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Abstract—Manual test case generation for agile software 

development is a critical bottleneck that is costly, inconsistent, and 

error-prone. This study introduces a prompt-engineering and 

multi-level orchestration framework to automate this process. The 

proposed approach explicitly targets the automated generation of 

high-level acceptance test cases, addressing a gap in existing 

research that predominantly focuses on unit-level or reactive 

testing. The proposed tool, AI-Based Desktop Test Generator 

(AIDTG), employs a dual-LLM engine (Gemini 1.5 and GPT-4) to 

transform high-level functional descriptions from the Product 

Backlog into structured validation scenarios. Unlike prior LLM-

based testing approaches, the framework integrates schema-

aware prompt engineering and dual-model orchestration to 

ground the generation process in both functional intent and 

technical data constraints. The methodology is distinguished by its 

context-aware prompt engineering, which injects a frozen 

database schema to ground the models, and its ability to format 

outputs for the TestRigor BDD 2.0 platform. This schema-

grounded and orchestrated workflow enables the systematic 

translation of informal User Stories into executable Behavior-

Driven Development (BDD) acceptance tests, reducing ambiguity 

and improving semantic correctness. Experimental results on a 

real-world dataset of fifty User Stories show the framework 

reduces manual test design effort by eighty per cent, achieves a 

four point seven five (out of five) average quality rating from 

human experts, and produces BDD scripts with a ninety-one point 

nine per cent functional correctness pass rate. These results 

demonstrate that orchestrated, schema-aware Generative AI can 

operate as a reliable co-assistant for QA teams, improving 

efficiency while maintaining high standards of quality and 

executability. 
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I. INTRODUCTION 

The emergence of Generative Artificial Intelligence (AI) has 
initiated a profound paradigm shift across multiple sectors. 
Beyond its generalist use, its impact on labor productivity has 
been quantified; recent studies demonstrate that AI assistance 
can increase worker productivity by 15% on average, 
disproportionately benefiting less experienced workers [1]. The 
field of software engineering has been an early and significant 
beneficiary of this revolution. Large Language Models (LLMs) 
are being rapidly integrated into the software development 
lifecycle, demonstrating strong capabilities in code generation 

[28] and fundamentally changing developer workflows. This 
wave of transformation is now moving from code creation to 
code validation, showing considerable potential for optimizing 
long-standing challenges in Quality Assurance (QA) [8, 26]. 

Despite the velocity promised by agile methodologies and 
DevOps practices [25], quality assurance persists as the most 
significant critical bottleneck. The software industry 
overwhelmingly recognizes the manual creation of test cases as 
a process that is "tedious", "costly", and "susceptible to human 
errors" [6]. In modern CI/CD pipelines, where speed is 
paramount, this manual friction becomes untenable. Testing is 
estimated to consume a significant portion of the total 
development cost, becoming "less feasible" as software 
complexity increases [6]. Consequently, this crucial task is 
"often neglected", leading to the accumulation of technical debt 
and increasing the risk of defects being discovered only in late 
stages of development, or worse, by end-users. 

To mitigate this friction, automation has been pursued in 
waves. First, traditional automation tools, such as EvoSuite [7], 
and pre-generative NLP approaches [14] offered assistance. 
However, these tools often generate tests that "lack readability 
and require manual intervention" [5] or are too brittle to handle 
the ambiguity of natural language requirements. The second 
wave, driven by the advent of LLMs, has shown greater promise. 
Systematic reviews confirm the growing use of AI for "Test 
Case Generation" and "Test Case Prioritization" [3]. In the 
academic sphere, frameworks have emerged exploring the 
generation of unit tests [5, 15, 16, 19], bug reproduction [4, 7, 
27], and specialized API security tests [20, 22]. 

However, a critical analysis of these current LLM 
applications reveals a significant research gap. The vast majority 
of these approaches focus on low-level, code-centric tasks (unit 
tests) or reactive tasks (bug reproduction). While valuable, these 
solutions do not address the primary agile workflow: the 
proactive translation of high-level Product Backlog elements 
(User Stories) into business-facing acceptance tests. Existing 
tools often lack the intelligent orchestration [11] required to 
convert informal, non-technical requirements into high-level, 
context-aware QA artifacts that comply with Behavior-Driven 
Development (BDD) frameworks [13]. 

From an agile and DevOps perspective, this limitation is 
particularly critical, as acceptance testing represents the main 
validation mechanism for ensuring that delivered functionality 
aligns with business expectations before release. 
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This work directly addresses this gap. We introduce a system 
named the AI-Based Desktop Test Generator (AIDTG), a multi-
level orchestration and prompt engineering framework designed 
to automate BDD acceptance test generation. The system moves 
beyond simple text-to-text translation by utilizing LLM APIs 
(such as GPT and Gemini) in concert with the crucial technical 
context of a frozen database schema. Through this advanced 
orchestration, AIDTG transforms high-level functional 
descriptions into semantically correct, data-aware validation 
scenarios compatible with TestRigor BDD 2.0 [23]. The 
framework acts as a co-assistant to improve the precision, 
coverage, and time efficiency of QA, generating execution-
ready artifacts that bridge the gap between business 
requirements and technical validation. 

Unlike prior academic approaches that either evaluate 
isolated prompt strategies or focus on code-level test generation, 
this work proposes an end-to-end, schema-aware orchestration 
framework explicitly tailored to acceptance testing in agile 
environments. 

The core novelty of this research lies in three complementary 
contributions: 

1) a dual-LLM orchestration strategy that separates logical 
test generation from strict syntactic formatting, 2) a schema-
aware prompt engineering mechanism that grounds test 
generation in real database constraints, and 3) an integrated 
workflow that operationalizes the transformation of Product 
Backlog items into executable BDD acceptance tests. 

Together, these contributions advance the state-of-the-art by 
moving beyond prompt-centric experimentation toward a 
reusable, extensible, and empirically validated orchestration 
framework for AI-assisted quality assurance. 

The present study is organized as follows: Section II presents 
the study's theoretical foundations. Section III analyzes related 
work in the field. Section IV describes the AIDTG methodology 
and system architecture. Section V discusses the experimental 
results and evaluation. Finally, Section VI presents the 
conclusions and future lines of research. 

II. THEORETICAL FOUNDATIONS 

This section establishes the theoretical groundwork 
underpinning the AI-Based Desktop Test Generator (AIDTG) 
framework. 

Our system operates at the intersection of generative 
artificial intelligence, software testing theory, and agile quality 
assurance practices, integrating concepts from each domain to 
support automated acceptance test generation. 

A. Artificial Intelligence and Large Language Models (LLMs) 

Artificial Intelligence (AI) is a broad field of technology that 
enables computers and machines to simulate human learning, 
comprehension, and problem-solving [9]. Within this field, 
Large Language Models (LLMs) have emerged as a dominant 
force. LLMs are deep learning models, often built on a 
transformer architecture, that are trained on vast datasets to 
"work as giant statistical prediction machines" capable of 
understanding and generating natural, human-like language 
[10]. In software engineering, their application has rapidly 

moved from documentation to code generation, and most 
recently, to supporting complex quality assurance tasks [8]. 
Recent empirical studies indicate that LLMs can meaningfully 
augment human performance in software-related tasks, 
particularly when their outputs are constrained and guided by 
domain-specific context. However, unconstrained LLM outputs 
are prone to issues such as hallucination, inconsistency, and lack 
of executability, especially in tasks that require strict syntactic 
or semantic correctness, such as software testing. 

B. Behavior-Driven Development (BDD) 

The primary output of the AIDTG system is BDD-
compatible scripts. Behavior-Driven Development (BDD) is an 
agile testing methodology designed to foster collaboration 
between developers, QA analysts, and business stakeholders 
[13]. It achieves this by defining application behavior in a 
structured, natural-language syntax known as Gherkin (e.g., 
Given-When-Then). This formal, high-level specification 
creates an unambiguous, "living" documentation that serves as 
both a requirement and an executable test script. BDD is 
particularly well-suited to agile environments, as it bridges the 
communication gap between technical and non-technical 
stakeholders while maintaining traceability between 
requirements and validation artifacts. Our work focuses on 
automating the translation of informal backlog items into this 
precise, high-level BDD format. By targeting acceptance tests 
rather than unit-level artifacts, the proposed framework aligns 
directly with the validation layer most closely associated with 
business value delivery. 

C. Prompt Engineering and LLM Orchestration 

A single, generic request to an LLM rarely yields a complex, 
executable artifact. Prompt Engineering is the methodology of 
structuring, refining, and optimizing the input (the prompt) to 
guide the LLM toward a more accurate and contextually relevant 
output [12]. LLM Orchestration extends this concept further; it 
is the process of managing, chaining, and coordinating the 
interactions of an LLM with external tools and data sources [11]. 
The AIDTG framework is an orchestration engine: it does not 
merely pass a user story to the LLM. It intelligently combines 
the user story (the intent) with the database schema (the 
technical context) via a multi-level prompt workflow to generate 
a valid, data-aware BDD script. This separation of 
responsibilities between prompt design and execution flow 
control reflects emerging best practices in LLM-based system 
engineering, where orchestration is treated as a first-class 
architectural concern rather than an implementation detail 

D. Schema-Aware and Risk-based Testing 

The most significant challenge in agile testing is ensuring 
test coverage for critical business logic [6]. A key aspect of our 
methodology is the use of a "frozen" database schema. This 
approach is informed by the principles of Risk-Based Testing 
(RBT), which uses risk assessments to "steer all phases of the 
test process to optimize testing efforts" [2]. By making the LLM 
"aware" of the data schema, AIDTG generates test cases that are 
not just syntactically correct BDD but are also semantically 
aware of the underlying data model. This schema-awareness 
allows the generation process to prioritize high-risk areas, such 
as data integrity constraints, entity relationships, and domain-
specific validation rules, which are often overlooked in purely 
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text-driven test generation approaches. Consequently, the 
integration of schema-aware prompting with risk-based testing 
principles enables a more focused and meaningful acceptance 
testing strategy, improving both coverage quality and defect 
prevention potential. 

III. RELATED WORK 

To situate the contribution of AIDTG, this section provides 
a detailed analysis of the current state-of-the-art in AI-driven test 
generation. The application of AI in software testing is a well-
established field, with systematic reviews confirming its use for 
tasks like test case generation and prioritization [3]. The recent 
advent of Large Language Models (LLMs) has catalyzed a new 
wave of research [26], with industry surveys showing that QA 
professionals are already applying these models in practice [8]. 
However, the literature is highly fragmented, with most efforts 
diverging into distinct streams that fail to address the primary 
agile bottleneck of proactive, high-level, and context-aware 
acceptance testing. 

To provide a clearer analytical perspective, existing work is 
discussed below according to its primary testing focus and level 
of abstraction, explicitly highlighting the limitations that 
motivate the proposed approach. 

Historically, before the dominance of generative LLMs, 
research focused on traditional Natural Language Processing 
(NLP) and Model-Based Testing (MBT) to bridge the gap 
between requirements and tests. Works such as Lim et al. [14] 
proposed unified "boilerplate" approaches to extract test case 
information from requirements specifications using NLP. While 
structured, these methods are often brittle, struggling with the 
ambiguity of natural language. Concurrently, MBT, as reviewed 
by Ferrari et al. [29], exploits abstract models of software 
behavior to generate tests. Although effective in controlled 
settings, MBT approaches require the manual creation and 
maintenance of formal behavioral models, which introduces 
significant overhead and limits their adoption in fast-paced agile 
environments. 

While powerful, this approach faces significant adoption 
barriers due to the high complexity and cost associated with 
creating and maintaining the formal models themselves. Other 
approaches utilized deep learning (pre-generative) to automate 
functional UI testing [30], but these remained focused on 
component-level validation rather than end-to-end business 
logic. 

As a result, pre-LLM approaches generally fail to scale to 
acceptance-level testing scenarios where requirements are 
informal, rapidly evolving, and expressed in natural language. 

The rise of LLMs [10] has shifted the research focus, with 
most efforts concentrating on code-level, specialized, or reactive 
testing tasks. A dominant trend is the generation of unit tests. 
Ouédraogo et al. [5] provided a large-scale evaluation 
comparing LLM-generated unit tests against traditional tools, 
noting LLMs produce more readable tests but often lack 
correctness. Subsequent research has attempted to mitigate these 
limitations by augmenting LLM-based unit test generation with 
additional techniques. 

This stream includes enhancing unit test generation through 
mutation testing [15], using evolutionary algorithms to guide the 
LLM [16], or augmenting the process with assertion knowledge 
(A3Test) [19]. This entire body of work, while valuable for 
code-level validation, addresses a different problem than the 
high-level, business-facing acceptance testing that BDD targets. 
Specifically, unit test generation operates at the implementation 
layer and assumes access to source code, whereas acceptance 
testing operates at the requirement layer and must accommodate 
non-technical stakeholder input. 

A second major research stream focuses on reactive 
testing—generating tests after a bug is found. Kang et al. [4] 
explored using LLMs as "few-shot testers" to reproduce known 
bugs, and Plein et al. [7] confirmed the feasibility of generating 
test cases from informal bug reports. These approaches 
demonstrate the effectiveness of LLMs in post-hoc validation 
scenarios, where the failure context is already known. 

A recent extension of this, BRMINER [27], uses LLMs to 
extract relevant test inputs from bug reports to enrich existing 
test generation tools. This work is crucial for regression suites 
but does not address the primary agile bottleneck [6]: the 
proactive generation of tests from new functional requirements 
before they become bugs. Consequently, reactive LLM-based 
testing approaches improve defect reproduction but do not 
reduce the upfront effort associated with designing acceptance 
tests during sprint planning or backlog refinement. 

A third stream applies LLMs to highly technical, specialized 
domains, such as developing self-improving frameworks for 
security testing of APIs using Karate DSL [20] [21] or 
optimizing REST API fuzzers [22]. These approaches, while 
advanced, are not aimed at validating the end-to-end business 
logic defined in agile user stories. Their domain specificity and 
reliance on technical testing artifacts limit their applicability to 
general-purpose acceptance testing workflows. 

The most relevant, yet least explored, area is the application 
of LLMs to high-level acceptance testing, such as BDD. The 
work by Karpurapu et al. [13] is one of the few academic studies 
that directly addresses LLMs for BDD automation. However, 
their research is an evaluation of different prompt engineering 
techniques (zero-shot vs. few-shot) to formulate BDD tests. 
While informative, this work does not propose a complete, end-
to-end orchestration framework that integrates external 
technical context to ensure the semantic and technical validity 
of the generated tests. 

It does not propose a complete, end-to-end orchestration 
framework [11] that integrates external technical context (like a 
database schema) to ensure the generated tests are not just 
syntactically correct but semantically and technically viable. 
This limitation is particularly significant in real-world agile 
projects, where acceptance tests must align with underlying data 
models and business constraints. 

This industry need is validated by the commercial success of 
tools like TestRigor [23], which positions itself as a "Generative 
AI-based Test Automation Tool" that allows teams to write tests 
in plain English [24]. Although such tools demonstrate the 
practical viability of LLM-driven acceptance testing, they are 
proprietary systems that do not expose their orchestration 
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strategies or prompt engineering mechanisms for academic 
analysis or replication. 

This commercial validation proves the desirability of the 
approach, but it is a proprietary, closed-box solution, not an open 
academic framework. 

Our comprehensive review thus reveals a clear and 
significant research gap. The literature is heavily skewed toward 
code-level [5, 16, 19], reactive [4, 7, 27], or niche [20, 22] test 
generation. The few works that touch upon high-level BDD 
testing [13] stop at prompt evaluation and do not provide an 
integrated framework. In particular, existing approaches lack 
systematic LLM orchestration mechanisms capable of 
combining requirement-level intent with technical system 
context. 

A gap persists for a system that is: 1) Proactive, generating 
tests from Product Backlog items; 2) High-Level, focusing on 
BDD acceptance tests; and 3) Context-Aware, using LLM 
Orchestration [11] to integrate external technical artifacts. 

This work addresses this precise lacuna. AIDTG is not a unit 
test generator or a bug-reproduction tool; it is an orchestration 
framework explicitly designed to automate the translation of 
high-level agile requirements into data-aware BDD acceptance 
tests [13]. By grounding generation in both functional 
requirements and database schemas, the proposed approach 
advances beyond prior prompt-centric solutions and directly 
targets the primary quality assurance bottleneck in modern agile 
and DevOps processes [25]. 

IV. METHODOLOGY 

The methodology of this work consists of the design, 
implementation, and evaluation of an end-to-end LLM 
orchestration framework, named the AI-Based Desktop Test 
Generator (AIDTG). This system is architected to manage the 
full lifecycle of agile test case generation, from project creation 
to optional execution, acting as an intelligent co-assistant for QA 
teams [8]. 

The methodological approach follows an empirical software 
engineering paradigm, combining system design with 
experimental validation on real-world project data. 

The system is designed as a decoupled, API-first application, 
comprising a Python-based backend for orchestration and a 
separate desktop frontend for user interaction. The core of the 
methodology is a dual-LLM engine [18] that leverages the 
specific strengths of different models to achieve high logical 
accuracy and perfect syntactical compliance. This separation of 
concerns at both the architectural and model levels is intended 
to improve robustness, scalability, and reproducibility of the 
generation process. 

A. System Architecture and Workflow 

The end-to-end workflow of AIDTG is designed to integrate 
seamlessly into an agile QA process, moving from high-level 
requirements to executable scripts. The overall system 
architecture follows a component-based design and is 
represented using a C4 Container diagram, as illustrated in 
Fig. 1. 

 

Fig. 1. AIDTG C4 Container S8. 

The workflow proceeds through a series of well-defined 
stages, each corresponding to a distinct responsibility within the 
test generation lifecycle: 

1) Project and backlog management: The user first creates 

a "Project" within the desktop application. Into this project, the 

user injects the Product Backlog, consisting of "Epics" and their 

corresponding "User Stories" (US) in a structured format (e.g., 

CSV). This structure enables traceability between backlog 

items and generated test cases, which is essential for agile 

quality assurance practices. 

2) Test cycle initiation: The user selects specific User 

Stories from the Product Backlog to form a "Release Backlog" 

for the current test cycle. The user then initiates the generation 

script for this selected backlog. This step mirrors real-world 

sprint or release planning activities, ensuring that the generated 

test cases align with the scope of the current development 

iteration. 
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3) Context injection: At the moment of generation, the 

system prompts the user to provide the "frozen database 

schema" (e.g., a .sql script). This is the critical contextual step 

that makes the framework data-aware, informing the generation 

process with the project's actual data model [2]. The term 

“frozen” denotes that the schema represents a stable snapshot 

of the data model for the duration of the test cycle, ensuring 

consistency across generated artifacts. 

4) Orchestration and generation: The backend orchestrator 

(detailed in 4.4) receives the User Stories and the DB schema. 

It combines them into a master prompt and executes the Dual-

LLM workflow [detailed in Section IV(C)]. At this stage, 

prompt engineering rules, coverage strategies, and contextual 

constraints are jointly applied to guide the generation process. 

5) Output and translation: The system generates the test 

cases and provides two distinct outputs: a) a translation into the 

user's native language (e.g., Spanish) for human validation, and 

b) a script formatted in TestRigor BDD 2.0 syntax [23]. 

This dual-output strategy supports both Human-in-the-Loop 
review and immediate machine execution. 

6) Optional execution and monitoring: The user has the 

option to execute the generated BDD 2.0 script directly via an 

API call to the TestRigor platform. If this option is chosen, the 

system utilizes WebSockets to maintain a persistent connection, 

monitoring the execution status in real-time and reporting 

"Pass" or "Fail" results. This optional execution step enables 

immediate validation of syntactic correctness and executability 

on the target testing platform. 

7) Human-in-the-loop feedback: Finally, the user is 

prompted to rate the quality and correctness of the generated 

test case on a 1-to-5-star scale. This feedback mechanism is 

crucial for the evaluation phase of our study (Section V). 

Although not used for automated learning in this study, this 

feedback channel establishes the foundation for future Human-

in-the-Loop refinement mechanisms. 

8) Dataset description: To ensure transparency and 

reproducibility, the experimental dataset used in this study is 

described explicitly. 

The dataset consists of a real-world Product Backlog 
obtained from an active software development project within an 
industrial context. It includes 50 distinct User Stories distributed 
across 8 Epics, representing common functional requirements in 
a business-oriented information system. 

Each User Story contains a textual description, priority level, 
acceptance criteria, and estimated story points, providing 
sufficient detail for acceptance-level test design. 

This dataset was selected to reflect realistic agile 
development conditions, including heterogeneous requirement 
complexity and domain-specific constraints. 

B. Core Technologies 

The system is implemented as a decoupled application. The 
backend is a high-performance Python API, while the frontend 
is a modern desktop application. 

The backend is built using FastAPI, a high-performance web 
framework chosen for its asynchronous capabilities, essential 
for managing concurrent API calls to LLM endpoints. It runs on 
a Uvicorn ASGI server. For data persistence, SQLAlchemy is 
used as the ORM to manage all projects, backlogs, and 
generated test cases, connecting to a PostgreSQL database via 
the psycopg2 driver. User authentication and security are 
handled using python-jose for JWT token generation and Passlib 
with bcrypt for secure password hashing. These technologies 
were selected to ensure scalability, security, and efficient 
handling of concurrent generation and execution requests. 

The core backend technologies are detailed in Table I. 

TABLE I.  BACKEND LIBRARIES 

Library / Technology Description 

FastAPI 
Modern web framework for building 

asynchronous APIs. 

Uvicorn 
ASGI server for running the FastAPI 

application. 

SQLAlchemy 
Python SQL Toolkit and ORM for database 

interaction. 

psycopg2-binary PostgreSQL adapter for Python. 

Pandas / Openpyxl 
Used for data manipulation and parsing of 

input data. 

OpenAI 
Python client library for accessing the GPT-

4.0 API. 

google-generativeai 
Python client library for accessing the Gemini 

1.5 Pro API. 

Tiktoken 
Used for token counting to manage OpenAI 

prompt length and costs. 

python-dotenv 
Manages environment variables (e.g., API 

keys). 

python-jose & Passlib 
Libraries for implementing OAuth2 security, 

token generation, and password hashing. 

fastapi-pagination 
Handles pagination for API endpoints 

returning large lists (e.g., backlog items). 

httpx 
Asynchronous HTTP client for making robust 

API calls to LLM endpoints. 

The frontend is a desktop application built with React and 
Next.js, providing a responsive and modern user interface. 
Tailwindcss and Next-UI are used for styling and components, 
while React-Markdown is used to render the table-formatted 
outputs from the LLM. This technology stack enables clear 
visualization of generated test cases and seamless interaction 
with the orchestration backend. 

The core desktop technologies are detailed in Table II. 

TABLE II.  DESKTOP LIBRARIES 

Library / Technology Description 

Next / React 
Core JavaScript libraries for 

building the user interface. 

React-dom 
Entry point to the DOM and server 

renderers for React. 

React-markdown 
React component to render the 

Markdown output from the LLM. 

Next-ui 
A component library for building 

beautiful UIs with Next.js. 

Tailwindcss 
A utility-first CSS framework for 

rapid UI development. 

Github-markdown-css 

 

CSS for replicating GitHub's 

Markdown-rendered style. 
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C. The Dual-LLM Orchestration Workflow 

A core innovation of AIDTG is its "dual-engine" 
orchestration pipeline, which uses two different state-of-the-art 
LLMs in sequence. This design is conceptually aligned with 
emerging dual-model strategies reported in recent AI research, 
where task specialization across models improves overall output 
quality. 

Step 1: Generation (LLM-1: Gemini 1.5 Pro) 

The first engine is the "Generation Engine." It uses Gemini 
1.5 Pro for its large context window and strong reasoning 
capabilities. It receives the most complex input: the "master 
prompt" (detailed in 4.4), which contains the User Stories and 
the full database schema. Its responsibility is limited to logical 
reasoning and test design, deliberately excluding strict syntax 
enforcement. 

Step 2: Translation and Formatting (LLM-2: GPT-4.0) 

The structured Markdown output from Gemini is then passed 
to GPT-4.0, which acts as a specialized "Formatting and 
Translation Engine". This model executes two distinct tasks via 
separate, simpler prompts: 

1) Native language translation: It translates the Markdown 

table into the user's native language (e.g., Spanish) for human 

validation. 

2) BDD 2.0 formatting: It translates the same Markdown 

table into the strict, proprietary BDD syntax required by 

TestRigor BDD 2.0. 

This separation of logical reasoning from syntactic 
formatting significantly reduces the risk of syntax-related 
hallucinations. 

D. Core Component: The AIDTG Prompt Engineering 

Framework 

The primary intellectual property of the AIDTG framework 
is its Master Prompt Template, which is dynamically 
constructed by the backend orchestrator and sent to the 
Generation Engine (Gemini 1.5 Pro). Rather than relying on a 
single monolithic instruction, the prompt is composed of 
multiple semantically distinct components, each controlling a 
specific aspect of LLM behavior. 

This subsection deconstructs the master prompt to explain 
the design rationale behind each component. 

1) Persona and task injection: The prompt's first section, 

shown in Fig. 2, is the Persona Injection. This is the most 

critical step for setting the context, quality bar, and expertise of 

the model [12]. Instead of a generic instruction, the prompt 

forces the LLM to adopt the role of a Senior QA Engineer and 

explicitly names the advanced methodologies it must use, such 

as Risk-Based Testing [2] and Combinatorial Testing. This 

immediately constrains the model to a professional context and 

significantly improves the quality and relevance of the 

generated test cases. 

You are a **Senior QA Engineer** specialized in **Risk-
Based Testing** and **Combinatorial Testing Techniques 
(Pairwise Testing)**. 
----task--- 
Your task is to **generate a table of Test Cases (TC)** 
in **Markdown format**, based on the following **User 
Stories (US)** and the provided **contextual database**.  
Do not include explanations or commentary — only return 
**a single Markdown table** with the required fields. 

Fig. 2. Persona injection prompt. 

2) Multi-language and domain handling: The second 

component, detailed in Fig. 3, addresses the challenge of 

internationalization. The prompt explicitly instructs the LLM to 

auto-detect the language of the input User Story and generate 

all test cases in that same language. This makes the framework 

immediately usable for global teams (e.g., in English, Spanish, 

Hindi) without modification. It also mandates the preservation 

of domain-specific terms (like currencies or local names), 

preventing the LLM from "over-translating" and losing critical 

context. 

### Language Handling 
For each User Story: 
**Automatically detect its language** (e.g., English, 
Spanish, Chinese, Hindi, etc.). 
**Generate all Test Cases in the same detected 
language.** 
Preserve any culturally specific or domain-related terms 
(such as currencies, location names, etc.) without 
translation. 

Fig. 3. Multi-language injection prompt. 

3) Contextual data injection (Schema-Awareness): The 

third component, shown in Fig. 4, is the core of the 

orchestration [11]. The backend dynamically injects two critical 

data blocks: the User Stories (functional context) and the 

Database Schema (technical context). 

a) User story data: The {user_epics_prompt} variable 

passes the selected backlog items in a machine-readable CSV 

format, which the LLM is told how to parse. 

b) Frozen database: The {db_prompt} variable provides 
the "ground truth" for the test data. By providing real input 

values (e.g., product types, currencies, locations), we move the 
LLM from generating plausible tests to generating realistic and 

executable tests grounded in the system's actual data model. 

### User Story Data 
User Stories are represented in **CSV format**, 
delimited by the character `|`. 
### Columns:   
ID | DESCRIPTION | PRIORITY | STORY_POINTS | 
ACCEPTANCE_CRITERIA | PAIR_WISE_TESTING` 
--- START OF USER STORY DATA --- 
{user_epics_prompt} 
--- END OF USER STORY DATA --- 
### Frozen Database (Testing Context) 
The following dataset can be used as **real input 
values** to design your Test Cases   
(for example: product types, currencies, or locations).  
--- START OF FROZEN DATABASE DATA --- 
{db_prompt} 
--- END OF FROZEN DATABASE DATA --- 

Fig. 4. Context data injection prompt. 
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4) Strict output formatting (Machine-Readability): A 

primary challenge in LLM pipelines is output unreliability [17]. 

To solve this, the fourth component (Fig. 5) enforces a strict, 

non-negotiable output format. The prompt commands the LLM 

to return only a single Markdown table with a precisely defined 

set of headers. This "structured-to-structured" pipeline 

(CSV/DB -> Markdown) is the key to reliability. It ensures the 

output from the Generation Engine (Gemini) is a machine-

readable artifact, which can be perfectly and safely parsed by 

the Formatting Engine (GPT-4.0) in the next step, eliminating 

the risk of free-text "hallucinations" or conversational 

contamination. 

### REQUIRED OUTPUT STRUCTURE 
Return a single **Markdown table** with the following 
headers: 
### Columns:   
| ID | (HU_FAKE_ID) | (HU_ID) | OBJECTIVE | TYPE | 
PRIORITY | PRE-CONDITION | INPUTS | STEPS | EXPECTED 
RESULTS | POST-CONDITION | 

Fig. 5. Output formatting prompt. 

5) Test case generation and strategy rules: Finally, the fifth 

component (Fig. 6) provides the explicit "business logic" for 

the generation. 

Rules 1 & 2 (Coverage & Traceability): Mandate the 
minimum required coverage (Happy, Error, and Alternative 
Paths) and ensure traceability by mapping the test case back to 
the User Story ID. 

Rules 3 & 4 (Quality): Instruct the LLM to use the provided 
database data for Inputs and to write specific, verifiable 
Expected Results. 

Rule 5 (Advanced Strategy): This is the most complex rule. 
It activates the Pairwise Testing persona if the 
PAIR_WISE_TESTING flag is True. It commands the LLM to 
look at the database values (e.g., Product Type, Currency, 
Location) and create an efficient set of test cases that maximize 
combinatorial coverage with minimal tests. This transforms the 
LLM from a simple generator into an intelligent test strategist. 

### TEST CASE GENERATION RULES 
1. **Minimum Coverage:**   
   For each US, generate TCs covering:   
   - **Happy Path:** main successful flow.   
   - **Error Path:** validations and incorrect inputs.   
   - **Alternative Path:** optional or exceptional flows  
2. **Traceability:**   
   Use the **ID** field from the US as the value for 
**(HU_ID)** in the table. 
3. **Inputs and Steps:**   
   Be detailed and realistic. Use actual data from the 
provided database whenever possible. 
4. **Expected Results:**   
   Must be specific and verifiable (e.g., “An error 
message is displayed: ‘Invalid email format’”). 
5. **Priority:**   
   Inherit directly from the User Story (Critical, High, 
Medium, Low). 
6. **Pairwise Testing (if applicable):**   
   If the flag `PAIR_WISE_TESTING = True` is active for 
a US:   

   - Generate **test combinations** using real values 
found in the database section.   
   - Example for a “Add Product” US:   
     - Product Type (physical, digital)   
     - Currency (PEN, USD)   
     - Location (Lima, Cusco, Arequipa)   
   - Create **unique, efficient test cases** that 
maximize coverage with minimal combinations. 
7. **Formatting Rules:**   
   - Only one Markdown table.   
   - No text outside the table.   
   - Use "Happy Path", "Error Path", or "Alternative 
Path" under "TYPE (Path)".   
   - Fill all columns completely (no empty cells).   
   - Separate each step in the **STEPS** column using a 
line break `\\n`. 
   - Maintain the same language as the detected User 
Story. 

Fig. 6. Test case generation rules prompt. 

V. RESULTS 

This section details the experimental design used to validate 
this research's objectives. First, a framework of evaluation 
metrics is defined based on academic literature. Second, the 
experimental setup is described. Finally, the quantitative and 
qualitative results obtained from the application of the AIDTG 
framework on a real-world dataset are presented and discussed. 

The results are structured around the predefined research 
questions to ensure traceability between objectives, evaluation 
metrics, and empirical findings. 

A. Definition of Evaluation Metrics 

To evaluate the efficacy and performance of a new test 
generation technology, a metrics framework is essential. Based 
on a review of the literature on test automation [31, 2132, 35], 
technology adoption [35], and Natural Language Processing 
(NLP) in testing [33, 34], we have identified a consensus around 
four key performance variables. These variables are widely used 
in both academic studies and industrial evaluations of automated 
testing tools. 

Table III summarizes these standard industry and academic 
metrics. 

TABLE III.  KEY LITERATURE-BASED METRICS 

Metric / Variable Description 
Rationale (from 

Literature) 

Efficiency / Time 

Savings 

Measures the 

reduction in human 

time and effort 

(measured in man-

minutes) required to 

complete a task, 

compared to the 

manual baseline. 

The primary 

justification for 

adopting new testing 

technologies is 

operational efficiency, 

cost reduction, and 

accelerating delivery 

cycles [35, 34]. 

Perceived Quality & 

Precision 

Measures how correct, 

readable, relevant, and 

useful the generated 

artifacts are. This is a 

qualitative metric best 

measured via human 

expert scoring 

(surveys). 

A systematic review 

of NLP in testing [33] 

identifies "Test Case 

Quality" as a central 

metric for validation. 
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Functional 

Correctness 

Measures whether the 

generated test cases 

are syntactically 

correct and capable of 

executing on a testing 

platform without 

failure. 

This is the ultimate 

technical validation. 

Rapid generation is 

useless if the scripts 

are unexecutable on 

the target platform 

[35]. 

Fault Detection 

Measures the ability 

of the generated test 

cases to identify 

defects (bugs) in the 

codebase. 

The ultimate goal of 

testing is to find faults 

[32]. High fault 

detection indicates 

high-quality 

generation. 

For this study, we focused on the first three metrics 
(Efficiency, Perceived Quality, and Functional Correctness), as 
"Fault Detection" is dependent on pre-existing bugs in the 
source code, which was outside the scope of our backlog-based 
generation. 

This scope delimitation ensures that the evaluation remains 
aligned with the proactive nature of acceptance test generation 
from requirements. 

B. Experimental Setup 

The experiment was designed to compare the performance 
of the AIDTG tool against traditional manual generation. 

1) Dataset: We used a real-world project dataset from a 

software development company (identified as the organization 

under study). The dataset consisted of a Product Backlog with 

50 unique User Stories (US), distributed across 8 Epics. This 

dataset corresponds exactly to the one described in the 

Methodology section, ensuring internal consistency across the 

study. 

2) Control group (Manual): We measured the average time 

it took for a QA analyst with 3 years of experience (hereafter, 

"the expert") to analyze a US, design, and manually write the 

test cases (Happy, Alt, Error) based on the requirements. This 

process represents standard industry practice for acceptance test 

design in agile teams. 

3) Experimental group (AIDTG): We used the AIDTG 

framework (configured with Gemini 1.5 Pro and GPT-4.0) to 

process the same 50 US. 

A group of five QA analysts (with mixed experience levels) 

reviewed and rated the generated test cases. 

Their evaluations were averaged to ensure inter-rater reliability. 

The use of multiple evaluators strengthens the robustness of the 

qualitative assessment. 

4) Instruments: 

a) Efficiency: Time tracking (man-minutes) for both 

groups. 

b) Perceived quality: An evaluation survey (see 
Appendix A) based on a 1-to-5 Likert scale (1=Useless, 
5=Fully Adequate), which the expert completed for each 

generated test case. The survey instrument was designed to 
capture expert judgment on relevance, clarity, and practical 

usability. 

c) Functional correctness: The TestRigor platform, used 
to execute the BDD 2.0 scripts and report a binary ("Pass" / 

"Fail") result. 

C. Research Questions 

The experiment sought to answer the following Research 
Questions (RQs), derived from the project's specific objectives: 

1) RQ1 (Efficiency): To what extent does AIDTG reduce 

the time and effort of test case creation compared to the manual 

process? 

2) RQ2 (Quality): How precise, useful, and of high quality 

are the test cases generated by AIDTG, according to human 

expert evaluation (based on the survey)? 

3) RQ3 (Functional correctness): What percentage of the 

BDD 2.0 scripts generated by AIDTG are functionally correct 

and executable ("Pass") on the TestRigor platform? 

These research questions directly map to the selected 
evaluation metrics, enabling a clear interpretation of results. 

D. Results and Findings 

The 50 User Stories were processed through the AIDTG 
pipeline, resulting in the generation of 197 unique test cases 
(covering Happy, Alternative, and Error paths). This distribution 
reflects the minimum coverage rules enforced by the generation 
framework. 

1) Results for RQ1 (Efficiency): A significant reduction in 

effort was observed. The manual process required an average 

of 25 minutes per User Story. The AIDTG process (Table IV), 

including AI generation and human review, reduced the total 

effort to approximately 5 minutes per User Story. 

TABLE IV.  COMPARISON BETWEEN MANUAL PROCESS AND AIDTG 

PROCESS 

Metric 
Manual Process 

(Control) 

AIDTG Process 

(Experimental) 
Improvement 

Avg. Time per 

US 
25 Minutes 5 Minutes 

80% Time 

Savings 

Total Effort (50 

US) 

1250 Minutes 

(20.8 hrs) 

250 Minutes 

(4.1 hrs) 

16.7 hours 

saved 

Conclusion (RQ1): The AIDTG framework achieved an 
80% reduction in the time and effort required for test case 
creation. 

2) Results for RQ2 (Perceived quality): The evaluation 

survey (Appendix A) was used to measure the perceived quality 

of the 197 generated TCs. Table V shows the distribution of the 

expert's ratings, with qualitative labels removed as requested. 

TABLE V.  SCALE RANKING 

Rating (1-5 Scale) # of Generated TCs Percentage 

5 158 80.2% 

4 29 14.7% 

3 10 5.1% 

2 0 0% 

1 0 0% 
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Conclusion (RQ2): 94.9% of the generated test cases 
received a rating of 4 or 5, resulting in a weighted average score 
of 4.75 out of 5. 

3) Results for RQ3 (Functional correctness): To validate 

technical correctness, all 197 BDD 2.0 scripts generated by the 

GPT-4.0 engine were sent to the TestRigor platform (via 

WebSocket) for syntax validation. The results are summarized 

in Table VI. 

TABLE VI.  COLLECTED METRICS 

Metric # of TCs Percentage Analysis Notes 

"Pass" 

(Successful 

Execution) 

181 91.9% 

BDD 2.0 syntax 

is correct and 

executable. 

"Fail" (Syntax 

Error) 
16 8.1% 

Execution 

failed due to 

syntax. 

Total 197 100%  

Conclusion (RQ3): 91.9% of the generated scripts were 
syntactically correct and executable on the target platform. 

E. Discussion of Results 

The results strongly validate the project's hypothesis. An 
80% time saving (RQ1) aligns with industry promises of 
technology adoption [35] and exceeds the expectations of 
traditional NLP tools that require more intensive setup [34]. 

The most significant finding is the synergy between high 
efficiency (RQ1) and high quality (RQ2). Historically, test 
generation tools sacrificed quality for speed [32]. The AIDTG 
framework, by using a dual-engine (Gemini for logic, GPT-4 for 
format) and a DB-schema-aware orchestration, demonstrates 
that it is possible to achieve both. The 4.75 average rating (RQ2) 
and the 91.9% execution success rate (RQ3) prove that the 
output is not just "fast," but "correct and useful." 

While a 1–5 star rating function was implemented in the 
application [as detailed in Section IV(A)], it is considered an 
experimental feature for future Human-in-the-Loop feedback. It 
is important to emphasize that the data for this study was 
collected exclusively via formal surveys (detailed in Appendix 
A: QA Evaluation Questionnaire) to ensure methodological 
rigor. 

VI. CONCLUSION AND FUTURE WORK 

Specifically, the study focused on the challenges of 
translating high-level Product Backlog requirements into 
executable acceptance tests in a manner that is both efficient and 
semantically accurate. [6]. While recent LLM research has 
focused on unit tests [5] and bug reproduction [7], a significant 
gap remained in the proactive, high-level generation of 
acceptance tests from backlog requirements. 

This gap is particularly critical in agile and DevOps contexts, 
where acceptance testing plays a central role in validating 
business requirements prior to release. 

We successfully designed, implemented, and evaluated the 
AI-Based Desktop Test Generator (AIDTG), an LLM 

orchestration framework that bridges this gap. The proposed 
framework moves beyond isolated prompt-based 
experimentation by introducing an end-to-end, schema-aware 
orchestration pipeline for acceptance test generation. 

Our methodology's primary contribution is a dual-LLM 
engine (Gemini 1.5 Pro and GPT-4.0) combined with a schema-
aware prompt engineering framework (Section IV). This 
combination enables a clear separation between logical test 
design and strict syntactic formatting, improving both 
generation quality and executability. 

This approach transforms high-level User Stories into 
executable TestRigor BDD 2.0 scripts [23] by grounding the 
generation process in the project's actual data model [2]. By 
explicitly incorporating database constraints into the generation 
workflow, the framework reduces ambiguity and increases 
semantic alignment between requirements and validation 
artifacts. 

Our experimental evaluation on a real-world dataset 
demonstrated that AIDTG: 

• Reduces test design effort by 80% (RQ1). 

• Achieves a 4.75 out of 5 average quality rating from 
expert human review (RQ2). 

• Produces BDD scripts with a 91.9% functional 
(syntactical) correctness rate on the target platform 
(RQ3). 

These results confirm that the proposed framework can 
significantly improve QA productivity while maintaining high 
standards of test quality and executability. 

Unlike prior studies that evaluate prompt effectiveness in 
isolation, this research provides empirical evidence for the 
benefits of orchestration-centric architectures in AI-assisted 
software testing. 

From an industrial perspective, the findings suggest that 
AIDTG can support the adoption of AI-assisted testing practices 
in real agile teams. 

By automating repetitive acceptance test design tasks, QA 
professionals can focus on higher-value activities such as 
exploratory testing, test strategy refinement, and defect analysis. 

Furthermore, the generation of business-readable BDD 
artifacts has the potential to improve communication and 
alignment between developers, testers, and non-technical 
stakeholders. 

A. Future Work 

This study opens several avenues for future research. 

• Mitigating Failures: The 8.1% failure rate in functional 
correctness (RQ3) was primarily due to minor syntax 
hallucinations by the formatting LLM. Future work will 
focus on refining the formatting prompt and 
implementing a "self-correction" loop where the LLM 
automatically fixes the script upon receiving a "Fail" 
status from the TestRigor API. 
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• Human-in-the-Loop (HIL) Fine-Tuning: The 1-5 star 
rating feature built into the application (Section IV) was 
experimental for this study. The next phase is to capture 
this user feedback and use it to create a fine-tuning 
dataset, enabling a Human-in-the-Loop (HIL) pipeline 
that constantly improves the generation engine's 
accuracy. 

• Expanding Target Frameworks: While this work focused 
on TestRigor BDD 2.0 [23], the dual-engine 
methodology is adaptable. Future iterations could 
include formatting engines for other popular BDD 
frameworks, such as Cucumber (Gherkin) or Behave. 

• Integration with Design Tools: A promising avenue is to 
expand the "context" beyond just the database schema to 
include inputs from UI/UX design tools (e.g., Figma), 
further grounding the generated test cases in the 
application's intended design. 
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APPENDIX A. QA EVALUATION QUESTIONNAIRE 

This appendix presents the Quality Assurance (QA) evaluation 

questionnaire used in the study. The purpose of this questionnaire is to gather 
expert feedback on the usefulness, reliability, and clarity of the test cases 

generated by the AI-based solution, a s well as the feasibility of integrating this 
tool into agile software development processes. The questionnaire is divided into 

three parts: Section A contains Likert-scale items for quantitative evaluation, 

Section B provides dichotomous (Yes/No) questions for binary assessment, and 

Section C includes open-ended questions for qualitative feedback. 

Instructions to Respondents: 

• Please answer all questions based on your experience with the AI -

generated test cases and the overall tool. 

• In Section A, rate each statement on a scale of 1 to 5 (where 1 represents 

Very Poor and 5 represents Excellent). 

• In Section B, select either Yes or No for each question. 

• In Section C, provide your answers in your own words, elaborating on 

your perspective for each question. 

Section A – Likert-Scale Questions (1–5): 

-How useful do you consider the AI-generated test cases compared to 

manual test cases? 

-What level of reliability do you perceive in the AI-generated results 

with respect to the user requirements? 

-On a scale of 1 to 10, how accurate do you consider the test cases 

generated by AI? 

-On a scale of 1 to 10, how complete do you consider the set of critical 

scenarios identified by AI? 

-How precise do you consider the critical scenarios generated by AI? 

-How likely are you to recommend this solution for a real software 

development project? 

-Scale: 1 = Very Poor, 5 = Excellent. 

Section B – Dichotomous Questions (Yes/No): 

-Do you believe that automatic test case generation with AI can 

significantly reduce test design time? 

-Do you think this solution can be seamlessly integrated into agile 

methodologies such as Scrum or Kanban? 

-Do you consider the AI-generated test cases to be sufficiently clear for 

execution by a human tester? 

Section C – Open-Ended Questions: 

-What aspects do you consider most valuable about the automatic 

generation of test cases with AI? 

-What are the main limitations or risks you identify in the application 

of this solution? 

-What improvements would you recommend to increase the 

effectiveness of the tool in real-world testing scenarios? 

-How do you envision the impact of this solution on the future of 

software quality assurance? 


