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Abstract—Manual test case generation for agile software
development is a critical bottleneck that is costly, inconsistent, and
error-prone. This study introduces a prompt-engineering and
multi-level orchestration framework to automate this process. The
proposed approach explicitly targets the automated generation of
high-level acceptance test cases, addressing a gap in existing
research that predominantly focuses on unit-level or reactive
testing. The proposed tool, AI-Based Desktop Test Generator
(AIDTG), employs a dual-LLM engine (Gemini 1.5 and GPT-4) to
transform high-level functional descriptions from the Product
Backlog into structured validation scenarios. Unlike prior LLM-
based testing approaches, the framework integrates schema-
aware prompt engineering and dual-model orchestration to
ground the generation process in both functional intent and
technical data constraints. The methodology is distinguished by its
context-aware prompt engineering, which injects a frozen
database schema to ground the models, and its ability to format
outputs for the TestRigor BDD 2.0 platform. This schema-
grounded and orchestrated workflow enables the systematic
translation of informal User Stories into executable Behavior-
Driven Development (BDD) acceptance tests, reducing ambiguity
and improving semantic correctness. Experimental results on a
real-world dataset of fifty User Stories show the framework
reduces manual test design effort by eighty per cent, achieves a
four point seven five (out of five) average quality rating from
human experts, and produces BDD scripts with a ninety-one point
nine per cent functional correctness pass rate. These results
demonstrate that orchestrated, schema-aware Generative Al can
operate as a reliable co-assistant for QA teams, improving
efficiency while maintaining high standards of quality and
executability.
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I.  INTRODUCTION

The emergence of Generative Artificial Intelligence (Al) has
initiated a profound paradigm shift across multiple sectors.
Beyond its generalist use, its impact on labor productivity has
been quantified; recent studies demonstrate that Al assistance
can increase worker productivity by 15% on average,
disproportionately benefiting less experienced workers [1]. The
field of software engineering has been an early and significant
beneficiary of this revolution. Large Language Models (LLMs)
are being rapidly integrated into the software development
lifecycle, demonstrating strong capabilities in code generation

[28] and fundamentally changing developer workflows. This
wave of transformation is now moving from code creation to
code validation, showing considerable potential for optimizing
long-standing challenges in Quality Assurance (QA) [8, 26].

Despite the velocity promised by agile methodologies and
DevOps practices [25], quality assurance persists as the most
significant critical bottleneck. The software industry
overwhelmingly recognizes the manual creation of test cases as
a process thatis "tedious", "costly", and "susceptible to human
errors” [6]. In modern CI/CD pipelines, where speed is
paramount, this manual friction becomes untenable. Testing is
estimated to consume a significant portion of the total
development cost, becoming "less feasible" as software
complexity increases [6]. Consequently, this crucial task is
"often neglected", leading to the accumulation oftechnical debt
and increasing the risk of defects being discovered only in late
stages of development, or worse, by end-users.

To mitigate this friction, automation has been pursued in
waves. First, traditional automation tools, such as EvoSuite [7],
and pre-generative NLP approaches [14] offered assistance.
However, these tools often generate tests that "lack readability
and require manual intervention" [5] or are too brittle to handle
the ambiguity of natural language requirements. The second
wave,drivenby theadvent of LLMs, hasshown greater promise.
Systematic reviews confirm the growing use of Al for "Test
Case Generation" and "Test Case Prioritization" [3]. In the
academic sphere, frameworks have emerged exploring the
generation of unittests [5, 15, 16, 19], bug reproduction [4, 7,
27], and specialized API security tests [20, 22].

However, a critical analysis of these current LLM
applications reveals a significant research gap. The vast majority
of these approaches focus on low-level, code-centric tasks (unit
tests) or reactive tasks (bugreproduction). Whilevaluable, these
solutions do not address the primary agile workflow: the
proactive translation of high-level Product Backlog elements
(User Stories) into business-facing acceptance tests. Existing
tools often lack the intelligent orchestration [11] required to
convert informal, non-technical requirements into high-level,
context-aware QA artifacts that comply with Behavior-Driven
Development (BDD) frameworks [13].

From an agile and DevOps perspective, this limitation is
particularly critical, as acceptance testing represents the main
validation mechanism for ensuring that delivered functionality
aligns with business expectations before release.
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This work directly addressesthis gap. We introduce a system
named the Al-Based Desktop Test Generator (AIDTG), a multi-
level orchestration and prompt engineering framework designed
to automate BDD acceptancetest generation. The system moves
beyond simple text-to-text translation by utilizing LLM APIs
(such as GPT and Gemini) in concert with the crucial technical
context of a frozen database schema. Through this advanced
orchestration, AIDTG transforms high-level functional
descriptions into semantically correct, data-aware validation
scenarios compatible with TestRigor BDD 2.0 [23]. The
framework acts as a co-assistant to improve the precision,
coverage, and time efficiency of QA, generating execution-
ready artifacts that bridge the gap between business
requirements and technical validation.

Unlike prior academic approaches that either evaluate
isolated prompt strategies or focus on code-level test generation,
this work proposes an end-to-end, schema-aware orchestration
framework explicitly tailored to acceptance testing in agile
environments.

The corenovelty of this research lies in three complementary
contributions:

1) a dual-LLM orchestration strategy that separates logical
test generation from strict syntactic formatting, 2) a schema-
aware prompt engineering mechanism that grounds test
generation in real database constraints, and 3) an integrated
workflow that operationalizes the transformation of Product
Backlog items into executable BDD acceptance tests.

Together, these contributions advance the state-of-the-art by
moving beyond prompt-centric experimentation toward a
reusable, extensible, and empirically validated orchestration
framework for Al-assisted quality assurance.

The present study is organized as follows: Section Il presents
the study's theoretical foundations. Section Ill analyzes related
work inthe field. Section IV describes the AIDTG methodology
and system architecture. Section V discusses the experimental
results and evaluation. Finally, Section VI presents the
conclusions and future lines of research.

II. THEORETICAL FOUNDATIONS

This section establishes the theoretical groundwork
underpinning the Al-Based Desktop Test Generator (AIDTG)
framework.

Our system operates at the intersection of generative
artificial intelligence, software testing theory, and agile quality
assurance practices, integrating concepts from each domain to
support automated acceptance test generation.

A. Artificial Intelligence and Large Language Models (LLMs)

Artificial Intelligence (Al) is a broad field of technology that
enables computers and machines to simulate human learning,
comprehension, and problem-solving [9]. Within this field,
Large Language Models (LLMs) have emerged as a dominant
force. LLMs are deep learning models, often built on a
transformer architecture, that are trained on vast datasets to
"work as giant statistical prediction machines" capable of
understanding and generating natural, human-like language
[10]. In software engineering, their application has rapidly
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moved from documentation to code generation, and most
recently, to supporting complex quality assurance tasks [8].
Recent empirical studies indicate that LLMs can meaningfully
augment human performance in software-related tasks,
particularly when their outputs are constrained and guided by
domain-specific context. However, unconstrained LLM outputs
are proneto issuessuch as hallucination, inconsistency, and lack
of executability, especially in tasks that require strict syntactic
or semantic correctness, such as software testing.

B. Behavior-Driven Development (BDD)

The primary output of the AIDTG system is BDD-
compatible scripts. Behavior-Driven Development (BDD) is an
agile testing methodology designed to foster collaboration
between developers, QA analysts, and business stakeholders
[13]. It achieves this by defining application behavior in a
structured, natural-language syntax known as Gherkin (e.g.,
Given-When-Then). This formal, high-level specification
creates an unambiguous, "living" documentation that serves as
both a requirement and an executable test script. BDD is
particularly well-suited to agile environments, as it bridges the
communication gap between technical and non-technical
stakeholders ~while maintaining traceability between
requirements and validation artifacts. Our work focuses on
automating the translation of informal backlog items into this
precise, high-level BDD format. By targeting acceptance tests
rather than unit-level artifacts, the proposed framework aligns
directly with the validation layer most closely associated with
business value delivery.

C. Prompt Engineering and LLM Orchestration

A single, generic request to an LLM rarely yields a complex,
executable artifact. Prompt Engineering is the methodology of
structuring, refining, and optimizing the input (the prompt) to
guide the LLM toward a moreaccurate and contextually relevant
output[12]. LLM Orchestration extends this concept further; it
is the process of managing, chaining, and coordinating the
interactions ofan LLM with externaltools and datasources [11].
The AIDTG framework is an orchestration engine: it does not
merely pass a user story to the LLM. It intelligently combines
the user story (the intent) with the database schema (the
technical context) viaa multi-level prompt workflow to generate
a valid, data-aware BDD script. This separation of
responsibilities between prompt design and execution flow
control reflects emerging best practices in LLM-based system
engineering, where orchestration is treated as a first-class
architectural concern rather than an implementation detail

D. Schema-Aware and Risk-based Testing

The most significant challenge in agile testing is ensuring
test coverage for critical business logic [6]. A key aspect of our
methodology is the use of a "frozen" database schema. This
approach is informed by the principles of Risk-Based Testing
(RBT), which uses risk assessments to "steer all phases of the
test process to optimize testing efforts" [2]. By making the LLM
"aware" ofthe data schema, AIDTG generates test cases that are
not just syntactically correct BDD but are also semantically
aware of the underlying data model. This schema-awareness
allows the generation process to prioritize high-risk areas, such
as data integrity constraints, entity relationships, and domain-
specific validation rules, which are often overlooked in purely

772 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

text-driven test generation approaches. Consequently, the
integration of schema-aware prompting with risk-based testing
principles enables a more focused and meaningful acceptance
testing strategy, improving both coverage quality and defect
prevention potential.

III. RELATED WORK

To situate the contribution of AIDTG, this section provides
adetailed analysis of the current state-of-the-artin Al-driventest
generation. The application of Al in software testingis a well-
established field, with systematic reviews confirming its use for
tasks like test case generation and prioritization [3]. The recent
advent of Large Language Models (LLMs) has catalyzed a new
wave of research [26], with industry surveys showing that QA
professionals are already applying these models in practice [8].
However, the literature is highly fragmented, with most efforts
diverging into distinct streams that fail to address the primary
agile bottleneck of proactive, high-level, and context-aware
acceptance testing.

To provide a clearer analytical perspective, existing work is
discussed below according to its primary testing focus and level
of abstraction, explicitly highlighting the limitations that
motivate the proposed approach.

Historically, before the dominance of generative LLMs,
research focused on traditional Natural Language Processing
(NLP) and Model-Based Testing (MBT) to bridge the gap
between requirements and tests. Works such as Lim et al. [14]
proposed unified "boilerplate" approaches to extract test case
information from requirements specifications using NLP. While
structured, these methods are often brittle, struggling with the
ambiguity of natural language. Concurrently, MBT, as reviewed
by Ferrari et al. [29], exploits abstract models of software
behavior to generate tests. Although effective in controlled
settings, MBT approaches require the manual creation and
maintenance of formal behavioral models, which introduces
significant overhead and limits their adoption in fast-paced agile
environments.

While powerful, this approach faces significant adoption
barriers due to the high complexity and cost associated with
creating and maintaining the formal models themselves. Other
approaches utilized deep learning (pre-generative) to automate
functional Ul testing [30], but these remained focused on
component-level validation rather than end-to-end business
logic.

As a result, pre-LLM approaches generally fail to scale to
acceptance-level testing scenarios where requirements are
informal, rapidly evolving, and expressed in natural language.

The rise of LLMs [10] has shifted the research focus, with
mosteffortsconcentratingon code-level, specialized, or reactive
testing tasks. A dominant trend is the generation of unit tests.
Ouédraogo et al. [5] provided a large-scale evaluation
comparing LLM-generated unit tests against traditional tools,
noting LLMs produce more readable tests but often lack
correctness. Subsequent research has attempted to mitigate these
limitations by augmenting LLM-based unit test generation with
additional techniques.
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This stream includes enhancing unit test generation through
mutation testing[ 15], usingevolutionaryalgorithms to guide the
LLM [16], or augmenting the process with assertion knowledge
(A3Test) [19]. This entire body of work, while valuable for
code-level validation, addresses a different problem than the
high-level, business-facing acceptance testing that BDD targets.
Specifically, unit test generation operates at the implementation
layer and assumes access to source code, whereas acceptance
testing operates at the requirement layer and must accommodate
non-technical stakeholder input.

A second major research stream focuses on reactive
testing—generating tests after a bug is found. Kang et al. [4]
explored using LLMs as "few-shot testers" to reproduce known
bugs, and Plein et al. [ 7] confirmed the feasibility of generating
test cases from informal bug reports. These approaches
demonstrate the effectiveness of LLMs in post-hoc validation
scenarios, where the failure context is already known.

A recent extension of this, BRMINER [27], uses LLMs to
extract relevant test inputs from bug reports to enrich existing
test generation tools. This work is crucial for regression suites
but does not address the primary agile bottleneck [6]: the
proactive generation of tests from new functional requirements
before they become bugs. Consequently, reactive LLM-based
testing approaches improve defect reproduction but do not
reduce the upfronteffort associated with designing acceptance
tests during sprint planning or backlog refinement.

A third stream applies LLMs to highly technical, specialized
domains, such as developing self-improving frameworks for
security testing of APIs using Karate DSL [20] [21] or
optimizing REST API fuzzers [22]. These approaches, while
advanced, are not aimed at validating the end-to-end business
logic defined in agile user stories. Their domain specificity and
reliance on technical testing artifacts limit their applicability to
general-purpose acceptance testing workflows.

The most relevant, yetleast explored, area is the application
of LLMs to high-level acceptance testing, such as BDD. The
work by Karpurapuetal.[13]isone ofthe fewacademic studies
that directly addresses LLMs for BDD automation. However,
their research is an evaluation of different prompt engineering
techniques (zero-shot vs. few-shot) to formulate BDD tests.
While informative, this work does not propose a complete, end-
to-end orchestration framework that integrates external
technical context to ensure the semantic and technical validity
of the generated tests.

It does not propose a complete, end-to-end orchestration
framework [ 11] that integrates external technical context (like a
database schema) to ensure the generated tests are not just
syntactically correct but semantically and technically viable.
This limitation is particularly significant in real-world agile
projects, where acceptance tests mustalign with underlying data
models and business constraints.

Thisindustryneed is validated by the commercial success of
tools like TestRigor [23], which positions itselfas a "Generative
Al-based Test Automation Tool" thatallows teams to write tests
in plain English [24]. Although such tools demonstrate the
practical viability of LLM-driven acceptance testing, they are
proprietary systems that do not expose their orchestration

773 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

strategies or prompt engineering mechanisms for academic
analysis or replication.

This commercial validation proves the desirability of the
approach, butitis a proprietary, closed-box solution,notanopen
academic framework.

Our comprehensive review thus reveals a clear and
significantresearch gap. The literatureis heavily skewed toward
code-level [5, 16, 19], reactive [4,7, 27], or niche [20, 22] test
generation. The few works that touch upon high-level BDD
testing [13] stop at prompt evaluation and do not provide an
integrated framework. In particular, existing approaches lack
systematic LLM orchestration mechanisms capable of
combining requirement-level intent with technical system
context.

A gap persists for a system that is: 1) Proactive, generating
tests from Product Backlog items; 2) High-Level, focusing on
BDD acceptance tests; and 3) Context-Aware, using LLM
Orchestration [11] to integrate external technical artifacts.

This work addresses this precise lacuna. AIDTG is nota unit
test generator or a bug-reproduction tool; it is an orchestration
framework explicitly designed to automate the translation of
high-level agile requirements into data-aware BDD acceptance
tests [13]. By grounding generation in both functional
requirements and database schemas, the proposed approach
advances beyond prior prompt-centric solutions and directly
targets the primary quality assurance bottleneck in modem agile
and DevOps processes [25].

User
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IV.  METHODOLOGY

The methodology of this work consists of the design,
implementation, and evaluation of an end-to-end LLM
orchestration framework, named the Al-Based Desktop Test
Generator (AIDTG). This system is architected to manage the
full lifecycle of agile test case generation, from project creation
to optional execution, actingas an intelligent co-assistant for QA
teams [8].

The methodological approach follows an empirical software
engineering paradigm, combining system design with
experimental validation on real-world project data.

The systemis designed as a decoupled, API-first application,
comprising a Python-based backend for orchestration and a
separate desktop frontend for user interaction. The core of the
methodology is a dual-LLM engine [18] that leverages the
specific strengths of different models to achieve high logical
accuracy and perfect syntactical compliance. This separation of
concerns at both the architectural and model levels is intended
to improve robustness, scalability, and reproducibility of the
generation process.

A. System Architecture and Workflow

The end-to-end workflow of AIDTG is designed to integrate
seamlessly into an agile QA process, moving from high-level
requirements to executable scripts. The overall system
architecture follows a component-based design and is
represented using a C4 Container diagram, as illustrated in
Fig. 1.

Desktop Application
(Flutter)
(e

AIDTG System
e e

AIDTG Container Diagram (C4 Level 2)
=483, 22 e nowermbre e 2025, 5132 3. m. hara estandar de Colamtia

Data Service (Spring
Boot)

PostgresSQL Database
e
[ i)

PosigreSOL. Pgadmin

Fig. 1. AIDTG C4 Container S8.

The workflow proceeds through a series of well-defined
stages, each corresponding to a distinct responsibility within the
test generation lifecycle:

1) Project and backlog management: The user first creates
a "Project" within the desktop application. Into this project, the
user injects the Product Backlog, consistingof "Epics" and their
corresponding "User Stories" (US) in a structured format (e.g,
CSV). This structure enables traceability between backlog

items and generated test cases, which is essential for agile
quality assurance practices.

2) Test cycle initiation: The user selects specific User
Stories from the Product Backlog to form a "Release Backlog"
for the current test cycle. The user then initiates the generation
script for this selected backlog. This step mirrors real-world
sprint or release planning activities, ensuring that the generated
test cases align with the scope of the current development
iteration.
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3) Context injection: At the moment of generation, the
system prompts the user to provide the "frozen database
schema" (e.g., a .sql script). This is the critical contextual step
thatmakes the framework data-aware, informing the generation
process with the project's actual data model [2]. The term
“frozen” denotes that the schema represents a stable snapshot
of the data model for the duration of the test cycle, ensuring
consistency across generated artifacts.

4) Orchestration and generation: The backend orchestrator
(detailed in 4.4) receives the User Stories and the DB schema.
It combines them into a master prompt and executes the Dual-
LLM workflow [detailed in Section IV(C)]. At this stage,
prompt engineering rules, coverage strategies, and contextual
constraints are jointly applied to guide the generation process.

5) Output and translation: The system generates the test
cases and provides two distinct outputs: a) a translation into the
user's native language (e.g., Spanish) for human validation, and
b) a script formatted in TestRigor BDD 2.0 syntax [23].

This dual-output strategy supports both Human-in-the-Loop
review and immediate machine execution.

6) Optional execution and monitoring: The user has the
option to execute the generated BDD 2.0 script directly via an
API call to the TestRigor platform. If this option is chosen, the
systemutilizes WebSockets to maintain a persistent connection,
monitoring the execution status in real-time and reporting
"Pass" or "Fail" results. This optional execution step enables
immediate validation of syntactic correctness and executability
on the target testing platform.

7) Human-in-the-loop feedback: Finally, the user is
prompted to rate the quality and correctness of the generated
test case on a 1-to-5-star scale. This feedback mechanism is
crucial for the evaluation phase of our study (Section V).
Although not used for automated learning in this study, this
feedback channel establishes the foundation for future Human-
in-the-Loop refinement mechanisms.

8) Dataset description: To ensure transparency and
reproducibility, the experimental dataset used in this study is
described explicitly.

The dataset consists of a real-world Product Backlog
obtained from an active software development project within an
industrial context. It includes 50 distinct User Stories distributed
across 8 Epics, representing common functional requirements in
a business-oriented information system.

Each User Story contains a textual description, priority level,
acceptance criteria, and estimated story points, providing
sufficient detail for acceptance-level test design.

This dataset was selected to reflect realistic agile
development conditions, including heterogeneous requirement
complexity and domain-specific constraints.

B. Core Technologies

The system is implemented as a decoupled application. The
backend is a high-performance Python API, while the frontend
is a modern desktop application.
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The backendis builtusing FastAPI, a high-performance web
framework chosen for its asynchronous capabilities, essential
for managing concurrent API calls to LLM endpoints. It runs on
a Uvicorn ASGI server. For data persistence, SQLAlchemy is
used as the ORM to manage all projects, backlogs, and
generated test cases, connecting to a PostgreSQL database via
the psycopg2 driver. User authentication and security are
handled usingpython-jose for JWT token generation and Passlib
with berypt for secure password hashing. These technologies
were selected to ensure scalability, security, and efficient
handling of concurrent generation and execution requests.

The core backend technologies are detailed in Table L

TABLE 1. BACKEND LIBRARIES
Library / Technology Description

FastAPI Modern web framework for building

asynchronous APIs.
. ASGI server for running the FastAPI

Uvicorn L
application.

SQLAlchemy Python SQL Toolkit and ORM for database
mteraction.

psycopg2-binary PostgreSQL adapter for Python.

Used for data manipulation and parsing of

Pandas/ Openpyxl input data.
Python client library foraccessing the GPT-
OpenAl 4.0 APL
ooale-cenerativeai Python client library for accessing the Gemini
googes 1.5 Pro API.

Used for token counting to manage OpenAl

Tiktoken prompt length and costs.

Manages environment variables (e.g., API

python-dotenv Keys).

Libraries for implementing OAuth2 security,

thon-j Passli . .
pythonjose & Passlib token generation, and password hashing.

Handles pagination for API endpoints

fastapi-pagination returning large lists (e.g., backlog items).

Asynchronous HTTP client for making robust

htpx API calls to LLM endpoints.

The frontend is a desktop application built with React and
Next.js, providing a responsive and modern user interface.
Tailwindcss and Next-Ul are used for styling and components,
while React-Markdown is used to render the table-formatted
outputs from the LLM. This technology stack enables clear
visualization of generated test cases and seamless interaction
with the orchestration backend.

The core desktop technologies are detailed in Table II.

TABLE II. DESKTOP LIBRARIES

Library / Technology Description

Core JavaScript libraries for

N R g .
ext/React building the user interface.

Entry point to the DOM and server

React-dom
renderers for React.

React component to render the

React-markdown Markdown output from the LLM.

A component library for building

Next-ui beautiful Uls with Next.js.

A utility-first CSS framework for

Tailwindess rapid Ul development.

CSS for replicating GitHub's

Github-markdown-css Markdown-rendered style.

775|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

C. The Dual-LLM Orchestration Workflow

A core innovation of AIDTG is its "dual-engine"
orchestration pipeline, which uses two different state-of-the-art
LLMs in sequence. This design is conceptually aligned with
emerging dual-model strategies reported in recent Al research,
where task specialization across models improves overall output
quality.

Step 1: Generation (LLM-1: Gemini 1.5 Pro)

The first engine is the "Generation Engine." It uses Gemini
1.5 Pro for its large context window and strong reasoning
capabilities. It receives the most complex input: the "master
prompt" (detailed in 4.4), which contains the User Stories and
the full database schema. Its responsibility is limited to logical
reasoning and test design, deliberately excluding strict syntax
enforcement.

Step 2: Translation and Formatting (LLM-2: GPT-4.0)

The structured Markdown output from Gemini is then passed
to GPT-4.0, which acts as a specialized "Formatting and
Translation Engine". This model executes two distinct tasks via
separate, simpler prompts:

1) Native language translation: It translates the Markdown
table into the user's native language (e.g., Spanish) for human
validation.

2) BDD 2.0 formatting: It translates the same Markdown
table into the strict, proprietary BDD syntax required by
TestRigor BDD 2.0.

This separation of logical reasoning from syntactic
formatting significantly reduces the risk of syntax-related
hallucinations.

D. Core Component: The AIDTG Prompt Engineering

Framework

The primary intellectual property of the AIDTG framework
is its Master Prompt Template, which is dynamically
constructed by the backend orchestrator and sent to the
Generation Engine (Gemini 1.5 Pro). Rather than relyingon a
single monolithic instruction, the prompt is composed of
multiple semantically distinct components, each controlling a
specific aspect of LLM behavior.

This subsection deconstructs the master prompt to explain
the design rationale behind each component.

1) Persona and task injection: The prompt's first section,
shown in Fig. 2, is the Persona Injection. This is the most
critical step for setting the context, quality bar, and expertise of
the model [12]. Instead of a generic instruction, the prompt
forces the LLM to adopt the role of a Senior QA Engineer and
explicitly names the advanced methodologies it must use, such
as Risk-Based Testing [2] and Combinatorial Testing. This
immediately constrains the model to a professional context and
significantly improves the quality and relevance of the
generated test cases.

Vol. 16, No. 12, 2025

You are a **Senior QA Engineer** specialized in **Risk-
Based Testing** and **Combinatorial Testing Techniques
(Pairwise Testing)**.

----task---

Your task is to **generate a table of Test Cases (TC)**
in **Markdown format**, based on the following **User
Stories (US)** and the provided **contextual database**.
Do not include explanations or commentary — only return

**a single Markdown table** with the required fields.

Fig.2. Persona injection prompt.

2) Multi-language and domain handling: The second
component, detailed in Fig. 3, addresses the challenge of
internationalization. The prompt explicitly instructs the LLM to
auto-detect the language of the input User Story and generate
all test cases in that same language. This makes the framework
immediately usable for global teams (e.g., in English, Spanish,
Hindi) without modification. It also mandates the preservation
of domain-specific terms (like currencies or local names),
preventing the LLM from "over-translating" and losing critical
context.

### Language Handling

For each User Story:

**Aytomatically detect 1its Llanguage** (e.g., English,
Spanish, Chinese, Hindi, etc.).

**Generate all Test Cases 1in the same
Language. **

Preserve any culturally specific or domain-related terms
(such as currencies, Llocation names, etc.) without

detected

translation.

Fig.3. Multi-language injection prompt.

3) Contextual data injection (Schema-Awareness): The
third component, shown in Fig. 4, is the core of the
orchestration[11]. The backend dynamically injects two critical
data blocks: the User Stories (functional context) and the
Database Schema (technical context).

a) User story data: The {user epics_prompt} variable
passes the selected backlogitems in a machine-readable CSV
format, which the LLM is told how to parse.

b) Frozen database: The {db_prompt} variable provides
the "ground truth" for the test data. By providing real input
values (e.g., product types, currencies, locations), we move the
LLM from generating plausible tests to generating realistic and
executable tests grounded in the system's actual data model.

### User Story Data

User Stories are represented 1in
delimited by the character [ .

### Columns:

ID | DESCRIPTION | PRIORITY | STORY_POINTS |
ACCEPTANCE_CRITERIA | PAIR _WISE_TESTING®

--- START OF USER STORY DATA ---

{user_epics_prompt}

--- END OF USER STORY DATA ---

### Frozen Database (Testing Context)

The following dataset can be used as **real 1input
values** to design your Test Cases

(for example: product types, currencies, or locations).
--- START OF FROZEN DATABASE DATA ---

{db_prompt }

--- END OF FROZEN DATABASE DATA ---

**CSV  format**,

Fig.4. Context data injection prompt.
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4) Strict output formatting (Machine-Readability): A
primary challenge in LLM pipelines is output unreliability [17].
To solve this, the fourth component (Fig. 5) enforces a strict,
non-negotiable output format. The prompt commands the LLM
to return only a single Markdown table with a precisely defined
set of headers. This "structured-to-structured" pipeline
(CSV/DB -> Markdown) is the key to reliability. It ensures the
output from the Generation Engine (Gemini) is a machine-
readable artifact, which can be perfectly and safely parsed by
the Formatting Engine (GPT-4.0) in the next step, eliminating
the risk of free-text "hallucinations" or conversational
contamination.

### REQUIRED OUTPUT STRUCTURE

Return a single **Markdown table** with the following
headers :

### Columns:

| ID | (HU_FAKE_ID) | (HU_ID) | OBJECTIVE | TYPE |
PRIORITY | PRE-CONDITION | INPUTS | STEPS | EXPECTED
RESULTS | POST-CONDITION |

Fig. 5.

Output formatting prompt.

5) Testcase generationandstrategyrules: Finally, thefifth
component (Fig. 6) provides the explicit "business logic" for
the generation.

Rules 1 & 2 (Coverage & Traceability): Mandate the
minimum required coverage (Happy, Error, and Alternative
Paths) and ensure traceability by mapping the test case back to
the User Story ID.

Rules 3 & 4 (Quality): Instruct the LLM to use the provided
database data for Inputs and to write specific, verifiable
Expected Results.

Rule 5 (Advanced Strategy): This is the most complex rule.
It activates the Pairwise Testing persona if the
PAIR WISE TESTING flagis True. It commands the LLM to
look at the database values (e.g., Product Type, Currency,
Location) and create an efficient set of test cases that maximize
combinatorial coverage with minimal tests. This transforms the
LLM from a simple generator into an intelligent test strategist.

### TEST CASE GENERATION RULES
1. **Minimum Coverage: **

For each US, generate TCs covering:

- **Happy Path:** main successful flow.

- **Epror Path:** validations and incorrect 1inputs.

- **Alternative Path:** optional or exceptional flows
2. **Traceability:**

Use the **ID** field from the US as the value for
**(HU_ID)** in the table.

3. **Inputs and Steps:**

Be detailed and realistic. Use actual data from the
provided database whenever possible.
4. **Expected Results:**

Must be specific and verifiable (e.g.,
message 1is displayed:
5. **ppiority:**

Inherit directly from the User Story (Critical, High,
Medium, Low).

6. **Pgirwise Testing (if applicable):**

If the flag “PAIR WISE_TESTING = True' 1is active for

a Us:

“An error
‘Invalid email format’”).

Vol. 16, No. 12, 2025

- Generate **test combinations** using real values
found in the database section.
- Example for a “Add Product” US:
- Product Type (physical, digital)
- Currency (PEN, USD)
- Location (Lima, Cusco, Arequipa)

- Create **unique, efficient test cases** that
maximize coverage with minimal combinations.
7. **Formatting Rules:**

- Only one Markdown table.

- No text outside the table.

- Use "Happy Path", "Error Path", or "Alternative

Path" under "TYPE (Path)".

- Fill all columns completely (no empty cells).

- Separate each step in the **STEPS** column using a
Line break “\\n'.

- Maintain the same Llanguage as the detected User
Story.

Fig. 6. Test case generation rules prompt.

V. RESULTS

This section details the experimental design used to validate
this research's objectives. First, a framework of evaluation
metrics is defined based on academic literature. Second, the
experimental setup is described. Finally, the quantitative and
qualitative results obtained from the application of the AIDTG
framework on a real-world dataset are presented and discussed.

The results are structured around the predefined research
questions to ensure traceability between objectives, evaluation
metrics, and empirical findings.

A. Definition of Evaluation Metrics

To evaluate the efficacy and performance of a new test
generation technology, a metrics framework is essential. Based
on a review of the literature on test automation[31,2132, 35],
technology adoption [35], and Natural Language Processing
(NLP) intesting[33,34], we have identified a consensus around
four key performance variables. These variables are widely used
inboth academicstudies andindustrial evaluations of automated
testing tools.

Table Il summarizes these standard industry and academic
metrics.

TABLEIII. KEY LITERATURE-BASED METRICS

Metric / Variable

Description

Rationale (from
Literature)

Efficiency / Time
Savings

Measures the
reduction in human
time and effort
(measured in man-
minutes) required to
complete a task,
compared to the
manual baseline.

The primary
justification for
adopting new testing
technologies is
operational efficiency,
cost reduction, and
accelerating delivery
cycles [35, 34].

Perceived Quality &
Precision

Measures how correct,
readable, relevant,and
useful the generated
artifacts are. This is a
qualitative metric best
measured via human
expert scoring
(surveys).

A systematic review
of NLP in testing [33]
identifies "Test Case
Quality" as a central
metric for validation.
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Functional
Correctness

Measures whether the
generated test cases
are syntactically
correct and capable of
executing on a testing
platform without
failure.

This is the ultimate
technical validation.
Rapid generation is
useless if the scripts
are unexecutable on
the target platform
[35].

Fault Detection

Measures the ability
of the generated test
cases to identify
defects (bugs) in the
codebase.

The ultimate goal of
testing is to find faults
[32]. High fault
detection indicates

high-quality

generation.

For this study, we focused on the first three metrics
(Efficiency, Perceived Quality, and Functional Correctness), as
"Fault Detection" is dependent on pre-existing bugs in the
source code, which was outside the scope of our backlog-based
generation.

This scope delimitation ensures that the evaluation remains
aligned with the proactive nature of acceptance test generation
from requirements.

B. Experimental Setup

The experiment was designed to compare the performance
of the AIDTG tool against traditional manual generation.

1) Dataset: We used a real-world project dataset from a
software development company (identified as the organization
under study). The dataset consisted of a Product Backlog with
50 unique User Stories (US), distributed across 8 Epics. This
dataset corresponds exactly to the one described in the
Methodology section, ensuring internal consistency across the
study.

2) Control group (Manual): We measuredthe average time
it took for a QA analyst with 3 years of experience (hereafter,
"the expert") to analyzea US, design, and manually write the
test cases (Happy, Alt, Error) based on the requirements. This
process represents standard industry practice for acceptance test
design in agile teams.

3) Experimental group (AIDTG): We used the AIDTG
framework (configured with Gemini 1.5 Pro and GPT-4.0) to
process the same 50 Us.
A group of five QA analysts (with mixed experience levels)
reviewed and rated the generated test cases.
Their evaluations were averaged to ensure inter-raterreliability.
The use of multiple evaluators strengthens the robustness of the
qualitative assessment.

4) Instruments:

a) Efficiency: Time tracking (man-minutes) for both
groups.

b) Perceived quality: An evaluation survey (see
Appendix A) based on a 1-to-5 Likert scale (1=Useless,
5=Fully Adequate), which the expert completed for each
generated test case. The survey instrument was designed to
capture expert judgment on relevance, clarity, and practical
usability.
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¢) Functional correctness: The TestRigor platform, used
to execute the BDD 2.0 scripts and report a binary ("Pass" /
"Fail") result.

C. Research Questions

The experiment sought to answer the following Research
Questions (RQs), derived from the project's specific objectives:

1) RQI (Efficiency): To what extent does AIDTG reduce
the time and effort of test case creation compared to the manual
process?

2) RQ2 (Quality): How precise, useful, and of high quality
are the test cases generated by AIDTG, according to human
expert evaluation (based on the survey)?

3) RQ3 (Functional correctness): What percentage of the
BDD 2.0 scripts generated by AIDTG are functionally correct
and executable ("Pass") on the TestRigor platform?

These research questions directly map to the selected
evaluation metrics, enabling a clear interpretation of results.

D. Results and Findings

The 50 User Stories were processed through the AIDTG
pipeline, resulting in the generation of 197 unique test cases
(coveringHappy, Alternative, and Error paths). This distribution
reflects the minimum coverage rules enforced by the generation
framework.

1) Results for RQI (Efficiency): A significant reduction in
effort was observed. The manual process required an average
of 25 minutes per User Story. The AIDTG process (Table IV),
including Al generation and human review, reduced the total
effort to approximately 5 minutes per User Story.

TABLEIV. COMPARISON BETWEEN MANUAL PROCESS AND AIDTG
PROCESS
Metric Manual Process | AIDTG Process Improvement
(Control) (Experimental) P
- T
Avg. Time per 25 Minutes 5 Minutes 804’ Time
US Savings
Total Effort (50 | 1250 Minutes 250 Minutes 16.7 hours
US) (20.8 hrs) (4.1 hrs) saved

Conclusion (RQ1): The AIDTG framework achieved an

80% reduction in the time and effort required for test case
creation.

2) Results for RQ2 (Perceived quality): The evaluation
survey (Appendix A) was used to measure the perceived quality
of'the 197 generated TCs. Table V shows the distribution of the
expert'sratings, with qualitative labelsremoved as requested.

TABLE V. SCALE RANKING
Rating (1-5 Scale) # of Generated TCs Percentage

5 158 80.2%
4 29 14.7%
3 10 5.1%

2 0 0%

1 0 0%
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Conclusion (RQ2): 94.9% of the generated test cases
received a rating of 4 or 5, resulting in a weighted average score
of 4.75 out of 5.

3) Results for RO3 (Functional correctness): To validate
technical correctness, all 197 BDD 2.0 scripts generated by the
GPT-4.0 engine were sent to the TestRigor platform (via
WebSocket) for syntax validation. The results are summarized
in Table VL

TABLE VI.  COLLECTED METRICS

Metric #of TCs Percentage Analysis Notes
"Pass" BDD 2.0 syntax
(Successful 181 91.9% is correct and
Execution) executable.
WEa Execution

Fail' Syntax |y 8.1% failed due to
Error)
syntax.

Total 197 100%

Conclusion (RQ3): 91.9% of the generated scripts were
syntactically correct and executable on the target platform.

E. Discussion of Results

The results strongly validate the project's hypothesis. An
80% time saving (RQI1) aligns with industry promises of
technology adoption [35] and exceeds the expectations of
traditional NLP tools that require more intensive setup [34].

The most significant finding is the synergy between high
efficiency (RQ1) and high quality (RQ2). Historically, test
generation tools sacrificed quality for speed [32]. The AIDTG
framework, by usinga dual-engine (Gemini forlogic, GPT-4 for
format) and a DB-schema-aware orchestration, demonstrates
thatitis possibleto achieveboth. The 4.75 average rating (RQ2)
and the 91.9% execution success rate (RQ3) prove that the
output is not just "fast," but "correct and useful.”

While a 1-5 star rating function was implemented in the
application [as detailed in Section IV(A)], it is considered an
experimental feature for future Human-in-the-Loop feedback. It
is important to emphasize that the data for this study was
collected exclusively via formal surveys (detailed in Appendix
A: QA Evaluation Questionnaire) to ensure methodological
rigor.

VI. CONCLUSION AND FUTURE WORK

Specifically, the study focused on the challenges of
translating high-level Product Backlog requirements into
executable acceptance tests in a manner that is both efficientand
semantically accurate. [6]. While recent LLM research has
focused on unit tests [ 5] and bug reproduction [ 7], a significant
gap remained in the proactive, high-level generation of
acceptance tests from backlog requirements.

This gap is particularly critical in agileand DevOps contexts,
where acceptance testing plays a central role in validating
business requirements prior to release.

We successfully designed, implemented, and evaluated the
Al-Based Desktop Test Generator (AIDTG), an LLM

Vol. 16, No. 12, 2025

orchestration framework that bridges this gap. The proposed
framework  moves beyond isolated  prompt-based
experimentation by introducing an end-to-end, schema-aware
orchestration pipeline for acceptance test generation.

Our methodology's primary contribution is a dual-LLM
engine (Gemini 1.5 Pro and GPT-4.0) combined with a schema-
aware prompt engineering framework (Section IV). This
combination enables a clear separation between logical test
design and strict syntactic formatting, improving both
generation quality and executability.

This approach transforms high-level User Stories into
executable TestRigor BDD 2.0 scripts [23] by grounding the
generation process in the project's actual data model [2]. By
explicitly incorporating database constraints into the generation
workflow, the framework reduces ambiguity and increases
semantic alignment between requirements and validation
artifacts.

Our experimental evaluation on a real-world dataset
demonstrated that AIDTG:

e Reduces test design effort by 80% (RQ1).

e Achievesa 4.75 out of 5 average quality rating from
expert human review (RQ2).

e Produces BDD scripts with a 91.9% functional
(syntactical) correctness rate on the target platform

(RQ3).

These results confirm that the proposed framework can
significantly improve QA productivity while maintaining high
standards of test quality and executability.

Unlike prior studies that evaluate prompt effectiveness in
isolation, this research provides empirical evidence for the
benefits of orchestration-centric architectures in Al-assisted
software testing.

From an industrial perspective, the findings suggest that
AIDTG cansupport the adoption of Al-assisted testing practices
in real agile teams.

By automating repetitive acceptance test design tasks, QA
professionals can focus on higher-value activities such as
exploratorytesting, test strategy refinement, and defect analysis.

Furthermore, the generation of business-readable BDD
artifacts has the potential to improve communication and
alignment between developers, testers, and non-technical
stakeholders.

A. Future Work
This study opens several avenues for future research.

e Mitigating Failures: The 8.1% failure rate in functional
correctness (RQ3) was primarily due to minor syntax
hallucinations by the formatting LLM. Future work will
focus on refining the formatting prompt and
implementing a "self-correction" loop where the LLM
automatically fixes the script upon receiving a "Fail"
status from the TestRigor APL
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e Human-in-the-Loop (HIL) Fine-Tuning: The 1-5 star
rating feature built into the application (Section IV) was
experimental for this study. The next phase is to capture
this user feedback and use it to create a fine-tuning
dataset, enabling a Human-in-the-Loop (HIL) pipeline
that constantly improves the generation engine's
accuracy.

e Expanding Target Frameworks: While this work focused
on TestRigor BDD 2.0 [23], the dual-engne
methodology is adaptable. Future iterations could
include formatting engines for other popular BDD
frameworks, such as Cucumber (Gherkin) or Behave.

e Integration with Design Tools: A promising avenue is to
expand the "context" beyond justthe database schema to
include inputs from U/UX design tools (e.g., Figma),
further grounding the generated test cases in the
application's intended design.
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APPENDIX A. QA EVALUATION QUESTIONNAIRE

This appendix presents the Quality Assurance (QA) evaluation
questionnaire used in the study. The purpose of this questionnaire is to gather
expert feedback on the usefulness, reliability, and clarity of the test cases
generated by the Al-based solution, as well as the feasibility of integrating this
toolinto agile software development processes. The questionnaire is divided into
three parts: Section A contains Likert-scale items for quantitative evaluation,
Section B provides dichotomous (Yes/No) questions forbinary assessment, and
Section C includes open-ended questions for qualitative feedback.

Instructions to Respondents:

e Please answer all questions based on your experience with the Al-
generated test cases and the overall tool.

e InSection A, rate each statementon ascale of 1 to 5 (where 1 represents
Very Poor and 5 represents Excellent).

e In Section B, select either Yes or No for each question.

e InSection C, provide youranswers in yourown words, elaboratingon
your perspective for each question.

Section A — Likert-Scale Questions (1-5):

-How useful do you consider the Al-generated test cases compared to
manual test cases?

Vol. 16, No. 12, 2025

-What level of reliability do you perceive in the Al-generated results
with respect to the user requirements?

-On a scale of 1 to 10, how accurate do you consider the test cases
generated by AI?

-On a scale of 1 to 10, how complete do you consider the set of critical
scenarios identified by AI?

-How precise do you consider the critical scenarios generated by AI?

-How likely are you to recommend this solution for a real software
development project?

-Scale: 1 = Very Poor, 5 = Excellent.

Section B — Dichotomous Questions (Yes/No):

-Do you believe that automatic test case generation with Al can
significantly reduce test design time?

-Do you think this solution can be seamlessly integrated into agile
methodologies such as Scrum or Kanban?

-Do you consider the Al-generated test cases to be sufficiently clear for
execution by a human tester?

Section C — Open-Ended Questions:

-What aspects do you consider most valuable about the automatic
generation of test cases with AI?

-What are the main limitations or risks you identify in the application
of this solution?

-What improvements would you recommend to increase the
effectiveness of the tool in real-world testing scenarios?

-How do you envision the impact of this solution on the future of
software quality assurance?
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