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Abstract—With the rapid digitization of healthcare, 

blockchain-integrated federated learning (FL) for EHR 

management faces challenges of heterogeneous data, high 

latency, and adversarial vulnerabilities. This study proposes a 

novel Reinforcement Learning-Driven Adaptive Aggregation 

(RL-DAA) in an enhanced blockchain-FL framework, using Q-

learning to dynamically optimize model weights based on trust, 

data quality, and node reliability. RL-DAA reduces 

computational overhead by 40% via state-action-reward 

optimization (mitigating non-IID bias) and boosts robustness 

against Byzantine faults by 35% with fault-tolerant rewards. 

Validated on adapted CIFAR-10 and real-world healthcare 

simulations, compared to EPP-BCFL and baseline models, RL-

DAA achieves 96.5% accuracy, 45% lower latency, and 38% 

reduced energy consumption. By dynamically balancing 

efficiency, privacy, and robustness via RL-driven optimization, 

this work advances secure, scalable EHR management, with 

broader potential in privacy-sensitive domains. 
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I. INTRODUCTION 

The integration of federated learning (FL) with blockchain 
technology has revolutionized privacy-preserving data 
management in healthcare, particularly for electronic health 
records (EHR) [1-3]. Traditional centralized systems are prone 
to breaches and single points of failure, leading to the adoption 
of decentralized approaches like blockchain-enabled FL 
(BCFL) [4-6]. These frameworks allow collaborative model 
training across institutions without sharing raw data, leveraging 
edge analytics for real-time processing [7-8]. However, 
existing methods, such as the Enhanced Privacy-Preserving 
Blockchain-Enabled Federated Learning (EPP-BCFL) [9], 
suffer from static aggregation strategies that fail to adapt 
dynamically to heterogeneous environments [10], resulting in 
high computational costs, increased latency, and limited 
resilience to evolving threats. This creates barriers to 
scalability in resource-constrained settings like IoMT devices 
[11]. The core problem addressed here is the need for an 

adaptive, efficient aggregation mechanism that optimizes 
performance while maintaining privacy and security in EHR 
management [12-16]. 

Recent advancements highlight these limitations. For 
instance, a 2024 study on blockchain-FL for healthcare IoT 
proposed a DAG-based consensus to reduce overhead but 
overlooked dynamic data heterogeneity [17]. Another 2025 
paper on privacy-preserving FL in EHR used homomorphic 
encryption, achieving high accuracy but at the cost of latency 
in large-scale networks [18-20]. A 2024 work on edge-enabled 
BCFL for smart cities integrated differential privacy, yet it 
struggled with Byzantine faults in heterogeneous nodes [21]. 
Similarly, a 2024 investigation into multi-task FL with 
blockchain emphasized concurrent training but failed to 
address real-time adaptability [19]. Finally, a 2024 analysis of 
energy-efficient FL in industrial IoT used Stackelberg games 
for optimization, but it did not fully mitigate communication 
delays in healthcare contexts [22]. These studies underscore the 
gap in adaptive, fault-tolerant aggregation for BCFL. 

The contributions of this study include analyzing three 
major shortcomings of existing adaptive aggregation in BCFL 
frameworks: high computational complexity in trust 
assessment, latency from hybrid privacy mechanisms, and 
inadequate handling of Byzantine faults. It proposes a novel 
Reinforcement Learning-Driven Adaptive Aggregation (RL-
DAA) method that overcomes these through Q-learning-based 
dynamic weighting, a theoretical framework for stability and 
convergence, and optimized integrations with blockchain 
consensus. This enhances overall algorithm efficiency, privacy, 
and robustness in EHR management. 

II. RELATED WORK 

A. Overview of Traditional Transformer Model 

While the study focuses on BCFL, traditional models like 
Transformer are analogous in attention-based aggregation, 
often used in FL for EHR feature extraction. The Transformer 
architecture relies on self-attention mechanisms to compute 
weighted sums of inputs, defined as: 

Attention(Q,K, V) = softmax (
QKT

√dk
)V                  () 
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where, Q,K,V are query key, and value matrices, and dk is 
the dimension. This enables parallel processing but introduces 
quadratic complexity: 

 O(n2)                                            (2) 

Quadratic complexity of standard attention is inefficient for 
resource-constrained edge devices in EHR processing. In 
BCFL contexts, similar mechanisms aggregate model updates 
from edge nodes. 

B. Disadvantages and Limitations of a Transformer 

Transformers in FL aggregation face long-term dependency 
issues, where attention dilutes over extended sequences, 
leading to poor handling of non-IID EHR data. For example, in 
heterogeneous healthcare datasets, performance degrades as 
lim
n→∞

Attnij → 0 for distant i, j. High computational complexity 

exacerbates this in edge devices, with energy costs scaling as 
O(n2d) . Sparsity in attention weights wastes resources, as 
many are near-zero, reducing efficiency in distributed BCFL. 

C. Novel Improvement Methods 

Recent innovations in BCFL draw from Transformer 
improvements, such as sparse attention and hybrid models, to 
enhance aggregation. For instance, sparse Transformers reduce 
complexity to: 

O(n logn)                                        (3) 

The reduced computational complexity achieved through 
locality-sensitive hashing accelerates updates of EHR models 
in blockchain-enabled federated learning (BCFL) systems [23]. 
Long-term memory modules, like those in Performer models 
using random projections, approximate attention as: 

softmax(QKT) ≈ ϕ(Q)Tϕ(K)                        (4) 

where, ϕ is a kernel, improving dependency capture in FL 
[24]; updated in [21] for edge BCFL. 

In healthcare-specific BCFL, [20] integrated homomorphic 
encryption with sparse attention, allowing secure aggregation 
without decryption: encrypted updates E(wi) are aggregated as: 

 E(∑wi) = ∏E(wi)                                (5) 

This private aggregation approach leverages homomorphic 
encryption, where the encryption function processes local node 
weights to enable secure summation without requiring 
decryption during the aggregation process, but this increases 
latency by 30% in non-IID data. In [19], the authors proposed a 
multi-task FL with blockchain, using concurrent training via 
DAG structures, where consensus is achieved through directed 
acyclic graphs to avoid PoW overhead, yet it lacks adaptability 
to dynamic trust. In [22], the authors employed Stackelberg 
games for energy optimization, modeling utility as U = α ⋅
accuracy− β ⋅ energy , solving via Nash equilibrium, but 
ignoring fault tolerance. 

The original EPP-BCFL [9] uses Adaptive Model 
Aggregation (AMA) with weights based on trust t i , data 
quality qi, and capacity ci: global model G = ∑wiLi, 

wi =
tiqici

∑tjqjcj
                                         (6) 

This integrates SMPC and DP for privacy, with ϵ-DP noise 
added as: 

 wĩ = wi + 𝒩(0, σ2)                                (7) 

 σ = √2ln(1.25/δ) /ϵ                                (8) 

Gaussian noise 𝒩(0, σ2) is injected to safeguard the 
privacy of electronic health records (EHRs) within the 
federated learning framework.Computes σfor ϵ − DPϵ=privacy 
budget, δ=negligible failure probability. 

Consensus is PoS + BFT, selecting validators by stake and 
fault tolerance up to 33%. Edge analytics preprocesses data 
with anomaly detection using ML-based IDS, reducing 
response time to 2.3s. However, AMA's static weighting 
assumes fixed metrics, leading to inefficiencies. 

Other methods like Mamba [25], extended in 2024 
healthcare FL use state-space models for linear complexity 
O(n), with dynamics: 

xt+1 = Axt + But                               (9) 

yt = Cxt , outperforming Transformers in sequence 
modeling for EHR time-series. In BCFL, this could replace 
attention for aggregation, but lacks privacy integration. Hybrid 
RNN-Transformer models [26] combine recurrent states with 
attention, addressing long dependencies via ht =
RNN(ht−1,Attn(xt)) , but add overhead in distributed settings. 

These pave the way for our RL-DAA, which uses RL to 
learn optimal weights dynamically, outperforming static AMA 
and Transformer-based methods in efficiency and robustness. 

III. METHODOLOGY 

In this section, we outline the theoretical foundations and 
algorithmic details of the Reinforcement Learning-Driven 
Adaptive Aggregation (RL-DAA) method, which enhances the 
EPP-BCFL framework. Before delving into the innovations of 
RL-DAA, it is essential to examine the original EPP-BCFL 
approach, highlighting its strengths in privacy and efficiency 
while identifying key shortcomings that RL-DAA addresses 
through dynamic reinforcement learning mechanisms. 

A. Analysis and Shortcomings of Previous Methods 

The original EPP-BCFL methodology [9] is a three-layer 
framework for secure EHR management. 

The Edge Nodes Layer performs local training on client 
devices with differential privacy (DP) noise added to gradients: 

g ĩ = gi + 𝒩(0,σ2)                               (10) 

where, σ ensures ϵ-DP. Homomorphic encryption encrypts 
updates as E(gi). The Federated Aggregation Layer uses AMA 
to compute the global model: 

 Gt+1 = ∑ wiLi
tN

i=1                                    (11) 

Weights wi = f(t i ,qi , ci) based on trust t i =
∑historical accura,  quality qi = 1 −
KL-divergence(Di ||Dglobal), and capacity ci = device resources. 

The Blockchain Layer verifies updates via PoS + BFT 
consensus, where validators are selected by stake si, tolerating 
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faults if <33% malicious, and stores hashes on a layered ledger 
for auditability. Edge analytics include real-time anomaly 
detection with IDS, flagging outliers via z -score >3. 
Experiments on CIFAR-10 showed 95.2% accuracy and 43% 
latency reduction. 

However, three disadvantages limit its effectiveness: 

1) First, high computational overhead in trust assessment 

for AMA. Trust 𝑡𝑖  requires historical computation over 

epochs, involving matrix operations for accuracy metrics, 

leading to 𝑂(𝑁 ⋅ 𝑑2)  complexity per round (  nodes, 𝑑 

dimensions). In heterogeneous EHR (e.g., multi-modal data 

from hospitals), this scales poorly, consuming 37% more 

energy on IoT devices as per simulations, causing dropouts in 

resource-constrained environments like rural clinics. 

2) Second, increased latency from hybrid privacy 

mechanisms. SMPC + DP involves multi-party computations 

for secure summation, with DP noise adding variance that 

slows convergence: error bound E[‖G− G∗‖2] ≤
O(1/T + σ2),           where T epochs, but σ amplifies latency 

by 43% in large N > 100 , as encrypted operations require 

rounds of communication, delaying EHR real-time analytics 

like diagnosis. 

3) Third, inadequate handling of Byzantine faults in 

heterogeneous settings. PoS + BFT assumes uniform stake, 

but in non-IID EHR, malicious nodes can inflate t i  via 

poisoning, reducing accuracy from 95% to 72% under 20% 

attacks. The fault tolerance f <  n/3  fails if heterogeneity 

skews distributions, as weights don't adapt to dynamic faults, 

leading to biased globals in cross-institutional collaborations. 
These key shortcomings: computational overhead, high 

latency, and inadequate fault tolerance, limit the framework’s 
scalability, and our RL-DAA addresses them through the 
dynamic learning of optimal aggregation policies. 

B.  Theoretical Knowledge 

Assumption 1: The state space is Markovian, with node 
states (trust, quality, capacity) independent given previous 
actions. 

Theorem 1 (Stability): Under bounded rewards and 
learning rate α → 0, RL-DAA's Q-values stabilize to optimal 
Q∗, ensuring aggregation weights converge without oscillation. 

Proof: By Q-learning update: 

 Q(s, a) ← Q(s, a)+ α[r + γmax
a′

Q (s′,a′) − Q(s, a)]    (12) 

With  ∑α = ∞, ∑α2 < ∞, contraction mapping in Banach 
space yields ‖Qt+1 − Q∗‖ ≤ γ‖Qt − Q∗‖ < ‖Qt − Q∗‖, γ < 1. 
This is placed here before algorithmic steps to establish why 
RL-DAA is reliable in noisy EHR environments. 

Theorem 2 (Convergence): RL-DAA converges to optimal 
policy π∗ with probability 1, minimizing aggregation error. 

Proof: Using Robbins-Monro conditions and a finite MDP, 
the Bellman optimality holds: 

Q∗(s,a) = E [r+ γ max
a′

Q∗ (s′,a′)]                  (13) 

Defines optimal Q-value Q∗;E[ ]=expected value,s′=next 
state.Greedy policy π(s) = argmax

a
Q(s, a)  converges as 

exploration ϵ → 0 . Placed post-stability to show long-term 
optimality for FL rounds. 

C.  Distributed Explanation of the New Method 

The RL-DAA fundamentally replaces AMA by using 
reinforcement learning (Q-learning) to dynamically learn 
aggregation weights, treating aggregation as an MDP where 
states represent node metrics, actions adjust weights, and 
rewards penalize faults/latency while rewarding accuracy. This 
overcomes the three disadvantages: 1) reduces overhead by 
learning from experience without full recomputation; 2) 
minimizes latency via optimized actions; 3) enhances fault 
tolerance through adaptive rewards. 

 
Fig. 1.  System architecture of RL-DAA in the EPP-BCFL framework. 

Fig. 1 outlines the three-layer architecture of the EPP-
BCFL framework enhanced with RL-DAA. The Edge Nodes 
Layer represents distributed client devices processing local 
EHR data, with inputs as raw patient data and outputs as 
encrypted local models Li with DP noise g ĩ = gi + 𝒩(0, σ2). 
The Federated Model Aggregation Layer hosts the RL agent, 
taking encrypted updates and node states st =
concat ((ti, qi , ci , fi))  as inputs, processing them via Q-

learning, and outputting the global model Gt+1 = ∑wi
t+1Li . 

The Blockchain Network Layer verifies updates with PoS + 
BFT consensus, inputting hashes and outputting a tamper-proof 
ledger. Sandy beige nodes denote data flows (e.g., wi, G

t+1). 

The RL-DAA integrates seamlessly into the EPP-BCFL 
layers, with the RL agent at the aggregation layer dynamically 
adjusting weights based on real-time states, enhancing 
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scalability across heterogeneous EHR data sources. The 
blockchain layer ensures secure verification, critical for trust in 
healthcare collaborations. 

Core idea: In each FL round, the coordinator models the 
system as state s = (t i, qi , ci , fi)  (adding fault indicator fi ). 
Actions a = Δwi adjust weights. Reward r = β1 ⋅ accuracy −
β2 ⋅ latency − β3 ⋅ faults, with β hyperparameters. 

Mathematical derivation: Start with standard FL update 
Gt+1 = ∑wi

tLi
t. In RL-DAA, wi

t+1 = wi
t + a, where a from Q-

policy. 

Step 1: State Initialization. At round t, collect node states 
st = v⃗ = [t1, q1 , c1 , f1 ,… , tN,qN, cN, fN] , fi = 1  if anomalous 
(from IDS). This vector is input to the Q-network. 

Formula: 

 st = concat({(ti, qi , ci , fi)}i=1
N )                    (14) 

Explanation:ti=trust, qi=quality, ci=capacity, fi=fault flag. 
Concatenation ensures a holistic view, reducing the static 
computation disadvantage. 

Step 2: Action Selection. Use ϵ -greedy: with prob ϵ , 

random a ∈ [−0.1,0.1]; else a = argmax
a′

Q(st , a
′). 

Formula:π(s)  =  {
uniform([−0.1,0.1]),  rand <  ϵ

arg maxa  Q(s, a),  else
   (15) 

Explanation: Balances exploration or exploitation, adapting 
to heterogeneity, unlike static AMA. 

Step 3: Weight Update and Aggregation. Apply action: 

 wi
t+1 = clip(wi

t + ai , 0,1)                           (16) 

Adjusts node weights via RL action ai,clip bounds weights 
to [0,1] for stability.  Aggregate: 

 Gt+1 = ∑wi
t+1Li

t                                (17) 

Formula: wi
t+1 = clip(wi

t + ai , 0,1), 

 wt+1 =
wt+1

|wt+1|1
                                 (18) 

Explanation: L1-normalization ensures the sum of 
aggregation weights = 1. Clipping prevents instability, 
addressing fault intolerance by downweighing faulty nodes. 

Step 4: Reward Computation. After aggregation, Compute 

r = β1(1− loss(Gt+1))− β2 ⋅Δlatency − β3 ∑ fi  (19) 

Formula: 

r = β1 (1 −
1

M
∑ l(Gt+1(xm), ym)

M

m=1

)− β2(τt+1 − τt)

− β3 ∑fi

N

i=1

 

Explanation: Incorporates accuracy, latency difference Δτ, 
faults; β1 = 0.6, β2 = 0.2, β3 = 0.2 .This penalizes 
disadvantages directly. 

Step 5: Q-Update. Observe next state st+1, update 

Q(st , at) ← Q(st ,at)+ α(r+ γmax
a′

Q (st+1 ,a
′)− Q(st , at)) 

Formula: 

Q(st , at) ← Q(st ,at)+ α(r+ γmax
a′

Q (st+1 ,a
′)− Q(st , at)) 

Explanation: Temporal difference learning converges faster 
than static metrics, reducing overhead. 

Derivation of Convergence: From Theorem 2, error et =
Qt − Q∗, 

 et+1 = (1 − α)et + αγmax|et|                    (20) 

Error decay for Q-value convergence: et=Qt − Q∗, α<1 and 

 γ<1 ensures stability. 

Integration with BCFL: Encrypted updates via 
homomorphic, verified on blockchain before RL step. 

This RL-DAA improves efficiency (learns in O(N) per step 
vs O(Nd2) ), stability (bounded variance), and convergence 
(proven). 

 
Fig. 2. Mechanism schematic of the RL-DAA aggregation process. 

Fig. 2 details the core RL-DAA mechanism within the 
aggregation layer. The State Input Node takes st =
concat((ti ,qi , ci , fi)) as input from edge nodes, processed by 
the Q-Learning Decision Unit, which outputs action at  via  ϵ-
greedy policy π(s). The Weight Update Node adjusts weights 
wi

t+1 = clip(wi
t + ai , 0,1) and aggregates Gt+1, with (e.g., at , 

wi ) representing intermediate data. The core RL-DAA 
mechanism (Fig. 2), where the Q-learning unit dynamically 
selects actions to optimize weights, a key improvement over 
AMA's static approach. This adaptability reduces latency and 
computational overhead, as the policy evolves with each round. 
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Fig. 3. Core process flowchart of the RL-DAA algorithm. 

Fig. 3 details the five core steps of RL-DAA iterates 
through state collection, action optimization, weight 
adjustment, reward feedback, and Q-learning updates. The 
State Initialization inputs node metrics and outputs st . The 
Action Selection decision node uses  ϵ-greedy, branching to 
random or argmax actions, outputting at . The Weight Update 
& Aggregation node processes wi

t + at  and Gt+1 , with data 
nodes. The Reward Computation calculates r , and the Q-Value 
Update adjusts Q(st ,at), looping back for the next round. 

The Q-learning algorithm within RL-DAA operates as a 
closed-loop process tailored to the dynamic nature of EHR 
aggregation. The State Observation step (forest green) 
initializes the cycle by collecting real-time metrics from edge 
nodes, providing a comprehensive input st  that reflects the 
heterogeneous and evolving conditions of healthcare data. This 
feeds into the Action Selection decision node (sky blue), where 
the ϵ-greedy policy balances exploration and exploitation, a 
critical improvement over AMA's static weighting that reduces 
computational overhead by adapting to current states rather 
than recomputing metrics each round. The Environment 
Interaction node (muted brown) applies selected actions to 
update weights and aggregate the global model, addressing 
latency issues by minimizing unnecessary communications 
through learned policies. The Reward Computation step (sky 
blue) integrates performance metrics (accuracy, latency, faults) 
into a single reward signal r , enabling the system to prioritize 
low-latency, fault-tolerant nodes, thus resolving long-term 
dependency delays in sequential FL rounds. Finally, the Q-
value Update node (forest green) refines the Q-function using 
the temporal difference rule, proven to converge under 
bounded rewards (Theorem 2), enhancing fault tolerance by 
downweighting malicious nodes over iterations. The loop back 
with decaying  ϵ ensures convergence, making RL-DAA robust 
against the 20% attack scenarios where AMA faltered, 
restoring accuracy to 93.2%. 

 
Fig. 4.  Convergence proof flowchart of Q-learning in RL-DAA. 

As depicted in Fig. 4, the convergence proof of the Q-
learning algorithm within RL-DAA follows a rigorous logical 
progression that underpins its reliability in optimizing 
aggregation weights for EHR management. The Assumption 
Node (forest green) establishes the MDP framework, assuming 
finite states and actions with Markovian transitions, a critical 
starting point placed first to justify the applicability of Q-
learning to the heterogeneous, real-time environment of edge 
nodes. This feeds into the Bellman Optimality Setup (sky 
blue), which defines the optimal Q-value Q∗(s,a) =

E[r + γmax
a′

Q∗ (s′, a′)]  as the fixed point of the Bellman 

operator, providing the theoretical target for convergence and 
addressing the stability concerns of static AMA by ensuring a 
global optimum. The Robbins-Monro Conditions node (sky 
blue) applies stochastic approximation theory, processing the 

Q-update rule Q(st , at) ← Q(st , at)+ αt [r +

γmax
a′

Q (st+1,a
′) − Q(st , at)]  with conditions ∑αt = 

(sufficient learning) and ∑αt
2 < (bounded variance), outputting 

the condition that ensures the iterative process stabilizes. This 
leads to the Convergence Guarantee (sandy beige), concluding 
that Qt → Q∗  with probability 1 under the greedy policy 
π(s) = argmax

a
Q(s, a), as the error et = Qt − Q∗ diminishes 

over iterations due to the contraction mapping property 
( ‖Qt+1 − Q∗‖ ≤ γ‖Qt − Q∗‖ ,  γ <  1 ). The muted brown 
update loop reflects the iterative nature, aligning with RL-
DAA's 50% faster convergence (10 vs. 20 epochs) compared to 
AMA, enhancing its practical deployment in dynamic 
healthcare settings. 

To facilitate a clear understanding of the Reinforcement 
Learning-Driven Adaptive Aggregation (RL-DAA) method, 
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this section provides a pseudocode implementation that 
outlines its logical steps in a concise manner. 

The pseudocode (Algorithm 1) captures the essence of RL-
DAA's integration into the broader EPP-BCFL framework, 
emphasizing dynamic weight adjustment via Q-learning to 
address the disadvantages of static aggregation in traditional 
methods. 

Algorithm 1: Pseudocode 

# Initialize Q-function (table or neural network), hyperparameters: α 

(learning rate), γ discount), ε (exploration), β1=0.6, β2=0.2, β3=0.2  

Initialize Q(s, a) to 0 or random small values 

For each federated learning round t = 1 to T: 

    # Step 1: Collect current state from all N nodes 

    st = concatenate((ti , qi , ci ,fi)foriin1toN)  # 

ti :trust, qi : quality , ci : capacity, fi :faultflagfromIDS 

     

    # Step 2: Select action using ε-greedy policy 

    if random < ε: 

        at = uniformrandom([−0.1,0.1])# Random weight adjustment 

for exploration 

    else: 

        at = argmaxaQ(st, a)  # Greedy selection for exploitation 

     

    # Step 3: Update weights and perform aggregation 

    for each node i: 

        wi
t+1 = clip(wi

t + at [i], 0,1)  # Adjust and clip weights 

    Normalize w t+1so sum(wi
t+1)= 1 

    Gt+1 = sum(wi
t+1 ∗ Li

t)  # Aggregate global model from local 

models Li  

     

    # Step 4: Compute reward based on performance metrics 

    accuracy = 1 - (1/M) * sum(loss(Gt+1(xm), ym) for m in validation 

set) 

    delta_latency = current_latency - previous_latency 

    totalfaults = sum(fi for i in 1 to N) 

    𝑟 = 𝛽1 ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝛽2 ∗ 𝑑𝑒𝑙𝑡𝑎𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 𝛽3 ∗ 𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑢𝑙𝑡𝑠  

     

    # Step 5: Observe next state and update Q-value 

    st+1= collect new states after aggregation 

    Q(st, at)+= α ∗ (r + γ ∗ maxa′Q(st+1, a
′) − Q(st , at)) 

     

    # Decay exploration rate 

ε = ε ∗ decayfactor  # e.g., 0.99 

This pseudocode demonstrates the iterative nature of RL-
DAA, where each round refines the aggregation policy through 
experience, leading to improved efficiency, reduced latency, 
and enhanced fault tolerance compared to the original AMA's 
static weighting. 

For visual clarity, Fig. 5 illustrates the flowchart of the RL-
DAA algorithm. The process begins with state initialization at 
the top, represented as a blue rectangular node, which gathers 
node metrics as input and outputs the concatenated state vector. 

This feeds into the green decision node for action selection, 
where an ε-greedy policy determines whether to explore or 
exploit, with branching arrows indicating the conditional flow 
(random vs. argmax). The yellow node handles weight updates 
and model aggregation, taking adjusted actions as input and 
producing the global model as output. Following this, the red 
computation node calculates the reward, incorporating 
accuracy, latency delta, and faults to provide feedback. Finally, 
the purple learning node updates the Q-values based on the 
temporal difference, closing the loop back to the next round via 
a dashed arrow, emphasizing the iterative reinforcement 
learning cycle. The flowchart uses directed arrows to show 
data flow (e.g., states and actions as inputs/outputs) and 
different shapes: rectangles for processes, diamonds for 
decisions, and parallelograms for inputs/outputs. This structure 
aids in understanding how RL-DAA dynamically adapts 
aggregation, overcoming the computational overhead, latency, 
and fault issues of prior methods by learning optimal policies 
over time. 

Fig. 5 demonstrates the iterative nature of RL-DAA, where 
each round refines the aggregation policy through experience, 
resulting in improved efficiency, reduced latency, and 
enhanced fault tolerance compared to the static weighting of 
the original AMA. The loop ensures intra-episode 
convergence, directly alleviating the static limitation of the 
original AMA, making RL-DAA more efficient (Colors are 
explicitly assigned to nodes for differentiation: blue for 
initialization, green for selection, yellow for update, red for 
reward, and purple for Q-update. Details such as inputs/outputs 
are annotated on edges.). 

 
Fig. 5. Demonstrates the iterative nature of RL-DAA. 

The initialization node sets the foundation by processing 
inputs from edge nodes, while the decision node introduces 
branching for exploration, critical for adapting to 
heterogeneous EHR data. The overall flowchart in Fig. 5 
encapsulates the RL-DAA's efficiency gains, as the loop 
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ensures convergence over rounds, directly mitigating the static 
limitations of the original AMA. 

D. Advantages of the Method 

The Reinforcement Learning-Driven Adaptive Aggregation 
(RL-DAA) method represents a significant advancement over 
traditional adaptive aggregation strategies, such as the static 
Adaptive Model Aggregation (AMA) in the original EPP-
BCFL framework, as well as other state-of-the-art approaches 
in blockchain-enabled federated learning (BCFL) for EHR 
management. By leveraging Q-learning to dynamically 
optimize aggregation weights based on real-time states (trust, 
data quality, capacity, and faults), RL-DAA addresses key 
limitations in computational efficiency, latency, fault tolerance, 
and overall model performance. This results in a more scalable, 
robust, and privacy-preserving system tailored to 
heterogeneous healthcare environments, where non-IID data 
and resource constraints are prevalent. 

First, RL-DAA substantially improves computational 
efficiency compared to traditional methods. In AMA, trust and 
quality assessments involve matrix-heavy operations, leading 
to ON·d2 complexity per round (N nodes, d model 
dimensions), which escalates energy consumption by up to 
37% on edge devices like Internet of Medical Things (IoMT) 
sensors. RL-DAA shifts to an experience-based learning 
paradigm, where Q-value updates occur in O(N) time per step, 
amortizing costs over rounds through policy reuse. This 
reduces overall computational overhead by approximately 
40%, as the agent learns optimal actions without exhaustive 
recomputation each epoch. For instance, in simulations on 
CIFAR-10 adapted for EHR-like multi-modal data, RL-DAA 
achieved a 38% drop in energy use versus baseline FL models, 
enabling deployment on low-power devices without 
performance degradation. This efficiency gain aligns with 
findings in recent RL-FL hybrids, where adaptive policies 
minimize redundant calculations, outperforming static 
weighting in resource-constrained settings. 

Second, RL-DAA effectively mitigates latency issues 
inherent in hybrid privacy mechanisms like Secure Multi-Party 
Computation (SMPC) and Differential Privacy (DP). 
Traditional Adaptive Model Aggregation (AMA)'s fixed 
weights amplify delays during encrypted aggregations, with 
DP noise contributing to variance that extends convergence 

time, governed by the error bound  O (
1

T
+ σ2), where T is the 

number of epochs and σ is the noise scale. By incorporating 
latency deltas into rewards, defined as r = β1 ⋅ accuracy− β2 ⋅
Δlatency− β3 ⋅ faults, RL-DAA dynamically adjusts actions 
to prioritize low-latency nodes, reducing communication 
latency by 45%. Experimental results demonstrate convergence 
in 10 epochs versus AMA's 20, achieving a 50% speedup while 
maintaining ϵ-DP privacy guarantees. This resolves long-term 
dependency problems in sequential FL rounds, where static 
methods accumulate delays in non-IID Electronic Health 
Record (EHR) data (e.g., time-series patient records). 
Compared to other improved methods, such as DAG-based 
BCFL, which reduces consensus overhead but overlooks 
dynamic adaptation, RL-DAA's reward-driven optimization 
ensures responsive real-time analytics, critical for EHR 
applications like anomaly detection in healthcare networks. 

Third, RL-DAA excels in fault tolerance and robustness 
against adversarial attacks, a critical superiority over AMA and 
similar frameworks. AMA's reliance on historical metrics 
makes it vulnerable to Byzantine faults, dropping accuracy 
from 95% to 72% under 20% poisoning attacks. RL-DAA 
integrates fault indicators (fi) into states and penalizes them in 
rewards, enabling adaptive downweighting of malicious nodes 
and improving resilience by 35%. In adversarial simulations, it 
restored accuracy to 93.2%, surpassing PoS + BFT consensus 
alone. This fault-handling capability extends to heterogeneous 
edge devices, maintaining <1.2% accuracy deviation across 
servers, laptops, and IoT nodes. When benchmarked against 
other RL-enhanced FL methods, RL-DAA demonstrates 
superior fairness and robustness; for example, it outperforms 
FedDRL in handling non-IID distributions by incorporating 
blockchain-verified states, ensuring tamper-proof trust without 
additional overhead. Similarly, it achieves better energy-
latency trade-offs than DRL-based adaptive training, reducing 
system costs in multi-RIS environments. Overall, RL-DAA's 
convergence is proven stable under bounded rewards, 
converging to optimal policies with probability 1, unlike 
heuristic-based aggregations that oscillate in dynamic settings. 

In summary, RL-DAA not only elevates accuracy to 96.5% 
with robust privacy but also provides a holistic edge over 
traditional and improved methods by optimizing efficiency, 
resolving latency and dependency bottlenecks, and enhancing 
fault resilience. These advantages validate its applicability in 
secure EHR management, paving the way for broader adoption 
in privacy-sensitive domains. 

IV. RESULTS 

This section presents the experimental results and a 
comprehensive, statistically enriched analysis of the 
Reinforcement Learning-Driven Adaptive Aggregation (RL-
DAA) method integrated into the Enhanced Privacy-Preserving 
Blockchain-Enabled Federated Learning (EPP-BCFL) 
framework for secure electronic health record (EHR) 
management. The evaluation utilized a simulated 
heterogeneous dataset adapted from CIFAR-10 to emulate 
multi-modal EHR data (e.g., imaging, time-series) and a real-
world healthcare dataset from a multi-institutional network. 
Each table and figure includes an enhanced analysis with 
advanced statistical measures, including 95% confidence 
intervals (CIs), variance analysis (ANOVA), t-tests, p-values, 
and Cohen’s d effect sizes, alongside comparative mechanistic 
insights and detailed trend interpretations to rigorously validate 
RL-DAA’s superior performance. 

A. Experimental Setup 

Experiments were conducted on a distributed cluster with 
50 edge nodes simulating hospitals and IoT devices, featuring 
diverse computational capacities (2-8 GB RAM, 1-4 CPU 
cores). The dataset included 10,000 samples with an 80% class 
imbalance to reflect non-IID EHR distributions, processed with 
differential privacy (  ϵ =  1 , δ = 10−5 ) and homomorphic 
encryption. RL-DAA parameters were  α =  0.1 ,  γ =  0.9 , 
 ϵ =  0.1  (decaying by 0.99 per round), β1 = 0.6, β2 = 0.2 , 
β3 = 0.2. Baseline methods adopted identical privacy (SMPC 
+ DP) and consensus (PoS + BFT) settings where applicable; 
FedAvg and FedProx used standard aggregation without 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

767 | P a g e  
www.ijacsa.thesai.org 

blockchain. Metrics were averaged over 10 runs across 20 FL 
rounds, with 95% CIs calculated using the t-distribution, 
ANOVA for variance across groups, t-tests (p < 0.05 
threshold), and Cohen’s d for effect sizes. 

B. Accuracy and Convergence 

RL-DAA achieved a peak accuracy of 96.5% (95% CI: 
96.2–96.8%), surpassing AMA (95.2%, CI: 94.8–95.6%), 
DAG-based BCFL (94.8%, CI: 94.3–95.3%), FedDRL (95.9%, 
CI: 95.6–96.2%), FedAvg (94.0%, CI: 93.4–94.6%), and 
FedProx (94.5%, CI: 94.0–95.0%). Fig. 6 illustrates 
convergence trajectories, with RL-DAA stabilizing at 10 
epochs versus 20 epochs for AMA and FedProx, 15 epochs for 
FedDRL, and 18 epochs for FedAvg, a 50%, 33%, and 44% 
reduction, respectively. The soft teal line reflects Q-learning’s 
dynamic weight adjustment via wi

t+1 = clip(wi
t + ai , 0,1) and 

st = concat((ti ,qi , ci , fi)) , mitigating non-IID bias. T-tests 

show significant improvements over AMA (p = 0.008, d = 
0.85), FedAvg (p = 0.003, d = 1.15), and FedProx (p = 0.015, d 
= 0.70). ANOVA across methods yielded F(5, 54) = 12.3, p < 
0.001, with a variance ratio (F) indicating significant group 
differences, and post-hoc Tukey tests isolating RL-DAA’s 

lead. 

Fig. 6 plots accuracy (%) versus epochs for RL-DAA, 
AMA, DAG-based BCFL, FedDRL, FedAvg, and FedProx, 
with shaded 95% CIs. RL-DAA’s rapid ascent to 96.5% (CI: 
96.2–96.8%) by epoch 10, with a narrow CI, reflects Q-
learning’s adaptive optimization, reducing convergence time 
by 50% versus AMA’s 20-epoch climb to 95.2% (CI: 94.8–
95.6%). FedAvg’s 18-epoch plateau at 94.0% (CI: 93.4–
94.6%) and FedProx’s gradual rise to 94.5% (CI: 94.0–
95.0%) highlight static and regularization limitations. 

Analysis: The narrow 95% CI (96.2–96.8%) for RL-DAA, 
with a significant p-value (0.008) and effect size (d = 0.85 vs. 
AMA), indicates high precision and a 25% variance reduction 
compared to FedAvg (CI: 93.4–94.6%, d = 1.15). ANOVA’s 
F(12.3, p < 0.001) and Tukey tests confirm RL-DAA’ s 

statistical edge, driven by dynamic state updates. 

C.  Latency Reduction 

RL-DAA reduced average latency to 1.76 seconds (95% 
CI: 1.66–1.86), a 45% decrease from AMA’s 3.2 seconds (CI: 
3.0–3.4), as shown in Table I. The reward function r = β1 ⋅
accuracy − β2 ⋅ Δlatency − β3 ⋅ ∑ fi  optimizes 
communication, with β2 = 0.2 reducing rounds by 10% (p = 
0.02, d = 1.20). DAG-based BCFL achieved 2.5 seconds (CI: 
2.35–2.65, p = 0.15), FedDRL 2.8 seconds (CI: 2.6–3.0, p = 
0.10), FedAvg 3.5 seconds (CI: 3.2–3.8, p = 0.30), and 
FedProx 3.0 seconds (CI: 2.75–3.25, p = 0.20). ANOVA 

yielded F(5, 54) = 9.8, p < 0.001. 

Analysis: The tight 95% CI (1.66–1.86) for RL-DAA, with 
p = 0.02 and d = 1.20, indicates a 50% variance reduction 
versus AMA (CI: 3.0–3.4). ANOVA’s F(9.8, p < 0.001) and 
Tukey tests confirm RL-DAA’s optimization, with FedAvg’s 
wider CI (3.2–3.8) reflecting inefficiency. 

D.  Energy Consumption 

RL-DAA’s total energy consumption was 45 kWh (95% 
CI: 43–47), a 38% reduction from AMA’s 72 kWh (CI: 69–
75), as depicted in Fig. 7. The O(N) complexity cuts 
computation by 40% (p = 0.005, d = 1.30). DAG-based 
BCFL’s 58 kWh (CI: 55.5–60.5), FedDRL’s 50 kWh (CI: 48–
52), FedAvg’s 75 kWh (CI: 71.5–78.5), and FedProx’s 65 kWh 
(CI: 62–68) show varying efficiencies. ANOVA yielded F(5, 
54) = 10.5, p < 0.001. 

 

Fig. 6.  Convergence trajectories of model accuracy. 

TABLE I.  LATENCY PERFORMANCE ACROSS METHODS 

Method 
Average 

Latency (s) 
95% CI (s) 

% Reduction 

vs. AMA 

Std. Dev. 

(s) 

p-value 

(vs. AMA) 

Cohen’s d 

(vs. AMA) 
Analysis Insight 

RL-DAA 1.76 1.66–1.86 45% 0.1 0.02 1.20 Δlatency reduces rounds by 10% 

AMA 3.2 3.0–3.4 - 0.2 - - 
SMPC+DP overhead increases 

variance by 20% 

DAG-based BCFL 2.5 2.35–2.65 22% 0.15 0.15 0.45 
DAG consensus limited by static 

weights 

FedDRL 2.8 2.6–3.0 12.5% 0.2 0.10 0.60 
RL partial optimization without 

blockchain 

FedAvg 3.5 3.2–3.8 -12.5% 0.3 0.30 -0.15 Uniform weighting amplifies delays 

FedProx 3.0 2.75–3.25 6.25% 0.25 0.20 0.25 
Regularization mitigates but not 

optimizes 
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Fig. 7. Energy consumption comparison. 

Fig. 7 shows total energy (kWh) with 95% CIs for RL-
DAA (pale gold), AMA (muted taupe), DAG-based BCFL 
(forest green), FedDRL (soft teal), FedAvg (muted taupe 
dashed), and FedProx (forest green dashed). RL-DAA’s 45 

kWh (CI: 43–47) bar, with the narrowest CI, contrasts with 
AMA’s 72 kWh (CI: 69–75) and FedAvg’s 75 kWh (CI: 71.5–
78.5). 

Analysis: The narrow 95% CI (43–47) for RL-DAA, with p 
= 0.005 and d = 1.30, indicates stable efficiency, reducing 
variance by 33% versus FedAvg (CI: 71.5–78.5). ANOVA’s 
F(10.5, p < 0.001) confirms group differences. 

E.  Resilience to Byzantine Faults 

RL-DAA maintained 93.2% (95% CI: 92.8–93.6%) 
accuracy under a 20% Byzantine attack, a 35% improvement 
over AMA’s 72% (CI: 71.4–72.6%), as detailed in Table II. 
The fi state and β3 ⋅ ∑ fi penalty reduce impact by 21% (p = 
0.007, d = 1.10). ANOVA yielded F(5, 54) = 11.2, p < 0.001. 

Analysis: The tight 95% CI (92.8–93.6%) for RL-DAA, 

with p = 0.007 and d = 1.10, indicates a 33% variance 
reduction versus FedAvg (CI: 69.3 – 70.7). ANOVA ’ s 

F(11.2, p < 0.001) and Tukey tests confirm RL-DAA’ s 

robustness. 

TABLE II.  RESILIENCE TO 20% BYZANTINE ATTACK 

Method Accuracy (%) 
95% CI 

(%) 

% Resilience 

Improvement vs. AMA 

Std. Dev. 

(%) 

p-value (vs. 

AMA) 

Cohen’s d (vs. 

AMA) 
Analysis Insight 

RL-DAA 93.2 92.8–93.6 35% 0.4 0.007 1.10 
fi  mitigates 21% attack 

drop 

AMA 72.0 71.4–72.6 - 0.6 - - 
Static  wi amplifies 28% 

loss 

DAG-based BCFL 85.0 84.5–85.5 18% 0.5 0.12 0.55 
Limited adaptation 

increases vulnerability 

FedDRL 90.0 89.6–90.4 25% 0.4 0.09 0.80 
RL reduces impact but 

lacks verification 

FedAvg 70.0 69.3–70.7 -2.8% 0.7 0.40 -0.20 
Uniform weighting fails 

under attacks 

FedProx 78.0 77.4–78.6 8.3% 0.6 0.25 0.35 
Regularization offers 

partial resilience 
 

F. Privacy and Scalability 

RL-DAA maintained ϵ-DP with zero breaches, exceeding 
DAG-based BCFL’s 2%, FedAvg’s 3%, and FedProx’s 1.5%. 
Scalability tests with 100 nodes showed RL-DAA’s 10% 
latency increase (CI: 1.84–2.04, p = 0.03), versus AMA’s 25% 
(CI: 3.8–4.2), FedAvg’s 30%, and FedProx’s 20%. 

G. Comparative Summary 

RL-DAA’s performance—96.5% accuracy, 45% latency 
reduction, 38% energy savings, and 35% resilience gain—
outperforms all methods, validated by narrow CIs, significant 
p-values, and effect sizes. AMA, DAG-based BCFL, FedDRL, 
FedAvg, and FedProx lag in adaptability or security. RL-
DAA’s Q-learning-blockchain synergy offers a robust solution. 

V. DISCUSSION 

A. Analysis of Results and Core Findings 

Combined with the experimental results, the essence of RL-
DAA’s performance advantages lies in its dynamic adaptive 

mechanism. The 45% latency reduction achieved by RL-DAA 
stems from the penalty mechanism for latency increments in 

the reward function(β2 =0.2), which enables the model to 

dynamically prioritize low-latency nodes instead of relying on 

the static weight allocation of AMA. This design validates the 
effectiveness of the "state-action-reward" loop in distributed 
federated learning (FL) environments. In contrast, other 
methods exhibit inherent limitations: while DAG-based BCFL 
reduces partial overhead through its consensus mechanism, it 
lacks dynamic adaptation to non-IID data, resulting in a 22% 
higher latency than RL-DAA. This proves that optimizing only 
the consensus layer cannot address the heterogeneity issues at 
the aggregation layer, highlighting RL-DAA’s superiority in 

holistic system optimization. 

B. Limitations and Future Improvements 

This study has certain limitations that require further 
refinement. First, it only considers Byzantine attack scenarios 
with fewer than 20% malicious nodes; the fault tolerance of 
RL-DAA needs additional verification for higher proportions 
of malicious nodes (e.g., over 30%). Second, the exploration 
rate decay strategy of Q-learning (ε= ε ×0.99) is not adaptively 
adjusted for different datasets, which may lead to slower 
convergence in small-sample EHR data. Corresponding 
improvement directions are proposed: future work can 
introduce deep reinforcement learning (DRL) to replace 
traditional Q-learning, enhancing the representation ability in 
high-dimensional state spaces. Meanwhile, integrating 
federated meta-learning to optimize the exploration rate 
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strategy will strengthen the model’s adaptability in scenarios 

with small samples and high heterogeneity. 

C.  Practical Application Value and Outlook 

RL-DAA’s characteristics of low energy consumption 

(38% reduction) and low latency make it deployable on 
resource-constrained Internet of Medical Things (IoMT) 
devices, such as portable medical monitors, enabling real-time 
EHR analysis in remote areas. Beyond the healthcare field, this 
method can be migrated to privacy-sensitive scenarios, 
including financial risk control and intelligent transportation. 
Its integrated framework of "blockchain + RL + FL" provides a 
universal solution for distributed data collaboration, breaking 
through the bottlenecks of privacy leakage and inefficient 
aggregation in traditional distributed systems, and promising 
broad application prospects in various industries requiring 
secure data sharing. 

VI. CONCLUSION 

The Reinforcement Learning-Driven Adaptive Aggregation 
(RL-DAA) method, integrated into the Enhanced Privacy-
Preserving Blockchain-Enabled Federated Learning (EPP-
BCFL) framework, demonstrates significant advancements in 
secure EHR management. With superior accuracy, a 45% 
latency reduction, 38% energy savings, and 35% improved 
resilience to Byzantine faults—supported by narrow 95% CIs 
and ANOVA results (F = 9.8–12.3, p < 0.001)—RL-DAA 
outperforms AMA, DAG-based BCFL, FedDRL, FedAvg, and 
FedProx. This innovation promises real-time, secure, and 
sustainable healthcare data processing, with potential to 
enhance diagnostic workflows and equity across institutions, 
though its complexity poses deployment challenges. 

The results, encompassing superior accuracy, reduced 
latency, lower energy consumption, and enhanced resilience to 
Byzantine faults, underscore RL-DAA’s potential to transform 
healthcare data aggregation by addressing critical challenges in 
distributed systems. The narrow 95% confidence intervals and 
significant statistical outcomes (e.g., ANOVA F-values ranging 
from 9.8 to 12.3, p < 0.001) affirm the robustness and 
consistency of RL-DAA across diverse metrics, setting it apart 
from traditional methods like AMA, DAG-based BCFL, 
FedDRL, FedAvg, and FedProx. 

The significance of these findings lies in RL-DAA’s ability 
to enable real-time, secure, and energy-efficient EHR 
processing, which could revolutionize diagnostic workflows in 
multi-institutional settings. The 45% latency reduction and 
38% energy savings suggest a scalable solution that minimizes 
operational costs and environmental impact, while the 35% 
improvement in resilience to adversarial attacks ensures data 
integrity in hostile network environments. These outcomes 
have far-reaching implications, potentially accelerating the 
adoption of federated learning in healthcare by fostering trust 
among stakeholders through enhanced privacy and security, as 
evidenced by zero differential privacy breaches. 

The impact extends beyond technical performance, 
promising to bridge gaps in healthcare equity by facilitating 
seamless data sharing across resource-constrained regions. 
However, the reliance on dynamic Q-learning and blockchain 
integration introduces complexity that may challenge 

deployment in legacy systems. Consequently, the results 
advocate for a paradigm shift toward adaptive, intelligent 
aggregation techniques in federated learning, with RL-DAA 
serving as a benchmark for future innovations. 
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