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Abstract—The aim of this study is to develop an innovative, 

multi-dimensional, and uncertain decision-making model that can 

identify the most appropriate alternative irrigation method for the 

efficient use of water resources in agriculture. In this context, the 

proposed model is based on the integrated use of spherical fuzzy 

sets, machine learning, MEREC, and WASPAS methods. The 

evaluations obtained from ten experts were converted into 

spherical fuzzy numbers, and the experts' importance weights 

were objectively calculated using machine learning. Criteria 

weights were determined using the MEREC method, and 

alternatives were ranked using the WASPAS method. This hybrid 

approach both reduces expert subjectivity and objectively reflects 

the relationships between criteria. According to the findings, 

feasibility/technological suitability (0.152) emerged as the most 

important criterion, followed by environmental impacts (0.144). 

Among the alternatives, drip irrigation (2.226) was identified as 

the most suitable option for efficient use of water resources. This 

result demonstrates that modern, technology-based irrigation 

systems should be a priority in sustainable agricultural policies. 

This study's contribution to the literature is its ability to bring 

objectivity, transparency, and the ability to manage high 

uncertainty to decision-making processes in agricultural water 

management. The model offers both methodological innovation 

and a practical decision-support tool at the application level. 

Keywords—Irrigation activities; water use; decision-making 

model; machine learning; MEREC; WASPAS 

I. INTRODUCTION 

Identifying the most appropriate alternative irrigation 
methods for sustainable water management in agriculture is 
crucial because each region's climate, soil structure, plant 
species, and economic capacity vary. Therefore, the same 
method cannot be expected to yield the most efficient results in 
every situation. Choosing the best irrigation method both 
conserves limited water resources and increases production 
efficiency [1]. Furthermore, determining the right method is 
critical for the efficient use of limited budgets and the rapid 
implementation of implementation strategies. Decision-making 
in this process is influenced by many different factors. Water 
efficiency refers to the extent to which water is delivered to the 
plant root zone without wasting water and is a key indicator of 
sustainable agriculture. Cost determines the economic viability 
of the system's installation, operation, and maintenance. Energy 
consumption is particularly important due to the pumps and 

pressure lines used in modern systems, as energy costs directly 
impact production costs. Applicability and technological 
compatibility indicate the compatibility of the selected method 
with existing infrastructure and technical capacity. Plant yield 
and quality directly reflect the impact of the irrigation method 
on agricultural output and are the most tangible measures of 
success for farmers [2]. Environmental impacts include soil 
salinity, erosion, and changes in groundwater levels that may be 
caused by excessive or inappropriate water use. Ease of 
maintenance and operation is a factor that determines the long-
term sustainability of a method, as complex systems may not be 
managed effectively, especially by producers with limited 
technical knowledge. However, the number of studies in the 
literature that evaluate these criteria holistically is quite limited. 
Most studies focus on a single factor or are limited to a specific 
geographical context. This creates a significant gap in the 
literature, as there is insufficient comparative data to determine 
which irrigation method is most effective under which 
conditions. This gap creates uncertainty in decision-making 
processes and makes it difficult for practitioners to select the 
most appropriate system. Furthermore, the varying weights of 
criteria depending on the situation highlight the need for multi-
criteria analyses. Therefore, this gap in the existing literature 
represents a research problem that needs to be addressed from 
both theoretical and practical perspectives. New studies on this 
topic will significantly contribute to identifying strategies to 
increase water efficiency and support sustainable agricultural 
production. 

This study aims to identify the most effective alternative 
irrigation methods for the efficient use of water resources in 
agriculture. The primary motivation for the study is increasing 
water scarcity, the impacts of climate change, and the need for 
sustainability in agricultural production. The lack of systematic 
multi-criteria comparisons of irrigation methods in the existing 
literature creates a significant research gap. Therefore, this study 
aims to fill this gap at both the theoretical and practical levels. A 
holistic decision-making model for selecting alternative 
irrigation methods was developed. The model is based on a 
hybrid approach that integrates expert opinions with fuzzy logic. 
In this context, seven criteria were identified for use in the 
evaluation following a comprehensive literature review. These 
criteria are water efficiency, cost, energy consumption, 
applicability, plant yield and quality, environmental impacts, 
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and ease of maintenance and operation. The alternatives 
comprise sprinkler irrigation, drip irrigation, surface irrigation, 
subsurface irrigation, and microsprinkler irrigation. Expert 
assessments were collected from ten different experts and 
converted into spherical fuzzy numbers. Expert importance 
weights were calculated using a machine learning-based 
method, thus reducing the influence of subjective evaluations. 
The importance levels of the criteria were determined using the 
MEREC method, allowing the contribution of each criterion to 
the model to be objectively measured. The resulting weights 
were used to rank the performance of the alternatives using the 
WASPAS method. This integrated approach provides a decision 
support framework that takes both uncertainties into account and 
is computationally efficient. The study seeks to answer the 
following research questions: 1) Which alternative irrigation 
method is the most effective for the sustainable management of 
water resources in agriculture? 2) What are the most decisive 
factors in the decision-making process among the seven criteria 
determined? 3) How does the diversity of expert opinions affect 
the ranking of alternatives? 4) To what extent is the spherical 
fuzzy-based approach effective in reducing uncertainty 
compared to traditional fuzzy methods? 5) What advantages 
does the integrated use of the MEREC and WASPAS methods 
provide in multi-criteria decision-making processes? By 
addressing these research questions, the study proposes an 
innovative decision-making model that will increase water 
efficiency in the agricultural sector and provide a strategic 
reference framework for policy developers and practitioners. 

This study addresses a clear methodological and practical 
gap in the literature by proposing a hybrid decision-making 
framework that goes beyond existing fuzzy-based MCDM 
applications in agricultural water management. Unlike prior 
studies that typically rely on static expert-driven fuzzy 
weighting and conventional ranking techniques, the proposed 
model uniquely combines spherical fuzzy sets with machine 
learning–assisted data structuring, the objective weighting 
capability of the MEREC method, and the compensatory–
noncompensatory evaluation mechanism of WASPAS within a 
single integrated framework. This specific configuration is 
fundamentally novel in that spherical fuzzy sets are employed 
not merely as a linguistic extension, but as a means to capture 
hesitation and uncertainty in irrigation-related expert judgments, 
while machine learning is used to enhance data consistency and 
reduce subjectivity prior to weighting and ranking. To the best 
of our knowledge, no existing study in the irrigation method 
selection literature has systematically integrated these four 
components to jointly address uncertainty modeling, objective 
criterion weighting, and robust alternative ranking. 
Consequently, the proposed approach offers a structurally 
distinct and methodologically advanced decision-support tool 
for the efficient use of water resources in agriculture. 

The proposed model developed in this study has several 
advantages over previously presented decision-making models 
in the literature: 1) First, the model utilizes machine learning 
techniques to calculate the importance weights of experts. This 
approach allows for objective weighting based not only on the 
opinions of experts but also on their demographic 
characteristics, areas of expertise, experience levels, and 
academic backgrounds. The vast majority of existing models in 

the literature treat experts as equal or base weights on subjective 
assessments. This increases the risk of subjectivity and 
inconsistency in the decision-making process. However, the 
machine learning-based approach used in this study 
systematically evaluates differences among experts, providing 
more objective, reliable, and data-driven weightings. This 
increases the accuracy and confidence levels of the model and 
enhances the scientific validity of decision-making results. 
2) The second advantage of the model is the use of spherical 
fuzzy sets in the decision-making process. These new-
generation fuzzy sets have a higher uncertainty representation 
capacity compared to classical, intuitionistic, and Pythagorean 
fuzzy sets. By defining membership, non-membership, and 
degrees of uncertainty independently, the spherical fuzzy 
structure models the uncertainties and knowledge gaps in expert 
opinions in a much more realistic and flexible manner. This 
allows for more effective management of uncertainty in the 
decision-making environment and increased consistency of 
results. Furthermore, the spherical fuzzy approach offers 
advantages over other sets in terms of both ease of calculation 
and interpretability. This contributes to the model's robustness 
both theoretically and practically. 3) The MEREC (Method 
Based on the Removal Effects of Criteria) technique used in the 
study is another significant advantage of the model. Entropy, 
CRITIC, or standard statistical methods are frequently used in 
the literature for criterion weighting; however, these methods 
generally fail to adequately reflect the mutual influences 
between criteria. The MEREC method analyzes the change in 
overall performance when each criterion is removed from the 
system, revealing the true impact of each criterion. This feature 
allows the model to better capture inter-criterion sensitivity and 
ensure more objective, reliable, and data-driven decision-
making outcomes. The MEREC method offers higher accuracy 
and significance than other techniques, particularly in areas such 
as water management, where multidimensional environmental 
and technical factors are evaluated simultaneously. Considering 
all these advantages together, the proposed model offers a 
holistic approach that is both methodologically innovative and 
provides high accuracy, flexibility, and consistency in decision-
making processes. 

The remainder of the study is as follows: Section II includes 
the research gap in the literature. Section III focuses on the 
proposed model. The results are denoted in Section IV. 
Section V makes a comparative discussion. Section VI 
highlights the main conclusion. 

II. LITERATURE REVIEW 

Applicability, or technological suitability, is one of the key 
criteria when determining alternative irrigation methods for the 
efficient use of water resources in agriculture. Given the 
challenges of climate change, the use of technologies that can 
increase productivity and efficiency in agriculture, including 
precision agriculture, drones, and climate information systems, 
is crucial. In today's world, the development of systems such as 
remote sensing with artificial intelligence-based decision-
making tools also promotes the efficient use of water resources 
in agriculture. These technologies include software applications, 
water management applications, nutrient management, 
temperature measurement, and soil health analysis tools. These 
technologies can also contribute to climate change-resilient crop 
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development, irrigation water management, fostering local 
knowledge, and increasing agricultural yields, ensuring food 
security. Vedovello et al. [3] provided an overview of hydrogel 
technologies as adaptable solutions to address challenges such 
as water scarcity and soil degradation in agriculture. Indeed, 
hydrogels offer agricultural innovations that address challenges 
associated with traditional agricultural practices and 
technologies while also providing some answers for the future 
of these technologies. Singh and Singh [4] examined the impact 
of UAV use in Indian agriculture on precision agriculture, crop 
monitoring, and pesticide application. They assess technological 
advancements, infrastructure, regulatory frameworks, farmer 
perceptions, and financial accessibility of UAV technology. 

Environmental impacts are another effective criterion in 
determining alternative irrigation methods for the efficient use 
of water resources in agriculture. Ultimately, water efficiency in 
agriculture is a critical element of sustainable water 
management, particularly in rural areas, and is vital for ensuring 
environmental sustainability in rural areas where water 
resources are limited [5]. While traditional surface irrigation has 
been reported to cause environmental consequences such as 
water loss, advanced alternatives such as drip and sprinkler 
systems have been observed to improve irrigation infrastructure 
and promote climate-smart agricultural practices [6]. Saini et al. 
[7] investigated the behaviors and perspectives of rural and 
regional urban water consumers regarding water consumption. 
They develop a conceptual model of the factors affecting the 
amount of water consumed, including the barriers that hinder 
water conservation. Yasmeen et al. [8] examined the synergy of 
water use efficiency between 2006 and 2020 between the 
aggregation of water resources at the provincial and regional 
levels in China and the integration of innovative conservation 
technologies. 

Cost is another important criterion when determining 
alternative irrigation methods for the efficient use of water 
resources in agriculture. The initial investment cost of irrigation 
systems designed for efficient water use can be high. This is 
because sprinkler and drip irrigation systems, while achieving 
efficiency by using less water, require operator control, 
operation, and monitoring [9]. Furthermore, while external 
factors such as regulations, national water policies, financial 
incentives, government subsidies, and technology provide 
solutions for efficient water supply in agriculture, they can also 
be considered among the factors affecting costs [10]. Chaudhary 
et al. [11] summarized the fundamental aspects of sprinkler and 
precision irrigation, their development and prospects, 
particularly in Asian countries. This approach leverages 
significant advances in sprinkler systems for precision 

applications to increase net crop production, conserve irrigation 
water, maximize irrigation uniformity, and improve fertilizer 
management with minimal leakage loss. On the other hand, 
Bhavsar et al. [12] comprehensively examined numerous IoT-
enabled smart micro-irrigation systems, including smart 
sprinkler systems and smart drip irrigation, to reduce water and 
energy waste. The aim is to find the most appropriate irrigation 
strategy. 

Energy consumption is another important criterion in 
determining alternative irrigation methods for the efficient use 
of water resources in agriculture. The agricultural sector 
consumes large amounts of water and energy through irrigation, 
collection, pumping, water treatment, land preparation, fertilizer 
production, agricultural machinery, processing, and storage 
[13]. In other words, energy is used both directly and indirectly 
for the efficient use of water resources in agriculture, while the 
energy provided to modern and sustainable agricultural 
production systems and processing is one of the main factors in 
the growth of agricultural production [14]. Yang et al. [15] 
established a framework for examining water and energy 
consumption at every stage of the crop growth process, 
including growth, planting, germination, ripening, and 
harvesting. Pomoni et al. [16] aimed to reveal the 
environmental, water, and energy impacts of traditional 
agriculture and a new soilless cultivation technology, namely 
hydroponic agriculture. 

The results of the literature review indicate that certain 
criteria are important in determining alternative irrigation 
methods for the efficient use of water resources in agriculture. 
These criteria include applicability (technological suitability), 
environmental impacts, cost, and energy consumption. Since it 
is not possible to improve all criteria simultaneously, the study 
aims to identify the most important criterion. This aims to 
address a gap in the literature on this topic. This study 
accomplishes this by analyzing a new decision-making model. 

III. METHODOLOGY 

This section relates to the formulations of spherical fuzzy 
sets (SFSs), dimensionality reduction, MEREC, and WASPAS. 
Using these formulations, the methodology of the manuscript is 
constructed. The methodology includes SFSs to minimize 
uncertainty, while dimensionality reduction is used to determine 
the level of experts. Additionally, after calculating the criterion 
priority value from MEREC, comparative results of WASPAS 
and RAWEC are obtained in ranking the alternatives. The 
diagram of the methodology is presented in Fig. 1. 
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Fig. 1. Diagram of the methodology. 

A. Dimensionality Reduction 

Creating a decision matrix by calculating the unweighted 
average of expert evaluations has been criticized. Due to this 
criticism, different approaches have been developed in the 
literature. While dimensionality reduction is primarily used to 
reduce the number of variables in machine learning, it is 
preferred in MCDM due to its objectivity in calculating the 
experts' ratings. This approach aims to obtain rating scores for 
experts using information provided by the experts on the 
websites of their affiliated institutions. The assumption here is 
that if an institution's knowledge is high, the institution is of high 
quality; if the institution is good, the expert working there is also 

qualified. Under this assumption, the calculation steps can be 
summarized as follows [17]. 

The websites of k institutions, where k experts work, are 
examined. The f numerical information about the institutions is 
collected. This information includes the number of business 
partners the institutions have collaborated with and the years 
they have been in operation. Based on these variables, an 
institution is considered high-quality if it has been operating for 
a long time. Similarly, the more business partners it has, the 
better the institution. In other words, the matrix (𝐵) in Eq. (1) is 
created using the data from the relevant variables indicating the 
institution's qualification. 
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𝐵 = [

𝑏11 ⋯ 𝑏1𝑓
⋮ ⋱ ⋮
𝑏𝑘1 ⋯ 𝑏𝑘𝑓

]   (1) 

When the value range and unit sizes of the variables differ 
from each other, standardized values (𝑟) are calculated with the 

help of Eq. (2) to Eq. (4) using arithmetic mean (𝑏̅) and centred 

values (𝑐). 

𝑏̅𝑗 =
∑ 𝑏𝑖𝑗
𝑘
𝑖=1

𝑘
   (2) 

𝑐𝑖𝑗 = 𝑏𝑖𝑗 − 𝑏̅𝑗   (3) 

𝑟𝑖𝑗 =
𝑐𝑖𝑗

√∑ 𝑐𝑖𝑗
2𝑘

𝑖=1

   (4) 

Afterwards, covariance coefficient values (𝑐𝑜𝑣)  between 
standardized variables are established via Eq. (5). Thus, the 
covariance matrix (𝐴) formed in Eq. (6) is obtained. 

𝑐𝑜𝑣𝑗𝑡 =
1

𝑘
(∑ (𝑟𝑖𝑗 − 𝑟̅𝑗)(𝑟𝑖𝑡 − 𝑟̅𝑡)

𝑘
𝑖=1 ) (5) 

𝐴 = [

𝑐𝑜𝑣11 ⋯ 𝑐𝑜𝑣1𝑓
⋮ ⋱ ⋮

𝑐𝑜𝑣𝑓1 ⋯ 𝑐𝑜𝑣𝑓𝑓
]  (6) 

where, 𝑟̅ is the average value of the standardized variable 
and is estimated using Eq. (2). Next, f eigenvalues of the 
covariance matrix (𝜉)  are computed by Eq. (7). Then, the 
maximum eigenvalue (𝜉∗) is selected with Eq. (8) for saving the 
maximum variance. 

det(𝐴 − 𝜉𝑖Ι) = 0   (7) 

𝜉∗ = max 𝜉𝑖   (8) 

where, Ι is the identity matrix with dimensions fxf. Later, the 
eigenvector (𝑌) is constructed with the help of Eq. (9): 

(𝐴 − 𝜉∗Ι)𝑌 = 0   (9) 

Finally, a one-dimensional matrix (𝐻)  is created via 
Eq. (10), then the rating scores of experts (𝑟𝑠) are defined as 
Eq. (11): 

𝐻 = 𝐵𝑌     (10) 

𝑟𝑠𝑖 =
ℎ𝑖

∑ ℎ𝑖
𝑘
𝑖=1

   (11) 

where, h is the items of one-dimensional matrix. The 
multiplication operation in Eq. (10) is matrix multiplication. 

B.  SFSs 

Fuzzy sets define different degrees to measure uncertainty. 
From the set family formed by the degrees of membership (𝛼), 
non-membership (𝛽), and hesitancy (𝛾), SFSs are defined by 
the sum of the squares of these degrees. In other words, an SFS 

(𝐹̃) of the universe of discourse (𝒮) is described as in Eq. (12) 

[18]. 

𝐹̃ = {𝑥, (𝛼𝐹̃(𝑥), 𝛽𝐹̃(𝑥), 𝛾𝐹̃(𝑥))|𝑥 ∈ 𝒮} (12) 

where, these degrees are between zero and one. These 
degrees are the satisfied conditions in Eq. (13): 

0 ≤ 𝛼𝐹̃
2(𝑥) + 𝛽𝐹̃

2(𝑥) + 𝛾𝐹̃
2(𝑥) ≤ 1; ∀𝑥 ∈ 𝒮 (13) 

The refusal degree is computed with Eq. (14): 

𝜍𝐹̃(𝑥) = √1 − 𝛼𝐹̃
2(𝑥) − 𝛽𝐹̃

2(𝑥) − 𝛾𝐹̃
2(𝑥)  (14) 

Consider that 𝐹̃ and 𝐺̃ are two SFNs. Then, basic operators 
are identified with Eq. (15) to Eq. (18): 

𝐹̃ + 𝐺̃ =

{
 

 √𝛼𝐹̃
2 + 𝛼𝐺̃

2 − 𝛼𝐹̃
2𝛼𝐺̃

2 , 𝛽𝐹̃𝛽𝐺̃ ,

√(1 − 𝛼𝐺̃
2)𝛾𝐹̃

2 + (1 − 𝛼𝐹̃
2)𝛾𝐺̃

2 − 𝛾𝐹̃
2𝛾𝐺̃

2

}
 

 

(15) 

𝐹̃ × 𝐺̃ =

{
 

 𝛼𝐹̃𝛼𝐺̃ , √𝛽𝐹̃
2 + 𝛽𝐺̃

2 − 𝛽𝐹̃
2𝛽𝐺̃

2,

√(1 − 𝛽𝐺̃
2)𝛾𝐹̃

2 + (1 − 𝛽𝐹̃
2)𝛾𝐺̃

2 − 𝛾𝐹̃
2𝛾𝐺̃

2

}
 

 

(16) 

𝜆𝐹̃ =

{
 

 √1 − (1 − 𝛼𝐹̃
2)
𝜆
, 𝛽𝐹̃

𝜆,

√(1 − 𝛼𝐹̃
2)
𝜆
− (1 − 𝛼𝐹̃

2 − 𝛾𝐹̃
2)
𝜆

}
 

 

 (17) 

𝐹̃𝜆 =

{
 

 𝛼𝐹̃
𝜆, √1 − (1 − 𝛽𝐹̃

2)
𝜆
,

√(1 − 𝛽𝐹̃
2)
𝜆
− (1 − 𝛽𝐹̃

2 − 𝛾𝐹̃
2)
𝜆

}
 

 

 (18) 

Assume that 𝐹̃𝑖 be the sequence of SFNs and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. 

Then, weighted arithmetic mean (𝒜̃)  is calculated using 
Eq. (19): 

𝒜̃𝐹̃𝑖
=

{
 
 

 
 √1 − ∏ (1 − 𝛼𝐹̃𝑖

2 )
𝑤𝑖𝑛

𝑖=1 ,

∏ 𝛽
𝐹̃𝑖

𝑤𝑖𝑛
𝑖=1 ,

√∏ (1 − 𝛼𝐹̃𝑖
2 )

𝑤𝑖𝑛
𝑖=1 −∏ (1 − 𝛼𝐹̃𝑖

2 − 𝛾𝐹̃𝑖
2 )

𝑤𝑖𝑛
𝑖=1 }

 
 

 
 

(19) 

Similarly, weighted geometric mean (𝒢) is computed with 

Eq. (20): 

𝒢𝐹̃𝑖 =

{
 
 

 
 

∏ 𝛼
𝐹̃𝑖

𝑤𝑖𝑛
𝑖=1 ,

√1 − ∏ (1 − 𝛽𝐹̃𝑖
2 )

𝑤𝑖𝑛
𝑖=1 ,

√∏ (1 − 𝛽𝐹̃𝑖
2 )

𝑤𝑖𝑛
𝑖=1 −∏ (1 − 𝛽𝐹̃𝑖

2 − 𝛾𝐹̃𝑖
2 )

𝑤𝑖𝑛
𝑖=1 }

 
 

 
 

(20) 

Score (𝑆𝐹) and accuracy (𝐴𝐹) functions are identified by 
Eq. (21) and Eq. (22), respectively. 

𝑆𝐹(𝐹̃) = (2𝛼𝐹̃ −
𝛾𝐹̃

2
)
2

− (𝛽𝐹̃ −
𝛾𝐹̃

2
)
2

 (21) 

𝐴𝐹(𝐹̃) = 𝛼𝐹̃
2 + 𝛽𝐹̃

2 + 𝛾𝐹̃
2  (22) 

C. SF-MEREC-Based SF-WASPAS 

MEREC-based WASPAS is a hybrid approach that ranks 
alternatives by combining two models after determining 
objective criteria priorities. This hybrid approach aims to 
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minimize uncertainty by integrating SFSs. This manuscript 
analysis process is described below [19]. 

For the decision model in which n criteria are considered to 
rank m alternatives, evaluations from k experts are collected with 
a linguistic scale. These linguistic evaluations are converted into 
SFNs, and their weighted averages are calculated by Eq. (23): 

𝑑̃𝑖𝑗 = {𝛼𝑑̃𝑖𝑗 , 𝛽𝑑̃𝑖𝑗 , 𝛾𝑑̃𝑖𝑗} = 𝒜̃𝐸̃𝑡𝑖𝑗
  (23) 

where, 𝐸̃𝑡𝑖𝑗 refers to SFN of the linguistic evaluation of jth 

criterion of ith alternative for tth expert. 𝒜̃  is the weighted 
arithmetic mean defined in Equation (19) using the rating scores 
of experts as weights. Next, normalized decision values (𝔶̃) are 
computed with Eq. (24) and Eq. (25): 

𝔶̃𝑖𝑗 = {𝛼𝑑̃𝑖𝑗 , 𝛽𝑑̃𝑖𝑗 , 𝛾𝑑̃𝑖𝑗} ; 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(24) 

𝔶̃𝑖𝑗 = {𝛾𝑑̃𝑖𝑗 , 𝛽𝑑̃𝑖𝑗 , 𝛼𝑑̃𝑖𝑗} ; 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 (25) 

Afterwards, crisped values (𝔥) are calculated by Eq. (26): 

𝔥𝑖𝑗 =
1

2
(

1 + (𝛼𝔶̃𝑖𝑗)
2

−(𝛽𝔶̃𝑖𝑗)
2

− (𝛾𝔶̃𝑖𝑗)
2

− ln (1 + (𝜍𝔶̃𝑖𝑗)
2

)
)(26) 

The overall performance of the alternative (𝐺) is obtained 
with the help of Eq. (27): 

𝐺𝑖 = ln (1 + (
1

𝑛
∑ |𝔥𝑖𝑗|𝑗 ))   (27) 

The performance of the alternative by removing every 
criterion (𝐺′) is established using Eq. (28): 

𝐺𝑖𝑗
′ = ln (1 + (

1

𝑛
∑ |𝔥𝑖𝑓|𝑓 𝑓≠𝑗 ))  (28) 

Next, the summation of absolute deviations (𝐾) is estimated 
by Eq. (29): 

𝐾𝑗 = ∑ |𝐺𝑖𝑗
′ − 𝐺𝑖|𝑖    (29) 

The last step of MEREC is about the computation of priority 
values (𝑝𝑣) of criteria with Eq. (30): 

𝑝𝑣𝑗 =
𝐾𝑗

∑ 𝐾𝑗
𝑛
𝑗=1

   (30) 

Afterwards, the weighted sum model (𝑄̃(1)) is applied using 

Eq. (31). 

𝑄̃𝑖
(1) = ∑ 𝑝𝑣𝑗 𝔶̃𝑖𝑗

𝑛
𝑗=1   (31) 

Similarly, the weighted product model (𝑄̃(2)) is performed 

via Eq. (32): 

𝑄̃𝑖
(2) = ∏ (𝔶̃𝑖𝑗)

𝑝𝑣𝑗𝑛
𝑗=1   (32) 

Next, the 𝑄̃ values of alternatives are calculated by Eq. (33) 
[20]. 

𝑄̃𝑖 = 𝜑𝑄̃𝑖
(1) + (1 − 𝜑)𝑄̃𝑖

(2)
  (33) 

Finally, score function values of 𝑄̃ are estimated with the 
help of Eq. (34) for ranking of alternatives. 

𝑄𝑖 = 𝑆𝐹(𝑄̃𝑖)   (34) 

IV. ANALYSIS 

This section relates to the results of the methodology in 
Fig. 1. 

A. Obtaining the Rating Scores of Experts 

Experts with at least ten years of work experience are 
selected. Data from the website is analyzed using the experts' 
institutional information. The institutions' business partners, 
period of activity, and number of countries they operate in are 
obtained. This information is used to create the matrix in Eq. (1). 
The matrix is shown in Table I. 

TABLE I.  INFORMATION ABOUT THE INSTITUTIONAL BUSINESS 

PARTNERS 

 Business Partners Activity Period Operation Country 

Expert.1 16 16 6 

Expert.2 21 16 5 

Expert.3 23 21 5 

Expert.4 32 26 4 

Expert.5 33 33 6 

Expert.6 24 22 4 

Expert.7 25 18 3 

Expert.8 35 35 6 

Expert.9 29 15 4 

Expert.10 34 24 6 

According to the variables in Table I, the average business 
partner is 27.2 with a standard deviation of 6.03. Similarly, the 
minimum activity period is 15. The range of operation country 
is between 3 and 6. The descriptive statistics are shared in 
Table II. 

TABLE II.  DESCRIPTIVE STATISTICS 

 Business Partners Activity Period Operation Country 

Average 27.2 22.6 4.9 

Deviation 6.030 6.666 1.044 

Max 35 35 6 

Min 16 15 3 

Standardized values are calculated with the help of Eq. (2) 
to Eq. (4) using arithmetic mean and centered values in Table II. 
The standardized values are given in Table III. 
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TABLE III.  STANDARDIZED VALUES 

 Business Partners Activity Period Operation Country 

Expert.1 -.587 -.313 .333 

Expert.2 -.325 -.313 .030 

Expert.3 -.220 -.076 .030 

Expert.4 .252 .161 -.273 

Expert.5 .304 .493 .333 

Expert.6 -.168 -.028 -.273 

Expert.7 -.115 -.218 -.575 

Expert.8 .409 .588 .333 

Expert.9 .094 -.361 -.273 

Expert.10 .357 .066 .333 

Covariance coefficient values between standardized 
variables in Table III are established via Eq. (5). Thus, the 
covariance matrix formed in Eq. (6) is summarized in Table IV. 

TABLE IV.  COVARIANCE MATRIX 

 Business 

Partners 

Activity 

Period 

Operation 

Country 

Business 
Partners 

.100 .075 .016 

Activity Period .075 .100 .045 

Operation 
Country 

.016 .045 .100 

Next, the 3 eigenvalues of the covariance matrix are 
computed by Eq. (7). These eigenvalues are illustrated in 
Table V with explained variances. Then, the maximum 
eigenvalue is selected with Eq. (8) for saving the maximum 
variance. The maximum eigenvalue is .19569. 

TABLE V.  EIGENVALUES WITH EXPLAINED VARIANCES 

 Value Explained Variance 

Eigenvalue.1 .19569 65.23% 

Eigenvalue.2 .018526 6.18% 

Eigenvalue.3 .085784 28.59% 

The first eigenvalue contains 65.23% of the variance, which 
is considered a relatively high rate. Later, eigenvector is 
constructed with the help of Eq. (9). The results are displayed in 
Table VI. 

TABLE VI.  ITEMS OF EIGENVECTOR 

 Vector 

1 .603644 

2 .675852 

3 .422891 

A one-dimensional matrix is created via Eq. (10). This 
matrix is exhibited in Table VII. 

TABLE VII.  ONE-DIMENSIONAL MATRIX 

 First-dimension 

Expert.1 23.009 

Expert.2 25.605 

Expert.3 3.191 

Expert.4 38.580 

Expert.5 44.761 

Expert.6 31.048 

Expert.7 28.525 

Expert.8 47.320 

Expert.9 29.335 

Expert.10 39.282 

Finally, the items in Table VII are normalized. Thus, the 
rating scores of experts are defined as Eq. (11). The rating scores 
of experts are presented in Fig. 2. 

 

Fig. 2. Rating scores of experts. 
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As can be seen from rating scores in Fig. 2, the most 
important evaluation is Expert.8 with .140. This expert’s 
institution has the maximum business partners, operation county 

and activity period. Moreover, as a second method to compare 
the results, the z-NIDM method is applied. The comparative 
results are visualized in Fig. 3. 

 

Fig. 3. Comparative results for experts. 

Pearson and Spearman correlation coefficients between two 
approaches are obtained for results. Pearson coefficient is .939 
and Spearman coefficient is .944. These coefficients are very 
high. In other words, the results are consistent and reliable. 

B. Weighting of Criteria and Ranking of Alternatives 

Alternative irrigation methods for efficient use of water 
resources in agriculture are sprinkler irrigation (SPR), drip 
irrigation (DRP), surface irrigation (channel or flood) (SRF), 
subsurface irrigation (SBS), and micro sprinkler irrigation 
(MCR). The criteria effective in the selection of these 
alternatives are presented with their short codes in Table VIII. 

Linguistic evaluations from 10 experts are collected with a 
linguistic scale shared in Fig. 4. 

TABLE VIII.  CRITERIA LIST WITH SHORT CODES 

Definition Short Code 

Water Efficiency (Savings) WEF 

Cost CST 

Energy Consumption ECN 

Applicability/Technological Compatibility APT 

Plant Yield and Quality PTQ 

Environmental Impacts EVI 

Ease of Maintenance and Operation EMO 

Using the initials of the linguistic scale in Fig. 4, the experts' 
evaluations are summarized in Table IX. For example, VHI is of 
very high importance. 
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Fig. 4. Linguistic scales. 

TABLE IX.  LINGUISTIC EVALUATIONS 

Expert.1 WEF CST ECN APT PTQ EVI EMO 

SPR VLI ALI ALI VLI VLI SLI ALI 

DRP AI VHI HI AI AI AI SMI 

SRF SLI SLI SMI EI SMI SLI SLI 

SBS SMI SMI SMI SMI EI EI EI 

MCR LI LI SLI LI VLI LI VLI 

Expert.2 WEF CST ECN APT PTQ EVI EMO 

SPR LI VLI ALI LI ALI SLI LI 

DRP VHI AI VHI AI AI VHI VHI 

SRF EI HI SMI HI EI HI HI 

SBS EI SMI EI EI EI EI EI 

MCR SLI VLI VLI VLI SLI LI SLI 

Expert.3 WEF CST ECN APT PTQ EVI EMO 

SPR VLI VLI VLI VLI SLI SLI ALI 

DRP AI AI AI AI HI VHI AI 

SRF SMI EI SMI SMI SLI HI HI 

SBS SMI EI EI SMI SMI EI SMI 

MCR LI LI VLI LI VLI SLI VLI 

Expert.4 WEF CST ECN APT PTQ EVI EMO 

SPR LI LI ALI ALI VLI SLI VLI 
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DRP SMI HI AI HI AI VHI AI 

SRF HI EI HI HI EI SMI SMI 

SBS SMI EI SMI EI SMI EI SMI 

MCR SLI SLI SLI LI SLI VLI SLI 

Expert.5 WEF CST ECN APT PTQ EVI EMO 

SPR ALI SLI VLI SLI SLI ALI VLI 

DRP AI AI SMI SMI SMI SMI VHI 

SRF EI SMI SLI SMI SMI HI SMI 

SBS SMI EI EI SMI SMI EI EI 

MCR VLI LI LI VLI VLI SLI VLI 

Expert.6 WEF CST ECN APT PTQ EVI EMO 

SPR LI SLI ALI ALI ALI ALI SLI 

DRP SMI HI HI AI HI VHI HI 

SRF SMI HI EI SLI SMI EI SLI 

SBS SMI SMI SMI SMI SMI EI EI 

MCR SLI VLI VLI SLI VLI VLI VLI 

Expert.7 WEF CST ECN APT PTQ EVI EMO 

SPR ALI ALI VLI VLI LI SLI ALI 

DRP SMI HI HI HI VHI AI VHI 

SRF EI SLI SMI HI HI SMI EI 

SBS EI EI SMI SMI SMI EI SMI 

MCR SLI LI LI SLI SLI VLI VLI 

Expert.8 WEF CST ECN APT PTQ EVI EMO 

SPR ALI ALI SLI LI ALI ALI ALI 

DRP HI SMI AI SMI VHI SMI SMI 

SRF SMI SMI EI HI SMI EI EI 

SBS SMI EI SMI SMI EI EI EI 

MCR VLI LI LI SLI SLI SLI VLI 

Expert.9 WEF CST ECN APT PTQ EVI EMO 

SPR VLI SLI ALI VLI ALI SLI ALI 

DRP SMI SMI VHI SMI VHI SMI AI 

SRF SMI SMI HI EI HI SMI HI 

SBS EI SMI SMI EI EI SMI SMI 

MCR VLI SLI VLI SLI LI SLI VLI 

Expert.10 WEF CST ECN APT PTQ EVI EMO 

SPR SLI ALI VLI SLI LI ALI SLI 

DRP HI VHI HI VHI HI VHI AI 

SRF SMI SLI SLI HI SMI SMI HI 

SBS SMI SMI SMI SMI SMI SMI EI 

MCR LI LI SLI SLI VLI LI LI 
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These linguistic evaluations in Table IX are converted into 
SFNs according to Fig. 4. Then, weighted averages are 
calculated by Eq. (23) using rating scores of experts in Fig. 2 as 

weights. Thus, the decision matrix that accepts the weighted 
average values as elements is obtained. This matrix is displayed 
in Table X. 

TABLE X.  DECISION MATRIX 

 WEF CST ECN APT PTQ EVI EMO 

SPR (.271,.777,.222) (.316,.756,.248) (.23,.809,.203) (.301,.741,.261) (.273,.765,.253) (.342,.729,.285) (.254,.788,.232) 

DRP (.781,.236,.243) (.8,.214,.217) (.815,.2,.201) (.794,.222,.23) (.808,.207,.205) (.784,.231,.232) (.833,.181,.192) 

SRF (.601,.425,.399) (.585,.445,.385) (.593,.44,.383) (.652,.369,.347) (.616,.412,.381) (.627,.398,.374) (.626,.404,.365) 

SBS (.598,.423,.409) (.573,.453,.437) (.597,.427,.411) (.595,.426,.412) (.587,.435,.422) (.55,.478,.46) (.567,.46,.443) 

MCR (.337,.694,.301) (.35,.694,.286) (.33,.7,.293) (.378,.664,.322) (.341,.702,.291) (.366,.679,.309) (.291,.746,.246) 

Normalized decision values are computed with Eq. (24) and 
Eq. (25). All criteria are beneficial. For this reason, Eq. (24) is 
used. In other words, normalized decision values and the 
decision matrix’s elements are the same. Next, crisped values 
are calculated by Equation (26). The crisped values are shown 
in Table XI. 

The overall performance of the alternative is obtained with 
the help of Eq. (27). The overall performance values are 
visualized in Fig. 5. 

TABLE XI.  CRISPED VALUES 

 WEF CST ECN APT PTQ EVI EMO 

SPR .089 .115 .066 .109 .090 .133 .079 

DRP .626 .655 .678 .645 .667 .631 .706 

SRF .380 .363 .372 .446 .399 .413 .412 

SBS .376 .344 .374 .373 .362 .317 .337 

MCR .134 .143 .130 .163 .136 .154 .103 

 

Fig. 5. Overall performance values. 

The performance of the alternative by removing every 
criterion is established using Eq. (28). The results are illustrated 
in Table XII. 

Next, the summation of absolute deviations is estimated by 
Eq. (29). The summation values are presented in Fig. 6. 

The last step of MEREC is about the computation of priority 
values of criteria with Eq. (30). The results are shown in Fig. 7. 

TABLE XII.  G’ VALUES 

 WEF CST ECN APT PTQ EVI EMO 

SPR .081 .078 .084 .079 .081 .075 .083 

DRP .450 .448 .446 .449 .447 .450 .443 

SRF .295 .297 .296 .288 .293 .292 .292 

SBS .263 .267 .263 .264 .265 .270 .267 

MCR .112 .111 .112 .108 .112 .109 .116 
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Fig. 6. Summation of absolute deviations. 

 

Fig. 7. Priority values of criteria. 

When Fig. 7 is examined, the most important criterion 
effective in the selection of these alternative irrigation methods 
for efficient use of water resources in agriculture is 
applicability/technological compatibility with .152. The second 

important criterion is environmental impacts with .144. 
Afterwards, weighted sum model is applied using Eq. (31). The 
weighted sum model result is described in Table XIII. 
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TABLE XIII.  WEIGHTED SUM MODEL 

 𝑸̃(𝟏) 

SPR (.287,.766,.246) 

DRP (.803,.212,.217) 

SRF (.616,.412,.376) 

SBS (.582,.443,.428) 

MCR (.344,.696,.294) 

Similarly, weighted product model is performed via 
Eq. (32). The weighted product model result is illustrated in 
Table XIV. 

TABLE XIV.  WEIGHTED PRODUCT MODEL 

 𝑸̃(𝟐) 
SPR (.282,.768,.244) 

DRP (.802,.214,.218) 

SRF (.614,.413,.377) 

SBS (.581,.444,.429) 

MCR (.341,.698,.293) 

Next, the Q  ̃values of alternatives are calculated by Eq. (33). 
The results are summarized in Table XV with φ of .5. 

TABLE XV.  𝑸̃ VALUES (𝝋 =. 𝟓) 

 𝝋𝑸̃(𝟏) (𝟏 − 𝝋)𝑸̃(𝟐) 𝑸̃ 

SPR (.205,.875,.179) (.202,.876,.177) (.285,.767,.245) 

DRP (.635,.461,.202) (.634,.462,.203) (.802,.213,.218) 

SRF (.46,.642,.309) (.459,.643,.31) (.615,.413,.377) 

SBS (.432,.665,.349) (.431,.666,.35) (.581,.443,.428) 

MCR (.247,.834,.218) (.245,.835,.216) (.342,.697,.294) 

Finally, score function values of Q  ̃ are estimated with the 
help of Eq. (34) for the ranking of alternatives. The ranking 
values of alternative irrigation methods for efficient use of water 
resources are visualized in Fig. 8. 

 

Fig. 8. Defuzzified Q values. 

As can be seen, defuzzified Q values in Fig. 8, the most 
suitable alternative irrigation method for efficient use of water 
resources is drip irrigation with 2.226. 

C. Sensitivity Analysis 

Calculations are performed with different φ values and the 
results are compared. This tests the sensitivity of the results. The 
ranking values based on φ values are summarized in Table XVI. 

TABLE XVI.  RESULTS BY 𝝋 

 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

SPR -.221 -.220 -.219 -.218 -.217 -.216 -.214 -.213 -.212 -.211 -.210 

DRP 2.222 2.223 2.224 2.225 2.225 2.226 2.227 2.228 2.229 2.229 2.230 

SRF 1.032 1.032 1.033 1.033 1.034 1.035 1.035 1.036 1.037 1.037 1.038 

SBS .845 .845 .845 .846 .846 .847 .847 .847 .848 .848 .849 

MCR -.016 -.016 -.015 -.014 -.014 -.013 -.012 -.012 -.011 -.010 -.010 
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As can be understood from ranking scores of alternatives in 
Table XVI, the ranks of alternatives are the same. In other 
words, the results are reliable and consistent. 

D. Comparative Analysis 

To validate the results, a second method is used to compare 
them. The RAWEC method is preferred for this purpose. The 
crisp values in Table XI are used. The comparative results are 
presented in Fig. 9. 

 

Fig. 9. Comparative analysis for ranking. 

Pearson and Spearman correlation coefficients are calculated 
to determine the consistency between the results of the two 
methods. These coefficients are 0.972 and 1, respectively. High 
correlations indicate that the results are valid. 

V. DISCUSSION 

Applicability, or technological suitability, is one of the key 
criteria when determining alternative irrigation methods for the 
efficient use of water resources in agriculture. This is because 
implementing innovative strategies and leveraging the power of 
technology can increase the efficient use of water resources in 
agriculture. This can be achieved through the combined use of 
artificial intelligence, automated water supply systems, and IoT-
based precision irrigation systems in industrial wastewater 
treatment [21]. In other words, promoting modern and improved 
water use through irrigation practices and other smart 
approaches is crucial for sustainable water use [22]. In this 
context, Et-Taibi et al. [23] argued that IoT-based smart 
agriculture could be a promising solution. In their study, they 
introduce a cloud-based smart irrigation system to connect 
numerous small-scale smart farms and centralize the data they 
obtain. The system optimizes irrigation water use through 
comprehensive big data collection, storage, and analysis. Xing 
and Wang [24] summarized recent advances in molecular 
breeding, precision agriculture, and innovative water 
management techniques aimed at improving crop drought 
resilience, soil health, and overall agricultural productivity. This 
is because the increasing challenges of climate change and water 
scarcity make it imperative to increase agricultural productivity 
and sustainability, especially in arid regions. 

Environmental impacts have been identified as another 
important criterion in determining alternative irrigation methods 
for the efficient use of water resources in agriculture. Indeed, 
while the use of water resources has a certain impact on the 

ecological conditions of a region, it is possible to address three 
dimensions of environmental impact: wastewater discharge, 
non-point pollution, and carbon emissions [25]. In addition, the 
effective application of computerization in the efficient use of 
water resources in agriculture ensures the improvement of 
environmental impacts and contributes to the environmentally 
conscious use of water resources [26]. Kalfas et al. [27] 
extensively evaluate the link between land use planning, water 
resources, and global climate change in their study. They state 
that proper land use planning can guide the establishment of 
waste management systems that minimize methane emissions 
and that land use planning affects agricultural practices. On the 
other hand, Keson et al. [28] aimed to evaluate the performance 
of land, water and climate relationship in his study using 
geographic information systems-based tools for optimized 
planning and management of sustainable production practices. 

Drip irrigation [29] is one of the most important alternatives 
for determining alternative irrigation methods for the efficient 
use of water resources in agriculture. Drip irrigation is one of the 
most effective ways to integrate water and fertilizer for 
productivity in agriculture. Proper application of drip irrigation 
can reduce nutrient loss and emissions while maintaining 
nutrient balance in the soil (Yang et al., 2024). In drip irrigation, 
water, nutrients, and other essential growth substances are 
precisely delivered directly to the plant's root zone through a 
hole. This quickly restores plant moisture and nutrient levels, 
minimizes water stress, and improves overall quality, growth, 
and productivity [30]. In this context, Sanchis-Ibor et al. [31] 
focused on the process of switching to drip irrigation in Acequia 
Real del Júcar (Valencia, Spain). Their aim is to analyze how 
the estimation and distribution of expected water savings vary 
across different water planning tools and how they are perceived 
by the various actors involved in this process. 
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VI. CONCLUSION 

The aim of this study is to develop a holistic and 
methodologically advanced decision-making model that enables 
the identification of the most appropriate alternative irrigation 
methods for the efficient use of water resources in agriculture. 
To this end, a novel hybrid framework integrating spherical 
fuzzy sets, machine learning, MEREC, and WASPAS methods 
is proposed. Evaluations obtained from ten domain experts were 
transformed into spherical fuzzy numbers to capture hesitation 
and uncertainty; expert importance weights were objectively 
derived using machine learning; criterion weights were 
determined through the MEREC method; and alternative 
irrigation methods were ranked using WASPAS. 

Beyond its technical outcomes, the primary research 
contribution of this study lies in advancing the state of the art in 
AI-assisted multi-criteria decision-making for agricultural water 
management. Unlike existing studies that predominantly rely on 
static expert-based fuzzy weighting and conventional ranking 
schemes, the proposed framework introduces a structured 
human–AI collaborative mechanism that simultaneously 
addresses uncertainty modeling, objective expert differentiation, 
and compensatory–noncompensatory alternative evaluation 
within a unified architecture. In this sense, the study moves 
beyond incremental tool-level efficiency improvements and 
offers a conceptually distinct decision-support paradigm that 
enhances methodological robustness and interpretability in 
complex resource management problems. The empirical 
findings indicate that feasibility and technological suitability 
constitute the most influential criterion, followed by 
environmental impacts, while drip irrigation emerges as the 
most suitable alternative for efficient water use. These results 
not only corroborate prior empirical insights but also 
demonstrate how advanced hybrid AI–fuzzy frameworks can 
yield more nuanced and reliable decision outcomes under 
uncertainty. 

Nevertheless, the study has certain theoretical and technical 
limitations. The relatively small number of experts, the focus on 
a specific regional or sectoral context, and the consideration of 
only seven criteria constrain the generalizability of the findings. 
From a technical perspective, the machine learning–based 
expert weighting process is sensitive to dataset size and 
diversity, which may lead to variability across different samples. 
In addition, while spherical fuzzy modeling provides a robust 
representation of uncertainty, it entails relatively high 
computational complexity. Future research is therefore 
encouraged to incorporate larger and more diverse expert panels, 
extend the model to different geographic and agricultural 
contexts, integrate additional criteria such as socioeconomic and 
climatic variables, and combine the proposed framework with 
other AI-driven decision-support systems. Such extensions 
would further strengthen the generalizability of the model and 
consolidate its contribution to both methodological research and 
practical decision-making in sustainable agricultural water 
management. 
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