
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

771 | P a g e
www.ijacsa.thesai.org

Engineering Prompt-Orchestrated LLM Workflows

for Automated Test Case Generation in Agile

Environments

Almeyda Alania Fredy Antonio, Barrientos Padilla Alfredo, Siancas Garay Ronald Gustavo

Faculty of Engineering-School of Software Engineering, Peruvian University of Applied Sciences (UPC), Lima, Peru

Abstract—Manual test case generation for agile software

development is a critical bottleneck that is costly, inconsistent, and

error-prone. This study introduces a prompt-engineering and

multi-level orchestration framework to automate this process. The

proposed approach explicitly targets the automated generation of

high-level acceptance test cases, addressing a gap in existing

research that predominantly focuses on unit-level or reactive

testing. The proposed tool, AI-Based Desktop Test Generator

(AIDTG), employs a dual-LLM engine (Gemini 1.5 and GPT-4) to

transform high-level functional descriptions from the Product

Backlog into structured validation scenarios. Unlike prior LLM-

based testing approaches, the framework integrates schema-

aware prompt engineering and dual-model orchestration to

ground the generation process in both functional intent and

technical data constraints. The methodology is distinguished by its

context-aware prompt engineering, which injects a frozen

database schema to ground the models, and its ability to format

outputs for the TestRigor BDD 2.0 platform. This schema-

grounded and orchestrated workflow enables the systematic

translation of informal User Stories into executable Behavior-

Driven Development (BDD) acceptance tests, reducing ambiguity

and improving semantic correctness. Experimental results on a

real-world dataset of fifty User Stories show the framework

reduces manual test design effort by eighty per cent, achieves a

four point seven five (out of five) average quality rating from

human experts, and produces BDD scripts with a ninety-one point

nine per cent functional correctness pass rate. These results

demonstrate that orchestrated, schema-aware Generative AI can

operate as a reliable co-assistant for QA teams, improving

efficiency while maintaining high standards of quality and

executability.

Keywords—Software testing; test case generation; Large

Language Models; Generative AI; prompt engineering; LLM

orchestration; Behavior-Driven Development (BDD); agile

methodology; acceptance testing; schema-aware prompting;

Human-in-the-Loop; quality assurance automation

I. INTRODUCTION

The emergence of Generative Artificial Intelligence (AI) has
initiated a profound paradigm shift across multiple sectors.
Beyond its generalist use, its impact on labor productivity has
been quantified; recent studies demonstrate that AI assistance
can increase worker productivity by 15% on average,
disproportionately benefiting less experienced workers [1]. The
field of software engineering has been an early and significant
beneficiary of this revolution. Large Language Models (LLMs)
are being rapidly integrated into the software development
lifecycle, demonstrating strong capabilities in code generation

[28] and fundamentally changing developer workflows. This
wave of transformation is now moving from code creation to
code validation, showing considerable potential for optimizing
long-standing challenges in Quality Assurance (QA) [8, 26].

Despite the velocity promised by agile methodologies and
DevOps practices [25], quality assurance persists as the most
significant critical bottleneck. The software industry
overwhelmingly recognizes the manual creation of test cases as
a process that is "tedious", "costly", and "susceptible to human
errors" [6]. In modern CI/CD pipelines, where speed is
paramount, this manual friction becomes untenable. Testing is
estimated to consume a significant portion of the total
development cost, becoming "less feasible" as software
complexity increases [6]. Consequently, this crucial task is
"often neglected", leading to the accumulation of technical debt
and increasing the risk of defects being discovered only in late
stages of development, or worse, by end-users.

To mitigate this friction, automation has been pursued in
waves. First, traditional automation tools, such as EvoSuite [7],
and pre-generative NLP approaches [14] offered assistance.
However, these tools often generate tests that "lack readability
and require manual intervention" [5] or are too brittle to handle
the ambiguity of natural language requirements. The second
wave, driven by the advent of LLMs, has shown greater promise.
Systematic reviews confirm the growing use of AI for "Test
Case Generation" and "Test Case Prioritization" [3]. In the
academic sphere, frameworks have emerged exploring the
generation of unit tests [5, 15, 16, 19], bug reproduction [4, 7,
27], and specialized API security tests [20, 22].

However, a critical analysis of these current LLM
applications reveals a significant research gap. The vast majority
of these approaches focus on low-level, code-centric tasks (unit
tests) or reactive tasks (bug reproduction). While valuable, these
solutions do not address the primary agile workflow: the
proactive translation of high-level Product Backlog elements
(User Stories) into business-facing acceptance tests. Existing
tools often lack the intelligent orchestration [11] required to
convert informal, non-technical requirements into high-level,
context-aware QA artifacts that comply with Behavior-Driven
Development (BDD) frameworks [13].

From an agile and DevOps perspective, this limitation is
particularly critical, as acceptance testing represents the main
validation mechanism for ensuring that delivered functionality
aligns with business expectations before release.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

772 | P a g e
www.ijacsa.thesai.org

This work directly addresses this gap. We introduce a system
named the AI-Based Desktop Test Generator (AIDTG), a multi-
level orchestration and prompt engineering framework designed
to automate BDD acceptance test generation. The system moves
beyond simple text-to-text translation by utilizing LLM APIs
(such as GPT and Gemini) in concert with the crucial technical
context of a frozen database schema. Through this advanced
orchestration, AIDTG transforms high-level functional
descriptions into semantically correct, data-aware validation
scenarios compatible with TestRigor BDD 2.0 [23]. The
framework acts as a co-assistant to improve the precision,
coverage, and time efficiency of QA, generating execution-
ready artifacts that bridge the gap between business
requirements and technical validation.

Unlike prior academic approaches that either evaluate
isolated prompt strategies or focus on code-level test generation,
this work proposes an end-to-end, schema-aware orchestration
framework explicitly tailored to acceptance testing in agile
environments.

The core novelty of this research lies in three complementary
contributions:

1) a dual-LLM orchestration strategy that separates logical
test generation from strict syntactic formatting, 2) a schema-
aware prompt engineering mechanism that grounds test
generation in real database constraints, and 3) an integrated
workflow that operationalizes the transformation of Product
Backlog items into executable BDD acceptance tests.

Together, these contributions advance the state-of-the-art by
moving beyond prompt-centric experimentation toward a
reusable, extensible, and empirically validated orchestration
framework for AI-assisted quality assurance.

The present study is organized as follows: Section II presents
the study's theoretical foundations. Section III analyzes related
work in the field. Section IV describes the AIDTG methodology
and system architecture. Section V discusses the experimental
results and evaluation. Finally, Section VI presents the
conclusions and future lines of research.

II. THEORETICAL FOUNDATIONS

This section establishes the theoretical groundwork
underpinning the AI-Based Desktop Test Generator (AIDTG)
framework.

Our system operates at the intersection of generative
artificial intelligence, software testing theory, and agile quality
assurance practices, integrating concepts from each domain to
support automated acceptance test generation.

A. Artificial Intelligence and Large Language Models (LLMs)

Artificial Intelligence (AI) is a broad field of technology that
enables computers and machines to simulate human learning,
comprehension, and problem-solving [9]. Within this field,
Large Language Models (LLMs) have emerged as a dominant
force. LLMs are deep learning models, often built on a
transformer architecture, that are trained on vast datasets to
"work as giant statistical prediction machines" capable of
understanding and generating natural, human-like language
[10]. In software engineering, their application has rapidly

moved from documentation to code generation, and most
recently, to supporting complex quality assurance tasks [8].
Recent empirical studies indicate that LLMs can meaningfully
augment human performance in software-related tasks,
particularly when their outputs are constrained and guided by
domain-specific context. However, unconstrained LLM outputs
are prone to issues such as hallucination, inconsistency, and lack
of executability, especially in tasks that require strict syntactic
or semantic correctness, such as software testing.

B. Behavior-Driven Development (BDD)

The primary output of the AIDTG system is BDD-
compatible scripts. Behavior-Driven Development (BDD) is an
agile testing methodology designed to foster collaboration
between developers, QA analysts, and business stakeholders
[13]. It achieves this by defining application behavior in a
structured, natural-language syntax known as Gherkin (e.g.,
Given-When-Then). This formal, high-level specification
creates an unambiguous, "living" documentation that serves as
both a requirement and an executable test script. BDD is
particularly well-suited to agile environments, as it bridges the
communication gap between technical and non-technical
stakeholders while maintaining traceability between
requirements and validation artifacts. Our work focuses on
automating the translation of informal backlog items into this
precise, high-level BDD format. By targeting acceptance tests
rather than unit-level artifacts, the proposed framework aligns
directly with the validation layer most closely associated with
business value delivery.

C. Prompt Engineering and LLM Orchestration

A single, generic request to an LLM rarely yields a complex,
executable artifact. Prompt Engineering is the methodology of
structuring, refining, and optimizing the input (the prompt) to
guide the LLM toward a more accurate and contextually relevant
output [12]. LLM Orchestration extends this concept further; it
is the process of managing, chaining, and coordinating the
interactions of an LLM with external tools and data sources [11].
The AIDTG framework is an orchestration engine: it does not
merely pass a user story to the LLM. It intelligently combines
the user story (the intent) with the database schema (the
technical context) via a multi-level prompt workflow to generate
a valid, data-aware BDD script. This separation of
responsibilities between prompt design and execution flow
control reflects emerging best practices in LLM-based system
engineering, where orchestration is treated as a first-class
architectural concern rather than an implementation detail

D. Schema-Aware and Risk-based Testing

The most significant challenge in agile testing is ensuring
test coverage for critical business logic [6]. A key aspect of our
methodology is the use of a "frozen" database schema. This
approach is informed by the principles of Risk-Based Testing
(RBT), which uses risk assessments to "steer all phases of the
test process to optimize testing efforts" [2]. By making the LLM
"aware" of the data schema, AIDTG generates test cases that are
not just syntactically correct BDD but are also semantically
aware of the underlying data model. This schema-awareness
allows the generation process to prioritize high-risk areas, such
as data integrity constraints, entity relationships, and domain-
specific validation rules, which are often overlooked in purely

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

773 | P a g e
www.ijacsa.thesai.org

text-driven test generation approaches. Consequently, the
integration of schema-aware prompting with risk-based testing
principles enables a more focused and meaningful acceptance
testing strategy, improving both coverage quality and defect
prevention potential.

III. RELATED WORK

To situate the contribution of AIDTG, this section provides
a detailed analysis of the current state-of-the-art in AI-driven test
generation. The application of AI in software testing is a well-
established field, with systematic reviews confirming its use for
tasks like test case generation and prioritization [3]. The recent
advent of Large Language Models (LLMs) has catalyzed a new
wave of research [26], with industry surveys showing that QA
professionals are already applying these models in practice [8].
However, the literature is highly fragmented, with most efforts
diverging into distinct streams that fail to address the primary
agile bottleneck of proactive, high-level, and context-aware
acceptance testing.

To provide a clearer analytical perspective, existing work is
discussed below according to its primary testing focus and level
of abstraction, explicitly highlighting the limitations that
motivate the proposed approach.

Historically, before the dominance of generative LLMs,
research focused on traditional Natural Language Processing
(NLP) and Model-Based Testing (MBT) to bridge the gap
between requirements and tests. Works such as Lim et al. [14]
proposed unified "boilerplate" approaches to extract test case
information from requirements specifications using NLP. While
structured, these methods are often brittle, struggling with the
ambiguity of natural language. Concurrently, MBT, as reviewed
by Ferrari et al. [29], exploits abstract models of software
behavior to generate tests. Although effective in controlled
settings, MBT approaches require the manual creation and
maintenance of formal behavioral models, which introduces
significant overhead and limits their adoption in fast-paced agile
environments.

While powerful, this approach faces significant adoption
barriers due to the high complexity and cost associated with
creating and maintaining the formal models themselves. Other
approaches utilized deep learning (pre-generative) to automate
functional UI testing [30], but these remained focused on
component-level validation rather than end-to-end business
logic.

As a result, pre-LLM approaches generally fail to scale to
acceptance-level testing scenarios where requirements are
informal, rapidly evolving, and expressed in natural language.

The rise of LLMs [10] has shifted the research focus, with
most efforts concentrating on code-level, specialized, or reactive
testing tasks. A dominant trend is the generation of unit tests.
Ouédraogo et al. [5] provided a large-scale evaluation
comparing LLM-generated unit tests against traditional tools,
noting LLMs produce more readable tests but often lack
correctness. Subsequent research has attempted to mitigate these
limitations by augmenting LLM-based unit test generation with
additional techniques.

This stream includes enhancing unit test generation through
mutation testing [15], using evolutionary algorithms to guide the
LLM [16], or augmenting the process with assertion knowledge
(A3Test) [19]. This entire body of work, while valuable for
code-level validation, addresses a different problem than the
high-level, business-facing acceptance testing that BDD targets.
Specifically, unit test generation operates at the implementation
layer and assumes access to source code, whereas acceptance
testing operates at the requirement layer and must accommodate
non-technical stakeholder input.

A second major research stream focuses on reactive
testing—generating tests after a bug is found. Kang et al. [4]
explored using LLMs as "few-shot testers" to reproduce known
bugs, and Plein et al. [7] confirmed the feasibility of generating
test cases from informal bug reports. These approaches
demonstrate the effectiveness of LLMs in post-hoc validation
scenarios, where the failure context is already known.

A recent extension of this, BRMINER [27], uses LLMs to
extract relevant test inputs from bug reports to enrich existing
test generation tools. This work is crucial for regression suites
but does not address the primary agile bottleneck [6]: the
proactive generation of tests from new functional requirements
before they become bugs. Consequently, reactive LLM-based
testing approaches improve defect reproduction but do not
reduce the upfront effort associated with designing acceptance
tests during sprint planning or backlog refinement.

A third stream applies LLMs to highly technical, specialized
domains, such as developing self-improving frameworks for
security testing of APIs using Karate DSL [20] [21] or
optimizing REST API fuzzers [22]. These approaches, while
advanced, are not aimed at validating the end-to-end business
logic defined in agile user stories. Their domain specificity and
reliance on technical testing artifacts limit their applicability to
general-purpose acceptance testing workflows.

The most relevant, yet least explored, area is the application
of LLMs to high-level acceptance testing, such as BDD. The
work by Karpurapu et al. [13] is one of the few academic studies
that directly addresses LLMs for BDD automation. However,
their research is an evaluation of different prompt engineering
techniques (zero-shot vs. few-shot) to formulate BDD tests.
While informative, this work does not propose a complete, end-
to-end orchestration framework that integrates external
technical context to ensure the semantic and technical validity
of the generated tests.

It does not propose a complete, end-to-end orchestration
framework [11] that integrates external technical context (like a
database schema) to ensure the generated tests are not just
syntactically correct but semantically and technically viable.
This limitation is particularly significant in real-world agile
projects, where acceptance tests must align with underlying data
models and business constraints.

This industry need is validated by the commercial success of
tools like TestRigor [23], which positions itself as a "Generative
AI-based Test Automation Tool" that allows teams to write tests
in plain English [24]. Although such tools demonstrate the
practical viability of LLM-driven acceptance testing, they are
proprietary systems that do not expose their orchestration

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

774 | P a g e
www.ijacsa.thesai.org

strategies or prompt engineering mechanisms for academic
analysis or replication.

This commercial validation proves the desirability of the
approach, but it is a proprietary, closed-box solution, not an open
academic framework.

Our comprehensive review thus reveals a clear and
significant research gap. The literature is heavily skewed toward
code-level [5, 16, 19], reactive [4, 7, 27], or niche [20, 22] test
generation. The few works that touch upon high-level BDD
testing [13] stop at prompt evaluation and do not provide an
integrated framework. In particular, existing approaches lack
systematic LLM orchestration mechanisms capable of
combining requirement-level intent with technical system
context.

A gap persists for a system that is: 1) Proactive, generating
tests from Product Backlog items; 2) High-Level, focusing on
BDD acceptance tests; and 3) Context-Aware, using LLM
Orchestration [11] to integrate external technical artifacts.

This work addresses this precise lacuna. AIDTG is not a unit
test generator or a bug-reproduction tool; it is an orchestration
framework explicitly designed to automate the translation of
high-level agile requirements into data-aware BDD acceptance
tests [13]. By grounding generation in both functional
requirements and database schemas, the proposed approach
advances beyond prior prompt-centric solutions and directly
targets the primary quality assurance bottleneck in modern agile
and DevOps processes [25].

IV. METHODOLOGY

The methodology of this work consists of the design,
implementation, and evaluation of an end-to-end LLM
orchestration framework, named the AI-Based Desktop Test
Generator (AIDTG). This system is architected to manage the
full lifecycle of agile test case generation, from project creation
to optional execution, acting as an intelligent co-assistant for QA
teams [8].

The methodological approach follows an empirical software
engineering paradigm, combining system design with
experimental validation on real-world project data.

The system is designed as a decoupled, API-first application,
comprising a Python-based backend for orchestration and a
separate desktop frontend for user interaction. The core of the
methodology is a dual-LLM engine [18] that leverages the
specific strengths of different models to achieve high logical
accuracy and perfect syntactical compliance. This separation of
concerns at both the architectural and model levels is intended
to improve robustness, scalability, and reproducibility of the
generation process.

A. System Architecture and Workflow

The end-to-end workflow of AIDTG is designed to integrate
seamlessly into an agile QA process, moving from high-level
requirements to executable scripts. The overall system
architecture follows a component-based design and is
represented using a C4 Container diagram, as illustrated in
Fig. 1.

Fig. 1. AIDTG C4 Container S8.

The workflow proceeds through a series of well-defined
stages, each corresponding to a distinct responsibility within the
test generation lifecycle:

1) Project and backlog management: The user first creates

a "Project" within the desktop application. Into this project, the

user injects the Product Backlog, consisting of "Epics" and their

corresponding "User Stories" (US) in a structured format (e.g.,

CSV). This structure enables traceability between backlog

items and generated test cases, which is essential for agile

quality assurance practices.

2) Test cycle initiation: The user selects specific User

Stories from the Product Backlog to form a "Release Backlog"

for the current test cycle. The user then initiates the generation

script for this selected backlog. This step mirrors real-world

sprint or release planning activities, ensuring that the generated

test cases align with the scope of the current development

iteration.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

775 | P a g e
www.ijacsa.thesai.org

3) Context injection: At the moment of generation, the

system prompts the user to provide the "frozen database

schema" (e.g., a .sql script). This is the critical contextual step

that makes the framework data-aware, informing the generation

process with the project's actual data model [2]. The term

“frozen” denotes that the schema represents a stable snapshot

of the data model for the duration of the test cycle, ensuring

consistency across generated artifacts.

4) Orchestration and generation: The backend orchestrator

(detailed in 4.4) receives the User Stories and the DB schema.

It combines them into a master prompt and executes the Dual-

LLM workflow [detailed in Section IV(C)]. At this stage,

prompt engineering rules, coverage strategies, and contextual

constraints are jointly applied to guide the generation process.

5) Output and translation: The system generates the test

cases and provides two distinct outputs: a) a translation into the

user's native language (e.g., Spanish) for human validation, and

b) a script formatted in TestRigor BDD 2.0 syntax [23].

This dual-output strategy supports both Human-in-the-Loop
review and immediate machine execution.

6) Optional execution and monitoring: The user has the

option to execute the generated BDD 2.0 script directly via an

API call to the TestRigor platform. If this option is chosen, the

system utilizes WebSockets to maintain a persistent connection,

monitoring the execution status in real-time and reporting

"Pass" or "Fail" results. This optional execution step enables

immediate validation of syntactic correctness and executability

on the target testing platform.

7) Human-in-the-loop feedback: Finally, the user is

prompted to rate the quality and correctness of the generated

test case on a 1-to-5-star scale. This feedback mechanism is

crucial for the evaluation phase of our study (Section V).

Although not used for automated learning in this study, this

feedback channel establishes the foundation for future Human-

in-the-Loop refinement mechanisms.

8) Dataset description: To ensure transparency and

reproducibility, the experimental dataset used in this study is

described explicitly.

The dataset consists of a real-world Product Backlog
obtained from an active software development project within an
industrial context. It includes 50 distinct User Stories distributed
across 8 Epics, representing common functional requirements in
a business-oriented information system.

Each User Story contains a textual description, priority level,
acceptance criteria, and estimated story points, providing
sufficient detail for acceptance-level test design.

This dataset was selected to reflect realistic agile
development conditions, including heterogeneous requirement
complexity and domain-specific constraints.

B. Core Technologies

The system is implemented as a decoupled application. The
backend is a high-performance Python API, while the frontend
is a modern desktop application.

The backend is built using FastAPI, a high-performance web
framework chosen for its asynchronous capabilities, essential
for managing concurrent API calls to LLM endpoints. It runs on
a Uvicorn ASGI server. For data persistence, SQLAlchemy is
used as the ORM to manage all projects, backlogs, and
generated test cases, connecting to a PostgreSQL database via
the psycopg2 driver. User authentication and security are
handled using python-jose for JWT token generation and Passlib
with bcrypt for secure password hashing. These technologies
were selected to ensure scalability, security, and efficient
handling of concurrent generation and execution requests.

The core backend technologies are detailed in Table I.

TABLE I. BACKEND LIBRARIES

Library / Technology Description

FastAPI
Modern web framework for building

asynchronous APIs.

Uvicorn
ASGI server for running the FastAPI

application.

SQLAlchemy
Python SQL Toolkit and ORM for database

interaction.

psycopg2-binary PostgreSQL adapter for Python.

Pandas / Openpyxl
Used for data manipulation and parsing of

input data.

OpenAI
Python client library for accessing the GPT-

4.0 API.

google-generativeai
Python client library for accessing the Gemini

1.5 Pro API.

Tiktoken
Used for token counting to manage OpenAI

prompt length and costs.

python-dotenv
Manages environment variables (e.g., API

keys).

python-jose & Passlib
Libraries for implementing OAuth2 security,

token generation, and password hashing.

fastapi-pagination
Handles pagination for API endpoints

returning large lists (e.g., backlog items).

httpx
Asynchronous HTTP client for making robust

API calls to LLM endpoints.

The frontend is a desktop application built with React and
Next.js, providing a responsive and modern user interface.
Tailwindcss and Next-UI are used for styling and components,
while React-Markdown is used to render the table-formatted
outputs from the LLM. This technology stack enables clear
visualization of generated test cases and seamless interaction
with the orchestration backend.

The core desktop technologies are detailed in Table II.

TABLE II. DESKTOP LIBRARIES

Library / Technology Description

Next / React
Core JavaScript libraries for

building the user interface.

React-dom
Entry point to the DOM and server

renderers for React.

React-markdown
React component to render the

Markdown output from the LLM.

Next-ui
A component library for building

beautiful UIs with Next.js.

Tailwindcss
A utility-first CSS framework for

rapid UI development.

Github-markdown-css

CSS for replicating GitHub's

Markdown-rendered style.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

776 | P a g e
www.ijacsa.thesai.org

C. The Dual-LLM Orchestration Workflow

A core innovation of AIDTG is its "dual-engine"
orchestration pipeline, which uses two different state-of-the-art
LLMs in sequence. This design is conceptually aligned with
emerging dual-model strategies reported in recent AI research,
where task specialization across models improves overall output
quality.

Step 1: Generation (LLM-1: Gemini 1.5 Pro)

The first engine is the "Generation Engine." It uses Gemini
1.5 Pro for its large context window and strong reasoning
capabilities. It receives the most complex input: the "master
prompt" (detailed in 4.4), which contains the User Stories and
the full database schema. Its responsibility is limited to logical
reasoning and test design, deliberately excluding strict syntax
enforcement.

Step 2: Translation and Formatting (LLM-2: GPT-4.0)

The structured Markdown output from Gemini is then passed
to GPT-4.0, which acts as a specialized "Formatting and
Translation Engine". This model executes two distinct tasks via
separate, simpler prompts:

1) Native language translation: It translates the Markdown

table into the user's native language (e.g., Spanish) for human

validation.

2) BDD 2.0 formatting: It translates the same Markdown

table into the strict, proprietary BDD syntax required by

TestRigor BDD 2.0.

This separation of logical reasoning from syntactic
formatting significantly reduces the risk of syntax-related
hallucinations.

D. Core Component: The AIDTG Prompt Engineering

Framework

The primary intellectual property of the AIDTG framework
is its Master Prompt Template, which is dynamically
constructed by the backend orchestrator and sent to the
Generation Engine (Gemini 1.5 Pro). Rather than relying on a
single monolithic instruction, the prompt is composed of
multiple semantically distinct components, each controlling a
specific aspect of LLM behavior.

This subsection deconstructs the master prompt to explain
the design rationale behind each component.

1) Persona and task injection: The prompt's first section,

shown in Fig. 2, is the Persona Injection. This is the most

critical step for setting the context, quality bar, and expertise of

the model [12]. Instead of a generic instruction, the prompt

forces the LLM to adopt the role of a Senior QA Engineer and

explicitly names the advanced methodologies it must use, such

as Risk-Based Testing [2] and Combinatorial Testing. This

immediately constrains the model to a professional context and

significantly improves the quality and relevance of the

generated test cases.

You are a **Senior QA Engineer** specialized in **Risk-
Based Testing** and **Combinatorial Testing Techniques
(Pairwise Testing)**.
----task---
Your task is to **generate a table of Test Cases (TC)**
in **Markdown format**, based on the following **User
Stories (US)** and the provided **contextual database**.
Do not include explanations or commentary — only return
a single Markdown table with the required fields.

Fig. 2. Persona injection prompt.

2) Multi-language and domain handling: The second

component, detailed in Fig. 3, addresses the challenge of

internationalization. The prompt explicitly instructs the LLM to

auto-detect the language of the input User Story and generate

all test cases in that same language. This makes the framework

immediately usable for global teams (e.g., in English, Spanish,

Hindi) without modification. It also mandates the preservation

of domain-specific terms (like currencies or local names),

preventing the LLM from "over-translating" and losing critical

context.

Language Handling
For each User Story:
Automatically detect its language (e.g., English,
Spanish, Chinese, Hindi, etc.).
**Generate all Test Cases in the same detected
language.**
Preserve any culturally specific or domain-related terms
(such as currencies, location names, etc.) without
translation.

Fig. 3. Multi-language injection prompt.

3) Contextual data injection (Schema-Awareness): The

third component, shown in Fig. 4, is the core of the

orchestration [11]. The backend dynamically injects two critical

data blocks: the User Stories (functional context) and the

Database Schema (technical context).

a) User story data: The {user_epics_prompt} variable

passes the selected backlog items in a machine-readable CSV

format, which the LLM is told how to parse.

b) Frozen database: The {db_prompt} variable provides
the "ground truth" for the test data. By providing real input

values (e.g., product types, currencies, locations), we move the
LLM from generating plausible tests to generating realistic and

executable tests grounded in the system's actual data model.

User Story Data
User Stories are represented in **CSV format**,
delimited by the character `|`.
Columns:
ID | DESCRIPTION | PRIORITY | STORY_POINTS |
ACCEPTANCE_CRITERIA | PAIR_WISE_TESTING`
--- START OF USER STORY DATA ---
{user_epics_prompt}
--- END OF USER STORY DATA ---
Frozen Database (Testing Context)
The following dataset can be used as **real input
values** to design your Test Cases
(for example: product types, currencies, or locations).
--- START OF FROZEN DATABASE DATA ---
{db_prompt}
--- END OF FROZEN DATABASE DATA ---

Fig. 4. Context data injection prompt.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

777 | P a g e
www.ijacsa.thesai.org

4) Strict output formatting (Machine-Readability): A

primary challenge in LLM pipelines is output unreliability [17].

To solve this, the fourth component (Fig. 5) enforces a strict,

non-negotiable output format. The prompt commands the LLM

to return only a single Markdown table with a precisely defined

set of headers. This "structured-to-structured" pipeline

(CSV/DB -> Markdown) is the key to reliability. It ensures the

output from the Generation Engine (Gemini) is a machine-

readable artifact, which can be perfectly and safely parsed by

the Formatting Engine (GPT-4.0) in the next step, eliminating

the risk of free-text "hallucinations" or conversational

contamination.

REQUIRED OUTPUT STRUCTURE
Return a single **Markdown table** with the following
headers:
Columns:
| ID | (HU_FAKE_ID) | (HU_ID) | OBJECTIVE | TYPE |
PRIORITY | PRE-CONDITION | INPUTS | STEPS | EXPECTED
RESULTS | POST-CONDITION |

Fig. 5. Output formatting prompt.

5) Test case generation and strategy rules: Finally, the fifth

component (Fig. 6) provides the explicit "business logic" for

the generation.

Rules 1 & 2 (Coverage & Traceability): Mandate the
minimum required coverage (Happy, Error, and Alternative
Paths) and ensure traceability by mapping the test case back to
the User Story ID.

Rules 3 & 4 (Quality): Instruct the LLM to use the provided
database data for Inputs and to write specific, verifiable
Expected Results.

Rule 5 (Advanced Strategy): This is the most complex rule.
It activates the Pairwise Testing persona if the
PAIR_WISE_TESTING flag is True. It commands the LLM to
look at the database values (e.g., Product Type, Currency,
Location) and create an efficient set of test cases that maximize
combinatorial coverage with minimal tests. This transforms the
LLM from a simple generator into an intelligent test strategist.

TEST CASE GENERATION RULES
1. **Minimum Coverage:**
 For each US, generate TCs covering:
 - **Happy Path:** main successful flow.
 - **Error Path:** validations and incorrect inputs.
 - **Alternative Path:** optional or exceptional flows
2. **Traceability:**
 Use the **ID** field from the US as the value for
(HU_ID) in the table.
3. **Inputs and Steps:**
 Be detailed and realistic. Use actual data from the
provided database whenever possible.
4. **Expected Results:**
 Must be specific and verifiable (e.g., “An error
message is displayed: ‘Invalid email format’”).
5. **Priority:**
 Inherit directly from the User Story (Critical, High,
Medium, Low).
6. **Pairwise Testing (if applicable):**
 If the flag `PAIR_WISE_TESTING = True` is active for
a US:

 - Generate **test combinations** using real values
found in the database section.
 - Example for a “Add Product” US:
 - Product Type (physical, digital)
 - Currency (PEN, USD)
 - Location (Lima, Cusco, Arequipa)
 - Create **unique, efficient test cases** that
maximize coverage with minimal combinations.
7. **Formatting Rules:**
 - Only one Markdown table.
 - No text outside the table.
 - Use "Happy Path", "Error Path", or "Alternative
Path" under "TYPE (Path)".
 - Fill all columns completely (no empty cells).
 - Separate each step in the **STEPS** column using a
line break `\\n`.
 - Maintain the same language as the detected User
Story.

Fig. 6. Test case generation rules prompt.

V. RESULTS

This section details the experimental design used to validate
this research's objectives. First, a framework of evaluation
metrics is defined based on academic literature. Second, the
experimental setup is described. Finally, the quantitative and
qualitative results obtained from the application of the AIDTG
framework on a real-world dataset are presented and discussed.

The results are structured around the predefined research
questions to ensure traceability between objectives, evaluation
metrics, and empirical findings.

A. Definition of Evaluation Metrics

To evaluate the efficacy and performance of a new test
generation technology, a metrics framework is essential. Based
on a review of the literature on test automation [31, 2132, 35],
technology adoption [35], and Natural Language Processing
(NLP) in testing [33, 34], we have identified a consensus around
four key performance variables. These variables are widely used
in both academic studies and industrial evaluations of automated
testing tools.

Table III summarizes these standard industry and academic
metrics.

TABLE III. KEY LITERATURE-BASED METRICS

Metric / Variable Description
Rationale (from

Literature)

Efficiency / Time

Savings

Measures the

reduction in human

time and effort

(measured in man-

minutes) required to

complete a task,

compared to the

manual baseline.

The primary

justification for

adopting new testing

technologies is

operational efficiency,

cost reduction, and

accelerating delivery

cycles [35, 34].

Perceived Quality &

Precision

Measures how correct,

readable, relevant, and

useful the generated

artifacts are. This is a

qualitative metric best

measured via human

expert scoring

(surveys).

A systematic review

of NLP in testing [33]

identifies "Test Case

Quality" as a central

metric for validation.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

778 | P a g e
www.ijacsa.thesai.org

Functional

Correctness

Measures whether the

generated test cases

are syntactically

correct and capable of

executing on a testing

platform without

failure.

This is the ultimate

technical validation.

Rapid generation is

useless if the scripts

are unexecutable on

the target platform

[35].

Fault Detection

Measures the ability

of the generated test

cases to identify

defects (bugs) in the

codebase.

The ultimate goal of

testing is to find faults

[32]. High fault

detection indicates

high-quality

generation.

For this study, we focused on the first three metrics
(Efficiency, Perceived Quality, and Functional Correctness), as
"Fault Detection" is dependent on pre-existing bugs in the
source code, which was outside the scope of our backlog-based
generation.

This scope delimitation ensures that the evaluation remains
aligned with the proactive nature of acceptance test generation
from requirements.

B. Experimental Setup

The experiment was designed to compare the performance
of the AIDTG tool against traditional manual generation.

1) Dataset: We used a real-world project dataset from a

software development company (identified as the organization

under study). The dataset consisted of a Product Backlog with

50 unique User Stories (US), distributed across 8 Epics. This

dataset corresponds exactly to the one described in the

Methodology section, ensuring internal consistency across the

study.

2) Control group (Manual): We measured the average time

it took for a QA analyst with 3 years of experience (hereafter,

"the expert") to analyze a US, design, and manually write the

test cases (Happy, Alt, Error) based on the requirements. This

process represents standard industry practice for acceptance test

design in agile teams.

3) Experimental group (AIDTG): We used the AIDTG

framework (configured with Gemini 1.5 Pro and GPT-4.0) to

process the same 50 US.

A group of five QA analysts (with mixed experience levels)

reviewed and rated the generated test cases.

Their evaluations were averaged to ensure inter-rater reliability.

The use of multiple evaluators strengthens the robustness of the

qualitative assessment.

4) Instruments:

a) Efficiency: Time tracking (man-minutes) for both

groups.

b) Perceived quality: An evaluation survey (see
Appendix A) based on a 1-to-5 Likert scale (1=Useless,
5=Fully Adequate), which the expert completed for each

generated test case. The survey instrument was designed to
capture expert judgment on relevance, clarity, and practical

usability.

c) Functional correctness: The TestRigor platform, used
to execute the BDD 2.0 scripts and report a binary ("Pass" /

"Fail") result.

C. Research Questions

The experiment sought to answer the following Research
Questions (RQs), derived from the project's specific objectives:

1) RQ1 (Efficiency): To what extent does AIDTG reduce

the time and effort of test case creation compared to the manual

process?

2) RQ2 (Quality): How precise, useful, and of high quality

are the test cases generated by AIDTG, according to human

expert evaluation (based on the survey)?

3) RQ3 (Functional correctness): What percentage of the

BDD 2.0 scripts generated by AIDTG are functionally correct

and executable ("Pass") on the TestRigor platform?

These research questions directly map to the selected
evaluation metrics, enabling a clear interpretation of results.

D. Results and Findings

The 50 User Stories were processed through the AIDTG
pipeline, resulting in the generation of 197 unique test cases
(covering Happy, Alternative, and Error paths). This distribution
reflects the minimum coverage rules enforced by the generation
framework.

1) Results for RQ1 (Efficiency): A significant reduction in

effort was observed. The manual process required an average

of 25 minutes per User Story. The AIDTG process (Table IV),

including AI generation and human review, reduced the total

effort to approximately 5 minutes per User Story.

TABLE IV. COMPARISON BETWEEN MANUAL PROCESS AND AIDTG

PROCESS

Metric
Manual Process

(Control)

AIDTG Process

(Experimental)
Improvement

Avg. Time per

US
25 Minutes 5 Minutes

80% Time

Savings

Total Effort (50

US)

1250 Minutes

(20.8 hrs)

250 Minutes

(4.1 hrs)

16.7 hours

saved

Conclusion (RQ1): The AIDTG framework achieved an
80% reduction in the time and effort required for test case
creation.

2) Results for RQ2 (Perceived quality): The evaluation

survey (Appendix A) was used to measure the perceived quality

of the 197 generated TCs. Table V shows the distribution of the

expert's ratings, with qualitative labels removed as requested.

TABLE V. SCALE RANKING

Rating (1-5 Scale) # of Generated TCs Percentage

5 158 80.2%

4 29 14.7%

3 10 5.1%

2 0 0%

1 0 0%

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

779 | P a g e
www.ijacsa.thesai.org

Conclusion (RQ2): 94.9% of the generated test cases
received a rating of 4 or 5, resulting in a weighted average score
of 4.75 out of 5.

3) Results for RQ3 (Functional correctness): To validate

technical correctness, all 197 BDD 2.0 scripts generated by the

GPT-4.0 engine were sent to the TestRigor platform (via

WebSocket) for syntax validation. The results are summarized

in Table VI.

TABLE VI. COLLECTED METRICS

Metric # of TCs Percentage Analysis Notes

"Pass"

(Successful

Execution)

181 91.9%

BDD 2.0 syntax

is correct and

executable.

"Fail" (Syntax

Error)
16 8.1%

Execution

failed due to

syntax.

Total 197 100%

Conclusion (RQ3): 91.9% of the generated scripts were
syntactically correct and executable on the target platform.

E. Discussion of Results

The results strongly validate the project's hypothesis. An
80% time saving (RQ1) aligns with industry promises of
technology adoption [35] and exceeds the expectations of
traditional NLP tools that require more intensive setup [34].

The most significant finding is the synergy between high
efficiency (RQ1) and high quality (RQ2). Historically, test
generation tools sacrificed quality for speed [32]. The AIDTG
framework, by using a dual-engine (Gemini for logic, GPT-4 for
format) and a DB-schema-aware orchestration, demonstrates
that it is possible to achieve both. The 4.75 average rating (RQ2)
and the 91.9% execution success rate (RQ3) prove that the
output is not just "fast," but "correct and useful."

While a 1–5 star rating function was implemented in the
application [as detailed in Section IV(A)], it is considered an
experimental feature for future Human-in-the-Loop feedback. It
is important to emphasize that the data for this study was
collected exclusively via formal surveys (detailed in Appendix
A: QA Evaluation Questionnaire) to ensure methodological
rigor.

VI. CONCLUSION AND FUTURE WORK

Specifically, the study focused on the challenges of
translating high-level Product Backlog requirements into
executable acceptance tests in a manner that is both efficient and
semantically accurate. [6]. While recent LLM research has
focused on unit tests [5] and bug reproduction [7], a significant
gap remained in the proactive, high-level generation of
acceptance tests from backlog requirements.

This gap is particularly critical in agile and DevOps contexts,
where acceptance testing plays a central role in validating
business requirements prior to release.

We successfully designed, implemented, and evaluated the
AI-Based Desktop Test Generator (AIDTG), an LLM

orchestration framework that bridges this gap. The proposed
framework moves beyond isolated prompt-based
experimentation by introducing an end-to-end, schema-aware
orchestration pipeline for acceptance test generation.

Our methodology's primary contribution is a dual-LLM
engine (Gemini 1.5 Pro and GPT-4.0) combined with a schema-
aware prompt engineering framework (Section IV). This
combination enables a clear separation between logical test
design and strict syntactic formatting, improving both
generation quality and executability.

This approach transforms high-level User Stories into
executable TestRigor BDD 2.0 scripts [23] by grounding the
generation process in the project's actual data model [2]. By
explicitly incorporating database constraints into the generation
workflow, the framework reduces ambiguity and increases
semantic alignment between requirements and validation
artifacts.

Our experimental evaluation on a real-world dataset
demonstrated that AIDTG:

• Reduces test design effort by 80% (RQ1).

• Achieves a 4.75 out of 5 average quality rating from
expert human review (RQ2).

• Produces BDD scripts with a 91.9% functional
(syntactical) correctness rate on the target platform
(RQ3).

These results confirm that the proposed framework can
significantly improve QA productivity while maintaining high
standards of test quality and executability.

Unlike prior studies that evaluate prompt effectiveness in
isolation, this research provides empirical evidence for the
benefits of orchestration-centric architectures in AI-assisted
software testing.

From an industrial perspective, the findings suggest that
AIDTG can support the adoption of AI-assisted testing practices
in real agile teams.

By automating repetitive acceptance test design tasks, QA
professionals can focus on higher-value activities such as
exploratory testing, test strategy refinement, and defect analysis.

Furthermore, the generation of business-readable BDD
artifacts has the potential to improve communication and
alignment between developers, testers, and non-technical
stakeholders.

A. Future Work

This study opens several avenues for future research.

• Mitigating Failures: The 8.1% failure rate in functional
correctness (RQ3) was primarily due to minor syntax
hallucinations by the formatting LLM. Future work will
focus on refining the formatting prompt and
implementing a "self-correction" loop where the LLM
automatically fixes the script upon receiving a "Fail"
status from the TestRigor API.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

780 | P a g e
www.ijacsa.thesai.org

• Human-in-the-Loop (HIL) Fine-Tuning: The 1-5 star
rating feature built into the application (Section IV) was
experimental for this study. The next phase is to capture
this user feedback and use it to create a fine-tuning
dataset, enabling a Human-in-the-Loop (HIL) pipeline
that constantly improves the generation engine's
accuracy.

• Expanding Target Frameworks: While this work focused
on TestRigor BDD 2.0 [23], the dual-engine
methodology is adaptable. Future iterations could
include formatting engines for other popular BDD
frameworks, such as Cucumber (Gherkin) or Behave.

• Integration with Design Tools: A promising avenue is to
expand the "context" beyond just the database schema to
include inputs from UI/UX design tools (e.g., Figma),
further grounding the generated test cases in the
application's intended design.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the
Peruvian University of Applied Sciences (UPC) and its
Directorate of Research.

REFERENCES

[1] Brynjolfsson, E., Li, D., & Raymond, L. (2025). Generative AI at Work.

The Quarterly Journal of Economics, 140(2), 889–942.

https://doi.org/10.1093/qje/qjae044.

[2] Felderer, M., & Schieferdecker, I. (2014). A taxonomy of risk-based

testing. International Journal on Software Tools for Technology Transfer.

https://doi.org/10.1007/s10009-014-0332-3.

[3] Islam, M., Khan, F., Alam, S., & Hasan, M. (2023, September). Artificia l

Intelligence in Software Testing: A Systematic Review. In TENCON

2023 - 2023 IEEE Region 10 Conference (TENCON). IEEE.

https://doi.org/10.1109/TENCONS8879.2023.10122349.

[4] Kang, S., Yoon, J., & Yoo, S. (2023). Large Language Models are Few-

shot Testers: Exploring LLM-based General Bug Reproduction. In 2023

IEEE/ACM 45th International Conference on Software Engineering

(ICSE) (pp. 2312–2323). IEEE.

https://doi.org/10.1109/ICSE48619.2023.00194.

[5] Ouédraogo, W. C., Kaboré, K., Song, Y., Klein, J., Tian, H., Koyuncu,

A., Lo, D., & Bissyandé, T. F. (2024). LLMs and Prompting for Unit Test

Generation: A Large-Scale Evaluation. In 39th IEEE/ACM International

Conference on Automated Software Engineering (ASE '24). ACM.

https://doi.org/10.1145/3691620.3695330.

[6] Panwar, A., & Peddi, P. (2023). Challenges in Software Testing.

International Journal of Renewable Energy Exchange, 11(1), 168–171.

[7] Plein, L., Ouédraogo, W. C., Klein, J., & Bissyandé, T. F. (2024).

Automatic Generation of Test Cases based on Bug Reports: a Feasibility

Study with Large Language Models. In 2024 IEEE/ACM 46th

International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion '24). ACM.

https://doi.org/10.1145/3639478.3643119.

[8] Santos, R., Santos, I., Magalhaes, C., & de Souza Santos, R. (2024). Are

We Testing or Being Tested? Exploring the Practical Applications of

Large Language Models in Software Testing. In 2024 IEEE Conference

on Software Testing, Verification and Validation (ICST) (pp. 353–360).

IEEE. https://doi.org/10.1109/ICST60714.2024.00039.

[9] Stryker, C. (2024, May 15). What is AI? IBM Think.

https://www.ibm.com/think/topics/artificial-intelligence.

[10] Stryker, C. (2024, March 19). What are LLMs? IBM Think.

https://www.ibm.com/think/topics/large-language-models.

[11] Winland, V., & Noble, J. (2024, June 25). What is LLM Orchestration?

IBM Think. https://www.ibm.com/think/topics/llm-orchestration.

[12] (2024, May 15). What is prompt engineering? IBM Think.

https://www.ibm.com/think/topics/prompt-engineering.

[13] Karpurapu, S., Myneni, S., et al. (2024). Comprehensive Evaluation... of

Large Language Models in the Automation of Behavior-Driven

Development... IEEE Access.

https://doi.org/10.1109/ACCESS.2024.3391815.

[14] Lim, J. W., Chiew, T. K., et al. (2024). Test case information

extraction from requirements specifications using NLP-based unified

boilerplate approach. The Journal of Systems and Software.

https://doi.org/10.1016/j.jss.2024.112005.

[15] Dakhel, A. M., Nikanjam, A., et al. (2024). Effective test generation

using pre-trained Large Language Models and mutation testing.

Information and Software Technology.

https://doi.org/10.1016/j.infsof.2024.107468.

[16] Yang, R., Xu, X., & Wang, R. (2025). LLM-enhanced evolutionary test

generation for untyped languages. Automated Software Engineering.

https://doi.org/10.1007/s10515-025-00496-7.

[17] Li, Y., Liu, P., et al. (2025). Evaluating large language models for

software testing. Computer Standards & Interfaces.

https://doi.org/10.1016/j.csi.2024.103942.

[18] Zhuge, Q., Wang, H., & Chen, X. (2025). TwinStar: A Novel Design for

Enhanced Test Question Generation Using Dual-LLM Engine. Applied

Sciences. https://doi.org/10.3390/app1506305.

[19] Alagarsamy, S., Tantithamthavorn, C., & Aleti, A. (2024). A3Test:

Assertion-Augmented Automated Test case generation. Information and

Software Technology. https://doi.org/10.1016/j.infsof.2024.107565.

[20] Pasca, E. M., Delinschi, D., et al. (2025). LLM-Driven, Self-Improving

Framework for Security Test Automation... Leveraging Karate DSL...

IEEE Access. https://doi.org/10.1109/ACCESS.2025.3554960.

[21] Mehmood, A., Ilyas, Q. M., et al. (2024). Test Suite Optimization Using

Machine Learning Techniques: A Comprehensive Study. IEEE Access.

https://doi.org/10.1109/ACCESS.2024.3490453.

[22] Chen, J., Chen, Y., et al. (2024). DynER: Optimized Test Case Generation

for Representational State Transfer (REST)ful... Electronics.

https://doi.org/10.3390/electronics13173476.

[23] TestRigor. (n.d.). TestRigor - #1 Generative AI-based Test Automation

Tool. Consultado el 8 de noviembre de 2025. https://testrigor.com/.

[24] TestRigor. (2023, 11 de diciembre). Revolutionizing QA: How to Create

Tests in Seconds with testRigor’s Generative AI. testRigor Blog.

https://testrigor.com/blog/revolutionizing-qa-how-to-create-tests-in-

seconds-with-testrigors-generative-ai/.

[25] Fernández Del Carpio, A., Bermon Angarita, L., & Osorio Londoño, A.

A. (2022). A Bibliometric Analysis of DevOps Metrics. DESIDOC

Journal of Library & Information Technology.

https://doi.org/10.14429/djlit.42.6.18365.

[26] Rehan, S., Al-Bander, B., & Al-Said Ahmad, A. (2025). Harnessing Large

Language Models for Automated Software Testing: A Leap Towards

Scalable Test Case Generation. Electronics.

https://doi.org/10.3390/electronics14071463.

[27] Ouédraogo, W. C., Plein, L., Kaboré, K., Habib, A., Klein, J., Lo, D., &

Bissyandé, T. F. (2025). Enriching automatic test case generation by

extracting relevant test inputs from bug reports. Empirical Software

Engineering. https://doi.org/10.1007/s10664-025-10635-z.

[28] Christakis, N., & Drikakis, D. (2025). Evaluating Large Language Models

in Code Generation: INFINITE Methodology for Defining the Inference

Index. Applied Sciences. https://doi.org/10.3390/app15073784.

[29] Ferrari, F. C., Durelli, V. H. S., Andler, S. F., Offutt, J., Saadatmand, M.,

& Müllner, N. (2023). On Transforming Model-based Tests into Code: A

Systematic Literature Review. Software Testing, Verification and

Reliability. https://doi.org/10.1002/stvr.

[30] Khaliq, Z., Farooq, S. U., & Khan, D. A. (2022). A deep learning-based

automated framework for functional User Interface testing. Information

and Software Technology. https://doi.org/10.1016/j.infsof.2022.106969.

[31] Karimi, M., Kolahdouz-Rahimi, S., & Troya, J. (2024). Ant-colony

optimization for automating test model generation... The Journal of

Systems and Software, 208. https://doi.org/10.1016/j.jss.2023.111882 .

[32] Qin, Z., Fan, J., Liu, X., Li, Z., & Sun, X. (2025). Effective fuzzing

testcase generation based on variational auto-encoder... Engineering

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

781 | P a g e
www.ijacsa.thesai.org

Applications of Artificial Intelligence, 144.

https://doi.org/10.1016/j.engappai.2025.110094.

[33] Boukhlif, M., Hanine, M., Kharmoum, N., Ruigómez Noriega, A., García

Obeso, D., & Ashraf, I. (2024). Natural Language Processing-Based

Software Testing: A Systematic Literature Review. IEEE Access, 12.

https://doi.org/10.1109/ACCESS.2024.3407753.

[34] Koh, S. J., & Chua, F. F. (2023). ReqGo: A Semi-Automated

Requirements Management Tool. International Journal of Technology,

14(4). https://doi.org/10.14716/ijtech.v14i4.6151.

[35] Poth, A., Rrjolli, O., & Arcuri, A. (2025). Technology adoption

performance evaluation applied to testing industrial REST APIs.

Automated Software Engineering, 32(5). https://doi.org/10.1007/s10515-

024-00477-2.

APPENDIX A. QA EVALUATION QUESTIONNAIRE

This appendix presents the Quality Assurance (QA) evaluation

questionnaire used in the study. The purpose of this questionnaire is to gather
expert feedback on the usefulness, reliability, and clarity of the test cases

generated by the AI-based solution, a s well as the feasibility of integrating this
tool into agile software development processes. The questionnaire is divided into

three parts: Section A contains Likert-scale items for quantitative evaluation,

Section B provides dichotomous (Yes/No) questions for binary assessment, and

Section C includes open-ended questions for qualitative feedback.

Instructions to Respondents:

• Please answer all questions based on your experience with the AI -

generated test cases and the overall tool.

• In Section A, rate each statement on a scale of 1 to 5 (where 1 represents

Very Poor and 5 represents Excellent).

• In Section B, select either Yes or No for each question.

• In Section C, provide your answers in your own words, elaborating on

your perspective for each question.

Section A – Likert-Scale Questions (1–5):

-How useful do you consider the AI-generated test cases compared to

manual test cases?

-What level of reliability do you perceive in the AI-generated results

with respect to the user requirements?

-On a scale of 1 to 10, how accurate do you consider the test cases

generated by AI?

-On a scale of 1 to 10, how complete do you consider the set of critical

scenarios identified by AI?

-How precise do you consider the critical scenarios generated by AI?

-How likely are you to recommend this solution for a real software

development project?

-Scale: 1 = Very Poor, 5 = Excellent.

Section B – Dichotomous Questions (Yes/No):

-Do you believe that automatic test case generation with AI can

significantly reduce test design time?

-Do you think this solution can be seamlessly integrated into agile

methodologies such as Scrum or Kanban?

-Do you consider the AI-generated test cases to be sufficiently clear for

execution by a human tester?

Section C – Open-Ended Questions:

-What aspects do you consider most valuable about the automatic

generation of test cases with AI?

-What are the main limitations or risks you identify in the application

of this solution?

-What improvements would you recommend to increase the

effectiveness of the tool in real-world testing scenarios?

-How do you envision the impact of this solution on the future of

software quality assurance?

