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Abstract—This study presents a formal Systematic Literature 

Review (SLR) to address a critical methodological question in 

robotics research: "Which simulator is most suitable for a given 

Deep Reinforcement Learning (DRL) algorithm and mobile 

robot navigation task?" The choice of a simulation environment 

profoundly impacts policy robustness, data efficiency, and sim-

to-real transfer, yet the community has lacked an evidence-based 

guide for this decision. Following PRISMA guidelines, we 

methodically searched and analyzed 87 peer-reviewed studies 

published between January 2020 and June 2025 to map the 

contemporary research landscape. Our synthesis introduces a 

novel, theory-informed taxonomy that classifies simulators into 

three archetypes based on their empirical use. Archetype I, ROS-

centric standards (e.g., Gazebo), are chosen for algorithmic 

novelty with low-dimensional sensor inputs. Archetype II, 

versatile platforms (e.g., CoppeliaSim), are favored for rapid 

prototyping. Archetype III, GPU-native engines (e.g., NVIDIA 

Isaac Sim), have emerged for large-scale, perception-heavy 

challenges, leveraging photorealism and parallelization to 

mitigate the perception gap and enable zero-shot transfer. This 

review reveals a paradigm shift towards data-driven 

methodologies and culminates in a prescriptive decision-making 

framework, transforming simulator selection from an incidental 

detail into a strategic choice. 
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I. INTRODUCTION 

The autonomous navigation of mobile robots remains a 
cornerstone challenge in robotics, with Deep Reinforcement 
Learning (DRL) emerging as a powerful paradigm for learning 
adaptive control policies directly from sensor data [1]. 
However, the data-intensive nature of DRL makes training on 
physical hardware impractical due to time, cost, and safety 
constraints [2], [3], making simulation an indispensable tool. 
This reliance on simulation introduces the pervasive "sim-to-
real gap"—the discrepancy between simulation and reality that 
hinders policy transfer [4]. The choice of simulator is therefore 
a foundational methodological decision, as it dictates the 
available strategies for mitigating this gap, defines the fidelity 
of sensor models (the "perception gap"), and sets the 
performance ceiling for data collection, which is critical for 
modern DRL algorithms [5], [6]. Despite the existence of 
numerous simulators, researchers lack a systematic, evidence-
based guide to inform their selection, often leading to a 

methodological mismatch between the tool and the research 
objective. This study addresses this significant void by 
conducting a formal Systematic Literature Review (SLR) to 
provide a data-driven answer to the central research question: 
"Which simulator should a researcher choose for a specific 
DRL algorithm and mobile robot navigation task?" 

While prior surveys have provided excellent overviews of 
DRL algorithms for navigation [7] or sim-to-real techniques 
[8], they are largely simulator-agnostic. They identify the sim-
to-real gap as a key challenge, but do not offer a comparative 
analysis of the simulation tools themselves as the primary 
variable influencing research outcomes. Our work is 
fundamentally different. By employing a formal SLR 
methodology focused specifically on the simulator, we move 
beyond simple cataloging to provide a novel, archetype-based 
synthesis. This approach allows us to uncover causal links 
between simulator choice, research focus (e.g., algorithmic 
novelty vs. perception challenges), and the adopted sim-to-real 
strategy—insights that remain obscured in conventional 
narrative reviews. We frame our resulting taxonomy not as a 
mere descriptive grouping but as a theory-informed abstraction 
that reveals the underlying structure of current research 
practices. Furthermore, by analyzing literature from 2020 to 
2025, our review captures and contextualizes a critical 
paradigm shift in the field: the move away from purely CPU-
bound simulation towards GPU-native engines and data-driven 
methodologies for achieving robust real-world deployment. 

This review makes several distinct contributions to the 
field. Our methodological contribution is the application of the 
rigorous PRISMA framework to a simulator-centric analysis, 
providing a transparent and reproducible evidence base. Our 
conceptual contribution is the novel taxonomy of simulator 
archetypes, which serves as a new analytical lens for 
understanding research trends and trade-offs. Finally, our 
practical contribution is a prescriptive, data-driven decision-
making framework designed to guide researchers in 
strategically aligning their choice of simulator with their 
specific research objectives, thereby enhancing methodological 
rigor and research efficiency. 

To achieve these aims, this study is structured as follows: 
Section II reviews related survey literature, sharpening the 
novel positioning of our work. Section III details our 
systematic review methodology, adhering to the PRISMA 
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guidelines. Section IV presents the data extraction and 
synthesis process. In Section V, we present the results, 
introducing our taxonomy of simulator archetypes and 
analyzing their use in the literature. Section VI provides a 
detailed discussion, formalizing our findings into a prescriptive 
decision-making framework and articulating key research gaps. 
Finally, Section VII concludes the study with a reflective 
synthesis of our findings and their implications for future 
research. 

II. RELATED WORK 

Several survey papers have explored the intersection of RL 
and robotics. Seminal works provided a comprehensive 
overview of RL in robotics before the deep learning era [9]. 
More recent reviews have focused on DRL for robotics, but 
often with accomplishments primarily in simulation or with a 
broad scope covering many tasks like manipulation and 
locomotion [7]. Other reviews focus specifically on sim-to-real 
transfer techniques, such as domain randomization and 
adaptation, but are generally simulator-agnostic [8]. 

A few studies have compared simulation environments 
directly. A study in [10] benchmarked the performance of four 
simulators on different hardware, focusing on computational 
speed rather than the broader research context. A recent review 
in [11] also reviewed popular simulation engines, highlighting 
MuJoCo and Unity, but not focusing specifically on the mobile 
robot navigation domain. Most closely related are recent 
reviews such as [5], [7], and [12]. A foundational review of 
DRL methods and navigation frameworks is provided in [7]. A 
systematic review focusing on navigation in dynamic 
environments is offered in [5]. Similarly, a comprehensive 
overview of DRL's integration in mobile robotics, analyzing its 
evolution and identifying key challenges and future directions, 
is presented in [12]. While these studies provide excellent, 
broad surveys of the algorithmic landscape, they identify the 
sim-to-real gap as a challenge without offering a comparative 
analysis of the simulation tools themselves. Our work 
differentiates itself by using a formal SLR methodology to 
specifically analyze and synthesize the literature based on the 
choice of simulator, thereby providing a novel, evidence-based 
framework that directly links simulator characteristics to DRL 
algorithms and navigation tasks. 

III. SYSTEMATIC REVIEW METHODOLOGY 

To ensure a transparent, reproducible, and rigorous review, 
we adopted the PRISMA 2020 statement as our 
methodological framework [13]. The process consists of 
defining research questions, a search strategy, study selection 
criteria, and a data extraction plan [14]. 

This review is guided by four central research questions 
(RQs) designed to systematically map the literature: 

• RQ1: What is the distribution of simulators (e.g., 
Gazebo, Webots, CoppeliaSim, NVIDIA Isaac Sim) 
used in the recent literature for DRL-based mobile robot 
navigation? 

• RQ2: What are the reported capabilities and limitations 
of these simulators concerning sensor modeling 

(perception gap) and performance/scalability for DRL 
training? 

• RQ3: Which DRL algorithms (e.g., PPO, SAC, DQN, 
DDPG) are predominantly paired with each simulator, 
and for which specific navigation tasks (e.g., obstacle 
avoidance, end-to-end visual navigation)? 

• RQ4: What trends and patterns emerge from the 
literature regarding sim-to-real transfer strategies 
associated with each simulator archetype? 

A. Search Strategy 

To gather a comprehensive body of literature, we 
implemented a structured search strategy across several major 
scientific databases. We conducted a systematic search of three 
major scientific databases: IEEE Xplore, Scopus, and arXiv. 
The search was performed in June 2025, covering publications 
from January 2020 to June 2025 to capture the most recent 
trends. The following search string was adapted for each 
database's syntax: ("reinforcement learning" OR "RL") AND 
("mobile robot" OR "robot navigation") AND ("simulation" 
OR "simulator") AND ("Gazebo" OR "Webots" OR 
"CoppeliaSim" OR "Isaac Sim" OR "PyBullet"). 

B. Study Selection: Inclusion and Exclusion Criteria 

We conducted the study selection in two phases: 1) title and 
abstract screening, and 2) full-text review[15]. To be included, 
a paper had to meet all of the following inclusion criteria:  

• I1: The paper is a full-text, peer-reviewed conference 
paper, journal article, or a publicly available preprint 
(from arXiv). 

• I2: The paper was published between January 2020 and 
June 2025. 

•  I3: The paper explicitly uses a physics-based simulator 
for training or evaluating a DRL agent for a mobile 
robot navigation task. 

•  I4: The paper is written in English. 

Papers were excluded based on the following exclusion 
criteria: 

• E1: The paper is a review, survey, or abstract-only 
publication. 

•  E2: The work does not involve a mobile ground robot 
(e.g., focuses only on manipulators, drones, or 
underwater vehicles). 

•  E3: The work uses RL but not deep learning (i.e., no 
deep neural networks). 

•  E4: The simulator is used for purposes other than DRL 
(e.g., only for visualization or classical controller 
testing). 

C. Selection Results 

The systematic search and screening process yielded a final 
corpus of literature that forms the evidence base for this 
review. Initially, 173 papers were selected based on the 
research query and inclusion criteria. After the removal of 
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duplicates, 143 unique studies remained. These were subjected 
to a full-text review, and after applying the exclusion criteria, a 
final set of 87 papers were deemed eligible for inclusion in our 
qualitative synthesis. The complete study selection process is 
visually detailed in the PRISMA flow diagram shown in Fig. 1. 

 
Fig. 1. Study selection process based on inclusion and exclusion criteria. 

IV. DATA EXTRACTION AND SYNTHESIS 

For each study that met the criteria, we performed a 
detailed data extraction process to gather key information for 
our synthesis. For each included study, we extracted the 
following data points: 1) Simulator used; 2) Mobile robot 
platform; 3) Navigation task description; 4) DRL algorithm 
implemented; 5) Sensor modalities simulated; 6) Stated reasons 
for simulator choice; 7) Reported performance metrics; and 8) 
Sim-to-real transfer methodology and results. The extracted 
data was then synthesized qualitatively to answer the research 
questions and identify overarching trends. Table I provides a 
summary of a representative selection of the reviewed 
literature, illustrating the connections between simulators, 
algorithms, and tasks that form the basis of our analysis. 

The data summarized in Table I reveal several distinct 
trends that underpin our analysis. A clear majority of the 
studies leverage Gazebo, pairing it with a wide array of DRL 
algorithms—from value-based methods like D3QN to policy-
gradient methods like PPO and DDPG—for tasks centered on 
map-less navigation and obstacle avoidance. This reinforces its 
role as a versatile, community-standard testbed. In contrast, 
papers utilizing NVIDIA Isaac Sim consistently tackle 
complex, often end-to-end, navigation tasks and are frequently 
paired with data-hungry algorithms like PPO or advanced 

methods like Imitation Learning. This highlights its adoption 
for research pushing the boundaries of sim-to-real transfer and 
performance. 

Webots and CoppeliaSim are used for a range of tasks, 
including multi-robot systems and learning from 
demonstration, often employing algorithms like PPO and 
GAIL, respectively, showcasing their utility in specialized 
research areas [37]. Collectively, the table illustrates a strong 
correlation between the choice of simulator and the scope of 
the research problem, a central theme explored in this review. 

TABLE I.  SUMMARY OF SELECTED LITERATURE ON SIMULATORS FOR 

DRL-BASED MOBILE ROBOT NAVIGATION 

Reference 
Used 

Simulator(s) 

DRL 

Algorithm(s) 
Task(s) 

[16] 
Isaac Sim, 

Gazebo 
PPO 

End-to-end local 

planning and obstacle 

avoidance. 

[17] Gazebo DDPG, PPO 

Autonomous 

navigation, target 

seeking and obstacle 

avoidance. 

[18] 
Unity, 

Gazebo 
Double DQN 

Map-less navigation to 

a random target. 

[19] Gazebo 

SAC, PPO, 

DDPG, Q-

learning 

Path planning and 

obstacle avoidance 

[20] Gazebo 

D3QN (Dueling 

Double Deep Q-

Network) 

End-to-end navigation 

and obstacle avoidance 

in an unknown 

environment with static 

and dynamic obstacles. 

[21] Gazebo DDPG, PPO 

Map-free navigation for 

an omnidirectional 

robot. 

[22] Gazebo 

DDPG 

(customized 

with guid ing 

points) 

Navigation in crowded 

environments with 

dynamic pedestrians. 

[23] Gazebo 

Parallel 

Distributional 

Actor-Critic 

Networks 

Map-less navigation for 

terrestrial mobile robots 

[24] Gazebo 

DDQN (Double 

Deep Q-

Network) 

Map-less navigation 

and obstacle avoidance 

for a TurtleBot3 robot. 

[25] Webots 

PPO (enhanced 

with Curriculum 

Learning) 

Shortest path planning 

for an E-puck robot 

using IR sensors. 

[26] Webots DQN, PPO 

Pedestrian avoidance 

for autonomous 

vehicles in  simulated 

scenarios. 

[27] Webots DQN, PPO, A2C 
The inverted pendulum 

task 

[28] Webots 
DQN, NSQ, 

DDQN, PPO 

Multi-robot swarm 

navigation. 

[29] CoppeliaSim 

GAIL 

(Generative 

Adversarial 

Imitation 

Learning) 

Learning navigation 

behaviors from expert 

demonstrations for 

mobile robots. 

[30] CoppeliaSim Adaptive TD3 
Navigation in dynamic 

environments 

[31] 
Gazebo (via 

FRobs RL) 
PPO, SAC, TD3 

Map-less navigation for 

a mobile robot. 

[32] Isaac Sim 
RMA (Rapid 

Motor 

Legged mobile robot 

walking on different 
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Reference 
Used 

Simulator(s) 

DRL 

Algorithm(s) 
Task(s) 

Adaptation) types of ground 

surfaces. 

[33] Isaac Sim 

NavACL-Q 

(curriculum 

learning method 

with soft actor-

critic algorithm) 

Map-less navigation for 

an Automatic Guided 

Vehicle (AGV) in a 

warehouse scenario. 

[34] Isaac Sim 

Imitation 

Learning (IL) 

and Curriculum 

Learning (CL) 

Map-less navigation of 

a wheeled robot using 

open-vocabulary 3D 

scene graphs. 

[35] Isaac Sim 

Imitation 

Learning (IL) 

with an auto-

regressive world  

model 

Generalizable end-to-

end navigation. 

[36] Isaac Sim 
Asymmetric 

Actor Critic 
Visual goal-tracking 

[37] Gazebo DDPG 

Map-less path planning 

in an unknown 

environment 

[38] Gazebo DQN, DDQN 
Map-less navigation 

and obstacle avoidance 

[39] 
Custom 

Simulator 
DWA-RL 

Mobile robot 

navigation without 

prior exploration 

V. RESULTS OF THE SYSTEMATIC REVIEW 

A. Distribution of Simulators 

An analysis of the selected corpus of literature reveals a 
distinct distribution in the adoption of simulation platforms. 
Gazebo emerged as the predominant simulation environment, 
utilized in a substantial majority of the reviewed studies, 
thereby establishing its position as a de facto standard within 
the research community. 

NVIDIA Isaac Sim was identified as the second most 
prevalent platform, indicating its significant and growing 
adoption in recent research. Following these, Webots and 
CoppeliaSim were also frequently employed, albeit to a lesser 
extent. A smaller subset of the literature utilized alternative 
simulators, such as PyBullet, particularly in studies 
concentrating on specialized applications like mobile 
navigation. 

B. Simulator Capabilities, DRL Algorithms, and Tasks 

Our synthesis of the literature revealed distinct patterns that 
link the choice of simulator with its technical capabilities, the 
selected DRL algorithms, and the complexity of the navigation 
task. We present these findings through our proposed 
taxonomy of simulator archetypes. 

1) Archetype I: ROS-Centric Open-Source Standards 

(Gazebo, Webots). These simulators are predominantly 

selected for their seamless integration with the ROS 

ecosystem[40]. The literature consistently cites the benefit of 

architectural parity, where the same ROS2 control software 

can be deployed in simulation and on the real robot, 

simplifying the sim-to-real process[16]. However, their CPU-

bound performance is a frequently acknowledged limitation, 

making them less suitable for training on high-dimensional 

visual data. Sensor modeling is functional, but studies note 

that default noise parameters often require manual tuning to 

match real hardware, presenting a perception gap 

challenge[41]. Consequently, the majority of studies using 

these platforms focus on navigation tasks with low-

dimensional inputs, primarily 2D LiDAR scans[24]. The most 

common DRL algorithms are off-policy methods like 

DDPG/TD3 and SAC, alongside the on-policy PPO[24]. The 

research contribution in these papers often lies in algorithmic 

enhancements, such as novel reward shaping [37] or modified 

network architectures for safer navigation, rather than tackling 

the perception gap itself. 

2) Archetype II: The Versatile Multi-Physics Platform 

(CoppeliaSim) CoppeliaSim's unique value proposition in the 

literature is its versatility. Several papers leverage its support 

for multiple physics engines to conduct comparative analyses. 

The high-speed PyRep interface is frequently cited as a key 

advantage for accelerating DRL training cycles compared to 

the overhead of ROS-based communication1. The tasks 

explored in CoppeliaSim are diverse, often involving complex 

kinematics or prototyping novel robot designs. The DRL 

algorithms used are varied, with studies employing GAIL for 

imitation learning [28] and DDPG for control tasks. The focus 

is often on rapid algorithm development and validation in a 

flexible environment. 

3) Archetype III: The GPU-Native High-Performance 

Engine (NVIDIA Isaac Sim) Papers using Isaac Sim are almost 

exclusively focused on tackling large-scale DRL problems and 

bridging the sim-to-real gap for perception-heavy tasks. The 

ability to run thousands of parallel simulations on the GPU is 

the most cited advantage, as it enables the collection of 

massive datasets required to train robust policies[42]. Its use 

of RTX rendering for photorealistic sensor data is highlighted 

as a direct strategy to mitigate the perception gap, making it 

the platform of choice for end-to-end, vision-based 

navigation[42]. The dominant algorithm in the Isaac Sim 

literature is PPO, whose on-policy nature benefits immensely 

from the massive parallel data collection capabilities. The 

tasks are ambitious, often involving navigation in complex, 

cluttered environments using only camera images or a fusion 

of camera and LiDAR data, with the primary research 

contribution often being the demonstration of successful zero-

shot sim-to-real transfer. 

C. Sim-to-Real Transfer Strategies 

Our review confirms that the choice of simulator strongly 
influences the sim-to-real strategy.  

With Gazebo/Webots, the strategy is an architectural 
alignment. Researchers leverage the native ROS integration to 
ensure the software stack is nearly identical between 
simulation and the real robot, minimizing transfer errors related 
to control and communication logic. 
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Fig. 2. A prescriptive decision flowchart for simulator selection. This flowchart formalizes the selection logic by guiding a researcher from their primary research 

goal through key technical requirements to the most appropriate simulator archetype, highlighting the core trade -offs at each stage. 

With NVIDIA Isaac Sim, the strategy is data-driven 
robustness. Researchers leverage massive parallelization and 
photorealistic rendering to train policies on an extremely wide 
distribution of scenarios via domain randomization. This forces 
the policy to become invariant to simulation-specific artifacts, 
making it robust enough for zero-shot transfer. A powerful 
emerging trend is the "sim-to-sim-to-real" pipeline, where 
policies trained in Isaac Sim are first validated in Gazebo 
before real-world deployment, providing strong evidence of 
their generalization capabilities. 

VI. DISCUSSION: A DECISION-MAKING FRAMEWORK 

Based on our comprehensive literature synthesis, we 
propose a structured decision‑making framework (see Fig. 2) to 
guide the selection of robotic simulators according to two 
pivotal dimensions: 1) the primary source of methodological 
innovation, and 2) the complexity of required sensory data. 

When the research novelty lies in algorithmic 
improvements—such as novel reward functions, enhanced 
safety‑aware exploration strategies [43], or gains in sample 
efficiency—and the underlying task can be addressed with 
low‑dimensional sensor inputs (for example, 2D LiDAR), 
established platforms like Gazebo and Webots are 
recommended (see Fig. 2). These environments not only offer 
robust, community‑validated benchmarks, but their seamless 
ROS integration also streamlines the transition from simulation 
to real‑world deployment under manageable computational 
loads. 

In contrast, if the principal innovation revolves around 
comparative physics analyses or the rapid prototyping of 
intricate mechanical systems, CoppeliaSim emerges as the 
superior choice. Its unique support for multiple physics 
engines, combined with the high‐speed PyRep API, accelerates 
development cycles beyond what ROS‐centric alternatives 
typically allow. 

Finally, for investigations explicitly targeting sim‐to‐real 
transfer—particularly those focused on vision‐based, end‐to‐
end navigation in visually complex domains—NVIDIA Isaac 
Sim provides indispensable capabilities. Its photorealistic 
rendering and exceptional parallel training performance make 
it the de facto standard for experiments aiming to achieve zero‐
shot policy transfer. Through a sim‐to‐sim‐to‐real validation 
pipeline, researchers can rigorously demonstrate 
methodological advances in direct policy transfer, thus 
reinforcing the scientific contribution of their work. 

VII. CONCLUSION AND FUTURE DIRECTIONS 

This systematic literature review has provided a rigorous, 
evidence-based analysis of the simulator landscape for DRL-
based mobile robot navigation. The central, definitive insight 
from our synthesis of 87 recent studies is that simulator 
selection is not an incidental technical detail but a foundational 
methodological decision that shapes research outcomes. Our 
work conclusively changes how this choice should be viewed: 
from a matter of convenience to a strategic alignment of tool, 
task, and objective. We have formalized the community's 
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implicit practices into an explicit taxonomy of simulator 
archetypes, demonstrating a clear correlation between a 
simulator's architectural principles and its application in the 
literature. 

What this review definitively establishes is a tripartite 
structure of the current research landscape. First, ROS-centric 
platforms like Gazebo are the established workhorses for 
algorithmic development with low-dimensional sensors, where 
architectural parity with the real world is the primary sim-to-
real strategy. Second, GPU-native engines, epitomized by 
NVIDIA Isaac Sim, have become the standard for tackling the 
perception gap in vision-based navigation, enabling data-driven 
robustness through massive parallelization and domain 
randomization. Third, versatile engines like CoppeliaSim 
occupy a vital niche for rapid prototyping and specialized 
mechanical analysis. By making these distinctions explicit, our 
framework provides immediate, practical guidance that can 
prevent methodological mismatches and enhance research 
efficiency. 

However, our review also illuminates what remains 
uncertain. While we identify a strong trend towards data-driven 
sim-to-real transfer, the precise metrics for quantifying the 
"reality gap" remain ad-hoc and study-specific. It is still an 
open question how to create a universal benchmark that can 
compare the transferability of policies from different 
simulators in a scientifically rigorous manner. Furthermore, the 
long-term viability and interoperability of vendor-specific, 
high-performance ecosystems versus open-source standards is 
an unresolved tension that will shape the field's future 
accessibility and direction. 

Looking forward, the capabilities of Archetype III 
simulators serve as a crucial technological bridge to the next 
paradigm: persistent, bi-directional Robotic Digital Twins. Yet, 
to realize this future and improve scientific rigor, the 
community must move beyond the current state. We strongly 
advocate for the development of a Standardized Sim-to-Real 
Navigation Benchmark. Such a framework would enable true 
apples-to-apples comparisons, fostering more generalizable 
and robust solutions. By clarifying the present state of 
simulation, separating validated insights from open questions, 
and illuminating the path toward standardized benchmarking, 
this work aims to accelerate the development of intelligent 
systems capable of operating safely and effectively in the 
complexity of the real world. 
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