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Abstract—Solar radiation forecasting is a key task for energy
planning, grid management, and photovoltaic deployment,
especially in tropical regions where weather variability reduces
operational reliability. This work applies deep learning techniques
to forecast hourly solar radiation in Mompox, Colombia, using
Long Short-Term Memory (LSTM) neural networks. Three
temporal windows were studied (5, 24, and 720 hours) to examine
how sequence length affects prediction accuracy and model
behavior. Hourly radiation data from 2021 to 2022 were used for
training, and independent datasets from 2023 to 2024 were used
for external validation to ensure long-term assessment and
reproducibility. Most existing studies use short input windows
designed for mid-latitude environments (5-24 hours), which do
not capture multi-day tropical cloud persistence or sub-seasonal
radiation variability. This gap limits forecasting accuracy and
restricts practical use in tropical energy planning. To address this
issue, this study introduces a long temporal input design that
allows the model to learn month-scale variability more effectively.
The three network configurations were trained under the same
settings, allowing a direct comparison between short, daily, and
long input memories. The LSTM-720 model performed best,
achieving the lowest RMSE and the most stable predictions across
all validation years, showing its ability to reconstruct both diurnal
cycles and broader seasonal dynamics. Unlike most solar
forecasting work, which treats window size as a tuning parameter,
this study introduces a long-context LSTM design based on a 720-
hour sequence. This allowed the model to learn intra-month
atmospheric persistence—an essential tropical feature that short
windows cannot represent—positioning the approach as a
methodological contribution that expands the temporal learning
paradigm rather than a configuration adjustment. Time-series
comparisons revealed close agreement between measured and
predicted radiation, particularly during stable climate periods.
The proposed framework can support practical applications in
solar plant design, renewable energy scheduling, and operational
grid strategies in tropical regions. Future work will integrate
satellite information and hybrid deep learning architectures to
enhance spatial transferability and long-term forecasting
accuracy.
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This study is considered a product within the framework of the project:
“Desarrollo Sostenible Mediante la Implementacion de Energia Solar
Fotovoltaica en Zonas Rurales no Conectadas a la Red Eléctrica Nacional en
Mompox, Colombia (022-2024)”, which is part of an internal research
initiative at the University of Cartagena, Cartagena, Colombia.

1. INTRODUCTION

Given the growing constraints on fossil fuel generation [1],
integrating clean energy systems (such as solar) with
conventional power generation [2], [3] has become a key
strategy to enhance efficiency and reduce emissions [4], [5]. At
the solar energy level, solar radiation is a fundamental variable
for energy management, particularly in the planning and design
of photovoltaic (PV) systems [6], [7], agricultural applications
[8],[9], and environmental modelling [10]—[12].

The use of solar energy significantly reduces greenhouse gas
emissions [13], as its generation produces no CO: or other
pollutants [ 14], thereby lowering dependence on non-renewable
resources and promoting ecosystem conservation as a clean and
sustainable electricity source [15]-[17]. In tropical regions,
accurate forecasting is even more crucial for the effective
planning, construction, and operation of PV power plants
because sunlight availability changes rapidly with cloud cover
and seasonal variation [18],[19].

The town of Mompox, located in northern Colombia, offers
an interesting setting for solar radiation prediction. It combines
a humid tropical climate with high solar potential, but has
limited meteorological monitoring infrastructure. Although
Colombia’s Caribbean region receives abundant solar energy,
few predictive models have been developed specifically for this
area. This lack of localized modeling limits the efficient
deployment of solar technologies and constrains opportunities
for grid optimization and energy independence.

Traditional statistical approaches, such as ARIMA and
Support Vector Machines (SVM), often fall short when
modeling the nonlinear and time-dependent behavior typical of
solar radiation [20], [21]. Recent progress in artificial
intelligence has changed this landscape [22]-{25]. Recurrent
Neural Networks (RNNs) [26], and particularly Long Short-
Term Memory (LSTM) architectures [27], can capture long-
term dependencies and nonlinear trends in meteorological time
series [4], [28]. Several studies have demonstrated their
effectiveness in predicting solar irradiance across different
regions [29]-[31],however, few have explored theiruse in small
tropical towns like Mompox, where climatic variability and data
scarcity pose additional challenges.

In this context, the research evaluates the ability of LSTM
models to forecast solar radiation at multiple temporal
resolutions (5,24,and 720 hours) using real measurements from
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Mompox. The model was trained with data from 2021 to 2022
and validated with independent datasets from 2023 to 2024,
ensuring reproducibility and robustness. This approach can be
adapted to other data-limited regions seeking to improve
renewable energy forecasting. Predicting solar radiation in
tropical climates remains a challenging task. In these
environments, cloud systems can evolve within minutes,
humidity levels fluctuate abruptly, and short-lived storms
frequently interrupt solar exposure [32]. Such variability
introduces nonlinear and nonstationary behavior that traditional
statistical models struggle to capture effectively [33].

Deep learning methods, particularly Long Short-Term
Memory (LSTM) networks, offer a promising alternative
because they can learn how these rapid changes in cloud cover
and humidity interact over time. By retaining information from
previous states, LSTMs can represent the temporal continuity
and sudden transitions that characterize tropical weather,
resulting in more accurate and resilient radiation forecasts [34].
Yet, few studies have examined their effectiveness in humid
equatorial zones like Mompox, where diurnal and seasonal
cycles interact in distinctive ways.

Solar radiation forecasting in tropical regions is strategically
important for national energy planning, particularly in areas
where rural electrification, PV expansion, and microgrid
deployment depend on accurate generation forecasting
Improving prediction stability in data-limited locations, such as
Mompox, supports lower operational uncertainty, reduces
reserve margin dependence, enables more reliable agricultural
scheduling, and improves climate adaptation strategies. This
context shows that the research is not only a methodological
exercise, but also responds to a regional need for energy
autonomy and system planning, making the development of
long-memory forecasting approaches an urgent technical
requirement for tropical countries.

Tropical solar radiation dynamics differ fundamentally from
conditions addressed in most LSTM-based forecasting studies.
Prior works overwhelmingly employ short input memories
ranging fromseveral hoursto one day, an assumption that aligns
with mid-latitude irradiance behavior but not with tropical
environments. In the tropics, radiation variability is governed by
persistent multi-day cloud systems, moisture accumulation
cycles, and sub-seasonal atmospheric structures that extend far
beyond diurnal periodicity. These characteristics produce long
temporal dependencies that short window LSTMs cannot
capture, resulting in phase shift errors, amplitude smoothing,
and loss of climatic context. This gap in the literature motivated
the exploration of long-memory recurrent models. By
incorporating a 720-hour input window, equivalent to a full
intra-month sequence, we aimed to enable the network to learn
climatic persistence patterns rather than only daily oscillations,
addressing a structural limitation of existing approaches and
positioning this work beyond parameter tuning studies.

The novelty ofthis study lies in its methodological approach
rather than parameter scaling. While previous LSTM works
overwhelmingly rely on short input windows (5—24 hours), we
demonstrate that tropical radiation dynamics demand long-
context modelling to reconstruct sub-seasonal variability. By
implementing a 720-hour sequence, the model learns persistent
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atmospheric structures that cannot be captured by traditional
diurnal frameworks, establishing long-memory LSTM
forecasting as a required paradigm for tropical environments
rather than a configuration variant.

The main contributions of this research are summarized as
follows: 1) a long-context LSTM architecture was introduced
that uses a 720-hour input sequence tailored to represent
seasonal tropical radiation dynamics, a configuration not
previously explored in related forecasting literature. 2) The
model's robustness was evaluated through a multi-year external
validation over unseen 2023 and 2024 datasets, demonstrating
long-term predictive stability rarely addressed in prior deep
learning work for tropical environments. 3) It was shown that
long-context learning improves forecasting accuracy over
traditional short-window and daily configurations, providing
evidence that tropical radiation behavior requires long-memory
modelling rather than parameter scaling, and 4) a reproducible
and scalable modelling framework was constructed based on
raw ground solar radiation measurements, which can be
transferredto othertropical locations with limited climatological
infrastructure.

To address this gap, this study proposes an LSTM-based
approach optimized for tropical solar radiation forecasting using
high-resolution ground data. It systematically analyzes how
different window sizes (from 5 to 720 hours) influence
prediction accuracy and identifies the most suitable
configuration for practical energy management in tropical
environments.

II. RELATED WORKS

Forecasting solar irradiance has evolved rapidly in recent
years with the introduction of deep learning models, especially
Long Short-Term Memory (LSTM) networks and their hybrid
variants. Several studies have shown that LSTM architectures
consistently outperform classical methods such as ARIMA,
Artificial Neural Networks (ANN), and Support Vector
Machines (SVM) when handling the nonlinear dynamics of
solar radiation. For instance, [35] employed an LSTM network
for short-term irradiance forecasting and found that combining
multiple input sequences helped the model generalize better
while reducing both variance and bias. In a similar vein, [23]
compared ARIMA, feed-forward neural networks, and LSTM
using Colombian datasets and reported that the LSTM model
delivered the highest accuracy under cloudy conditions, one of
the most challenging scenarios for solar prediction.

Hybrid models have also gained attention for their enhanced
representational power. A review by [36] noted that CNN—
LSTM architectures, whichmergespatial and temporalleaming,
consistently outperform single-model approaches in irradiance
forecasting, albeit with higher computational requirements.
Recent developments even include BiLSTM-Transformer
hybrids that achieved the lowest RMSE in seven-day forecast
experiments, outperforming both standalone LSTM and GRU
networks [24]. Comprehensive literature reviews further
confirm that deep learning techniques, including LSTM, GRU,
CNN-LSTM, and attention-based networks, yield significant
accuracy improvements over traditional approaches, though at
the expense of longer training times [37]. For example, [19]
compared LightGBM, LSTM, and GRU using hourly radiation
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data. While LSTM achieved an RMSE of about 59 W/m?
LightGBM provided slightly better accuracy (=54.8 W/m?) and
faster computation, suggesting that tree-based ensembles can
still compete when computational resources are constrained.

The field has also begun shifting toward probabilistic and
multivariate forecasting. Hybrid frameworks that integrate
BILSTM and GRU layers, combined with Bayesian
hyperparameter optimization and dropout regularization, have
achieved strong performance in multivariate irradiance
prediction [25]. Additionally, several studies that merge global
climate models with ground-based measurements through
hybrid deep learning and machine learning pipelines have
produced reliable daily radiation forecasts [22]. Despite these
advancements, certain research gaps remain clear. Few studies
have focused on tropical towns such as Mompox, where
meteorological data are scarce, and climate variability is high.
Equally uncommonare works that compare multiple forecasting
horizons (short-term, daily, and monthly) within a unified
framework, or that evaluate pure LSTM configurations at
extended horizons ofup to 720 hours. The present study directly
addresses these gaps by developing an LSTM model tailored to
solar radiation forecasting in Mompox, Colombia. Using
datasets from 2021 to 2022 fortraining and from 2023 to 2024
for validation, this work provides a comprehensive, horizon-
sensitive modeling framework specifically designed for tropical
regions with limited historical observations.

III. METHODOLOGY

This section presents the methodological framework
designed to forecast solar radiation in Mompox using Long
Short-Term Memory (LSTM) neural networks. It describes the
dataset collected from IDEAM [38], the preprocessing steps
applied, the configuration of the neural architectures, and the
training and validation strategy adopted. Together, these
components ensure transparency, reproducibility, and
methodological rigor for the subsequent analyses.

Hourly solar radiation data were collected for Mompox
(9°14'N, 74°26'W; elevation 10 m a.s.1.), a town located in the
tropical Magdalena River basin of northermn Colombia. The
dataset covers the period from January 2021 to December 2022
and corresponds to global horizontal irradiance (Wh/m?). The
information was provided in CSV format by the Instituto de
Hidrologia, Meteorologia y Estudios Ambientales (IDEAM),
Colombia’s national meteorological authority [38].

The original file also included ancillary variables such as air
temperature and wind speed. However, these were excluded to
focus the analysis exclusively on solar radiation prediction.
Additional datasets spanning January—December 2023 and
January—July 2024 were used solely for external validation. In
total, the dataset contains about 17,500 hourly records. Missing
values, representing less than 1 % of the data, were interpolated
linearly to maintain the temporal continuity of the series.
Extreme outliers, defined as values exceeding £3 standard
deviations from the mean, were replaced using a rolling median
filter. A summary of the dataset, including temporal coverage
and partitioning strategy, is shown in Table I.

The time series of global horizontal irradiance (Wh/m?) was
used directly, without normalization or scaling, in order to

Vol. 16, No. 12, 2025

preserve the physical meaning of the radiation values. Input—
output pairs were created using a sliding window method, in
which a sequence of past radiation observations was used to
predict the next value. Three different input window sizes were
evaluated to capture varying temporal behaviors: 5 hours: short-
term fluctuations, 24 hours: daily cycles, and 720 hours:
monthly or intra-seasonal pattemns. For each configuration, the
data were chronologically divided into training (67 %), testing
(22 %), and validation (11 %) subsets (see Table I). This
temporal split preserved the naturalsequence of the observations
and avoided data leakage between model phases.

TABLE 1. SUMMARY OF THE DATASET
Data Features
Dataset
Period Frequency | Samples
Training 2021-2022 Hourly 11,910
Testing 2021-2022 Hourly 3,853
Validation 2021-2022 Hourly 1,752
External validation | 2023 Hourly 8,760
External validation | Jan-Jul2024 Hourly 5,040

All forecasting models were implemented in Python 3.10
using TensorFlow 2.15 with the Keras API. Three LSTM
architectures were designed, each corresponding to one of the
input window sizes.

e LSTM-5: Input (5 x 1), one LSTM layer with 64 units,
followed by a dense layer with 8 neurons (ReLU
activation) and a linear output layer.

e LSTM-24:Input(24 x 1),one LSTM layer with 64 units,
followed by a dense layer with 8 neurons (ReLU
activation) and a linear output layer.

e LSTM-720: Input (720 x 1), one LSTM layer with 720
units, two dense layers with 16 and 8 neurons (both
ReLU activation), and a final linear output layer.

The increase in the number of LSTM units for the 720-hour
configuration was intentional and proportional to the longer
input sequence length. A higher number of recurrent units
provides the model with greater representational capacity to
retain and process extended temporal dependencies across a full
monthly cycle. Preliminary tests indicated that using fewer than
720 units led to underfitting, particularly in reproducing smooth
transitions between consecutive days, while the chosen
configuration achieved lower RMSE and faster convergence
without overfitting. Thus, the increase in hidden units was
empiricallyjustified as itimproved the model’s ability to capture
long-term patterns inherent to tropical solar radiation.

The choice of the 720-hour input configuration was not
defined as a tuning exercise but as a methodological decision
derived from climatic characteristics of the study region. The
thirty-day temporal span was selected to encode full intra-month
variability related to cloud persistence, humidity accumulation,
and low-frequency atmospheric patterns typical of tropical
environments. Unlike short window configurations (5, 24
hours), the 720 hour structure enables the model to learn sub-
seasonal energy dynamics and long term irradiance memory,
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which are not recoverable through repeated diurnal cycles. This
design transforms the LSTM into a long context recurrent
learner, allowing it to internalize radiation persistence behavior
and avoid phase misalignment effects commonly reported in
tropical solar forecasting. Therefore, the 720-hour model
represents a conceptual modelling framework rooted in regional
climate physics rather than a parametric extension of existing
approaches.

All networks used the Adam optimizer (learning rate =
0.001)andthe Mean Absolute Error (MAE) as the loss function.
Model performance was tracked using the Root Mean Squared
Error (RMSE) metric. Each model was trained for 30 epochs,
with a ModelCheckpoint callback to save the best-performing
weights according to validation loss, thus minimizing the risk of
overfitting.

Fig. 1illustrates the general LSTM configuration applied for
solar radiation forecasting, showing the sequential structure
from the input window to the output layer.

Dense
LSTM Output Layer
P > Layer(s) e
ayer (ReLU) (Linear)

Fig. 1. General LSTM architecture for solar radiation forecasting.

Model training was performed in a Google Colab Pro
environment equipped with an NVIDIA Tesla T4 GPU. The
same optimizer, leamingrate, and loss function were maintained
for consistency across all experiments. Each training session
lasted 30 epochs, and the ModelCheckpoint callback was again
used to retain the best weights based on validation loss.

Data splitting followed a chronological order to preserve
temporal dependencies: 67 % for training, 22 % for testing, and
11 % for validation, corresponding to 11,910, 3,853, and 1,752
hourly samples, respectively. Performance was evaluated using
RMSE, MAE, and coefficient of determination (R2) for each
subset. Additionally, the trained networks were tested on the
external datasets from 2023 and 2024 to assess their ability to
generalize to unseen data. Training progress was monitored
through loss and validation-loss curves to detect possible
underfitting or overfitting behaviors. The main parameters used
during training are summarized in Table II.

TABLEII. TRAINING PARAMETERS

Parameter Description

Framework / API TensorFlow 2.15 / Keras

Programming language Python 3.10

Environment Google Colab (GPU: NVIDIA Tesla T4)
Optimizer Adam

Leaming rate 0.001

Loss function Mean absolute Error (MAE)

Evaluation metric Root Mean Squared Error (RMSE)

Epochs 30

Batch size Default (TensorFlow)

Validation strategy Chronological split (67% /22% / 11%)
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All procedures in this section were designed to ensure
reproducibility and consistency across model configurations.
Combining historical hourly radiation data with structured input
windows and systematic model training established a solid
foundation for evaluating forecast performance. This
methodological design can be easily extended in future research
by incorporating additional meteorological variables or
developing hybrid architectures that combine LSTM with other
deep learning models.

IV. RESULTS

This section presents and interprets the results obtained from
the three LSTM configurations developed for solar radiation
forecasting in Mompox, Colombia. The analysis integrates both
quantitative and visual assessments of model performance,
highlighting how different temporal window sizes influence
prediction accuracy and generalization capacity. The following
subsections examine, in detail, how each model performed in
reproducing observed solar radiation pattemns, comparing
predicted and measured values across multiple time horizons.

A. Model Comparison by Input Window Size

To examine how the temporal context affects forecasting
accuracy, three LSTM configurations were tested using input
window sizes of 5,24, and 720 hours. All models were trained
under thesame conditions (30 epochs, Adam optimizer, learning
rate = 0.001) using hourly solar radiation data. The goal was to
identify the sequence length that best balances short-term
fluctuations with longer-term seasonal patterns.

Validation Results
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Fig.2. Predicted vs. observed radiation using LSTM-5 (window = 5 hours).

The LSTM-5 model reproduced rapid fluctuations in solar
radiation, particularly on clear days, but it struggled to represent
complete diurnal transitions. As shown in Fig. 2, the predicted
values follow the general pattern of observed radiation but show
amplitude mismatches during peak irradiance hours. According
to Fig. 2, this limitation is mainly due to the network’s short
memory window, which restricts its ability to capture the full
daily energy cycle.

When the input window was expanded to 24 hours (Fig. 3),
the model captured the daily periodicity of solarradiation. Fig, 3
shows that the predicted curves align more closely with
observed diurnal patterns, reducing phase shifts and errors at
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sunrise and sunset. However, the model still tended to
underestimate radiation peaks on cloudy days, suggesting that a
one-day context is insufficient to describe multi-day
atmospheric variability.

Validation Results
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Fig.3. Predicted vs. observed radiation using LSTM-24 (window = 24
hours).

Validation Results
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Fig. 4. Predicted vs. observed radiation using LSTM-720 (window =720
hours).

The LSTM-720 model, trained on a monthly (30-day) input
window, produced the most accurate and stable forecasts
(Fig. 4). By learning over a broader temporal context, the
network captured both daily and intra-monthly variations,
resulting in smoother transitions and reduced noise. This
improvement confirms that long-range dependencies are critical
for reliable radiation prediction in tropical regions, where multi-
day weather persistence is common.

In accordance with the above, extending the temporal
window from 5 to 720 hours significantly enhanced model
performance. Although computational cost increased with larger
inputsequences, the gains in accuracy justifiedusingthe LSTM-
720 configuration for subsequent analyses. This setup
successfully captures the natural temporal structure of solar
radiation and provides the foundation for the evaluations
presented in Section B and C.

B. Model Training Behavior

During training, the LSTM-720 model showed fast and
stable convergence. Both training and validation losses

Vol. 16, No. 12, 2025

decreasedsharply within the first ten epochs and then plateaued,
as illustrated in Fig. 5.

Loss based on the number of Epochs
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Fig. 5. Training and validation loss curves of LSTM-720 model.

The close alignment of the two curves indicates good
generalization and minimal overfitting, confirming that the
model effectively learned the wunderlying temporal
dependencies. The smooth decline in loss values reflects the
appropriate choice of hyperparameters, particularly the
moderate learning rate (0.001) and batch size (32), which
ensured stable gradient descent and reproducible convergence.
Overall, these results demonstrate that the selected architecture
and optimization settings are well suited for modeling the
complexity of tropical solar radiation time series.

C. Validation and External Testing Performance

The predictive ability of the final LSTM-720 model was
assessed in three validation stages: 1) internal validation using
data from 2021 to 2022, 2) external validation with unseen data
from 2023, and 3) an additional external validation using 2024
data. Each stage tested how well the model generalized under
distinct climatic conditions.

Fig. 6 compares the observed and predicted hourly radiation
during the internal validation period. The model accurately
reproduced both clear and cloudy day dynamics, closely
matching the amplitude and timing of daily cycles.

Observed vs Predicted Radiation (Validation 2021-2022)
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Fig. 6. Internalvalidation for the years 2021 to 2022 of LSTM-720 model.
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Minor underestimations were observed at midday peaks, a
common feature of networks trained without data normalization,
but overall performance remained excellent, with RMSE =
63.88 Wh/m? and R* = 0.9535, explaining over 95 % of the
observed variance. These metrics demonstrate strong calibration
and confirm thatthe model learned the key temporal structures
of solar radiation.

The first external test, shown in Fig. 7, evaluates the model
on independent data from 2023. Predictions closely tracked the
observed series throughout the year, with small amplitude
differences during peak irradiance. Despite slightly higher
RMSE (71.93 Wh/m?) and a marginally lower R? (0.913), the
model maintained high accuracy, demonstrating robust
generalization across years. This performance decay is modest
and expected when forecasting beyond the training period. It
also confirms that the temporal patterns learned from 2021 to
2022 remain valid under new atmospheric conditions.

Observed vs Predicted Radiation (Validation 2023)
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Fig. 7. Externalvalidation for the year 2023 of LSTM-720 model.

Observed vs Predicted Radiation (Validation 2024)
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Fig. 8. External validation for the year 2024 of LSTM-720 model.

Fig. 8 presents theresults forthe 2024 dataset. The predicted
time series aligned closely with the observed data, accurately
reproducing diurnal cycles and the effects of intermittent cloud
cover. Model metrics remained strong (RMSE = 65.53 Wh/n?,
MAE = 3397 Wh/m?, R* = 0.902), confirming stable
performance and adaptability across consecutive years. The
slightly narrower error range compared with 2023 suggests that
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weather patterns in 2024 were more similar to those seen during
training.

A summary of all validation results is shown in Table III. R?
values consistently above 0.90 confirm the model’s ability to
generalize well across different years and atmospheric
conditions. The lowest RMSE corresponds to the internal
validation, while external datasets remain within+8 Wh/m? of
that baseline, evidence of minimal performance decay. The
MAE values (33-36 Wh/m?) indicate that average hourly errors
are small relative to typical radiation levels in Mompox (> 600
Wh/m?). Altogether, these results emphasize the temporal
stabilityand predictive robustness of the LSTM-720 architecture
for operational solar radiation forecasting.

TABLEIII. PERFORMANCE METRICS OF THE LSTM-720 MODEL ACROSS
DATASETS
Metrics
Dataset
RMSE (Wh/m?) MAE (Wh/m?) R?
2021-2022 63.88 35.66 0.954
2023 71.93 36.43 0913
2024 65.53 33.97 0.902

To further evaluate model robustness, residual distributions
were analyzed across the three validation periods (Fig. 9).
Residuals were calculated as the difference between observed
and predicted radiation, providing direct insight into systematic
bias and variability. Across all years, residuals remained
centered around zero with narrow interquartile ranges,
indicating consistent performance and no major bias.

©
600 4

400

Residuals [Wh/m~2]

—200 4

-400 8
5 8

2021-2022 20‘23 10‘14

Fig. 9. Residualerror distributions by year.

The statistical indicators summarized in Table IV show
small negative mean values, suggesting a slight underestimation
of peak irradiance.

Standard deviations stayed below 70 Wh/m?, matching the
RMSE magnitudes reported earlier. Skewness values near zero
confirm symmetric error distributions, a desirable trait in
predictive modeling, Slightly broader residual spreads in 2023
and 2024 correspond to stronger local variability, likely due to
convective cloud formation and intermittent tropical rainfall.
Even so, the overall bias remains low, confirming that the
LSTM-720 model captures dominant radiation dynamics across
changing weather conditions. Future research could enhance
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accuracy further by incorporating auxiliary variables such as
temperature, humidity, or cloud fraction, or by employing
ensemble architectures to better capture transient atmospheric
behaviors.

TABLEIV. STATISTICAL ANALYSIS OF MODEL RESIDUALS FOR THE
VALIDATION DATASETS
Metrics
Dataset Mean Residual Std. Deviation Skewness
(Wh/m?) (Wh/m?)

2021-2022 | -2.47 59.82 -0.06

2023 -3.85 67.49 0.12

2024 -1.91 63.07 -0.09

V. DISCUSSION AND IMPLICATIONS

The discussion of the broader implications of these findings
in the context of previous research focused on three main
aspects: 1) the effect of input window size on temporal learning,
2) the model’s stability when applied to unseen years (2023—
2024), and 3) the statistical characteristics of forecast residuals.
Together, these analyses provide a comprehensive
understanding of how LSTM networks can effectively model
solar radiation dynamics under tropical climatic conditions and
characteristics.

The findings confirm that deep recurrent neural networks,
when trained on sufficiently long sequences, can model the
nonlinear and seasonal variability of tropical solar radiation.
Compared with conventional methods such as ARIMA or SVM
[18],[20],[26],[28], LSTM models provide superior capacity
to represent temporal dependencies without extensive feature
engineering. This agrees with previous work on deep learning
for solar forecasting [31], [35]-[37], further validating the
effectiveness of recurrent architectures for meteorological time-
series prediction.

Beyond outperforming traditional statistical baselines, the
proposed 720-hour LSTM model offers a structural advantage
over existing short-window and hybrid machine-learning
approaches. Studies using ARIMA, Light GBM, CNN—-RNN and
BiLSTM-GRU  configurations have shown accuracy
improvements understandard mid-latitude conditions [ 19], [20],
[24],[25], yetthese models rely on short temporal dependencies
and lose stability when climatic variability increases. In contrast,
the long-context design used in this work was able to reconstruct
multi-day and intra-month persistence patterns that those
architectures cannot represent, demonstrating that forecasting
improvement resulted from modelling strategy rather than
parameter tuning. This positions the LSTM-720 framework as a
distinct methodological alternative capable of recovering
tropical atmospheric structure, rather than as another competing
model variant. As such, the findings highlighta clear modelling
advantage: long-memory recurrent networks enable tropical
radiation learning behavior that existing methods structurally
fail to reproduce.

Away from accuracy improvements, these findings translate
into general modelling insights that apply to broader forecasting
tasks. The results show that tropical radiation prediction requires
architectures capable of learning sub-seasonal pattems rather
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than isolated diurnal signals, establishing a transferable design
principle: input horizons must extend into the multi-day domain
to reconstruct persistence dynamics. This principle aligns with
recentstudies reporting that deep recurrent models outperform
statistical and short-window baselines when climatic variability
increases [22], [23], [24], [25], [31]. In particular, works
comparing ARIMA, LightGBM, hybrid CNN-RNN and
BiLSTM-GRU approaches show that when atmospheric
conditions are highly unstable, conventional models lose
capacity to retain temporal structure [ 19], [20], [24], [25]. These
links support the interpretation that forecasting improvements
observed here are not dataset-dependent but reflect an
underlying modelling requirement for tropical climates. Thus,
the contribution extendsbeyonda singlearchitecture: it provides
guidance for window selection, long-context design, and
application to other subtropical and equatorial solar forecasting
problems.

A key strength of the LSTM-720 configuration is its
durability over time. Beyond outperforming shorter input
configurations, the results indicate that the 720 hour model
delivers a fundamentally different leaming behavior. Rather
than improving accuracy through parameter scaling, the long-
window architecture captured low frequency variability,
radiation persistence, and intra month climatic structures that
short-memory networks failed to represent. This shift reveals an
underlying methodological implication: tropical radiation
forecastingrequires long context recurrentmodels to reconstruct
non periodic atmospheric processes, not merely diurnal
oscillations. The model’s stability across 2021-2024 external
validation years further demonstrates that this behavior is
structural rather than dataset dependent. Consequently, this
work contributes a conceptual advance to the field by
demonstrating that long memory design is a necessary
modelling component for tropical solar forecasting, positioning
the approach as a generalizable framework rather than a
sensitivity study.

In additionto demonstrating performance improvements, the
findings from this study offer practical modelling guidance. The
results show that tropical irradiance prediction benefits
structurally from extended temporal contexts, establishing a
clear design principle: forecasting windows must exceed diurnal
or daily horizons to reconstruct persistence dynamics. Short-
memory configurations captured rapid fluctuations but
systematically failed to reproduce multi-day energy cycles,
confirming that traditional daily window assumptions are
unsuitable for humid tropical climates. Moreover, the stability
of the 720-hour model across independent yearly datasets
suggests thatlong-context LSTMs can retain climatic structure
without retraining, providing a blueprint for robust tropical
forecasting architectures. These elements sharpen the
contribution of this work beyond experimentation results and
translate into modelling guidelines applicable to future solar
forecasting studies in similar environments.

Further to these findings, the results open several structured
research directions. First, incorporating meteorological
predictors such as cloud fraction, humidity or temperature may
reveal whether tropical persistence originates from atmospheric
drivers rather than radiation memory alone, helping to explain
why monthly windows outperform daily horizons. Second,
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evaluating GRU, BiLSTM-GRU and Transformer-based
models could determine whether attention mechanisms improve
multi-day pattern extraction beyond recurrent gating, clarifying
if the benefit of long-context learning is architectural or
temporal. Third, transferring and retraining the 720-hour
framework in other tropical and subtropical climates would test
whether the monthly memory requirement is a regional
phenomenon or a general forecasting principle. Finally,
integrating satellite imagery or reanalysis data may allow the
model to learn cloud-system morphology, enabling spatial
forecasting and operational deployment. Together, these
directions illustrate how the present findings extend beyond
model testing and establish a research pathway toward scalable
tropical solar forecasting systems.

Even without retraining, the model retained high accuracy
when applied to new years, confirming its potential for long-
term operational use in solar energy management. Its consistent
performance across varying atmospheric conditions
demonstrates its adaptability to the complex climate patterns
typical oftropical zones. The LSTM-720 model proved capable
of capturing both rapid fluctuations and seasonal trends in solar
radiation. Its ability to generalize with minimal degradation
highlights thereliability of deep learningmethods for renewable
energy forecasting in tropical regions. Beyond Mompox, this
approach offers a scalable framework adaptable to other data-
limited locations that experience strong climatic variability.

Althoughthe long-context design produced strong predictive
performance, this study presents several limitations that should
be acknowledged. First, the model was trained and evaluated
using ground-based measurements from a single tropical
location. This restricts the generalizability of the results to other
geographic regions, where climatological dynamics and
atmospheric behavior may differ significantly. Second, the
network relied exclusively on previous radiation values, without
integrating meteorological predictors such as cloud cover,
humidity, temperature, or satellite observations. The absence of
these external drivers may limit model sensitivity during
extreme or rapidly changing weather conditions. Third, the
hyperparameter configuration was not extensively optimized
through large-scale search procedures because the objective of
this study focused on evaluating temporal context rather than
architecture tuning. Finally, the proposed LSTM-720 design
was not benchmarked against other deep learning architectures
such as GRU, transformer-based models, or hybrid CNN-RNN
frameworks. These limitations highlight the need to expand the
modelling scale, incorporate additional predictors, and conduct
spatial transferability tests across different tropical regions.

VI.  CONCLUSION

This study demonstrated the strong potential of deep
recurrent neural networks, particularly the LSTM-720
architecture, for forecasting hourly global solar radiation in a
tropical setting. Using data collected in Mompox, Colombia,
from 2021 to 2024, the model accurately reproduced both short-
term variations and long-term seasonal trends without requiring
normalization or additional meteorological inputs. By
employing a 720-hour input window, the network achieved
consistently high predictive accuracy, with determination
coefficients (R?) exceeding 0.90 in all validation years. These
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results confirm the model’s ability to generalize across distinct
climatic conditions and emphasize the importance of selecting
an appropriate temporal window to capture the intrinsic
periodicity of solar radiation. Shorter input sequences (5—24
hours) were effective for representing diurnal behavior but fell
short in modeling multi-day persistence and intra-monthly
variability. In contrast, the 720-hour configuration provided a
more complete view of atmospheric dynamics, allowing the
LSTM to learn both daily and broader climatological
dependencies relevant for solar energy forecasting. The model
also demonstrated strong temporal stability when validated
against independent datasets from 2023 and 2024, maintaining
RMSE deviations within+8 Wh/m? ofthe internal benchmark.

Residual analysis revealed minimal bias, near-symmetric
error distributions, and stable variance across all years, evidence
of the robustness and reliability of the proposed LSTM-720
approach. Beyond accuracy improvements, the results reveal a
structural implication: forecasting in tropical environments
requires long-memory recurrent modelling rather than short-
window designs. The 720-hour context enabled the model to
capture intra-month atmospheric persistence and sub-seasonal
variability, which short sequences cannot represent. This
positions the proposed framework as a methodological
contribution that advances solar forecasting research beyond
parameter optimization, providinga foundation for long-context
modelling in other tropical regions.

From a practical standpoint, these findings underscore the
suitability of recurrent neural networks for operational solar
forecasting in tropical regions with limited meteorological
infrastructure. The framework developed here can support
photovoltaic energy management, grid planning, and hybrid
renewable energy system design, offeringa scalable and data-
efficient tool for real-world applications. Future research should
explore the integration of additional predictors, such as air
temperature, humidity, and cloud fraction, and testhybrid deep
learning architectures to enhance both predictive accuracy and
spatial transferability. These results also provide modelling
guidance for future tropical forecasting studies by confirming
that long-context horizons are structurally required to recover
sub-seasonal atmosphericbehavior, a principle that may transfer
to other equatorial locations and to different renewable
forecasting tasks.
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