouping but as a theory-informed abstraction
that reveals the underlying structure of current research
practices. Furthermore, by analyzing literature from 2020 to
2025, our review captures and contextualizes a critical
paradigm shift in the field: the move away from purely CPU-
bound simulation towards GPU-native engines and data-driven
methodologies for achieving robust real-world deployment.

This review makes several distinct contributions to the
field. Our methodological contribution is the application of the
rigorous PRISMA framework to a simulator-centric analysis,
providing a transparent and reproducible evidence base. Our
conceptual contribution is the novel taxonomy of simulator
archetypes, which serves as a new analytical lens for
understanding research trends and trade-offs. Finally, our
practical contribution is a prescriptive, data-driven decision-
making framework designed to guide researchers in
strategically aligning their choice of simulator with their
specific research objectives, thereby enhancing methodological
rigor and research efficiency.

To achieve these aims, this study is structured as follows:
Section II reviews related survey literature, sharpening the
novel positioning of our work. Section III details our
systematic review methodology, adhering to the PRISMA
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guidelines. Section IV presents the data extraction and
synthesis process. In Section V, we present the results,
introducing our taxonomy of simulator archetypes and
analyzing their use in the literature. Section VI provides a
detailed discussion, formalizing our findings into a prescriptive
decision-making framework and articulating key research gaps.
Finally, Section VII concludes the study with a reflective
synthesis of our findings and their implications for future
research.

II. RELATED WORK

Several survey papers have explored the intersection of RL
and robotics. Seminal works provided a comprehensive
overview of RL in robotics before the deep learning era [9].
More recent reviews have focused on DRL for robotics, but
often with accomplishments primarily in simulation or with a
broad scope covering many tasks like manipulation and
locomotion [7]. Other reviews focus specifically on sim-to-real
transfer techniques, such as domain randomization and
adaptation, but are generally simulator-agnostic [8].

A few studies have compared simulation environments
directly. A study in [10] benchmarked the performance of four
simulators on different hardware, focusing on computational
speed rather than the broader research context. A recent review
in [11] also reviewed popular simulation engines, highlighting
MuJoCo and Unity, but not focusing specifically on the mobile
robot navigation domain. Most closely related are recent
reviews such as [5], [7], and [12]. A foundational review of
DRL methods and navigation frameworks is provided in [7]. A
systematic review focusing on navigation in dynamic
environments is offered in [5]. Similarly, a comprehensive
overview of DRL's integration in mobile robotics, analyzing its
evolution and identifying key challenges and future directions,
is presented in [12]. While these studies provide excellent,
broad surveys of the algorithmic landscape, they identify the
sim-to-real gap as a challenge without offering a comparative
analysis of the simulation tools themselves. Our work
differentiates itself by using a formal SLR methodology to
specifically analyze and synthesize the literature based on the
choice of simulator, thereby providing a novel, evidence-based
framework that directly links simulator characteristics to DRL
algorithms and navigation tasks.

III.  SYSTEMATIC REVIEW METHODOLOGY

To ensure a transparent, reproducible, and rigorous review,
we adopted the PRISMA 2020 statement as our
methodological framework [13]. The process consists of
defining research questions, a search strategy, study selection
criteria, and a data extraction plan [14].

This review is guided by four central research questions
(RQs) designed to systematically map the literature:

e RQI: What is the distribution of simulators (e.g.,
Gazebo, Webots, CoppeliaSim, NVIDIA Isaac Sim)
used in the recent literature for DRL-based mobile robot
navigation?

e RQ2: What are the reported capabilities and limitations
of these simulators conceming sensor modeling
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(perception gap) and performance/scalability for DRL
training?

e RQ3: Which DRL algorithms (e.g., PPO, SAC, DQN,
DDPG) are predominantly paired with each simulator,
and for which specific navigation tasks (e.g., obstacle
avoidance, end-to-end visual navigation)?

e RQ4: What trends and patterns emerge from the
literature regarding sim-to-real transfer strategies
associated with each simulator archetype?

A. Search Strategy

To gather a comprehensive body of literature, we
implemented a structured search strategy across several major
scientific databases. We conducted a systematic search of three
major scientific databases: IEEE Xplore, Scopus, and arXiv.
The search was performed in June 2025, covering publications
from January 2020 to June 2025 to capture the most recent
trends. The following search string was adapted for each
database's syntax: ("reinforcement learning" OR "RL") AND
("mobile robot" OR "robot navigation") AND ("simulation”
OR '"simulator") AND ("Gazebo" OR "Webots" OR
"CoppeliaSim" OR "Isaac Sim" OR "PyBullet").

B. Study Selection: Inclusion and Exclusion Criteria

We conducted the study selection in two phases: 1) title and
abstract screening, and 2) full-text review[15]. To be included,
a paper had to meet all of the following inclusion criteria:

e [1: The paper is a full-text, peer-reviewed conference
paper, journal article, or a publicly available preprint
(from arXiv).

e [2: The paper was published between January 2020 and
June 2025.

e [3: The paper explicitly uses a physics-based simulator
for training or evaluating a DRL agent for a mobile
robot navigation task.

e [4: The paper is written in English.

Papers were excluded based on the following exclusion
criteria:

e El: The paper is a review, survey, or abstract-only
publication.

e [E2: The work does not involve a mobile ground robot
(e.g., focuses only on manipulators, drones, or
underwater vehicles).

e E3: The work uses RL but not deep leaming (i., no
deep neural networks).

e E4: The simulator is used for purposes other than DRL
(e.g., only for visualization or classical controller
testing).

C. Selection Results

The systematic search and screening process yielded a final
corpus of literature that forms the evidence base for this
review. Initially, 173 papers were selected based on the
research query and inclusion criteria. After the removal of
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duplicates, 143 unique studies remained. These were subjected
to a full-text review, and after applying the exclusion criteria, a
final set of 87 papers were deemed eligible for inclusion in our
qualitative synthesis. The complete study selection process is
visually detailed in the PRISMA flow diagram shown in Fig. 1.

I Inclusion Criteria I

I1: The paper is a full-text ...
12: The paper was published ...
13: The paper explicitly uses a ...

14: The paper is written in ...

\

4 )
173 studies/articles were
initially identified
\. J

v

4 A
143 studies/articles after

duplicate removal v

\_ J

v

I Exclusion criteria I

Title and Abstract
screening

o EI: The paper is a review, ...
o E2: The work does not involve a ...
o E3: The work uses RL but not ...

o E4: The simulator is used for ... Full-text

review

87 studies/articles re
after applying
exclusion criteria v

Fig. 1. Study selection process based on inclusion and exclusion criteria.

IV. DATA EXTRACTION AND SYNTHESIS

For each study that met the criteria, we performed a
detailed data extraction process to gather key information for
our synthesis. For each included study, we extracted the
following data points: 1) Simulator used; 2) Mobile robot
platform; 3) Navigation task description; 4) DRL algorithm
implemented; 5) Sensor modalities simulated; 6) Stated reasons
for simulator choice; 7) Reported performance metrics; and 8)
Sim-to-real transfer methodology and results. The extracted
data was then synthesized qualitatively to answer the research
questions and identify overarching trends. Table I provides a
summary of a representative selection of the reviewed
literature, illustrating the connections between simulators,
algorithms, and tasks that form the basis of our analysis.

The data summarized in Table I reveal several distinct
trends that underpin our analysis. A clear majority of the
studies leverage Gazebo, pairing it with a wide array of DRL
algorithms—from value-based methods like D3QN to policy-
gradient methods like PPO and DDPG—for tasks centered on
map-less navigation and obstacle avoidance. This reinforces its
role as a versatile, community-standard testbed. In contrast,
papers utilizing NVIDIA Isaac Sim consistently tackle
complex, often end-to-end, navigation tasks and are frequently
paired with data-hungry algorithms like PPO or advanced
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methods like Imitation Learning. This highlights its adoption
for research pushing the boundaries of sim-to-real transfer and
performance.

Webots and CoppeliaSim are used for a range of tasks,
including  multi-robot  systems and learning from
demonstration, often employing algorithms like PPO and
GAIL, respectively, showcasing their utility in specialized
research areas [37]. Collectively, the table illustrates a strong
correlation between the choice of simulator and the scope of
the research problem, a central theme explored in this review.

TABLEI. SUMMARY OF SELECTED LITERATURE ON SIMULATORS FOR
DRL-BASED MOBILE ROBOT NAVIGATION
Used DRL e
Reference | Gimulators) | Algorithms) Task(s)
Isaac  Sim End-to-end local
[16] Gazebo > | PPO planning and obstacle
avoidance.
Autonomous
navigation, target
(17] Gazebo DDPG, PPO seeking and obstacle
avoidance.
Unity, Map-less navigation to
(18] Gazebo Double DON a random target.
SAC PPO .
y > | Path planning and
(19] Gazebo EaDrﬁﬁ’g Q| obstacle avoidance
End-to-end navigation
D3QN (Dueling | and obstacle avoidance
[20] Gazebo Double Deep Q- | in an unknown
Network) environment with static
and dynamic obstacles.
Map-free navigation for
[21] Gazebo DDPG, PPO an omnidirectional
robot.
DDI:G ed Navigation in crowded
[22] Gazebo 5311:}81 omize idin environments with
points) gudmg dynamic pedestrians.
Parallel
Distributional Map-less navigation for
[23] Gazebo Actor-Critic terrestrial mobile robots
Networks
DDQN (Double [ Map-less navigation
[24] Gazebo Deep Q- | and obstacle avoidance
Network) for a TurtleBot3 robot.
PPO (enhanced | Shortest path planning
[25] Webots with Curriculum | for an E-puck robot
Leaming) using IR sensors.
Pedestrian  avoidance
for autonomous
[26] Webots DQN, PPO vehicles in simulated
scenarios.
[27] Webots DQN, PPO, A2C 3:“;{ inverted pendulum
DQON, NSQ, | Multi-robot swarm
28] Webots DDQN, PPO navigation.
GAIL . Lo
(Generative Leamning navigation
[29] CoppeliaSim | Adversarial behaviors from expert
Imita tion demonstrations for
Learning) mobile robots.
[30] CoppeliaSim | Adaptive TD3 Na\{lgatlon in_dynamic
environments
Gazebo (via Map-less navigation for
(31] FRobs RL) PPO, SAC, TD3 a mobile robot.
. RMA (Rapid | Legged mobile robot
32] Isaac Sim Motor walking on different
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Used DRL
Reference Simulator(s) Algorithm(s) Task(s)
Adaptation) types of ground
surfaces.
?i?lf‘r?cill;n? Map-less navigation for
[33] Isaac Sim learning method an .Automatlc Gl.llded
ith soft act Vehicle (AGV) in a
:]r]itic :(I)goritahcncl);_ warehouse scenario.
Imitation Map-less navigation of
. Leaming (IL) [ a wheeled robot using
[34] Isaac Sim and Curriculum | open-vocabulary 3D
Learning (CL) scene graphs.
Imitation
. Le':ammg (L) Generalizable end-to-
[35] Isaac Sim with an auto- d ioati
regressive world end navigation.
model
[36] Isaac Sim ﬁggrmézttic Visual goal-tracking
Map-less path planning
[37] Gazebo DDPG in an unknown
environment
Map-less navigation
38] Gazebo DQN, DDQN and obstacle avoidance
Cust Mobile robot
[39] Si‘rﬁu‘ﬁor DWA-RL navigation without
prior exploration

V. RESULTS OF THE SYSTEMATIC REVIEW

A. Distribution of Simulators

An analysis of the selected corpus of literature reveals a
distinct distribution in the adoption of simulation platforms.
Gazebo emerged as the predominant simulation environment,
utilized in a substantial majority of the reviewed studies,
thereby establishing its position as a de facto standard within
the research community.

NVIDIA Isaac Sim was identified as the second most
prevalent platform, indicating its significant and growing
adoption in recent research. Following these, Webots and
CoppeliaSim were also frequently employed, albeit to a lesser
extent. A smaller subset of the literature utilized alternative

simulators, such as PyBullet, particularly in studies
concentrating on specialized applications like mobile
navigation.

B. Simulator Capabilities, DRL Algorithms, and Tasks

Our synthesis of the literature revealed distinct patterns that
link the choice of simulator with its technical capabilities, the
selected DRL algorithms, and the complexity of the navigation
task. We present these findings through our proposed
taxonomy of simulator archetypes.

1) Archetype I: ROS-Centric Open-Source Standards
(Gazebo, Webots). These simulators are predominantly
selected for their seamless integration with the ROS
ecosystem[40]. The literature consistently cites the benefit of
architectural parity, where the same ROS2 control software
can be deployed in simulation and on the real robot,
simplifying the sim-to-real process[16]. However, their CPU-
bound performance is a frequently acknowledged limitation,
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making them less suitable for training on high-dimensional
visual data. Sensor modeling is functional, but studies note
that default noise parameters often require manual tuning to
match real hardware, presenting a perception gap
challenge[41]. Consequently, the majority of studies using
these platforms focus on navigation tasks with low-
dimensional inputs, primarily 2D LiDAR scans[24]. The most
common DRL algorithms are off-policy methods like
DDPG/TD3 and SAC, alongside the on-policy PPO[24]. The
research contribution in these papers often lies in algorithmic
enhancements, such as novel reward shaping [37] or modified
network architectures for safer navigation, rather than tackling
the perception gap itself.

2) Archetype II: The Versatile Multi-Physics Platform
(CoppeliaSim) CoppeliaSim's unique value proposition in the
literature is its versatility. Several papers leverage its support
for multiple physics engines to conduct comparative analyses.
The high-speed PyRep interface is frequently cited as a key
advantage for accelerating DRL training cycles compared to
the overhead of ROS-based communicationl. The tasks
explored in CoppeliaSim are diverse, often involving complex
kinematics or prototyping novel robot designs. The DRL
algorithms used are varied, with studies employing GAIL for
imitation leaming [28] and DDPG for control tasks. The focus
is often on rapid algorithm development and validation in a
flexible environment.

3) Archetype III: The GPU-Native High-Performance
Engine (NVIDIA Isaac Sim) Papers using Isaac Sim are almost
exclusively focused on tackling large-scale DRL problems and
bridging the sim-to-real gap for perception-heavy tasks. The
ability to run thousands of parallel simulations on the GPU is
the most cited advantage, as it enables the collection of
massive datasets required to train robust policies[42]. Its use
of RTX rendering for photorealistic sensor data is highlighted
as a direct strategy to mitigate the perception gap, making it
the platform of choice for end-to-end, vision-based
navigation[42]. The dominant algorithm in the Isaac Sim
literature is PPO, whose on-policy nature benefits immensely
from the massive parallel data collection capabilities. The
tasks are ambitious, often involving navigation in complex,
cluttered environments using only camera images or a fusion
of camera and LiDAR data, with the primary research
contribution often being the demonstration of successful zero-
shot sim-to-real transfer.

C. Sim-to-Real Transfer Strategies

Our review confirms that the choice of simulator strongly
influences the sim-to-real strategy.

With Gazebo/Webots, the strategy is an architectural
alignment. Researchers leverage the native ROS integration to
ensure the software stack is nearly identical between
simulation and the real robot, minimizing transfer errors related
to control and communication logic.
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( Start: Define Primary Research Goal ]

;

What is the core innovation?
(Algorithmic, Perception, or Mechanics)
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Syslem Integration
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. X Sim-to-Real
Priority: Direct ROS im-fo-Kea
Deployment? Mechanics /
. . Rapid Prototyping
Requires massive-scale data

No Yos No
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Archetype I: Gazebo / Webots

. X Archetype 111 Si
(Architectural Parity) rehetype sadc >1m

(Data-Driven Robustness)
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(Flexibility & Speed)
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Low-Dim (LiDAR) vs High-Dim (Vision)?

Low-Dim High-Dim

Archetype I: Gazebo / Webots
(Sufficient Fidelity)

Archetype IIT: Tsaac Sim
(Photorealism Needed)

Fig.2. A prescriptive decision flowchart for simulator selection. This flowchart formalizes the selection logic by guiding a researcher from their primary research
goal through key technical requirements to the most appropriate simulator archetype, highlighting the core trade-offs at each stage.

With NVIDIA Isaac Sim, the strategy is data-driven
robustness. Researchers leverage massive parallelization and
photorealistic rendering to train policies on an extremely wide
distribution of scenarios via domain randomization. This forces
the policy to become invariant to simulation-specific artifacts,
making it robust enough for zero-shot transfer. A powerful
emerging trend is the "sim-to-sim-to-real" pipeline, where
policies trained in Isaac Sim are first validated in Gazebo
before real-world deployment, providing strong evidence of
their generalization capabilities.

VI.  DISCUSSION: A DECISION-MAKING FRAMEWORK

Based on our comprehensive literature synthesis, we
propose a structured decision-making framework (see Fig. 2) to
guide the selection of robotic simulators according to two
pivotal dimensions: 1) the primary source of methodological
innovation, and 2) the complexity of required sensory data.

When the research novelty lies in algorithmic
improvements—such as novel reward functions, enhanced
safety-aware exploration strategies [43], or gains in sample
efficiency—and the underlying task can be addressed with
low-dimensional sensor inputs (for example, 2D LiDAR),
established platforms like Gazebo and Webots are
recommended (see Fig. 2). These environments not only offer
robust, community-validated benchmarks, but their seamless
ROS integration also streamlines the transition from simulation
to real-world deployment under manageable computational
loads.

In contrast, if the principal innovation revolves around
comparative physics analyses or the rapid prototyping of
intricate mechanical systems, CoppeliaSim emerges as the
superior choice. Its unique support for multiple physics
engines, combined with the high-speed PyRep APIL accelerates
development cycles beyond what ROS-centric alternatives
typically allow.

Finally, for investigations explicitly targeting sim-to-real
transfer—particularly those focused on vision-based, end-to-
end navigation in visually complex domains—NVIDIA Isaac
Sim provides indispensable capabilities. Its photorealistic
rendering and exceptional parallel training performance make
it the de facto standard for experiments aiming to achieve zero-
shot policy transfer. Through a sim-to-sim-to-real validation
pipeline,  researchers can  rigorously  demonstrate
methodological advances in direct policy transfer, thus
reinforcing the scientific contribution of their work.

VII. CONCLUSION AND FUTURE DIRECTIONS

This systematic literature review has provided a rigorous,
evidence-based analysis of the simulator landscape for DRL-
based mobile robot navigation. The central, definitive insight
from our synthesis of 87 recent studies is that simulator
selection is not an incidental technical detail but a foundational
methodological decision that shapes research outcomes. Our
work conclusively changes how this choice should be viewed:
from a matter of convenience to a strategic alignment of tool,
task, and objective. We have formalized the community's
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implicit practices into an explicit taxonomy of simulator
archetypes, demonstrating a clear correlation between a
simulator's architectural principles and its application in the
literature.

What this review definitively establishes is a tripartite
structure of the current research landscape. First, ROS-centric
platforms like Gazebo are the established workhorses for
algorithmic development with low-dimensional sensors, where
architectural parity with the real world is the primary sim-to-
real strategy. Second, GPU-native engines, epitomized by
NVIDIA Isaac Sim, have become the standard for tackling the
perception gap in vision-based navigation, enabling data-driven
robustness through massive parallelization and domain
randomization. Third, versatile engines like CoppeliaSim
occupy a vital niche for rapid prototyping and specialized
mechanical analysis. By making these distinctions explicit, our
framework provides immediate, practical guidance that can
prevent methodological mismatches and enhance research
efficiency.

However, our review also illuminates what remains
uncertain. While we identify a strong trend towards data-driven
sim-to-real transfer, the precise metrics for quantifying the
"reality gap" remain ad-hoc and study-specific. It is still an
open question how to create a universal benchmark that can
compare the transferability of policies from different
simulators in a scientifically rigorous manner. Furthermore, the
long-term viability and interoperability of vendor-specific,
high-performance ecosystems versus open-source standards is
an unresolved tension that will shape the field's future
accessibility and direction.

Looking forward, the capabilities of Archetype III
simulators serve as a crucial technological bridge to the next
paradigm: persistent, bi-directional Robotic Digital Twins. Yet,
to realize this future and improve scientific rigor, the
community must move beyond the current state. We strongly
advocate for the development of a Standardized Sim-to-Real
Navigation Benchmark. Such a framework would enable true
apples-to-apples comparisons, fostering more generalizable
and robust solutions. By clarifying the present state of
simulation, separating validated insights from open questions,
and illuminating the path toward standardized benchmarking,
this work aims to accelerate the development of intelligent
systems capable of operating safely and effectively in the
complexity of the real world.
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