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Abstract—With the rapid digitization of healthcare,
blockchain-integrated federated learning (FL) for EHR
management faces challenges of heterogeneous data, high
latency, and adversarial vulnerabilities. This study proposes a
novel Reinforcement Learning-Driven Adaptive Aggregation
(RL-DAA) in an enhanced blockchain-FL framework, using Q-
learning to dynamically optimize model weights based on trust,
data quality, and node reliability. RL-DAA reduces
computational overhead by 40% via state-action-reward
optimization (mitigating non-IID bias) and boosts robustness
against Byzantine faults by 35% with fault-tolerant rewards.
Validated on adapted CIFAR-10 and real-world healthcare
simulations, compared to EPP-BCFL and baseline models, RL-
DAA achieves 96.5% accuracy, 45% lower latency, and 38%
reduced energy consumption. By dynamically balancing
efficiency, privacy, and robustness via RL-driven optimization,
this work advances secure, scalable EHR management, with
broader potential in privacy-sensitive domains.

Keywords—Federated learning; blockchain; reinforcement
learning; electronic health records; privacy preservation

I.  INTRODUCTION

The integration of federated leaming (FL) with blockchain
technology has revolutionized privacy-preserving data
management in healthcare, particularly for electronic health
records (EHR) [1-3]. Traditional centralized systems are prone
to breaches and single points of failure, leading to the adoption
of decentralized approaches like blockchain-enabled FL
(BCFL) [4-6]. These frameworks allow collaborative model
training across institutions without sharing raw data, leveraging
edge analytics for real-time processing [7-8]. However,
existing methods, such as the Enhanced Privacy-Preserving
Blockchain-Enabled Federated Leaming (EPP-BCFL) [9],
suffer from static aggregation strategies that fail to adapt
dynamically to heterogeneous environments [10], resulting in
high computational costs, increased latency, and limited
resilience to evolving threats. This creates barriers to
scalability in resource-constrained settings like IoMT devices
[11]. The core problem addressed here is the need for an

*Corresponding author.

This work was supported by the Guangdong Basic and Applied Basic
Research Foundation (Grant No.2018A0303070009) under the Guangdong
Provincial Natural Science Foundation - Guangdong East-West-North.

adaptive, efficient aggregation mechanism that optimizes
performance while maintaining privacy and security in EHR
management [12-16].

Recent advancements highlight these limitations. For
instance, a 2024 study on blockchain-FL for healthcare loT
proposed a DAG-based consensus to reduce overhead but
overlooked dynamic data heterogeneity [17]. Another 2025
paper on privacy-preserving FL in EHR used homomorphic
encryption, achieving high accuracy but at the cost of latency
in large-scale networks [18-20]. A 2024 work on edge-enabled
BCFL for smart cities integrated differential privacy, yet it
struggled with Byzantine faults in heterogeneous nodes [21].
Similarly, a 2024 investigation into multi-task FL with
blockchain emphasized concurrent training but failed to
address real-time adaptability [19]. Finally, a 2024 analysis of
energy-efficient FL in industrial IoT used Stackelberg games
for optimization, but it did not fully mitigate communication
delays in healthcare contexts [22]. These studies underscore the
gap in adaptive, fault-tolerant aggregation for BCFL.

The contributions of this study include analyzing three
major shortcomings of existing adaptive aggregation in BCFL
frameworks: high computational complexity in trust
assessment, latency from hybrid privacy mechanisms, and
inadequate handling of Byzantine faults. It proposes a novel
Reinforcement Learning-Driven Adaptive Aggregation (RL-
DAA) method that overcomes these through Q-learning-based
dynamic weighting, a theoretical framework for stability and
convergence, and optimized integrations with blockchain
consensus. This enhances overall algorithm efficiency, privacy,
and robustness in EHR management.

II. RELATED WORK

A. Overview of Traditional Transformer Model

While the study focuses on BCFL, traditional models like
Transformer are analogous in attention-based aggregation,
often used in FL for EHR feature extraction. The Transformer
architecture relies on self-attention mechanisms to compute
weighted sums of inputs, defined as:

T
Attention(Q,K, V) = softmax (%) \Y (1)
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where, Q, K,V are query key, and value matrices, and dy is
the dimension. This enables parallel processing but introduces
quadratic complexity:

0(n?) (2)

Quadratic complexity of standard attention is inefficient for
resource-constrained edge devices in EHR processing. In
BCFL contexts, similar mechanisms aggregate model updates
from edge nodes.

B. Disadvantages and Limitations of a Transformer

Transformers in FL aggregation face long-term dependency
issues, where attention dilutes over extended sequences,
leading to poor handling of non-IID EHR data. For example, in
heterogeneous healthcare datasets, performance degrades as
r}i_)rgc Attny; — 0 for distanti,j. High computational complexity

exacerbates this in edge devices, with energy costs scaling as
O(n?d). Sparsity in attention weights wastes resources, as
many are near-zero, reducing efficiency in distributed BCFL.

C. Novel Improvement Methods

Recent innovations in BCFL draw from Transformer
improvements, such as sparse attention and hybrid models, to
enhance aggregation. For instance, sparse Transformers reduce
complexity to:

O(nlogn) (3)

The reduced computational complexity achieved through
locality-sensitive hashing accelerates updates of EHR models
in blockchain-enabled federated learning (BCFL) systems [23].
Long-term memory modules, like those in Performer models
using random projections, approximate attention as:

softmax(QK™) =~ ¢p(Q)T$(K) 4

where, ¢ is a kemel, improving dependency capture in FL
[24]; updated in [21] for edge BCFL.

In healthcare-specific BCFL, [20] integrated homomorphic
encryption with sparse attention, allowing secure aggregation

without decryption: encrypted updates E(w;) are aggregated as:

E(ZWi) = HE(Wi) ()

This private aggregation approach leverages homomorphic
encryption, where the encryption function processes local node
weights to enable secure summation without requiring
decryption during the aggregation process, but this increases
latency by 30% in non-IID data. In [19], the authors proposed a
multi-task FL. with blockchain, using concurrent training via
DAG structures, where consensus is achieved through directed
acyclic graphs to avoid PoW overhead, yet it lacks adaptability
to dynamic trust. In [22], the authors employed Stackelberg
games for energy optimization, modeling utility as U = a -
accuracy — 3 - energy , solving via Nash equilibrium, but
ignoring fault tolerance.

The original EPP-BCFL [9] uses Adaptive Model
Aggregation (AMA) with weights based on trust t;, data
quality q;, and capacity c;: global model G = Y w; L,

_ 44i¢ (6)
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This integrates SMPC and DP for privacy, with e-DP noise
added as:

W, = w; + N (0, 62) (7)

o = /2In(1.25/3) /e (8)

Gaussian noise N'(0,02) is injected to safeguard the
privacy of electronic health records (EHRs) within the
federated leamning framework.Computes ofor € — DPe=privacy
budget, 6=negligible failure probability.

Consensus is PoS + BFT, selecting validators by stake and
fault tolerance up to 33%. Edge analytics preprocesses data
with anomaly detection using ML-based IDS, reducing
response time to 2.3s. However, AMA's static weighting
assumes fixed metrics, leading to inefficiencies.

Other methods like Mamba [25], extended in 2024
healthcare FL use state-space models for linear complexity
0(n), with dynamics:

Xer1 = AXe + Bug )

y: = Cx, , outperforming Transformers in sequence
modeling for EHR time-series. In BCFL, this could replace
attention for aggregation, but lacks privacy integration. Hybrid
RNN-Transformer models [26] combine recurrent states with
attention, addressing long dependencies via h, =

RNN(h,_,Attn(x,)) , but add overhead in distributed settings.

These pave the way for our RL-DAA, which uses RL to
learn optimal weights dynamically, outperforming static AMA
and Transformer-based methods in efficiency and robustness.

III. METHODOLOGY

In this section, we outline the theoretical foundations and
algorithmic details of the Reinforcement Leaming-Driven
Adaptive Aggregation (RL-DAA) method, which enhances the
EPP-BCFL framework. Before delving into the innovations of
RL-DAA, it is essential to examine the original EPP-BCFL
approach, highlighting its strengths in privacy and efficiency
while identifying key shortcomings that RL-DAA addresses
through dynamic reinforcement learning mechanisms.

A. Analysis and Shortcomings of Previous Methods

The original EPP-BCFL methodology [9] is a three-layer
framework for secure EHR management.

The Edge Nodes Layer performs local training on client
devices with differential privacy (DP) noise added to gradients:

g =g +N(0,6%) (10)

where, o ensures e-DP. Homomorphic encryption encrypts
updates as E(g;). The Federated Aggregation Layer uses AMA
to compute the global model:

G =YL wilf an

Weights  w; = f(t;,q;,¢;) based on  trust t;=
Yhistorical accura, quality
KL-divergence(D;||Dgjopa1), and capacity ¢; = device resources.
The Blockchain Layer verifies updates via PoS + BFT
consensus, where validators are selected by stake s;, tolerating
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faults if <33% malicious, and stores hashes on a layered ledger
for auditability. Edge analytics include real-time anomaly
detection with IDS, flagging outliers via z -score >3.
Experiments on CIFAR-10 showed 95.2% accuracy and 43%
latency reduction.

However, three disadvantages limit its effectiveness:

1) First, high computational overhead in trust assessment
for AMA. Trust t; requires historical computation over
epochs, involving matrix operations for accuracy metrics,
leading to O(N - d?) complexity per round ( nodes, d
dimensions). In heterogeneous EHR (e.g., multi-modal data
from hospitals), this scales poorly, consuming 37% more
energy on loT devices as per simulations, causing dropouts in
resource-constrained environments like rural clinics.

2) Second, increased latency from hybrid privacy
mechanisms. SMPC + DP involves multi-party computations
for secure summation, with DP noise adding variance that
slows  convergence:  error bound E[||G— G*||?] <
0(1/T + 02), where T epochs, but o amplifies latency
by 43% in large N > 100, as encrypted operations require
rounds of communication, delaying EHR real-time analytics
like diagnosis.

3) Third, inadequate handling of Byzantine faults in
heterogeneous settings. PoS + BFT assumes uniform stake,
but in non-IID EHR, malicious nodes can inflate t; via
poisoning, reducing accuracy from 95% to 72% under 20%
attacks. The fault tolerance f < n/3 fails if heterogeneity
skews distributions, as weights don't adapt to dynamic faults,
leading to biased globals in cross-institutional collaborations.

These key shortcomings: computational overhead, high
latency, and inadequate fault tolerance, limit the framework’s
scalability, and our RL-DAA addresses them through the
dynamic learning of optimal aggregation policies.

B.  Theoretical Knowledge

Assumption 1: The state space is Markovian, with node
states (trust, quality, capacity) independent given previous
actions.

Theorem 1 (Stability): Under bounded rewards and
learning rate a — 0, RL-DAA's Q-values stabilize to optimal
Q*, ensuring aggregation weights converge without oscillation.

Proof: By Q-learning update:
Q(s,a) « Q(s,a) + « [r + yrr;axQ (s',a") — Q(s, a)] (12)

With ¥ a = o0, ¥ a? < oo, contraction mapping in Banach
space yields [|Q""' = Q*[| < y[IQ"— Q" < IQ* = Q*[l, y < 1.
This is placed here before algorithmic steps to establish why
RL-DAA is reliable in noisy EHR environments.

Theorem 2 (Convergence): RL-DAA converges to optimal
policy * with probability 1, minimizing aggregation error.

Proof: Using Robbins-Monro conditions and a finite MDP,
the Bellman optimality holds:

Q*(s,a) =E [r+yn;:;1xQ* (s’,a’)] (13)
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Defines optimal Q-value Q*;E[ J=expected value,s’=next
state.Greedy policy m(s) = argmaxQ(s,a) converges as
a

exploration € = 0. Placed post-stability to show long-term
optimality for FL rounds.

C. Distributed Explanation of the New Method

The RL-DAA fundamentally replaces AMA by using
reinforcement leaming (Q-learning) to dynamically learn
aggregation weights, treating aggregation as an MDP where
states represent node metrics, actions adjust weights, and
rewards penalize faults/latency while rewarding accuracy. This
overcomes the three disadvantages: 1) reduces overhead by
learning from experience without full recomputation; 2)
minimizes latency via optimized actions; 3) enhances fault
tolerance through adaptive rewards.

Edge Nodes Layer
Input: Raw EHR Data
Output: Encrypted L;

OutpL/ &upu[
t

Encrypted L; S

\ /

Federated Aggregation Layer
Input: s¢, Encrypted L;

Process: RL-DAA (Q-learning)
Output: Gt1

i Output

Gt+1

l Input

Blockchain Network Layer
Input: Hashes of G**1

Process: PoS + BFT Consensus
Output: Tamper-Proof Ledger

l Output

Ledger

Fig. 1. System architecture of RL-DAA in the EPP-BCFL framework.

Fig. 1 outlines the three-layer architecture of the EPP-
BCFL framework enhanced with RL-DAA. The Edge Nodes
Layer represents distributed client devices processing local
EHR data, with inputs as raw patient data and outputs as
encrypted local models L; with DP noise g, = g; + NV'(0,02).
The Federated Model Aggregation Layer hosts the RL agent,
taking encrypted updates and node states s =
concat ((t; q;,¢;,f;)) as inputs, processing them via Q-
learning, and outputting the global model Gt*1 = ¥ witlL,;.
The Blockchain Network Layer verifies updates with PoS +
BFT consensus, inputting hashes and outputting a tamper-proof
ledger. Sandy beige nodes denote data flows (e.g., w;, Gt*1).

The RL-DAA integrates seamlessly into the EPP-BCFL
layers, with the RL agent at the aggregation layer dynamically
adjusting weights based on real-time states, enhancing
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scalability across heterogeneous EHR data sources. The
blockchain layer ensures secure verification, critical for trust in
healthcare collaborations.

Core idea: In each FL round, the coordinator models the
system as state s = (t;, q;, ¢, f;) (adding fault indicator f;).
Actions a = A wj adjust weights. Reward r = 3; - accuracy —
B, - latency — B5 - faults, with 8 hyperparameters.

Mathematical derivation: Start with standard FL update
G = Y wiLl In RL-DAA, wf*t! = w! + a, where a from Q-
policy.

Step 1: State Initialization. At round t, collect node states
st =V =[ty,qqy, ¢ 61t Ao O ] 5 f; = 1 if anomalous
(from IDS). This vector is input to the Q-network.

Formula:

s = concat ({(t;, a5, &;, f}HLs (14)

Explanation:t=trust, q—quality, c~capacity, fi=fault flag.
Concatenation ensures a holistic view, reducing the static
computation disadvantage.

Step 2: Action Selection. Use €-greedy: with prob €,
random a € [—0.1,0.1]; else a = argmax Q (s, a’).

a

uniform([—0.1,0.1]), rand < €

Formula:m(s) = { arg max, Q(s,a), else

(15)
Explanation: Balances exploration or exploitation, adapting
to heterogeneity, unlike static AMA.
Step 3: Weight Update and Aggregation. Apply action:
witl = dip(wf + a;, 0,1) (16)

Adjusts node weights via RL action a;,clip bounds weights
to [0,1] for stability. Aggregate:

Gt+1 — Zwlt+1L§ (17)
Formula: wi*! = clip(w! + a;,0,1),
t+1
t+1 — W
w - |wt+1|1 (18)

Explanation: Ll-normalization ensures the sum of
aggregation weights = 1. Clipping prevents instability,
addressing fault intolerance by downweighing faulty nodes.

Step 4: Reward Computation. After aggregation, Compute
r =B, (1—loss(G*1)) — B, - Alatency — B3 X f; (19)

Formula:

M
1
r=4; (1 - Mrnzll(Gt+1(Xm)'Ym)> — B2 (Tes1 — Te)

- N
~B ) f
i=1

Explanation: Incorporates accuracy, latency difference A T,
faults; B, =0.6,, =02,8; =02 .This penalizes
disadvantages directly.

Vol. 16, No. 12, 2025

Step 5: Q-Update. Observe next state s, ,, update

Q(sp ap) « Q(spa) + a (r + Yma‘?}x Q (s¢+1,a") — Q(sy, at))

Formula:

Qspap) < Qlspa) + @ (r +ymgxQ (sesq,a) = Qlsy, at))
Explanation: Temporal difference learning converges faster
than static metrics, reducing overhead.
Derivation of Convergence: From Theorem 2, error e, =
Qt - Q*s
er1 = (1 — a)e, + oy max|e;| (20)
Error decay for Q-value convergence: e =Q, — Q*, a<l and
v<1 ensures stability.

Integration with BCFL: Encrypted updates via
homomorphic, verified on blockchain before RL step.

This RL-DAA improves efficiency (leams in O(N) per step
vs O(Nd?)), stability (bounded variance), and convergence
(proven).

State Input Node
Input: s, = (t;, q;, c;, f;)
Output: s, to Q-Learning

Output

Input
Input: w',L; p N
' Q-Learning Decision Unit
Input: s,
Process: e-greedy m(s)
Output: a,
- 2 . Output
[ WeightUpdateNode
Input: w',a,, L; a
Process: w'*! = clip(w' + a,) Input t
| Output: G*1 ]
l()utpul
GtH \

Fig. 2. Mechanism schematic of the RL-DAA aggregation process.

Fig. 2 details the core RL-DAA mechanism within the
aggregation layer. The State Input Node takes s, =
concat((t;,q;, ¢, f;)) as input from edge nodes, processed by
the Q-Leamning Decision Unit, which outputs action a, via €-
greedy policy T(s). The Weight Update Node adjusts weights
witl = clip(wf + a;,0,1) and aggregates Gt*2, with (e.g., a;,
w; ) representing intermediate data. The core RL-DAA
mechanism (Fig. 2), where the Q-learning unit dynamically
selects actions to optimize weights, a key improvement over
AMA's static approach. This adaptability reduces latency and
computational overhead, as the policy evolves with each round.
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State Initialization Assumption Node
Input: Node metrics Input: Fie MDP, Markovian States
Output: s, Output: MDPnit Structure
*! _l_()utput
\ — - -
\ < MDP Structure >
‘ - I
\ L — mpu
Action Selection \
Input: s, , & \ e
Process: e-greedy "“ Loop ift<T

Bellman Optimality Setup
Input: MDP Structure
. 0* - el o
| Process: Q*(s,a) = E[r+y nha,xQ (s',a )]
| Output: Bellman Equation
\

Y Output
v ~.
[ \

— ———
C‘_ Bellman Equation >
Weight Update & Aggregation \ T —
Input: W¥, a;, L;

Output: a;

Input (via Q-update)
I Input
\

Output: Gt+1 \ Convergence Guarantee
\ = y
| Input: Bellman Eq, Convergence Cond

l G+l \

|
\
\

Reward Computation
Input: G*+1, latency, faults
Output: r

OQutput: @, = @* w.p.1,n(s) = argmax Q (s, a)
a

Output: Q* Qm
"‘ terative Update ?Q\.
|
t \

Input Robbins-Monro Conditions
\
\
QQ-Value Update Updated Q )

Input: Q-update: Q(s;, a,) « Q(s, @) + @, [r + ]-'maqx Q (5p41.a") — Q(sy, at)]
Process: Ni2,q; = 0, B2, af < o
Qutput: Convergence Condition

Input: s¢, ag, r, Sg4q Next Round or End
Output: Updated Q

Fig.3. Core process flowchart of the RL-DAA algorithm.

(__7 Convergence Condition >

Fig. 3 details the five core steps of RL-DAA iterates Fig. 4.
through state

Convergence proof flowchart of Q-learning in RL-DAA.
collection, action optimization, weight
adjustment, reward feedback, and Q-learning updates. The

State Initialization inputs node metrics and outputs s,. The  lcaming algorithm within RL-DAA follows a rigorous logical
Action Selection decision node uses e-greedy, branching to ~ Progression that underpins its reliability in optimizing
random or arg max actions, outputting a,. The Weight Update aggregation weights for EHR management. The Assumption
& Aggregation node processes wi + a, and G'*1, with data Node (forest green) gstabhshes the MDP frame}york, assuming
nodes. The Reward Computation calculates r, and the Q-Value fﬁg? state; atndlactlc(i)nfsi V?t? Maﬂgg]l?l? translljt 10r]:1)§1,.ta cnt:u cQal
. . starting point placed first to jus e applicability of Q-
Update adjusts Q(s,a,), looping back for the next round. leamir?g rt)o thepheterogeneous,Jreal—time en\?ir;onmentyof edge
nodes. This feeds into the Bellman Optimality Setup (sky
blue), which defines the optimal Q-value Q*(s,a) =

As depicted in Fig. 4, the convergence proof of the Q-

The Q-learning algorithm within RL-DAA operates as a
closed-loop process tailored to the dynamic nature of EHR
aggregation. The State Ob.servatlon’ step (forest green) E[r+qux Q* (s’,a’)] as the fixed point of the Bellman
initializes the cycle by collecting real-time metrics from edge a )
nodes, providing a comprehensive input s, that reflects the ~ Operator, providing the theoretical target for convergence and
heterogeneous and evolving conditions of healthcare data. This ~ ddressing the stability concerns of static AMA by ensuring a
feeds into the Action Selection decision node (sky blue), where global op tmum. The' RobbmsTMopro Conditions node (sky
the e-greedy policy balances exploration and exploitation, a blue) applies stochastic approximation theory, processing the

critical improvement over AMA's static weighting that reduces Q-update rule Q(sp,ap) « Qs ap) + ay [r +

computational overhead by adapting to current states rather

N . . _
than recomputing metrics each round. The Environment ymﬁXQ(S”l’a) Qse, at)] with  conditions %, o
Interaction node (muted brown) applies selected actions to

(sufficient learning) and ¥ a? < (bounded variance), outputting
update weights and aggregate the global model, addressing  the condition that ensures the iterative process stabilizes. This
latency issues by minimizing unnecessary communications leads to the Convergence Guarantee (sandy beige), concluding
through leamed policies. The Reward Computation step (sky that Q. —» Q* with probability 1 under the greedy policy
blue) integrates performance metrics (accuracy, latency, faults)

1i(s) = argmax Q (s, a), as the error e, = Q, — Q* diminishes
into a single reward signal r, enabling the system to prioritize 2
low-latency, fault-tolerant nodes, thus resolving long-term

over iterations due to the contraction mapping property
-Ql = —Ql[, y< 1). The muted brown
dependency delays in sequential FL rounds. Finally, the Q- l(lrl)lgattglloon !eﬂeZlLQ:he (ilte!ati\ye natur)e, aligning with RL-
value Update node (forest green) refines the Q-function using DAA's 50% faster convergence (10 vs. 20 epochs) compared to
the temporal difference rule, proven to converge under AMA, enhancing its practical deployment in dynamic
bounded rewards (Theorem 2), enhancing fault tolerance by healtl;care settings.
downweighting malicious nodes over iterations. The loop back
with decaying € ensures convergence, making RL-DAA robust

against the 20% attack scenarios where AMA faltered,

To facilitate a clear understanding of the Reinforcement
restoring accuracy to 93.2%.

Leaming-Driven Adaptive Aggregation (RL-DAA) method,
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this section provides a pseudocode implementation that
outlines its logical steps in a concise manner.

The pseudocode (Algorithm 1) captures the essence of RL-
DAA's integration into the broader EPP-BCFL framework,
emphasizing dynamic weight adjustment via Q-leaming to
address the disadvantages of static aggregation in traditional
methods.

Algorithm 1: Pseudocode

# Initialize Q-function (table or neural network), hyperparameters: a
(learning rate), y discount), & (exploration), $1=0.6, $2=0.2, 33=0.2
Initialize Q(s, a) to 0 or random small values
For each federated learning round t=1 to T:

# Step 1: Collect current state from all N nodes

s¢ = concatenate ((t;, qj, ¢;,f;)foriin1toN) #
tj:trust, q;: quality, c;: capacity, f;: faultflagfromIDS

# Step 2: Select action using e-greedy policy
if random <e:
a; = uniformp,pgom ([—0.1,0.1])# Random weight adjustment
for exploration
else:
a; = argmax,Q(s;, a) # Greedy selection for exploitation

# Step 3: Update weights and perform aggregation
for each node i:
witl = clip(wf + ac[i], 0,1) # Adjust and clip weights
Normalize w150 sum (w{*1)=1
Gt*1 = sum(wit' + LY) # Aggregate global model from local

models L;

# Step 4: Compute reward based on performance metrics

accuracy =1 - (1/M) * sum(loss(G**1 (X, ), Vi) for m in validation
set)

delta_latency = current latency - previous_latency

totalg,yys = sum(fi foriin 1 to N)

T = Bl xaccuracy — B2 xdeltaigrency — B3 * total rayiss

# Step 5: Observe next state and update Q-value
St+1= collect new states after aggregation

Qs a)+=a * (r + Y * maxy’ Q(St+1:a, ) - Q(St'at))

# Decay exploration rate
€ = ¢ x decayfacor # €.2., 0.99

This pseudocode demonstrates the iterative nature of RL-
DAA, where each round refines the aggregation policy through
experience, leading to improved efficiency, reduced latency,
and enhanced fault tolerance compared to the original AMA's
static weighting.

For visual clarity, Fig. 5 illustrates the flowchart of the RL-
DAA algorithm. The process begins with state initialization at
the top, represented as a blue rectangular node, which gathers
node metrics as input and outputs the concatenated state vector.

Vol. 16, No. 12, 2025

This feeds into the green decision node for action selection,
where an e-greedy policy determines whether to explore or
exploit, with branching arrows indicating the conditional flow
(random vs. argmax). The yellow node handles weight updates
and model aggregation, taking adjusted actions as input and
producing the global model as output. Following this, the red
computation node calculates the reward, incorporating
accuracy, latency delta, and faults to provide feedback. Finally,
the purple learning node updates the Q-values based on the
temporal difference, closing the loop back to the next round via
a dashed arrow, emphasizing the iterative reinforcement
learning cycle. The flowchart uses directed arrows to show
data flow (e.g., states and actions as inputs/outputs) and
different shapes: rectangles for processes, diamonds for
decisions, and parallelograms for inputs/outputs. This structure
aids in understanding how RL-DAA dynamically adapts
aggregation, overcoming the computational overhead, latency,
and fault issues of prior methods by learning optimal policies
over time.

Fig. 5 demonstrates the iterative nature of RL-DAA, where
each round refines the aggregation policy through experience,
resulting in improved efficiency, reduced latency, and
enhanced fault tolerance compared to the static weighting of
the original AMA. The loop ensures intra-episode
convergence, directly alleviating the static limitation of the
original AMA, making RL-DAA more efficient (Colors are
explicitly assigned to nodes for differentiation: blue for
initialization, green for selection, yellow for update, red for
reward, and purple for Q-update. Details such as inputs/outputs
are annotated on edges.).

1: State Initialization
Input: Node metrics (¢;, q;, i, f;)
Process: Concatenate into s,
Output: State vector s;)

_~~ Output: s,
«~ Inputto selection

Step 2: Action Selection
Input: 5;, &
Process: e-greedy policy
If rand < & Random a,
- Else: arg max Q(s;, a)
Output: Action a,

Iterateif t<T

Output: @ \
[ put: de Loop with decayed &\

(Explore or Exploit branch)

Step 3: Weight Update & Aggregation
Input: wt,ay, L}
Process: w'*! = clip(w* + a,,0,1);
Normalize G**! = sum(w; * L;)
Output: Global model G**+!
Output: G**?
Input to reward calc

@ Next FL Round or Endift =T
(Loop back if more rounds)

Step 4: Reward Computation
Input: G*+1, validation data, latency, faults
Process: ¥ = 1 « acc — 2 + Alatency — 3 » sum(f;)
Q Output: Reward r J

Output: r
Input to Q-update

Updated Q

Step 5: Q-Value Update
ep 5: Q-Value Up Proceed to next

Input:sy, @, 7, Se41 )
Process: Q(s,,a;) += @* (r + y + maxQ(s;41,a) — Q(s0,a,))
Output: Updated Q-function

Fig. 5. Demonstrates the iterative nature of RL-DAA.

The initialization node sets the foundation by processing
inputs from edge nodes, while the decision node introduces
branching for exploration, critical for adapting to
heterogeneous EHR data. The overall flowchart in Fig. 5
encapsulates the RL-DAA's efficiency gains, as the loop
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ensures convergence over rounds, directly mitigating the static
limitations of the original AMA.

D. Advantages of the Method

The Reinforcement Learning-Driven Adaptive Aggregation
(RL-DAA) method represents a significant advancement over
traditional adaptive aggregation strategies, such as the static
Adaptive Model Aggregation (AMA) in the original EPP-
BCFL framework, as well as other state-of-the-art approaches
in blockchain-enabled federated leaming (BCFL) for EHR
management. By leveraging Q-leaming to dynamically
optimize aggregation weights based on real-time states (trust,
data quality, capacity, and faults), RL-DAA addresses key
limitations in computational efficiency, latency, fault tolerance,
and overall model performance. This results in a more scalable,
robust, and privacy-preserving system tailored to
heterogeneous healthcare environments, where non-1ID data
and resource constraints are prevalent.

First, RL-DAA substantially improves computational
efficiency compared to traditional methods. In AMA, trust and
quality assessments involve matrix-heavy operations, leading
to ON-d2 complexity per round (N nodes, d model
dimensions), which escalates energy consumption by up to
37% on edge devices like Internet of Medical Things (IoMT)
sensors. RL-DAA shifts to an experience-based leamning
paradigm, where Q-value updates occur in O(N) time per step,
amortizing costs over rounds through policy reuse. This
reduces overall computational overhead by approximately
40%, as the agent learns optimal actions without exhaustive
recomputation each epoch. For instance, in simulations on
CIFAR-10 adapted for EHR-like multi-modal data, RL-DAA
achieved a 38% drop in energy use versus baseline FL models,
enabling deployment on low-power devices without
performance degradation. This efficiency gain aligns with
findings in recent RL-FL hybrids, where adaptive policies
minimize redundant calculations, outperforming static
weighting in resource-constrained settings.

Second, RL-DAA effectively mitigates latency issues
inherent in hybrid privacy mechanisms like Secure Multi-Party
Computation (SMPC) and Differential Privacy (DP).
Traditional Adaptive Model Aggregation (AMA)'s fixed
weights amplify delays during encrypted aggregations, with
DP noise contributing to variance that extends convergence
time, governed by the error bound O G + 02), where T is the

number of epochs and o is the noise scale. By incorporating
latency deltas into rewards, defined as r = 3; - accuracy — 3, -
Alatency — 5 - faults, RL-DAA dynamically adjusts actions
to prioritize low-latency nodes, reducing communication
latency by 45%. Experimental results demonstrate convergence
in 10 epochs versus AMA's 20, achieving a 50% speedup while
maintaining e-DP privacy guarantees. This resolves long-term
dependency problems in sequential FL rounds, where static
methods accumulate delays in non-IID Electronic Health
Record (EHR) data (e.g., time-series patient records).
Compared to other improved methods, such as DAG-based
BCFL, which reduces consensus overhead but overlooks
dynamic adaptation, RL-DAA's reward-driven optimization
ensures responsive real-time analytics, critical for EHR
applications like anomaly detection in healthcare networks.
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Third, RL-DAA excels in fault tolerance and robustness
against adversarial attacks, a critical superiority over AMA and
similar frameworks. AMA's reliance on historical metrics
makes it vulnerable to Byzantine faults, dropping accuracy
from 95% to 72% under 20% poisoning attacks. RL-DAA
integrates fault indicators (f;) into states and penalizes them in
rewards, enabling adaptive downweighting of malicious nodes
and improving resilience by 35%. In adversarial simulations, it
restored accuracy to 93.2%, surpassing PoS + BFT consensus
alone. This fault-handling capability extends to heterogeneous
edge devices, maintaining <1.2% accuracy deviation across
servers, laptops, and IoT nodes. When benchmarked against
other RL-enhanced FL methods, RL-DAA demonstrates
superior fairness and robustness; for example, it outperforms
FedDRL in handling non-IID distributions by incorporating
blockchain-verified states, ensuring tamper-proof trust without
additional overhead. Similarly, it achieves better energy-
latency trade-offs than DRL-based adaptive training, reducing
system costs in multi-RIS environments. Overall, RL-DAA's
convergence is proven stable under bounded rewards,
converging to optimal policies with probability 1, unlike
heuristic-based aggregations that oscillate in dynamic settings.

In summary, RL-DAA not only elevates accuracy to 96.5%
with robust privacy but also provides a holistic edge over
traditional and improved methods by optimizing efficiency,
resolving latency and dependency bottlenecks, and enhancing
fault resilience. These advantages validate its applicability in
secure EHR management, paving the way for broader adoption
in privacy-sensitive domains.

IV. RESULTS

This section presents the experimental results and a
comprehensive, statistically enriched analysis of the
Reinforcement Learning-Driven Adaptive Aggregation (RL-
DAA) method integrated into the Enhanced Privacy-Preserving

Blockchain-Enabled  Federated  Leaming (EPP-BCFL)
framework for secure electronic health record (EHR)
management. The evaluation utilized a  simulated

heterogeneous dataset adapted from CIFAR-10 to emulate
multi-modal EHR data (e.g., imaging, time-series) and a real-
world healthcare dataset from a multi-institutional network.
Each table and figure includes an enhanced analysis with
advanced statistical measures, including 95% confidence
intervals (CIs), variance analysis (ANOVA), t-tests, p-values,
and Cohen’s d effect sizes, alongside comparative mechanistic
insights and detailed trend interpretations to rigorously validate
RL-DAA’s superior performance.

A. Experimental Setup

Experiments were conducted on a distributed cluster with
50 edge nodes simulating hospitals and IoT devices, featuring
diverse computational capacities (2-8 GB RAM, 1-4 CPU
cores). The dataset included 10,000 samples with an 80% class
imbalance to reflect non-1ID EHR distributions, processed with
differential privacy (€= 1, § =107%) and homomorphic
encryption. RL-DAA parameters were a= 0.1, y= 09,
€ = 0.1 (decaying by 0.99 per round), §; = 0.6, B, = 0.2,
B; = 0.2. Baseline methods adopted identical privacy (SMPC
+ DP) and consensus (PoS + BFT) settings where applicable;
FedAvg and FedProx used standard aggregation without
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blockchain. Metrics were averaged over 10 runs across 20 FL.
rounds, with 95% Cls calculated using the t-distribution,
ANOVA for variance across groups, t-tests (p < 0.05
threshold), and Cohen’ s d for effect sizes.

B. Accuracy and Convergence

RL-DAA achieved a peak accuracy of 96.5% (95% CIL:
96.2-96.8%), surpassing AMA (952%, CL 94.8-95.6%),
DAG-based BCFL (94.8%, CI: 94.3-95.3%), FedDRL (95.9%,
CL 95.6-96.2%), FedAvg (94.0%, CI: 93.4-94.6%), and
FedProx (94.5%, CI. 94.0-95.0%). Fig. 6 illustrates
convergence trajectories, with RL-DAA stabilizing at 10
epochs versus 20 epochs for AMA and FedProx, 15 epochs for
FedDRL, and 18 epochs for FedAvg, a 50%, 33%, and 44%
reduction, respectively. The soft teal line reflects Q-learning’s
dynamic weight adjustment via wf*! = clip(wf + a;,0,1) and
s; = concat((t;, q;, ¢;, f))) , mitigating non-1ID bias. T-tests
show significant improvements over AMA (p = 0008, d =
0.85), FedAvg (p=0.003,d =1.15), and FedProx (p = 0.015,d
=0.70). ANOVA across methods yielded F(5, 54) = 123, p <
0.001, with a variance ratio (F) indicating significant group
differences, and post-hoc Tukey tests isolating RL-DAA’ s
lead.

Fig. 6 plots accuracy (%) versus epochs for RL-DAA,
AMA, DAG-based BCFL, FedDRL, FedAvg, and FedProx,
with shaded 95% CIs. RL-DAA’s rapid ascent to 96.5% (CI:
96.2-96.8%) by epoch 10, with a narrow CI, reflects Q-
learning’s adaptive optimization, reducing convergence time
by 50% versus AMA’s 20-epoch climb to 952% (CI: 94.8—
95.6%). FedAvg’s 18-epoch plateau at 94.0% (CL 934
94.6%) and FedProx’s gradual rise to 94.5% (CL 94.0 -
95.0%) highlight static and regularization limitations.

Analysis: The narrow 95% CI (96.2-96.8%) for RL-DAA,
with a significant p-value (0.008) and effect size (d = 0.85 vs.
AMA), indicates high precision and a 25% variance reduction
compared to FedAvg (CI: 93.4-94.6%, d = 1.15). ANOVA’s
F(123, p < 0001) and Tukey tests confirm RL-DAA’ s
statistical edge, driven by dynamic state updates.
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C. Latency Reduction

RL-DAA reduced average latency to 1.76 seconds (95%
CL 1.66—-1.86), a 45% decrease from AMA’s 3.2 seconds (CL
3.0-34), as shown in Table 1. The reward function r = f3; -
accuracy — 3, - Alatency — B5 - X f; optimizes
communication, with $, = 0.2 reducing rounds by 10% (p =
0.02, d = 1.20). DAG-based BCFL achieved 2.5 seconds (CI:
2.35-2.65, p = 0.15), FedDRL 2.8 seconds (CL: 2.6-3.0,p =
0.10), FedAvg 3.5 seconds (CL.: 32-3.8, p = 0.30), and
FedProx 3.0 seconds (CI: 2.75 - 325, p = 020). ANOVA
yielded F(5,54)=9.8,p <0.001.

Analysis: The tight 95% CI (1.66—1.86) for RL-DAA, with
p = 0.02 and d = 1.20, indicates a 50% variance reduction
versus AMA (CI: 3.0-34). ANOVA’s F9.8, p < 0.001) and
Tukey tests confirm RL-DAA’s optimization, with FedAvg’s
wider CI (3.2-3.8) reflecting inefficiency.

D. Energy Consumption

RL-DAA’s total energy consumption was 45 kWh (95%
CL: 43-47), a 38% reduction from AMA’s 72 kWh (CIL: 69—
75), as depicted in Fig. 7. The O(N) complexity cuts
computation by 40% (p = 0.005, d = 1.30). DAG-based
BCFL’s 58 kWh (CI: 55.5-60.5), FedDRL’s 50 kWh (CI: 48—
52), FedAvg’s 75 kWh (CI: 71.5-78.5), and FedProx’s 65 kWh
(CIL: 62-68) show varying efficiencies. ANOVA yielded F(5,
54)=10.5,p<0.001.

100

80

acy (%)

Accur

—— RL-DAA

— AMA

—— DAG-based BCFL
FedDRL

== Fedivg

—~ FedProx

R e —

25 5.0 7.5 10.0 125 15.0 7.5 20.0
Epochs.

Fig. 6. Convergence trajectories of model accuracy.
TABLE L. LATENCY PERFORMANCE ACROSS METHODS
Average o % Reduction Std. Dev. p-value Cohen’s d . .
Method Latency (5) 95% CI (s) vs. ©) (vs. ) s. ) Analysis Insight

RL-DAA 1.76 1.66—-1.86 45% 0.1 0.02 1.20 Alatency reduces rounds by 10%

AMA 32 3034 ) 02 SMPC+DP 0overhead increases
variance by 20%

DAG-based BCFL | 2.5 235265 | 22% 0.15 0.15 0.45 DAG consensus limited by static
weights

FedDRL 2.8 26-3.0 12.5% 0.2 0.10 0.60 RL  partial = optimization  without
blockchain

FedAvg 35 32-38 -12.5% 0.3 0.30 -0.15 Uniform weighting amplifies delays

FedProx 3.0 275325 | 6.25% 0.25 0.20 0.25 Regularization  mitigates  but  not
optimizes
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Fig. 7. Energy consumption comparison.

Fig. 7 shows total energy (kWh) with 95% Cls for RL-
DAA (pale gold), AMA (muted taupe), DAG-based BCFL
(forest green), FedDRL (soft teal), FedAvg (muted taupe
dashed), and FedProx (forest green dashed). RL-DAA’s 45
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kWh (CL: 43-47) bar, with the narrowest CI, contrasts with
AMA’s 72 kWh (CI: 69-75) and FedAvg’s 75 kWh (CL: 71.5—
78.5).

Analysis: The narrow 95% CI (43-47) for RL-DAA, with p
= 0.005 and d = 1.30, indicates stable efficiency, reducing
variance by 33% versus FedAvg (CL: 71.5-78.5). ANOVA’s
F(10.5,p <0.001) confirms group differences.

E. Resilience to Byzantine Faults

RL-DAA maintained 932% (95% CL 92.8-93.6%)
accuracy under a 20% Byzantine attack, a 35% improvement
over AMA’s 72% (CI: 71.4-72.6%), as detailed in Table IL
The f; state and 3; - Y. f; penalty reduce impact by 21% (p =
0.007,d=1.10). ANOVA yielded F(5,54)=11.2,p <0.001.

Analysis: The tight 95% CI (92.8 - 93.6%) for RL-DAA,
with p = 0007 and d = 1.10, indicates a 33% variance
reduction versus FedAvg (CL 693 - 70.7). ANOVA’ s
F(112, p < 0.001) and Tukey tests confirm RL-DAA’ s
robustness.

TABLE II. RESILIENCE TO 20% BYZANTINE ATTACK
95% CI % Resilience Std. Dev. p-value (vs. Cohen’s d (vs. . .
0,

Method Accuracy (%) %) Improvement vs. AMA %) AMA) AMA) Analysis Insight
RL-DAA 932 928936 | 35% 04 0.007 1.10 gir;g‘“gates 21% attack
AMA 72.0 71.4-726 0.6 ; pate W amplifies 28%
DAG-based BCFL | 85.0 84.5-855 | 18% 0.5 0.12 0.55 Limited adaptation

increases vulnerability
FedDRL 90.0 89.6-90.4 | 25% 04 0.09 0.80 RL reduces impact but
lacks verification
FedAvg 70.0 69.3-70.7 | -2.8% 0.7 0.40 -0.20 Uniform weighting fails
under attacks
FedProx 78.0 774-786 | 83% 0.6 0.25 0.35 Regularization offers
partial resilience

F. Privacy and Scalability

RL-DAA maintained e-DP with zero breaches, exceeding
DAG-based BCFL’s 2%, FedAvg’s 3%, and FedProx’s 1.5%.
Scalability tests with 100 nodes showed RL-DAA’s 10%
latency increase (CIL: 1.84-2.04, p = 0.03), versus AMA’s 25%
(CI: 3.8-4.2), FedAvg’s 30%, and FedProx’ s 20%.

G. Comparative Summary

RL-DAA’s performance—96.5% accuracy, 45% latency
reduction, 38% energy savings, and 35% resilience gain—
outperforms all methods, validated by narrow Cls, significant
p-values, and effect sizes. AMA, DAG-based BCFL, FedDRL,
FedAvg, and FedProx lag in adaptability or security. RL-
DAA’s Q-learning-blockchain synergy offers a robust solution.

V. DISCUSSION

A. Analysis of Results and Core Findings

Combined with the experimental results, the essence of RL-
DAA’ s performance advantages lies in its dynamic adaptive
mechanism. The 45% latency reduction achieved by RL-DAA
stems from the penalty mechanism for latency increments in
the reward function(,=02), which enables the model to
dynamically prioritize low-latency nodes instead of relying on

the static weight allocation of AMA. This design validates the
effectiveness of the "state-action-reward" loop in distributed
federated leaming (FL) environments. In contrast, other
methods exhibit inherent limitations: while DAG-based BCFL
reduces partial overhead through its consensus mechanism, it
lacks dynamic adaptation to non-IID data, resulting in a 22%
higher latency than RL-DAA. This proves that optimizing only
the consensus layer cannot address the heterogeneity issues at
the aggregation layer, highlighting RL-DAA’ s superiority in
holistic system optimization.

B. Limitations and Future Improvements

This study has certain limitations that require further
refinement. First, it only considers Byzantine attack scenarios
with fewer than 20% malicious nodes; the fault tolerance of
RL-DAA needs additional verification for higher proportions
of malicious nodes (e.g., over 30%). Second, the exploration
rate decay strategy of Q-learning (&= € X0.99) is not adaptively
adjusted for different datasets, which may lead to slower
convergence in small-sample EHR data. Corresponding
improvement directions are proposed: future work can
introduce deep reinforcement learning (DRL) to replace
traditional Q-learning, enhancing the representation ability in
high-dimensional state spaces. Meanwhile, integrating
federated meta-learning to optimize the exploration rate
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strategy will strengthen the model” s adaptability in scenarios
with small samples and high heterogeneity.

C. Practical Application Value and Outlook

RL-DAA’ s characteristics of low energy consumption
(38% reduction) and low latency make it deployable on
resource-constrained Internet of Medical Things (IoMT)
devices, such as portable medical monitors, enabling real-time
EHR analysis in remote areas. Beyond the healthcare field, this
method can be migrated to privacy-sensitive scenarios,
including financial risk control and intelligent transportation.
Its integrated framework of "blockchain + RL + FL" provides a
universal solution for distributed data collaboration, breaking
through the bottlenecks of privacy leakage and inefficient
aggregation in traditional distributed systems, and promising
broad application prospects in various industries requiring
secure data sharing.

VI. CONCLUSION

The Reinforcement Learning-Driven Adaptive Aggregation
(RL-DAA) method, integrated into the Enhanced Privacy-
Preserving Blockchain-Enabled Federated Leaming (EPP-
BCFL) framework, demonstrates significant advancements in
secure EHR management. With superior accuracy, a 45%
latency reduction, 38% energy savings, and 35% improved
resilience to Byzantine faults—supported by narrow 95% Cls
and ANOVA results (F = 9.8-12.3, p < 0.001)—RL-DAA
outperforms AMA, DAG-based BCFL, FedDRL, FedAvg, and
FedProx. This innovation promises real-time, secure, and
sustainable healthcare data processing, with potential to
enhance diagnostic workflows and equity across institutions,
though its complexity poses deployment challenges.

The results, encompassing superior accuracy, reduced
latency, lower energy consumption, and enhanced resilience to
Byzantine faults, underscore RL-DAA’s potential to transform
healthcare data aggregation by addressing critical challenges in
distributed systems. The narrow 95% confidence intervals and
significant statistical outcomes (e.g., ANOVA F-values ranging
from 9.8 to 123, p < 0.001) affirm the robustness and
consistency of RL-DAA across diverse metrics, setting it apart
from traditional methods like AMA, DAG-based BCFL,
FedDRL, FedAvg, and FedProx.

The significance of these findings lies in RL-DAA’s ability
to enable real-time, secure, and energy-cfficient EHR
processing, which could revolutionize diagnostic workflows in
multi-institutional settings. The 45% latency reduction and
38% energy savings suggest a scalable solution that minimizes
operational costs and environmental impact, while the 35%
improvement in resilience to adversarial attacks ensures data
integrity in hostile network environments. These outcomes
have far-reaching implications, potentially accelerating the
adoption of federated learning in healthcare by fostering trust
among stakeholders through enhanced privacy and security, as
evidenced by zero differential privacy breaches.

The impact extends beyond technical performance,
promising to bridge gaps in healthcare equity by facilitating
seamless data sharing across resource-constrained regions.
However, the reliance on dynamic Q-learning and blockchain
integration introduces complexity that may challenge

Vol. 16, No. 12, 2025

deployment in legacy systems. Consequently, the results
advocate for a paradigm shift toward adaptive, intelligent
aggregation techniques in federated learning, with RL-DAA
serving as a benchmark for future innovations.
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