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Abstract—The aim of this study is to develop an innovative,
multi-dimensional, and uncertain decision-making model that can
identify the most appropriate alternative irrigation method for the
efficient use of water resources in agriculture. In this context, the
proposed model is based on the integrated use of spherical fuzzy
sets, machine learning, MEREC, and WASPAS methods. The
evaluations obtained from ten experts were converted into
spherical fuzzy numbers, and the experts' importance weights
were objectively calculated using machine learning. Criteria
weights were determined using the MEREC method, and
alternatives were ranked using the WASPAS method. This hybrid
approach both reduces expert subjectivity and objectively reflects
the relationships between criteria. According to the findings,
feasibility/technological suitability (0.152) emerged as the most
important criterion, followed by environmental impacts (0.144).
Among the alternatives, drip irrigation (2.226) was identified as
the most suitable option for efficient use of water resources. This
result demonstrates that modern, technology-based irrigation
systems should be a priority in sustainable agricultural policies.
This study's contribution to the literature is its ability to bring
objectivity, transparency, and the ability to manage high
uncertainty to decision-making processes in agricultural water
management. The model offers both methodological innovation
and a practical decision-support tool at the application level.

Keywords—Irrigation activities; water use; decision-making
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1. INTRODUCTION

Identifying the most appropriate alternative irrigation
methods for sustainable water management in agriculture is
crucial because each region's climate, soil structure, plant
species, and economic capacity vary. Therefore, the same
method cannot be expected to yield the most efficient results in
every situation. Choosing the best irrigation method both
conserves limited water resources and increases production
efficiency [1]. Furthermore, determining the right method is
critical for the efficient use of limited budgets and the rapid
implementation of implementation strategies. Decision-making
in this process is influenced by many different factors. Water
efficiency refers to the extent to which water is delivered to the
plant root zone without wasting water and is a key indicator of
sustainable agriculture. Cost determines the economic viability
of the system's installation, operation, and maintenance. Energy
consumption is particularly important due to the pumps and

pressure lines used in modern systems, as energy costs directly
impact production costs. Applicability and technological
compatibility indicate the compatibility of the selected method
with existing infrastructure and technical capacity. Plant yield
and quality directly reflect the impact of the irrigation method
on agricultural output and are the most tangible measures of
success for farmers [2]. Environmental impacts include soil
salinity, erosion, and changes in groundwater levels that may be
caused by excessive or inappropriate water use. Ease of
maintenance and operation is a factor that determines the long-
term sustainability of a method, as complex systems may not be
managed effectively, especially by producers with limited
technical knowledge. However, the number of studies in the
literature that evaluate these criteria holistically is quite limited.
Most studies focus on a single factor or are limited to a specific
geographical context. This creates a significant gap in the
literature, as there is insufficient comparative data to determine
which irrigation method is most effective under which
conditions. This gap creates uncertainty in decision-making
processes and makes it difficult for practitioners to select the
most appropriate system. Furthermore, the varying weights of
criteria depending on the situation highlight the need for multi-
criteria analyses. Therefore, this gap in the existing literature
represents a research problem that needs to be addressed from
both theoretical and practical perspectives. New studies on this
topic will significantly contribute to identifying strategies to
increase water efficiency and support sustainable agricultural
production.

This study aims to identify the most effective alternative
irrigation methods for the efficient use of water resources in
agriculture. The primary motivation for the study is increasing
water scarcity, the impacts of climate change, and the need for
sustainability in agricultural production. The lack of systematic
multi-criteria comparisons of irrigation methods in the existing
literature creates a significant research gap. Therefore, this study
aims to fill this gap at both the theoretical and practical levels. A
holistic decision-making model for selecting alternative
irrigation methods was developed. The model is based on a
hybrid approach that integrates expert opinions with fuzzy logic.
In this context, seven criteria were identified for use in the
evaluation following a comprehensive literature review. These
criteria are water efficiency, cost, energy consumption,
applicability, plant yield and quality, environmental impacts,
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and ease of maintenance and operation. The alternatives
comprise sprinkler irrigation, drip irrigation, surface irrigation,
subsurface irrigation, and microsprinkler irrigation. Expert
assessments were collected from ten different experts and
converted into spherical fuzzy numbers. Expert importance
weights were calculated using a machine learning-based
method, thus reducing the influence of subjective evaluations.
The importance levels of the criteria were determined using the
MEREC method, allowing the contribution of each criterion to
the model to be objectively measured. The resulting weights
were used to rank the performance of the alternatives using the
WASPAS method. This integrated approach provides a decision
support framework that takes both uncertainties into account and
is computationally efficient. The study seeks to answer the
following research questions: 1) Which alternative irrigation
method is the most effective for the sustainable management of
water resources in agriculture? 2) What are the most decisive
factors in the decision-making process among the seven criteria
determined? 3) How does the diversity of expert opinions affect
the ranking of alternatives? 4) To what extent is the spherical
fuzzy-based approach effective in reducing uncertainty
compared to traditional fuzzy methods? 5) What advantages
does the integrated use of the MEREC and WASPAS methods
provide in multi-criteria decision-making processes? By
addressing these research questions, the study proposes an
innovative decision-making model that will increase water
efficiency in the agricultural sector and provide a strategic
reference framework for policy developers and practitioners.

This study addresses a clear methodological and practical
gap in the literature by proposing a hybrid decision-making
framework that goes beyond existing fuzzy-based MCDM
applications in agricultural water management. Unlike prior
studies that typically rely on static expert-driven fuzzy
weighting and conventional ranking techniques, the proposed
model uniquely combines spherical fuzzy sets with machine
learning—assisted data structuring, the objective weighting
capability of the MEREC method, and the compensatory—
noncompensatory evaluation mechanism of WASPAS within a
single integrated framework. This specific configuration is
fundamentally novel in that spherical fuzzy sets are employed
not merely as a linguistic extension, but as a means to capture
hesitation and uncertainty in irrigation-related expert judgments,
while machine learning is used to enhance data consistency and
reduce subjectivity prior to weighting and ranking. To the best
of our knowledge, no existing study in the irrigation method
selection literature has systematically integrated these four
components to jointly address uncertainty modeling, objective
criterion weighting, and robust alternative ranking.
Consequently, the proposed approach offers a structurally
distinct and methodologically advanced decision-support tool
for the efficient use of water resources in agriculture.

The proposed model developed in this study has several
advantages over previously presented decision-making models
in the literature: 1) First, the model utilizes machine learning
techniques to calculate the importance weights of experts. This
approach allows for objective weighting based not only on the
opinions of experts but also on their demographic
characteristics, areas of expertise, experience levels, and
academic backgrounds. The vast majority of existing models in
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the literature treat experts as equal or base weights on subjective
assessments. This increases the risk of subjectivity and
inconsistency in the decision-making process. However, the
machine learning-based approach wused in this study
systematically evaluates differences among experts, providing
more objective, reliable, and data-driven weightings. This
increases the accuracy and confidence levels of the model and
enhances the scientific validity of decision-making results.
2) The second advantage of the model is the use of spherical
fuzzy sets in the decision-making process. These new-
generation fuzzy sets have a higher uncertainty representation
capacity compared to classical, intuitionistic, and Pythagorean
fuzzy sets. By defining membership, non-membership, and
degrees of uncertainty independently, the spherical fuzzy
structure models the uncertainties and knowledge gaps in expert
opinions in a much more realistic and flexible manner. This
allows for more effective management of uncertainty in the
decision-making environment and increased consistency of
results. Furthermore, the spherical fuzzy approach offers
advantages over other sets in terms of both ease of calculation
and interpretability. This contributes to the model's robustness
both theoretically and practically. 3) The MEREC (Method
Based on the Removal Effects of Criteria) technique used in the
study is another significant advantage of the model. Entropy,
CRITIC, or standard statistical methods are frequently used in
the literature for criterion weighting; however, these methods
generally fail to adequately reflect the mutual influences
between criteria. The MEREC method analyzes the change in
overall performance when each criterion is removed from the
system, revealing the true impact of each criterion. This feature
allows the model to better capture inter-criterion sensitivity and
ensure more objective, reliable, and data-driven decision-
making outcomes. The MEREC method offers higher accuracy
and significance than other techniques, particularly in areas such
as water management, where multidimensional environmental
and technical factors are evaluated simultaneously. Considering
all these advantages together, the proposed model offers a
holistic approach that is both methodologically innovative and
provides high accuracy, flexibility, and consistency in decision-
making processes.

The remainder of the study is as follows: Section II includes
the research gap in the literature. Section III focuses on the
proposed model. The results are denoted in Section IV.
Section V. makes a comparative discussion. Section VI
highlights the main conclusion.

II.  LITERATURE REVIEW

Applicability, or technological suitability, is one of the key
criteria when determining alternative irrigation methods for the
efficient use of water resources in agriculture. Given the
challenges of climate change, the use of technologies that can
increase productivity and efficiency in agriculture, including
precision agriculture, drones, and climate information systems,
is crucial. In today's world, the development of systems such as
remote sensing with artificial intelligence-based decision-
making tools also promotes the efficient use of water resources
in agriculture. These technologies include software applications,
water management applications, nutrient management,
temperature measurement, and soil health analysis tools. These
technologies can also contribute to climate change-resilient crop
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development, irrigation water management, fostering local
knowledge, and increasing agricultural yields, ensuring food
security. Vedovello et al. [3] provided an overview of hydrogel
technologies as adaptable solutions to address challenges such
as water scarcity and soil degradation in agriculture. Indeed,
hydrogels offer agricultural innovations that address challenges
associated with traditional agricultural practices and
technologies while also providing some answers for the future
of these technologies. Singh and Singh [4] examined the impact
of UAV use in Indian agriculture on precision agriculture, crop
monitoring, and pesticide application. They assess technological
advancements, infrastructure, regulatory frameworks, farmer
perceptions, and financial accessibility of UAV technology.

Environmental impacts are another effective criterion in
determining alternative irrigation methods for the efficient use
of water resources in agriculture. Ultimately, water efficiency in
agriculture is a critical element of sustainable water
management, particularly in rural areas, and is vital for ensuring
environmental sustainability in rural areas where water
resources are limited [S]. While traditional surface irrigation has
been reported to cause environmental consequences such as
water loss, advanced alternatives such as drip and sprinkler
systems have been observed to improve irrigation infrastructure
and promote climate-smart agricultural practices [6]. Saini et al.
[7] investigated the behaviors and perspectives of rural and
regional urban water consumers regarding water consumption.
They develop a conceptual model of the factors affecting the
amount of water consumed, including the barriers that hinder
water conservation. Yasmeen et al. [8] examined the synergy of
water use efficiency between 2006 and 2020 between the
aggregation of water resources at the provincial and regional
levels in China and the integration of innovative conservation
technologies.

Cost is another important criterion when determining
alternative irrigation methods for the efficient use of water
resources in agriculture. The initial investment cost of irrigation
systems designed for efficient water use can be high. This is
because sprinkler and drip irrigation systems, while achieving
efficiency by using less water, require operator control,
operation, and monitoring [9]. Furthermore, while external
factors such as regulations, national water policies, financial
incentives, government subsidies, and technology provide
solutions for efficient water supply in agriculture, they can also
be considered among the factors affecting costs [10]. Chaudhary
et al. [11] summarized the fundamental aspects of sprinkler and
precision irrigation, their development and prospects,
particularly in Asian countries. This approach leverages
significant advances in sprinkler systems for precision
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applications to increase net crop production, conserve irrigation
water, maximize irrigation uniformity, and improve fertilizer
management with minimal leakage loss. On the other hand,
Bhavsar et al. [12] comprehensively examined numerous [oT-
enabled smart micro-irrigation systems, including smart
sprinkler systems and smart drip irrigation, to reduce water and
energy waste. The aim is to find the most appropriate irrigation
strategy.

Energy consumption is another important criterion in
determining alternative irrigation methods for the efficient use
of water resources in agriculture. The agricultural sector
consumes large amounts of water and energy through irrigation,
collection, pumping, water treatment, land preparation, fertilizer
production, agricultural machinery, processing, and storage
[13]. In other words, energy is used both directly and indirectly
for the efficient use of water resources in agriculture, while the
energy provided to modern and sustainable agricultural
production systems and processing is one of the main factors in
the growth of agricultural production [14]. Yang et al. [15]
established a framework for examining water and energy
consumption at every stage of the crop growth process,
including growth, planting, germination, ripening, and
harvesting. Pomoni et al. [16] aimed to reveal the
environmental, water, and energy impacts of traditional
agriculture and a new soilless cultivation technology, namely
hydroponic agriculture.

The results of the literature review indicate that certain
criteria are important in determining alternative irrigation
methods for the efficient use of water resources in agriculture.
These criteria include applicability (technological suitability),
environmental impacts, cost, and energy consumption. Since it
is not possible to improve all criteria simultaneously, the study
aims to identify the most important criterion. This aims to
address a gap in the literature on this topic. This study
accomplishes this by analyzing a new decision-making model.

III. METHODOLOGY

This section relates to the formulations of spherical fuzzy
sets (SFSs), dimensionality reduction, MEREC, and WASPAS.
Using these formulations, the methodology of the manuscript is
constructed. The methodology includes SFSs to minimize
uncertainty, while dimensionality reduction is used to determine
the level of experts. Additionally, after calculating the criterion
priority value from MEREC, comparative results of WASPAS
and RAWEC are obtained in ranking the alternatives. The
diagram of the methodology is presented in Fig. 1.
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Fig. 1. Diagram of the methodology.

A. Dimensionality Reduction

Creating a decision matrix by calculating the unweighted
average of expert evaluations has been criticized. Due to this
criticism, different approaches have been developed in the
literature. While dimensionality reduction is primarily used to
reduce the number of variables in machine learning, it is
preferred in MCDM due to its objectivity in calculating the
experts' ratings. This approach aims to obtain rating scores for
experts using information provided by the experts on the
websites of their affiliated institutions. The assumption here is
that if an institution's knowledge is high, the institution is of high
quality; if the institution is good, the expert working there is also

qualified. Under this assumption, the calculation steps can be
summarized as follows [17].

The websites of £ institutions, where k experts work, are
examined. The fnumerical information about the institutions is
collected. This information includes the number of business
partners the institutions have collaborated with and the years
they have been in operation. Based on these variables, an
institution is considered high-quality if it has been operating for
a long time. Similarly, the more business partners it has, the
better the institution. In other words, the matrix (B) in Eq. (1) is
created using the data from the relevant variables indicating the
institution's qualification.
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When the value range and unit sizes of the variables differ
from each other, standardized values (r) are calculated with the

help of Eq. (2) to Eq. (4) using arithmetic mean (E) and centred
values (¢).

= ZEabij

b ===~ (2)
¢ij = by — b (3)
rj == @

k2
1,Zi=1Cij

Afterwards, covariance coefficient values (cov) between
standardized variables are established via Eq. (5). Thus, the
covariance matrix (A) formed in Eq. (6) is obtained.

1 _ _

covyy =+ (Tia(ryj = 7) (e = 7)) (5)
covyq Covy ¢

A= : : 6)
Covf1 Covffl

where, 7 is the average value of the standardized variable
and is estimated using Eq. (2). Next, f eigenvalues of the
covariance matrix (¢) are computed by Eq. (7). Then, the
maximum eigenvalue (¢*) is selected with Eq. (8) for saving the
maximum variance.

det(A— &) =0 @)
§" = max¢; (3

where, [ is the identity matrix with dimensions fxf. Later, the
eigenvector (Y) is constructed with the help of Eq. (9):
A-¢DY=0 ©)

Finally, a one-dimensional matrix (H) is created via
Eq. (10), then the rating scores of experts (rs) are defined as
Eq. (11):

H=BY (10)
(11)

hi
3
Yizqh

rs; =

where, h is the items of one-dimensional matrix. The
multiplication operation in Eq. (10) is matrix multiplication.

B. SFSs

Fuzzy sets define different degrees to measure uncertainty.
From the set family formed by the degrees of membership (@),
non-membership (B), and hesitancy (y), SFSs are defined by
the sum of the squares of these degrees. In other words, an SFS
(13" ) of the universe of discourse (§) is described as in Eq. (12)
[18].

F={x(ar(0), (), v;@)Ix €S} (12)

where, these degrees are between zero and one. These
degrees are the satisfied conditions in Eq. (13):
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0<af(x)+BE(xX)+yvi(x) <1, Vx €S (13)
The refusal degree is computed with Eq. (14):

¢r(x) = J 1- (@) - B0 — 72 (14)

Consider that F and G are two SFNs. Then, basic operators
are identified with Eq. (15) to Eq. (18):

o ( /af: + al — akal, BB, )
F+G=i }US

Ja-a@E+ (- ap)vi-vir

s, |BE + BE — BEBE,

FxG = (16)
Ja= i+ (1 B2we - vi
fi-(-ad)s2
Aﬁz{ (L=a)p (17)
\J-ad) - (- ai-v2)")
o ( al, /1 -(1- ﬁé)l' | a18)
iJ(l -3 - (1- g2 - ?)l}

Assume that F; be the sequence of SFNs and ¥, w; = 1.

Then, weighted arithmetic mean (A) is calculated using
Eq. (19):

1-1IL, (1 - “ng)Wi'

L Br (19)
wi wi
JH 1—aF - [Ix (1—aF—yF)

Similarly, weighted geometric mean (g") is computed with
Eq. (20):

Ar, =

n wi
i=1 9%,

\/ 1=l (1 -B2)", (20)

\/H I_BF — I (1_[;1’1 ~i)Wi

Score (SF) and accuracy (AF) functions are identified by
Eq. (21) and Eq. (22), respectively.

sF(F) = (e =) = (g =) )
AF(F) = af + B +v7 (22)

C. SF-MEREC-Based SF-WASPAS

MEREC-based WASPAS is a hybrid approach that ranks
alternatives by combining two models after determining
objective criteria priorities. This hybrid approach aims to
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minimize uncertainty by integrating SFSs. This manuscript
analysis process is described below [19].

For the decision model in which » criteria are considered to
rank m alternatives, evaluations from k experts are collected with
a linguistic scale. These linguistic evaluations are converted into
SFNs, and their weighted averages are calculated by Eq. (23):

di; = {“&U' Ba,p V&U} = Agt

where, E*;; refers to SFN of the linguistic evaluation of j®
criterion of i alternative for 7" expert. A is the weighted
arithmetic mean defined in Equation (19) using the rating scores

of experts as weights. Next, normalized decision values (§) are
computed with Eq. (24) and Eq. (25):

(23)

ij

b = {a&”,[)’&”,yd”};for benefical criterion(24)
hij = {y(;ij, B&U, a,gij};for cost criterion (25)
Afterwards, crisped values (§) are calculated by Eq. (26):

2
by =3 o) (26)

\- (3‘31’1')2 - (Vﬁij)z —In (1 + (cﬁif)z)

The overall performance of the alternative (G) is obtained
with the help of Eq. (27):

Go=tn(1+(23,0o1)) @7)

The performance of the alternative by removing every
criterion (G") is established using Eq. (28):

Gij=In (1 + (G2 f==f|bif|)) (28)

Next, the summation of absolute deviations (K) is estimated
by Eq. (29):
K; = %|G{; — Gy (29)
The last step of MEREC is about the computation of priority
values (pv) of criteria with Eq. (30):
K .

pv; = = (30)

== :
2:j=1KJ

Afterwards, the weighted sum model (Q(l)) is applied using
Eq. (31).

Qi(l) = Xi=1pv;b;; 3D

Similarly, the weighted product model (@(2)) is performed
via Eq. (32):

0 ==y (5,;)"" (32)

Next, the @ values of alternatives are calculated by Eq. (33)
[20].

0; =90 + (1 - ) 33)
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Finally, score function values of Q are estimated with the
help of Eq. (34) for ranking of alternatives.

Q: = SF(Q:) (34

IV. ANALYSIS

This section relates to the results of the methodology in
Fig. 1.

A. Obtaining the Rating Scores of Experts

Experts with at least ten years of work experience are
selected. Data from the website is analyzed using the experts'
institutional information. The institutions' business partners,
period of activity, and number of countries they operate in are
obtained. This information is used to create the matrix in Eq. (1).
The matrix is shown in Table I.

TABLE L INFORMATION ABOUT THE INSTITUTIONAL BUSINESS
PARTNERS
Business Partners | Activity Period | Operation Country
Expert.1 16 16 6
Expert.2 21 16 5
Expert.3 23 21 5
Expert.4 32 26 4
Expert.5 33 33 6
Expert.6 24 22 4
Expert.7 25 18 3
Expert.8 35 35 6
Expert.9 29 15 4
Expert.10 34 24 6

According to the variables in Table I, the average business
partner is 27.2 with a standard deviation of 6.03. Similarly, the
minimum activity period is 15. The range of operation country
is between 3 and 6. The descriptive statistics are shared in
Table II.

TABLE II. DESCRIPTIVE STATISTICS
Business Partners | Activity Period | Operation Country
Average 27.2 22.6 4.9
Deviation 6.030 6.666 1.044
Max 35 35 6
Min 16 15 3

Standardized values are calculated with the help of Eq. (2)
to Eq. (4) using arithmetic mean and centered values in Table II.
The standardized values are given in Table III.
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TABLEIIl.  STANDARDIZED VALUES
Business Partners | Activity Period | Operation Country
Expert.1 -.587 =313 333
Expert.2 -.325 =313 .030
Expert.3 -.220 -.076 .030
Expert.4 252 161 =273
Expert.5 304 493 333
Expert.6 -.168 -.028 -273
Expert.7 -.115 -.218 -.575
Expert.8 409 588 333
Expert.9 .094 -.361 -273
Expert.10 357 .066 333
Covariance coefficient values between standardized

variables in Table III are established via Eq. (5). Thus, the
covariance matrix formed in Eq. (6) is summarized in Table IV.

TABLE V. EIGENVALUES WITH EXPLAINED VARIANCES
Value Explained Variance
Eigenvalue.1 19569 65.23%
Eigenvalue.2 .018526 6.18%
Eigenvalue.3 .085784 28.59%

The first eigenvalue contains 65.23% of the variance, which
is considered a relatively high rate. Later, eigenvector is
constructed with the help of Eq. (9). The results are displayed in
Table VI.

TABLE VI.  ITEMS OF EIGENVECTOR
Vector
1 .603644
2 .675852
3 422891

A one-dimensional matrix is created via Eq. (10). This
matrix is exhibited in Table VII.

TABLE VII.  ONE-DIMENSIONAL MATRIX
TABLEIV. COVARIANCE MATRIX First-dimension

Business Activity Operation Expert | 23.009

Partners Period Country Expert.2 25.605

; Expert.3 3.191
Business 100 075 016

Partners Expert.4 38.580

Activity Period | .075 .100 045 Expert.5 44.761

Expert.6 31.048

8233;;’“ 016 045 100 Expert.7 28.525

Expert.8 47.320

Next, the 3 eigenvalues of the covariance matrix are Expert.9 29.335

computed by Eq. (7). These eigenvalues are illustrated in Expert.10 39.282

Table V' with explained variances. Then, the maximum
eigenvalue is selected with Eq. (8) for saving the maximum
variance. The maximum eigenvalue is .19569.

Finally, the items in Table VII are normalized. Thus, the
rating scores of experts are defined as Eq. (11). The rating scores
of experts are presented in Fig. 2.

m Expert.] ®Expert.2

Expert.3 mExpert.4 mExpert.5

Expert.6 ®mExpert.7 ®Expert.8 ®Expert.9 ®Expert.10

Fig. 2. Rating scores of experts.
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As can be seen from rating scores in Fig. 2, the most
important evaluation is Expert.8 with .140. This expert’s
institution has the maximum business partners, operation county

z-NIDM

0.068

0.000 0.020 0.040 0.060 0.080

Vol. 16, No. 12, 2025

and activity period. Moreover, as a second method to compare
the results, the z-NIDM method is applied. The comparative
results are visualized in Fig. 3.

0.187
0.140
0.133
0.100 0.120 0.140 0.160 0.180 0.200

m Expert.10 mExpert.9 mExpert.§ ®mExpert.7 ®Expert.6 ®Expert.5 ®Expert.4 ®Expert.3 ®Expert.2 ®Expert.l

Fig. 3. Comparative results for experts.

Pearson and Spearman correlation coefficients between two
approaches are obtained for results. Pearson coefficient is .939
and Spearman coefficient is .944. These coefficients are very
high. In other words, the results are consistent and reliable.

B. Weighting of Criteria and Ranking of Alternatives

Alternative irrigation methods for efficient use of water
resources in agriculture are sprinkler irrigation (SPR), drip
irrigation (DRP), surface irrigation (channel or flood) (SRF),
subsurface irrigation (SBS), and micro sprinkler irrigation
(MCR). The criteria effective in the selection of these
alternatives are presented with their short codes in Table VIII.

Linguistic evaluations from 10 experts are collected with a
linguistic scale shared in Fig. 4.

TABLE VIII. CRITERIA LIST WITH SHORT CODES

Definition Short Code
Water Efficiency (Savings) WEF
Cost CST
Energy Consumption ECN
Applicability/Technological Compatibility APT
Plant Yield and Quality PTQ
Environmental Impacts EVI
Ease of Maintenance and Operation EMO

Using the initials of the linguistic scale in Fig. 4, the experts'
evaluations are summarized in Table IX. For example, VHI is of
very high importance.
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Absolutely Low Importance h 0.9
Very Low Importance % 0.8
Low Importance “ 0.7
0.3
Slightly Low Importance m 0.6
0.5
Equally Importance 0.5
0.5
: 0.4
Slightly More Importance 4 06
Hieh Import _ 0.3
igh Importance
gh lmp 07
. 0.2
Very High Importance 2 08
0.1
Absolutely more Importance 1 0.9
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fig. 4. Linguistic scales.
TABLE IX.  LINGUISTIC EVALUATIONS
Expert.1 WEF CST ECN APT PTQ EVI EMO
SPR VLI ALIL ALI VLI VLI SLI ALIL
DRP Al VHI HI Al Al Al SMI
SRF SLI SLI SMI EI SMI SLI SLI
SBS SMI SMI SMI SMI EI EI El
MCR LI LI SLI LI VLI LI VLI
Expert.2 WEF CST ECN APT PTQ EVI EMO
SPR LI VLI ALI LI ALI SLI LI
DRP VHI Al VHI Al Al VHI VHI
SRF EI HI SMI HI EI HI HI
SBS EI SMI EI EI EI EI EI
MCR SLI VLI VLI VLI SLI LI SLI
Expert.3 WEF CST ECN APT PTQ EVI EMO
SPR VLI VLI VLI VLI SLI SLI ALI
DRP Al Al Al Al HI VHI Al
SRF SMI EIl SMI SMI SLI HI HI
SBS SMI EI EI SMI SMI EI SMI
MCR LI LI VLI LI VLI SLI VLI
Expert.4 WEF CST ECN APT PTQ EVI EMO
SPR LI LI ALI ALI VLI SLI VLI
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DRP SMI HI Al HI Al VHI Al
SRF HI EI HI HI EI SMI SMI
SBS SMI EI SMI EI SMI EI SMI
MCR SLI SLI SLI LI SLI VLI SLI
Expert.5 WEF CST ECN APT PTQ EVI EMO
SPR ALI SLI VLI SLI SLI ALI VLI
DRP Al Al SMI SMI SMI SMI VHI
SRF EI SMI SLI SMI SMI HI SMI
SBS SMI EI EI SMI SMI EI EI
MCR VLI LI LI VLI VLI SLI VLI
Expert.6 WEF CST ECN APT PTQ EVI EMO
SPR LI SLI ALI ALI ALI ALI SLI
DRP SMI HI HI Al HI VHI HI
SRF SMI HI EI SLI SMI EI SLI
SBS SMI SMI SMI SMI SMI EI EI
MCR SLI VLI VLI SLI VLI VLI VLI
Expert.7 WEF CST ECN APT PTQ EVI EMO
SPR ALI ALIL VLI VLI LI SLI ALI
DRP SMI HI HI HI VHI Al VHI
SRF EI SLI SMI HI HI SMI EI
SBS EI EIl SMI SMI SMI EI SMI
MCR SLI LI LI SLI SLI VLI VLI
Expert.8 WEF CST ECN APT PTQ EVI EMO
SPR ALIL ALIL SLI LI ALIL ALIL ALI
DRP HI SMI Al SMI VHI SMI SMI
SRF SMI SMI EI HI SMI EI EI
SBS SMI EI SMI SMI EI EI EI
MCR VLI LI LI SLI SLI SLI VLI
Expert.9 WEF CST ECN APT PTQ EVI EMO
SPR VLI SLI ALI VLI ALI SLI ALI
DRP SMI SMI VHI SMI VHI SMI Al
SRF SMI SMI HI EI HI SMI HI
SBS EI SMI SMI EI EI SMI SMI
MCR VLI SLI VLI SLI LI SLI VLI
Expert.10 WEF CST ECN APT PTQ EVI EMO
SPR SLI ALI VLI SLI LI ALI SLI
DRP HI VHI HI VHI HI VHI Al
SRF SMI SLI SLI HI SMI SMI HI
SBS SMI SMI SMI SMI SMI SMI EI
MCR LI LI SLI SLI VLI LI LI
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These linguistic evaluations in Table IX are converted into
SFNs according to Fig. 4. Then, weighted averages are
calculated by Eq. (23) using rating scores of experts in Fig. 2 as

Vol. 16, No. 12, 2025

weights. Thus, the decision matrix that accepts the weighted
average values as elements is obtained. This matrix is displayed
in Table X.

TABLE X. DECISION MATRIX
WEF CST ECN APT PTQ EVI EMO
SPR | (.271,.777,222) (316,756,248) | (.23,.809,.203) (301,741,261) | (.273,765,253) | (342,729,285) | (.254,.788,232)
DRP | (.781,.236,243) (.8,214,217) (.815,.2,201) (.794,.222,23) (.808,207,205) | (.784,231,232) | (.833,.181,.192)
SRF | (.601,.425,.399) (.585,.445,385) | (.593,.44,.383) (652,369,347) | (.616,412,381) | (.627..398,374) | (.626,.404,365)
SBS | (.598,.423,.409) (573,453,437) | (.597,427,411) | (.595.426,412) | (.587,435,422) | (.55,478..46) (.567,.46,.443)
MCR | (.337,.694,301) (.35,.694,.286) (33,7,293) (378,.664,322) | (341,702,291) | (.366,.679,309) | (.291,.746,246)

Normalized decision values are computed with Eq. (24) and
Eq. (25). All criteria are beneficial. For this reason, Eq. (24) is
used. In other words, normalized decision values and the
decision matrix’s elements are the same. Next, crisped values
are calculated by Equation (26). The crisped values are shown
in Table XI.

The overall performance of the alternative is obtained with
the help of Eq. (27). The overall performance values are
visualized in Fig. 5.

TABLE XI.  CRISPED VALUES
WEF CST ECN APT PTQ EVI EMO
SPR .089 115 .066 .109 .090 133 .079

DRP .626 .655 678 .645 .667 .631 706

SRF .380 363 372 446 .399 413 412

SBS 376 344 374 373 362 317 337

MCR 134 .143 130 .163 136 154 .103

0.600
0.506
0.500
0.400
0.335
0.304
0.300
0.200
0.129
0.093
0.100
0.000 .
SPR DRP SRF SBS MCR
Fig. 5. Overall performance values.
. The performgnce of ’ the alternative by removing every TABLE XI. G’ VALUES
criterion is established using Eq. (28). The results are illustrated
in Table XII. WEF | CST | ECN | APT | PTQ | EVI | EMO
Next, the summation of absolute deviations is estimated by SPR 081 078 084 |.079 |.081 |.075 |.083
Eq. (29). The summation values are presented in Fig. 6. DRP | 450 448 |.446 |.449 |.447 |.450 |.443
. . .. SRF 295 297 296 288 293 292 292
The last step of MEREC is about the computation of priority
values of criteria with Eq. (30). The results are shown in Fig. 7. SBS 263 267|263 264 265 | 270 | 267
MCR 112 11 112 .108 112 .109 116
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WEF
EMO CST
0.164
0.165 0.166
0.164
EVI 0.R0 ECN
0.169
PTQ APT
0.179

Fig. 6. Summation of absolute deviations.

u WEF
uCST
uECN
HAPT
uPTQ
EEVI
= EMO

Fig. 7. Priority values of criteria.

When Fig. 7 is examined, the most important criterion important criterion is environmental impacts with .144.
effective in the selection of these alternative irrigation methods Afterwards, weighted sum model is applied using Eq. (31). The
for efficient use of water resources in agriculture is weighted sum model result is described in Table XIII.

applicability/technological compatibility with .152. The second
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Next, the Q values of alternatives are calculated by Eq. (33).

The results are summarized in Table XV with ¢ of .5.

oW
SPR (:287..766,.246) TABLE XV. @ VALUES (@ =.5)
DRP (.803,.212,217)
SRF (.616,.412,.376) Q™ (1-¢)Q® Q
SBS (:582,.443,428) SPR (205,875,179) | (202,.876,.177) | (.285,.767,.245)
MCR (.344,.696,.294)
DRP (.635,.461,.202) (.634,.462,.203) (.802,.213,.218)
Similarly, weighted product model is performed via
Eq. (32). The weighted product model result is illustrated in SRF (:46,.642,.309) (:459,.643,.31) (.615,.413,.377)
Table XIV. SBS (432,.665,349) | (431,.666,.35) (.581,.443,.428)
TABLE XIV. WEIGHTED PRODUCT MODEL MCR (247,834,218) | (.245,835,216) | (.342,.697,.294)
Q® . . . . .
SPR (282,768,244 Finally, score function values of Q are estimated with the
DRP (.802,214,218) help of Eq. (34) for the ranking of alternatives. The ranking
SRF (.614,.413,.377) values of alternative irrigation methods for efficient use of water
SBS (.581,.444,.429) resources are visualized in Fig. 8.
MCR (.341,.698,.293)

As can be seen, defuzzified Q values in Fig. 8, the most
suitable alternative irrigation method for efficient use of water
resources is drip irrigation with 2.226.

2.500

2.000

1.500

1.000

0.500

0.000

-0.500

2.226

1.035
0.847

BICR

-0.216

DRP SRF SBS

Fig. 8. Defuzzified Q values.

C. Sensitivity Analysis

Calculations are performed with different ¢ values and the
results are compared. This tests the sensitivity of the results. The
ranking values based on ¢ values are summarized in Table XVI.

TABLE XVI. RESULTS BY ¢

0 .1 2 3 4 5 .6 v .8 9 1
SPR -.221 -.220 -.219 -.218 =217 -216 -.214 -213 -212 =211 -.210
DRP 2.222 2.223 2.224 2.225 2.225 2.226 2.227 2.228 2.229 2.229 2.230
SRF 1.032 1.032 1.033 1.033 1.034 1.035 1.035 1.036 1.037 1.037 1.038
SBS .845 .845 .845 .846 .846 .847 .847 .847 .848 .848 .849
MCR -.016 -.016 -.015 -.014 -.014 -.013 -.012 -.012 -.011 -.010 -.010
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As can be understood from ranking scores of alternatives in
Table XVI, the ranks of alternatives are the same. In other
words, the results are reliable and consistent.

-0.458
RAWEC

-1.000

B 0.221
0314

-0.013 |

Vol. 16, No. 12, 2025

D. Comparative Analysis

To validate the results, a second method is used to compare
them. The RAWEC method is preferred for this purpose. The
crisp values in Table XI are used. The comparative results are
presented in Fig. 9.

1.000

I 0.847

WASPAS

-1.500  -1.000 -0.500 0.000

®EMCR ®mSBS

0.500

1.000 1.500 2.000 2.500

SRF mDRP mSPR

Fig. 9. Comparative analysis for ranking.

Pearson and Spearman correlation coefficients are calculated
to determine the consistency between the results of the two
methods. These coefficients are 0.972 and 1, respectively. High
correlations indicate that the results are valid.

V. DISCUSSION

Applicability, or technological suitability, is one of the key
criteria when determining alternative irrigation methods for the
efficient use of water resources in agriculture. This is because
implementing innovative strategies and leveraging the power of
technology can increase the efficient use of water resources in
agriculture. This can be achieved through the combined use of
artificial intelligence, automated water supply systems, and [oT-
based precision irrigation systems in industrial wastewater
treatment [21]. In other words, promoting modern and improved
water use through irrigation practices and other smart
approaches is crucial for sustainable water use [22]. In this
context, Et-Taibi et al. [23] argued that IoT-based smart
agriculture could be a promising solution. In their study, they
introduce a cloud-based smart irrigation system to connect
numerous small-scale smart farms and centralize the data they
obtain. The system optimizes irrigation water use through
comprehensive big data collection, storage, and analysis. Xing
and Wang [24] summarized recent advances in molecular
breeding, precision agriculture, and innovative water
management techniques aimed at improving crop drought
resilience, soil health, and overall agricultural productivity. This
is because the increasing challenges of climate change and water
scarcity make it imperative to increase agricultural productivity
and sustainability, especially in arid regions.

Environmental impacts have been identified as another
important criterion in determining alternative irrigation methods
for the efficient use of water resources in agriculture. Indeed,
while the use of water resources has a certain impact on the

ecological conditions of a region, it is possible to address three
dimensions of environmental impact: wastewater discharge,
non-point pollution, and carbon emissions [25]. In addition, the
effective application of computerization in the efficient use of
water resources in agriculture ensures the improvement of
environmental impacts and contributes to the environmentally
conscious use of water resources [26]. Kalfas et al. [27]
extensively evaluate the link between land use planning, water
resources, and global climate change in their study. They state
that proper land use planning can guide the establishment of
waste management systems that minimize methane emissions
and that land use planning affects agricultural practices. On the
other hand, Keson et al. [28] aimed to evaluate the performance
of land, water and climate relationship in his study using
geographic information systems-based tools for optimized
planning and management of sustainable production practices.

Drip irrigation [29] is one of the most important alternatives
for determining alternative irrigation methods for the efficient
use of water resources in agriculture. Drip irrigation is one of the
most effective ways to integrate water and fertilizer for
productivity in agriculture. Proper application of drip irrigation
can reduce nutrient loss and emissions while maintaining
nutrient balance in the soil (Yang et al., 2024). In drip irrigation,
water, nutrients, and other essential growth substances are
precisely delivered directly to the plant's root zone through a
hole. This quickly restores plant moisture and nutrient levels,
minimizes water stress, and improves overall quality, growth,
and productivity [30]. In this context, Sanchis-Ibor et al. [31]
focused on the process of switching to drip irrigation in Acequia
Real del Jucar (Valencia, Spain). Their aim is to analyze how
the estimation and distribution of expected water savings vary
across different water planning tools and how they are perceived
by the various actors involved in this process.
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VI. CONCLUSION

The aim of this study is to develop a holistic and
methodologically advanced decision-making model that enables
the identification of the most appropriate alternative irrigation
methods for the efficient use of water resources in agriculture.
To this end, a novel hybrid framework integrating spherical
fuzzy sets, machine learning, MEREC, and WASPAS methods
is proposed. Evaluations obtained from ten domain experts were
transformed into spherical fuzzy numbers to capture hesitation
and uncertainty; expert importance weights were objectively
derived using machine learning; criterion weights were
determined through the MEREC method; and alternative
irrigation methods were ranked using WASPAS.

Beyond its technical outcomes, the primary research
contribution of this study lies in advancing the state of the art in
Al-assisted multi-criteria decision-making for agricultural water
management. Unlike existing studies that predominantly rely on
static expert-based fuzzy weighting and conventional ranking
schemes, the proposed framework introduces a structured
human—AI collaborative mechanism that simultaneously
addresses uncertainty modeling, objective expert differentiation,
and compensatory—noncompensatory alternative evaluation
within a unified architecture. In this sense, the study moves
beyond incremental tool-level efficiency improvements and
offers a conceptually distinct decision-support paradigm that
enhances methodological robustness and interpretability in
complex resource management problems. The empirical
findings indicate that feasibility and technological suitability
constitute the most influential criterion, followed by
environmental impacts, while drip irrigation emerges as the
most suitable alternative for efficient water use. These results
not only corroborate prior empirical insights but also
demonstrate how advanced hybrid Al-fuzzy frameworks can
yield more nuanced and reliable decision outcomes under
uncertainty.

Nevertheless, the study has certain theoretical and technical
limitations. The relatively small number of experts, the focus on
a specific regional or sectoral context, and the consideration of
only seven criteria constrain the generalizability of the findings.
From a technical perspective, the machine learning—based
expert weighting process is sensitive to dataset size and
diversity, which may lead to variability across different samples.
In addition, while spherical fuzzy modeling provides a robust
representation of uncertainty, it entails relatively high
computational complexity. Future research is therefore
encouraged to incorporate larger and more diverse expert panels,
extend the model to different geographic and agricultural
contexts, integrate additional criteria such as socioeconomic and
climatic variables, and combine the proposed framework with
other Al-driven decision-support systems. Such extensions
would further strengthen the generalizability of the model and
consolidate its contribution to both methodological research and
practical decision-making in sustainable agricultural water
management.
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