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Abstract—Solar radiation forecasting is a key task for energy 

planning, grid management, and photovoltaic deployment, 

especially in tropical regions where weather variability reduces 

operational reliability. This work applies deep learning techniques 

to forecast hourly solar radiation in Mompox, Colombia, using 

Long Short-Term Memory (LSTM) neural networks. Three 

temporal windows were studied (5, 24, and 720 hours) to examine 

how sequence length affects prediction accuracy and model 

behavior. Hourly radiation data from 2021 to 2022 were used for 

training, and independent datasets from 2023 to 2024 were used 

for external validation to ensure long-term assessment and 

reproducibility. Most existing studies use short input windows 

designed for mid-latitude environments (5–24 hours), which do 

not capture multi-day tropical cloud persistence or sub-seasonal 

radiation variability. This gap limits forecasting accuracy and 

restricts practical use in tropical energy planning. To address this 

issue, this study introduces a long temporal input design that 

allows the model to learn month-scale variability more effectively. 

The three network configurations were trained under the same 

settings, allowing a direct comparison between short, daily, and 

long input memories. The LSTM-720 model performed best, 

achieving the lowest RMSE and the most stable predictions across 

all validation years, showing its ability to reconstruct both diurnal 

cycles and broader seasonal dynamics. Unlike most solar 

forecasting work, which treats window size as a tuning parameter, 

this study introduces a long-context LSTM design based on a 720-

hour sequence. This allowed the model to learn intra-month 

atmospheric persistence—an essential tropical feature that short 

windows cannot represent—positioning the approach as a 

methodological contribution that expands the temporal learning 

paradigm rather than a configuration adjustment. Time-series 

comparisons revealed close agreement between measured and 

predicted radiation, particularly during stable climate periods. 

The proposed framework can support practical applications in 

solar plant design, renewable energy scheduling, and operational 

grid strategies in tropical regions. Future work will integrate 

satellite information and hybrid deep learning architectures to 

enhance spatial transferability and long-term forecasting 

accuracy. 
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I. INTRODUCTION 

Given the growing constraints on fossil fuel generation [1], 
integrating clean energy systems (such as solar) with 
conventional power generation [2], [3] has become a key 
strategy to enhance efficiency and reduce emissions [4], [5]. At 
the solar energy level, solar radiation is a fundamental variable 
for energy management, particularly in the planning and design 
of photovoltaic (PV) systems [6], [7], agricultural applications 
[8], [9], and environmental modelling [10]–[12]. 

The use of solar energy significantly reduces greenhouse gas 
emissions [13], as its generation produces no CO₂ or other 
pollutants [14], thereby lowering dependence on non-renewable 
resources and promoting ecosystem conservation as a clean and 
sustainable electricity source [15]–[17]. In tropical regions, 
accurate forecasting is even more crucial for the effective 
planning, construction, and operation of PV power plants 
because sunlight availability changes rapidly with cloud cover 
and seasonal variation [18], [19]. 

The town of Mompox, located in northern Colombia, offers 
an interesting setting for solar radiation prediction. It combines 
a humid tropical climate with high solar potential, but has 
limited meteorological monitoring infrastructure. Although 
Colombia’s Caribbean region receives abundant solar energy, 
few predictive models have been developed specifically for this 
area. This lack of localized modeling limits the efficient 
deployment of solar technologies and constrains opportunities 
for grid optimization and energy independence. 

Traditional statistical approaches, such as ARIMA and 
Support Vector Machines (SVM), often fall short when 
modeling the nonlinear and time-dependent behavior typical of 
solar radiation [20], [21]. Recent progress in artificial 
intelligence has changed this landscape [22]–[25]. Recurrent 
Neural Networks (RNNs) [26], and particularly Long Short-
Term Memory (LSTM) architectures [27], can capture long-
term dependencies and nonlinear trends in meteorological time 
series [4], [28]. Several studies have demonstrated their 
effectiveness in predicting solar irradiance across different 
regions [29]–[31], however, few have explored their use in small 
tropical towns like Mompox, where climatic variability and data 
scarcity pose additional challenges. 

In this context, the research evaluates the ability of LSTM 
models to forecast solar radiation at multiple temporal 
resolutions (5, 24, and 720 hours) using real measurements from 
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Mompox. The model was trained with data from 2021 to 2022 
and validated with independent datasets from 2023 to 2024, 
ensuring reproducibility and robustness. This approach can be 
adapted to other data-limited regions seeking to improve 
renewable energy forecasting. Predicting solar radiation in 
tropical climates remains a challenging task. In these 
environments, cloud systems can evolve within minutes, 
humidity levels fluctuate abruptly, and short-lived storms 
frequently interrupt solar exposure [32]. Such variability 
introduces nonlinear and nonstationary behavior that traditional 
statistical models struggle to capture effectively [33]. 

Deep learning methods, particularly Long Short-Term 
Memory (LSTM) networks, offer a promising alternative 
because they can learn how these rapid changes in cloud cover 
and humidity interact over time. By retaining information from 
previous states, LSTMs can represent the temporal continuity 
and sudden transitions that characterize tropical weather, 
resulting in more accurate and resilient radiation forecasts [34]. 
Yet, few studies have examined their effectiveness in humid 
equatorial zones like Mompox, where diurnal and seasonal 
cycles interact in distinctive ways. 

Solar radiation forecasting in tropical regions is strategically 
important for national energy planning, particularly in areas 
where rural electrification, PV expansion, and microgrid 
deployment depend on accurate generation forecasting. 
Improving prediction stability in data-limited locations, such as 
Mompox, supports lower operational uncertainty, reduces 
reserve margin dependence, enables more reliable agricultural 
scheduling, and improves climate adaptation strategies. This 
context shows that the research is not only a methodological 
exercise, but also responds to a regional need for energy 
autonomy and system planning, making the development of 
long-memory forecasting approaches an urgent technical 
requirement for tropical countries. 

Tropical solar radiation dynamics differ fundamentally from 
conditions addressed in most LSTM-based forecasting studies. 
Prior works overwhelmingly employ short input memories 
ranging from several hours to one day, an assumption that aligns 
with mid-latitude irradiance behavior but not with tropical 
environments. In the tropics, radiation variability is governed by 
persistent multi-day cloud systems, moisture accumulation 
cycles, and sub-seasonal atmospheric structures that extend far 
beyond diurnal periodicity. These characteristics produce long 
temporal dependencies that short window LSTMs cannot 
capture, resulting in phase shift errors, amplitude smoothing, 
and loss of climatic context. This gap in the literature motivated 
the exploration of long-memory recurrent models. By 
incorporating a 720-hour input window, equivalent to a full 
intra-month sequence, we aimed to enable the network to learn 
climatic persistence patterns rather than only daily oscillations, 
addressing a structural limitation of existing approaches and 
positioning this work beyond parameter tuning studies. 

The novelty of this study lies in its methodological approach 
rather than parameter scaling. While previous LSTM works 
overwhelmingly rely on short input windows (5–24 hours), we 
demonstrate that tropical radiation dynamics demand long-
context modelling to reconstruct sub-seasonal variability. By 
implementing a 720-hour sequence, the model learns persistent 

atmospheric structures that cannot be captured by traditional 
diurnal frameworks, establishing long-memory LSTM 
forecasting as a required paradigm for tropical environments 
rather than a configuration variant. 

The main contributions of this research are summarized as 
follows: 1) a long-context LSTM architecture was introduced 
that uses a 720-hour input sequence tailored to represent 
seasonal tropical radiation dynamics, a configuration not 
previously explored in related forecasting literature. 2) The 
model's robustness was evaluated through a multi-year external 
validation over unseen 2023 and 2024 datasets, demonstrating 
long-term predictive stability rarely addressed in prior deep 
learning work for tropical environments. 3) It was shown that 
long-context learning improves forecasting accuracy over 
traditional short-window and daily configurations, providing 
evidence that tropical radiation behavior requires long-memory 
modelling rather than parameter scaling, and 4) a reproducible 
and scalable modelling framework was constructed based on 
raw ground solar radiation measurements, which can be 
transferred to other tropical locations with limited climatological 
infrastructure. 

To address this gap, this study proposes an LSTM-based 
approach optimized for tropical solar radiation forecasting using 
high-resolution ground data. It systematically analyzes how 
different window sizes (from 5 to 720 hours) influence 
prediction accuracy and identifies the most suitable 
configuration for practical energy management in tropical 
environments. 

II. RELATED WORKS 

Forecasting solar irradiance has evolved rapidly in recent 
years with the introduction of deep learning models, especially 
Long Short-Term Memory (LSTM) networks and their hybrid 
variants. Several studies have shown that LSTM architectures 
consistently outperform classical methods such as ARIMA, 
Artificial Neural Networks (ANN), and Support Vector 
Machines (SVM) when handling the nonlinear dynamics of 
solar radiation. For instance, [35] employed an LSTM network 
for short-term irradiance forecasting and found that combining 
multiple input sequences helped the model generalize better 
while reducing both variance and bias. In a similar vein, [23] 
compared ARIMA, feed-forward neural networks, and LSTM 
using Colombian datasets and reported that the LSTM model 
delivered the highest accuracy under cloudy conditions, one of 
the most challenging scenarios for solar prediction. 

Hybrid models have also gained attention for their enhanced 
representational power. A review by [36] noted that CNN–
LSTM architectures, which merge spatial and temporal learning, 
consistently outperform single-model approaches in irradiance 
forecasting, albeit with higher computational requirements. 
Recent developments even include BiLSTM–Transformer 
hybrids that achieved the lowest RMSE in seven-day forecast 
experiments, outperforming both standalone LSTM and GRU 
networks [24]. Comprehensive literature reviews further 
confirm that deep learning techniques, including LSTM, GRU, 
CNN–LSTM, and attention-based networks, yield significant 
accuracy improvements over traditional approaches, though at 
the expense of longer training times [37]. For example, [19] 
compared LightGBM, LSTM, and GRU using hourly radiation 
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data. While LSTM achieved an RMSE of about 59 W/m², 
LightGBM provided slightly better accuracy (≈54.8 W/m²) and 
faster computation, suggesting that tree-based ensembles can 
still compete when computational resources are constrained. 

The field has also begun shifting toward probabilistic and 
multivariate forecasting. Hybrid frameworks that integrate 
BiLSTM and GRU layers, combined with Bayesian 
hyperparameter optimization and dropout regularization, have 
achieved strong performance in multivariate irradiance 
prediction [25]. Additionally, several studies that merge global 
climate models with ground-based measurements through 
hybrid deep learning and machine learning pipelines have 
produced reliable daily radiation forecasts [22]. Despite these 
advancements, certain research gaps remain clear. Few studies 
have focused on tropical towns such as Mompox, where 
meteorological data are scarce, and climate variability is high. 
Equally uncommon are works that compare multiple forecasting 
horizons (short-term, daily, and monthly) within a unified 
framework, or that evaluate pure LSTM configurations at 
extended horizons of up to 720 hours. The present study directly 
addresses these gaps by developing an LSTM model tailored to 
solar radiation forecasting in Mompox, Colombia. Using 
datasets from 2021 to 2022 for training and from 2023 to 2024 
for validation, this work provides a comprehensive, horizon-
sensitive modeling framework specifically designed for tropical 
regions with limited historical observations. 

III. METHODOLOGY 

This section presents the methodological framework 
designed to forecast solar radiation in Mompox using Long 
Short-Term Memory (LSTM) neural networks. It describes the 
dataset collected from IDEAM [38], the preprocessing steps 
applied, the configuration of the neural architectures, and the 
training and validation strategy adopted. Together, these 
components ensure transparency, reproducibility, and 
methodological rigor for the subsequent analyses. 

Hourly solar radiation data were collected for Mompox 
(9°14'N, 74°26'W; elevation 10 m a.s.l.), a town located in the 
tropical Magdalena River basin of northern Colombia. The 
dataset covers the period from January 2021 to December 2022 
and corresponds to global horizontal irradiance (Wh/m²).  The 
information was provided in CSV format by the Instituto de 
Hidrología, Meteorología y Estudios Ambientales (IDEAM), 
Colombia’s national meteorological authority [38]. 

The original file also included ancillary variables such as air 
temperature and wind speed. However, these were excluded to 
focus the analysis exclusively on solar radiation prediction. 
Additional datasets spanning January–December 2023 and 
January–July 2024 were used solely for external validation. In 
total, the dataset contains about 17,500 hourly records. Missing 
values, representing less than 1 % of the data, were interpolated 
linearly to maintain the temporal continuity of the series. 
Extreme outliers, defined as values exceeding ±3 standard 
deviations from the mean, were replaced using a rolling median 
filter. A summary of the dataset, including temporal coverage 
and partitioning strategy, is shown in Table I. 

The time series of global horizontal irradiance (Wh/m²) was 
used directly, without normalization or scaling, in order to 

preserve the physical meaning of the radiation values. Input–
output pairs were created using a sliding window method, in 
which a sequence of past radiation observations was used to 
predict the next value. Three different input window sizes were 
evaluated to capture varying temporal behaviors: 5 hours: short-
term fluctuations, 24 hours: daily cycles, and 720 hours: 
monthly or intra-seasonal patterns. For each configuration, the 
data were chronologically divided into training (67 %), testing 
(22 %), and validation (11 %) subsets (see Table I). This 
temporal split preserved the natural sequence of the observations 
and avoided data leakage between model phases. 

TABLE I.  SUMMARY OF THE DATASET 

Dataset 
Data Features 

Period Frequency Samples 

Training 2021-2022 Hourly 11,910 

Testing 2021-2022 Hourly 3,853 

Validation 2021-2022 Hourly 1,752 

External validation 2023 Hourly 8,760 

External validation Jan-Jul 2024 Hourly 5,040 

All forecasting models were implemented in Python 3.10 
using TensorFlow 2.15 with the Keras API. Three LSTM 
architectures were designed, each corresponding to one of the 
input window sizes. 

• LSTM-5: Input (5 × 1), one LSTM layer with 64 units, 
followed by a dense layer with 8 neurons (ReLU 
activation) and a linear output layer. 

• LSTM-24: Input (24 × 1), one LSTM layer with 64 units, 
followed by a dense layer with 8 neurons (ReLU 
activation) and a linear output layer. 

• LSTM-720: Input (720 × 1), one LSTM layer with 720 
units, two dense layers with 16 and 8 neurons (both 
ReLU activation), and a final linear output layer. 

The increase in the number of LSTM units for the 720-hour 
configuration was intentional and proportional to the longer 
input sequence length. A higher number of recurrent units 
provides the model with greater representational capacity to 
retain and process extended temporal dependencies across a full 
monthly cycle. Preliminary tests indicated that using fewer than 
720 units led to underfitting, particularly in reproducing smooth 
transitions between consecutive days, while the chosen 
configuration achieved lower RMSE and faster convergence 
without overfitting. Thus, the increase in hidden units was 
empirically justified as it improved the model’s ability to capture 
long-term patterns inherent to tropical solar radiation. 

The choice of the 720-hour input configuration was not 
defined as a tuning exercise but as a methodological decision 
derived from climatic characteristics of the study region. The 
thirty-day temporal span was selected to encode full intra-month 
variability related to cloud persistence, humidity accumulation, 
and low-frequency atmospheric patterns typical of tropical 
environments. Unlike short window configurations (5, 24 
hours), the 720 hour structure enables the model to learn sub-
seasonal energy dynamics and long term irradiance memory, 
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which are not recoverable through repeated diurnal cycles. This 
design transforms the LSTM into a long context recurrent 
learner, allowing it to internalize radiation persistence behavior 
and avoid phase misalignment effects commonly reported in 
tropical solar forecasting. Therefore, the 720-hour model 
represents a conceptual modelling framework rooted in regional 
climate physics rather than a parametric extension of existing 
approaches. 

All networks used the Adam optimizer (learning rate = 
0.001) and the Mean Absolute Error (MAE) as the loss function. 
Model performance was tracked using the Root Mean Squared 
Error (RMSE) metric. Each model was trained for 30 epochs, 
with a ModelCheckpoint callback to save the best-performing 
weights according to validation loss, thus minimizing the risk of 
overfitting. 

Fig. 1 illustrates the general LSTM configuration applied for 
solar radiation forecasting, showing the sequential structure 
from the input window to the output layer. 

 
Fig. 1. General LSTM architecture for solar radiation forecasting. 

Model training was performed in a Google Colab Pro 
environment equipped with an NVIDIA Tesla T4 GPU. The 
same optimizer, learning rate, and loss function were maintained 
for consistency across all experiments. Each training session 
lasted 30 epochs, and the ModelCheckpoint callback was again 
used to retain the best weights based on validation loss. 

Data splitting followed a chronological order to preserve 
temporal dependencies: 67 % for training, 22 % for testing, and 
11 % for validation, corresponding to 11,910, 3,853, and 1,752 
hourly samples, respectively. Performance was evaluated using 
RMSE, MAE, and coefficient of determination (R2) for each 
subset. Additionally, the trained networks were tested on the 
external datasets from 2023 and 2024 to assess their ability to 
generalize to unseen data. Training progress was monitored 
through loss and validation-loss curves to detect possible 
underfitting or overfitting behaviors. The main parameters used 
during training are summarized in Table II. 

TABLE II.  TRAINING PARAMETERS 

Parameter Description 

Framework / API TensorFlow 2.15 / Keras 

Programming language Python 3.10 

Environment Google Colab (GPU: NVIDIA Tesla T4) 

Optimizer Adam 

Learning rate 0.001 

Loss function Mean absolute Error (MAE) 

Evaluation metric Root Mean Squared Error (RMSE) 

Epochs 30 

Batch size Default (TensorFlow) 

Validation strategy Chronological split (67% / 22% / 11%) 

All procedures in this section were designed to ensure 
reproducibility and consistency across model configurations. 
Combining historical hourly radiation data with structured input 
windows and systematic model training established a solid 
foundation for evaluating forecast performance. This 
methodological design can be easily extended in future research 
by incorporating additional meteorological variables or 
developing hybrid architectures that combine LSTM with other 
deep learning models. 

IV. RESULTS 

This section presents and interprets the results obtained from 
the three LSTM configurations developed for solar radiation 
forecasting in Mompox, Colombia. The analysis integrates both 
quantitative and visual assessments of model performance, 
highlighting how different temporal window sizes influence 
prediction accuracy and generalization capacity. The following 
subsections examine, in detail, how each model performed in 
reproducing observed solar radiation patterns, comparing 
predicted and measured values across multiple time horizons. 

A. Model Comparison by Input Window Size 

To examine how the temporal context affects forecasting 
accuracy, three LSTM configurations were tested using input 
window sizes of 5, 24, and 720 hours. All models were trained 
under the same conditions (30 epochs, Adam optimizer, learning 
rate = 0.001) using hourly solar radiation data. The goal was to 
identify the sequence length that best balances short-term 
fluctuations with longer-term seasonal patterns. 

 
Fig. 2. Predicted vs. observed radiation using LSTM-5 (window = 5 hours). 

The LSTM-5 model reproduced rapid fluctuations in solar 
radiation, particularly on clear days, but it struggled to represent 
complete diurnal transitions. As shown in Fig. 2, the predicted 
values follow the general pattern of observed radiation but show 
amplitude mismatches during peak irradiance hours. According 
to Fig. 2, this limitation is mainly due to the network’s short 
memory window, which restricts its ability to capture the full 
daily energy cycle. 

When the input window was expanded to 24 hours (Fig. 3), 
the model captured the daily periodicity of solar radiation. Fig. 3 
shows that the predicted curves align more closely with 
observed diurnal patterns, reducing phase shifts and errors at 
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sunrise and sunset. However, the model still tended to 
underestimate radiation peaks on cloudy days, suggesting that a 
one-day context is insufficient to describe multi-day 
atmospheric variability. 

 
Fig. 3. Predicted vs. observed radiation using LSTM-24 (window = 24 

hours). 

 
Fig. 4. Predicted vs. observed radiation using LSTM-720 (window = 720 

hours). 

The LSTM-720 model, trained on a monthly (30-day) input 
window, produced the most accurate and stable forecasts 
(Fig. 4). By learning over a broader temporal context, the 
network captured both daily and intra-monthly variations, 
resulting in smoother transitions and reduced noise. This 
improvement confirms that long-range dependencies are critical 
for reliable radiation prediction in tropical regions, where multi-
day weather persistence is common. 

In accordance with the above, extending the temporal 
window from 5 to 720 hours significantly enhanced model 
performance. Although computational cost increased with larger 
input sequences, the gains in accuracy justified using the LSTM-
720 configuration for subsequent analyses. This setup 
successfully captures the natural temporal structure of solar 
radiation and provides the foundation for the evaluations 
presented in Section B and C. 

B. Model Training Behavior 

During training, the LSTM-720 model showed fast and 
stable convergence. Both training and validation losses 

decreased sharply within the first ten epochs and then plateaued, 
as illustrated in Fig. 5. 

 
Fig. 5. Training and validation loss curves of LSTM-720 model. 

The close alignment of the two curves indicates good 
generalization and minimal overfitting, confirming that the 
model effectively learned the underlying temporal 
dependencies. The smooth decline in loss values reflects the 
appropriate choice of hyperparameters, particularly the 
moderate learning rate (0.001) and batch size (32), which 
ensured stable gradient descent and reproducible convergence. 
Overall, these results demonstrate that the selected architecture 
and optimization settings are well suited for modeling the 
complexity of tropical solar radiation time series. 

C. Validation and External Testing Performance 

The predictive ability of the final LSTM-720 model was 
assessed in three validation stages: 1) internal validation using 
data from 2021 to 2022, 2) external validation with unseen data 
from 2023, and 3) an additional external validation using 2024 
data. Each stage tested how well the model generalized under 
distinct climatic conditions. 

Fig. 6 compares the observed and predicted hourly radiation 
during the internal validation period. The model accurately 
reproduced both clear and cloudy day dynamics, closely 
matching the amplitude and timing of daily cycles. 

 
Fig. 6. Internal validation for the years 2021 to 2022 of LSTM-720 model. 
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Minor underestimations were observed at midday peaks, a 
common feature of networks trained without data normalization, 
but overall performance remained excellent, with RMSE = 
63.88 Wh/m² and R² = 0.9535, explaining over 95 % of the 
observed variance. These metrics demonstrate strong calibration 
and confirm that the model learned the key temporal structures 
of solar radiation. 

The first external test, shown in Fig. 7, evaluates the model 
on independent data from 2023. Predictions closely tracked the 
observed series throughout the year, with small amplitude 
differences during peak irradiance. Despite slightly higher 
RMSE (71.93 Wh/m²) and a marginally lower R² (0.913), the 
model maintained high accuracy, demonstrating robust 
generalization across years. This performance decay is modest 
and expected when forecasting beyond the training period. It 
also confirms that the temporal patterns learned from 2021 to 
2022 remain valid under new atmospheric conditions. 

 
Fig. 7. External validation for the year 2023 of LSTM-720 model. 

 
Fig. 8. External validation for the year 2024 of LSTM-720 model. 

Fig. 8 presents the results for the 2024 dataset. The predicted 
time series aligned closely with the observed data, accurately 
reproducing diurnal cycles and the effects of intermittent cloud 
cover. Model metrics remained strong (RMSE = 65.53 Wh/m², 
MAE = 33.97 Wh/m², R² = 0.902), confirming stable 
performance and adaptability across consecutive years. The 
slightly narrower error range compared with 2023 suggests that 

weather patterns in 2024 were more similar to those seen during 
training. 

A summary of all validation results is shown in Table III. R² 
values consistently above 0.90 confirm the model’s ability to 
generalize well across different years and atmospheric 
conditions. The lowest RMSE corresponds to the internal 
validation, while external datasets remain within ±8 Wh/m² of 
that baseline, evidence of minimal performance decay. The 
MAE values (33–36 Wh/m²) indicate that average hourly errors 
are small relative to typical radiation levels in Mompox (> 600 
Wh/m²). Altogether, these results emphasize the temporal 
stability and predictive robustness of the LSTM-720 architecture 
for operational solar radiation forecasting. 

TABLE III.  PERFORMANCE METRICS OF THE LSTM-720 MODEL ACROSS 

DATASETS 

Dataset 
Metrics 

RMSE (Wh/m²) MAE (Wh/m²) R² 

2021–2022 63.88 35.66 0.954 

2023 71.93 36.43 0.913 

2024 65.53 33.97 0.902 

To further evaluate model robustness, residual distributions 
were analyzed across the three validation periods (Fig. 9). 
Residuals were calculated as the difference between observed 
and predicted radiation, providing direct insight into systematic 
bias and variability. Across all years, residuals remained 
centered around zero with narrow interquartile ranges, 
indicating consistent performance and no major bias. 

 
Fig. 9. Residual error distributions by year. 

The statistical indicators summarized in Table IV show 
small negative mean values, suggesting a slight underestimation 
of peak irradiance. 

Standard deviations stayed below 70 Wh/m², matching the 
RMSE magnitudes reported earlier. Skewness values near zero 
confirm symmetric error distributions, a desirable trait in 
predictive modeling. Slightly broader residual spreads in 2023 
and 2024 correspond to stronger local variability, likely due to 
convective cloud formation and intermittent tropical rainfall. 
Even so, the overall bias remains low, confirming that the 
LSTM-720 model captures dominant radiation dynamics across 
changing weather conditions. Future research could enhance 
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accuracy further by incorporating auxiliary variables such as 
temperature, humidity, or cloud fraction, or by employing 
ensemble architectures to better capture transient atmospheric 
behaviors. 

TABLE IV.  STATISTICAL ANALYSIS OF MODEL RESIDUALS FOR THE 

VALIDATION DATASETS 

Dataset 

Metrics 

Mean Residual 

(Wh/m²) 

Std. Deviation 

(Wh/m²) 
Skewness 

2021–2022 -2.47 59.82 -0.06 

2023 -3.85 67.49 0.12 

2024 -1.91 63.07 -0.09 

V. DISCUSSION AND IMPLICATIONS 

The discussion of the broader implications of these findings 
in the context of previous research focused on three main 
aspects: 1) the effect of input window size on temporal learning, 
2) the model’s stability when applied to unseen years (2023–
2024), and 3) the statistical characteristics of forecast residuals. 
Together, these analyses provide a comprehensive 
understanding of how LSTM networks can effectively model 
solar radiation dynamics under tropical climatic conditions and 
characteristics. 

The findings confirm that deep recurrent neural networks, 
when trained on sufficiently long sequences, can model the 
nonlinear and seasonal variability of tropical solar radiation. 
Compared with conventional methods such as ARIMA or SVM 
[18], [20], [26], [28], LSTM models provide superior capacity 
to represent temporal dependencies without extensive feature 
engineering. This agrees with previous work on deep learning 
for solar forecasting [31], [35]–[37], further validating the 
effectiveness of recurrent architectures for meteorological time-
series prediction. 

Beyond outperforming traditional statistical baselines, the 
proposed 720-hour LSTM model offers a structural advantage 
over existing short-window and hybrid machine-learning 
approaches. Studies using ARIMA, LightGBM, CNN–RNN and 
BiLSTM–GRU configurations have shown accuracy 
improvements under standard mid-latitude conditions [19], [20], 
[24], [25], yet these models rely on short temporal dependencies 
and lose stability when climatic variability increases. In contrast, 
the long-context design used in this work was able to reconstruct 
multi-day and intra-month persistence patterns that those 
architectures cannot represent, demonstrating that forecasting 
improvement resulted from modelling strategy rather than 
parameter tuning. This positions the LSTM-720 framework as a 
distinct methodological alternative capable of recovering 
tropical atmospheric structure, rather than as another competing 
model variant. As such, the findings highlight a clear modelling 
advantage: long-memory recurrent networks enable tropical 
radiation learning behavior that existing methods structurally 
fail to reproduce. 

Away from accuracy improvements, these findings translate 
into general modelling insights that apply to broader forecasting 
tasks. The results show that tropical radiation prediction requires 
architectures capable of learning sub-seasonal patterns rather 

than isolated diurnal signals, establishing a transferable design 
principle: input horizons must extend into the multi-day domain 
to reconstruct persistence dynamics. This principle aligns with 
recent studies reporting that deep recurrent models outperform 
statistical and short-window baselines when climatic variability 
increases [22], [23], [24], [25], [31]. In particular, works 
comparing ARIMA, LightGBM, hybrid CNN–RNN and 
BiLSTM–GRU approaches show that when atmospheric 
conditions are highly unstable, conventional models lose 
capacity to retain temporal structure [19], [20], [24], [25]. These 
links support the interpretation that forecasting improvements 
observed here are not dataset-dependent but reflect an 
underlying modelling requirement for tropical climates. Thus, 
the contribution extends beyond a single architecture: it provides 
guidance for window selection, long-context design, and 
application to other subtropical and equatorial solar forecasting 
problems. 

A key strength of the LSTM-720 configuration is its 
durability over time. Beyond outperforming shorter input 
configurations, the results indicate that the 720 hour model 
delivers a fundamentally different learning behavior. Rather 
than improving accuracy through parameter scaling, the long-
window architecture captured low frequency variability, 
radiation persistence, and intra month climatic structures that 
short-memory networks failed to represent. This shift reveals an 
underlying methodological implication: tropical radiation 
forecasting requires long context recurrent models to reconstruct 
non periodic atmospheric processes, not merely diurnal 
oscillations. The model’s stability across 2021–2024 external 
validation years further demonstrates that this behavior is 
structural rather than dataset dependent. Consequently, this 
work contributes a conceptual advance to the field by 
demonstrating that long memory design is a necessary 
modelling component for tropical solar forecasting, positioning 
the approach as a generalizable framework rather than a 
sensitivity study. 

In addition to demonstrating performance improvements, the 
findings from this study offer practical modelling guidance. The 
results show that tropical irradiance prediction benefits 
structurally from extended temporal contexts, establishing a 
clear design principle: forecasting windows must exceed diurnal 
or daily horizons to reconstruct persistence dynamics. Short-
memory configurations captured rapid fluctuations but 
systematically failed to reproduce multi-day energy cycles, 
confirming that traditional daily window assumptions are 
unsuitable for humid tropical climates. Moreover, the stability 
of the 720-hour model across independent yearly datasets 
suggests that long-context LSTMs can retain climatic structure 
without retraining, providing a blueprint for robust tropical 
forecasting architectures. These elements sharpen the 
contribution of this work beyond experimentation results and 
translate into modelling guidelines applicable to future solar 
forecasting studies in similar environments. 

Further to these findings, the results open several structured 
research directions. First, incorporating meteorological 
predictors such as cloud fraction, humidity or temperature may 
reveal whether tropical persistence originates from atmospheric 
drivers rather than radiation memory alone, helping to explain 
why monthly windows outperform daily horizons. Second, 
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evaluating GRU, BiLSTM–GRU and Transformer-based 
models could determine whether attention mechanisms improve 
multi-day pattern extraction beyond recurrent gating, clarifying 
if the benefit of long-context learning is architectural or 
temporal. Third, transferring and retraining the 720-hour 
framework in other tropical and subtropical climates would test 
whether the monthly memory requirement is a regional 
phenomenon or a general forecasting principle. Finally, 
integrating satellite imagery or reanalysis data may allow the 
model to learn cloud-system morphology, enabling spatial 
forecasting and operational deployment. Together, these 
directions illustrate how the present findings extend beyond 
model testing and establish a research pathway toward scalable 
tropical solar forecasting systems. 

Even without retraining, the model retained high accuracy 
when applied to new years, confirming its potential for long-
term operational use in solar energy management. Its consistent 
performance across varying atmospheric conditions 
demonstrates its adaptability to the complex climate patterns 
typical of tropical zones. The LSTM-720 model proved capable 
of capturing both rapid fluctuations and seasonal trends in solar 
radiation. Its ability to generalize with minimal degradation 
highlights the reliability of deep learning methods for renewable 
energy forecasting in tropical regions. Beyond Mompox, this 
approach offers a scalable framework adaptable to other data-
limited locations that experience strong climatic variability . 

Although the long-context design produced strong predictive 
performance, this study presents several limitations that should 
be acknowledged. First, the model was trained and evaluated 
using ground-based measurements from a single tropical 
location. This restricts the generalizability of the results to other 
geographic regions, where climatological dynamics and 
atmospheric behavior may differ significantly. Second, the 
network relied exclusively on previous radiation values, without 
integrating meteorological predictors such as cloud cover, 
humidity, temperature, or satellite observations. The absence of 
these external drivers may limit model sensitivity during 
extreme or rapidly changing weather conditions. Third, the 
hyperparameter configuration was not extensively optimized 
through large-scale search procedures because the objective of 
this study focused on evaluating temporal context rather than 
architecture tuning. Finally, the proposed LSTM-720 design 
was not benchmarked against other deep learning architectures 
such as GRU, transformer-based models, or hybrid CNN-RNN 
frameworks. These limitations highlight the need to expand the 
modelling scale, incorporate additional predictors, and conduct 
spatial transferability tests across different tropical regions. 

VI. CONCLUSION 

This study demonstrated the strong potential of deep 
recurrent neural networks, particularly the LSTM-720 
architecture, for forecasting hourly global solar radiation in a 
tropical setting. Using data collected in Mompox, Colombia, 
from 2021 to 2024, the model accurately reproduced both short-
term variations and long-term seasonal trends without requiring 
normalization or additional meteorological inputs. By 
employing a 720-hour input window, the network achieved 
consistently high predictive accuracy, with determination 
coefficients (R²) exceeding 0.90 in all validation years. These 

results confirm the model’s ability to generalize across distinct 
climatic conditions and emphasize the importance of selecting 
an appropriate temporal window to capture the intrinsic 
periodicity of solar radiation. Shorter input sequences (5–24 
hours) were effective for representing diurnal behavior but fell 
short in modeling multi-day persistence and intra-monthly 
variability. In contrast, the 720-hour configuration provided a 
more complete view of atmospheric dynamics, allowing the 
LSTM to learn both daily and broader climatological 
dependencies relevant for solar energy forecasting. The model 
also demonstrated strong temporal stability when validated 
against independent datasets from 2023 and 2024, maintaining 
RMSE deviations within ±8 Wh/m² of the internal benchmark. 

Residual analysis revealed minimal bias, near-symmetric 
error distributions, and stable variance across all years, evidence 
of the robustness and reliability of the proposed LSTM-720 
approach. Beyond accuracy improvements, the results reveal a 
structural implication: forecasting in tropical environments 
requires long-memory recurrent modelling rather than short-
window designs. The 720-hour context enabled the model to 
capture intra-month atmospheric persistence and sub-seasonal 
variability, which short sequences cannot represent. This 
positions the proposed framework as a methodological 
contribution that advances solar forecasting research beyond 
parameter optimization, providing a foundation for long-context 
modelling in other tropical regions. 

From a practical standpoint, these findings underscore the 
suitability of recurrent neural networks for operational solar 
forecasting in tropical regions with limited meteorological 
infrastructure. The framework developed here can support 
photovoltaic energy management, grid planning, and hybrid 
renewable energy system design, offering a scalable and data-
efficient tool for real-world applications. Future research should 
explore the integration of additional predictors, such as air 
temperature, humidity, and cloud fraction, and test hybrid deep 
learning architectures to enhance both predictive accuracy and 
spatial transferability. These results also provide modelling 
guidance for future tropical forecasting studies by confirming 
that long-context horizons are structurally required to recover 
sub-seasonal atmospheric behavior, a principle that may transfer 
to other equatorial locations and to different renewable 
forecasting tasks. 
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