
(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

782 | P a g e  
www.ijacsa.thesai.org 

Task Scheduling in Cloud Computing Environment 

Based on Dwarf Mongoose Optimization

Olanrewaju Lawrence Abraham1*, Md Asri Ngadi2, Johan Bin Mohamad Sharif3, 

Mohd Kufaisal Mohd Sidik4, Ogunyinka Taiwo Kolawole5 

Department of Computer Science, Universiti Teknologi Malaysia, Johor, Malaysia1, 2, 3, 4 
Information Technology Services Department, Gateway (ICT) Polytechnic Saapade, Ogun State, Nigeria 1 

Department of Computer Science, Gateway (ICT) Polytechnic Saapade, Ogun State, Nigeria 5 
 
 

Abstract—The rapid advancement of the Internet and 

Internet of Things (IoT) technologies has significantly increased 

the demand for scalable and efficient cloud computing solutions. 

Task scheduling, a critical aspect of cloud computing, directly 

impacts system performance by influencing resource utilization, 

execution time, and operational costs. However, scheduling tasks 

in large-scale, dynamic cloud environments remains an NP-hard 

problem, with existing metaheuristic methods often struggling 

with scalability, convergence, and adaptability. This study 

proposes a novel task scheduling approach based on the dwarf 

mongoose optimization (DMO) algorithm. To assess its 

effectiveness, we conduct two experimental scenarios. The results 

demonstrate that, compared with existing algorithms, the 

proposed DMO algorithm offers faster convergence and higher 

accuracy in identifying optimal task scheduling solutions, 

particularly under large-scale task loads. We evaluated the 

method using the Google Cloud Jobs (GoCJ) dataset, and the 

findings confirm that DMO outperforms prior state-of-the-art 

techniques in terms of reducing makespan. 
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I. INTRODUCTION 

The exponential expansion of the Internet and the Internet 
of Things has resulted in a significant increase in network data, 
rendering cloud computing (CC) increasingly essential. Unlike 
other distributed computing models like grid computing, CC 
offers users more flexible and scalable services. To efficiently 
meet the rising computational demands of large-scale 
applications, CC now enables the rapid deployment of such 
applications by offering flexible and resilient resources on a 
pay-per-use basis [1]. CC has transformed how computational 
resources are allocated and used, providing unmatched 
scalability, flexibility, and cost-efficiency for a wide range of 
applications and services. These massive applications involve a 
vast number of jobs or tasks processed within service-oriented 
cloud environments. Among the various cloud service models, 
the most prominent are Software as a Service (SaaS), Platform 
as a Service (PaaS), and Infrastructure as a Service (IaaS) [2]. 
Fig. 1 highlights the key entities in cloud computing that 
contribute to ensuring continuous service delivery. 

In the SaaS paradigm, cloud applications are provided to 
customers via the Internet and accessed by client programs 
such as web browsers on desktops or workstations. SaaS is 
frequently utilized for services including webmail, video-

sharing platforms, social networking sites, and online 
document editors. Concurrently, PaaS provides a development 
environment tailored for the construction, testing, and 
deployment of applications. Furthermore, IaaS offers users 
scalable and adaptable computer resources to facilitate the 
deployment of extensive applications. In the IaaS paradigm, 
users employ virtual machines (VMs) that are provisioned with 
pre-configured CPU, storage, memory, and bandwidth to fulfill 
their individual requirements. Various VM configurations are 
available at different price points, giving users control over 
their computing resources. IaaS offers three main advantages: 
1) users pay only for what they use, similar to utilities like 
electricity or water, allowing flexible resource scaling based on 
application demands; 2) direct provisioning of resources, 
which boosts application performance; and 3) global 
accessibility to rented resources at any time according to the 
required service level. However, determining the optimal 
number of resources needed to execute large-scale tasks on an 
IaaS cloud remains a significant and unresolved challenge [3, 
4]. 

 
Fig. 1. Cloud Computing Architecture. 

Central to CC is the effective management of resources, 
especially task scheduling across distributed and virtualized 
systems. Task scheduling plays a vital role in optimizing 
resource utilization, minimizing execution time, and enhancing 
overall system performance. However, the complexity and 
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constantly changing conditions in cloud environments present 
major challenges for conventional scheduling methods. CC 
operates by allocating computational tasks to VMs within a 
resource pool to meet user demands and minimizing task 
completion time. The scheduling process generally has two 
primary stages: first, allocating user-submitted tasks to a 
selection of accessible VMs; second, establishing or relocating 
virtual machines onto suitable hosts [5]. The efficiency of task-
to-VM scheduling directly impacts the overall processing 
capability of a cloud computing system, making it a critical 
area of study. Among the various performance metrics, 
makespan, which represents the total time required to complete 
all tasks, is one of the most important indicators for evaluating 
system efficiency [6, 7]. Therefore, an efficient task scheduling 
algorithm should aim to minimize makespan. However, as the 
number of tasks and VMs grows, the problem becomes an NP-
hard optimization challenge, often leading to dimensional 
complexity issues. 

Due to the practical applications and challenges associated 
with executing large-scale tasks, task scheduling for massive-
scale applications has become a major research focus in cloud 
computing, gaining considerable scholarly attention. Various 
metaheuristic algorithms have been employed to address task 
scheduling and other optimization problems, often producing 
promising results for small-scale tasks. Nonetheless, when the 
problem size and variable count escalate, the quality of 
candidate solutions produced by these algorithms deteriorates 
drastically. Furthermore, numerous existing techniques fail to 
satisfy diverse Quality of Service (QoS) requirements, which 
are essential for both scientific and industrial applications. 
Recent research has employed metaheuristic techniques, 
including grey wolf optimization (GWO) [8], synergistic 
swarm optimization (SSO) [9], particle swarm optimization 
(PSO) [10], symbiotic organism search (SOS) [11], and 
African Vultures optimization Algorithm (AVOA) [12] to 
address task scheduling challenges. Despite their effectiveness 
in improving performance and constraining the solution search 
space, these methods still struggle with challenges such as 
excessive computational time, premature convergence to local 
optima, poor balance between exploration and exploitation, and 
unreliable performance across larger search spaces [13,14]. 

Owing to the constraints of existing scheduling techniques 
in large-scale dynamic cloud environments, this research 
proposes a DMO-based task scheduling algorithm. To the best 
of our knowledge, this is the first application of the DMO 
algorithm for optimizing execution time (makespan) in cloud 
computing [15]. By harnessing DMO’s strong balance between 
exploration and exploitation, motivated by the foraging and 
social habits of dwarf mongooses, the proposed approach aims 
to enhance cloud system performance, reduce makespan, and 
improve scheduling efficiency for large-scale applications. 
This novel application of DMO addresses the critical need for 
high-performance, scalable scheduling solutions in modern 
cloud environments. 

The study focuses on the design, development, and 
performance evaluation of an innovative task scheduling 
algorithm tailored for cloud computing environments. The 
effectiveness of the proposed method is benchmarked against 
various state-of-the-art algorithms using recognized task 

scheduling scenarios. Through extensive experimentation and 
comparative analysis, the algorithm’s capability in scalability, 
convergence speed, and solution quality is clearly shown. The 
proposed task scheduling method, founded on the DMO 
algorithm, delivers an efficient and robust solution for task 
scheduling in cloud computing environments. In large-scale 
and dynamic cloud environments, it enhances overall system 
efficacy and resource utilization. This study's primary 
contributions can be succinctly presented as follows: 

• Clearer Presentation of DMO Procedures: We provide a 
structured and detailed explanation of the DMO 
algorithm, enhancing its interpretability for cloud-based 
optimization problems. 

• Design and Implementation of a Discrete DMO Variant: 
A discrete version of the DMO algorithm is proposed 
and implemented specifically for task scheduling in 
cloud computing, enabling it to handle non-continuous 
scheduling spaces effectively. 

• Experimental Validation on GoCJ Dataset: The 
proposed algorithm undergoes extensive testing on the 
widely known GoCJ benchmark dataset, showcasing its 
efficacy and computing efficiency in realistic 
circumstances. 

• Comprehensive Performance Evaluation: To evaluate 
performance, the algorithm is analyzed through 
essential metrics like makespan, response time, and 
degree of imbalance among VMs, demonstrating its 
impact on efficient resource utilization and balanced 
workload distribution. 

The rest of the study is organized as follows: Section II 
discusses related studies and analyzes existing solutions for 
task scheduling in cloud computing. Section III defines the 
optimization model and problem statement adopted in this 
work. Section IV explains the design and implementation 
process of the proposed DMO-based algorithm. Section V 
presents a comprehensive performance evaluation based on 
simulation results and comparative metrics. Section VI 
concludes the study with a summary of outcomes and possible 
future research directions. 

II. RELATED WORK 

Researchers have formulated diverse scheduling models 
from various directions to tackle the task scheduling issue in 
CC environments, as proven in the available literature. These 
models are generally improved by sophisticated algorithms, 
yielding favorable outcomes in reducing performance 
indicators such as average response times, makespan, total 
execution time, and enhancing load balancing. While numerous 
approaches have been proposed, this section focuses on 
summarizing the most recent and commonly used task 
scheduling algorithms documented in the literature [16]. 
Despite the progress made, there remains significant room for 
improvement, particularly in enhancing scalability, solution 
quality, and execution efficiency in large-scale, dynamic cloud 
environments. 

The research [17] presents a unique methodology termed 
MALO, which is a hybrid antlion optimization algorithm 
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integrated with elite-based differential evolution. This strategy 
is explicitly formulated to address the multi-objective 
characteristics of task scheduling by concentrating on 
minimizing makespan and optimizing resource consumption 
concurrently. The innovation lies in improving the antlion 
optimization algorithm with a local search technique to better 
explore potential solutions and avoid suboptimal results. 
Through experiments using synthetic and real trace datasets 
with the CloudSim toolkit, MALO demonstrated superior 
performance compared to other well-known optimization 
algorithms. It was especially recognized for its accelerated 
convergence in extensive search areas, rendering it 
exceptionally appropriate for tackling large-scale scheduling 
challenges. The efficacy of MALO was further substantiated 
through statistical analysis, affirming its substantial 
enhancement in task scheduling results. 

Task scheduling in CC is essential for the optimum 
utilization of resources. It entails organizing multiple tasks 
among diverse VMs to reduce the overall completion time 
(makespan) and optimize resource use. This method is 
intricate, particularly for large-scale data applications, as it 
constitutes an NP-hard problem, indicating that identifying the 
optimal approach is exceedingly difficult. In [18], the authors 
propose a method employing a hybrid dragonfly algorithm 
(MHDA) designed to optimize task scheduling by minimizing 
makespan and augmenting resource consumption. The 
dragonfly algorithm mimics the swarming behavior of 
dragonflies and is combined with b-hill climbing, a technique 
that helps in exploring solutions more effectively to avoid 
getting stuck in less optimal solutions. 

The study [19] proposes an adaptive symbiotic organism 
search (ABFSOS) algorithm that aims to address this issue by 
adjusting its parameters to better balance exploration and 
exploitation, leading to faster and more effective solutions. 
Additionally, the study introduces an adaptive strategy for 
handling constraints within the scheduling process. 

CC is vital for contemporary computational frameworks 
because of its scalability and adaptability, influencing system 
efficiency and resource management. The proposed 
optimization algorithm detailed in [9] integrates the strengths 
of the Jaya algorithm's capacity to exploit optimal solutions, 
the collaborative search strategy of SSO, and the stochastic 
component introduced by Levy flights, thereby offering a 
synergistic optimization framework. 

The paper [20] proposed a novel approach integrating 
GWO and the genetic algorithm (GA) to optimize task 
scheduling in cloud computing, aiming to address 
shortcomings in existing methods and enhance efficiency. The 
proposed method overcomes issues like premature 
convergence and suboptimal solutions, resulting in more 
effective task scheduling in cloud environments, allowing for 
faster convergence in large scheduling problems, as evaluated 
using the CloudSim toolkit. 

The proposed chameleon and remora search optimization 
(CRSOA) [21] tackles these difficulties by accounting for 

MIPS and network bandwidth impacts, which directly 
influence VM performance. The system simultaneously 
accounts for uncertainty factors, including task completion 
rate, load balance, scheduling cost, and makespan, hence 
improving scheduling processes. The CRSOA model develops 
a multi-objective optimization strategy for cloud task 
scheduling with a greedy methodology to replicate actual cloud 
computing work scheduling. Experimental findings 
demonstrate that CRSOA diminishes completion time, reduces 
makespan by 18.96%, lowers cost by 22.18%, and enhances 
load balancing among VMs by 20.54% relative to other 
metaheuristic algorithms. 

The study [22] proposes a new multi-objective task 
scheduling algorithm named DCOHHOTS, which is an 
enhancement of the Harris Hawks Optimizer (HHO) through 
the integration of differential evolution (DE), chaotic maps, 
and opposition-based learning (OBL). The proposed algorithm 
optimizes the initial positioning of the "hawks" or search 
agents to improve the efficiency of finding solutions. By 
prioritizing tasks and efficiently assigning them to resources, 
the algorithm seeks to reduce makespan, lower energy 
consumption, and minimize execution costs. 

The research [23] integrates the pollination behavior of 
flowers with the exploratory search abilities of grey wolves, in 
conjunction with crossover operators from evolutionary 
algorithms. To enhance the exploration capabilities of the FPA, 
the grey wolf optimizer is integrated. This strategy mimics the 
social hierarchy and hunting techniques of grey wolves, 
improving the algorithm's ability to avoid local optima and 
ensuring a thorough search of the solution space. The crossover 
operators from genetic algorithms are employed to facilitate the 
exploitation phase. 

The study [24] introduces a novel task scheduling 
algorithm that integrates the Harris Hawk Optimization (HHO) 
algorithm with fuzzy logic to tackle the intricate issue of task 
scheduling in cloud environments. This combination seeks to 
optimize allocation of tasks to virtual machines, focusing on 
enhancing many objectives, including reducing makespan, 
decreasing energy usage, and minimizing expenses. The 
efficacy of the suggested fuzzy-HHO approach is substantiated 
by comprehensive simulations in the CloudSim framework, 
where it is juxtaposed with two prominent algorithms. The 
results demonstrate substantial improvements in makespan 
reduction (up to 47%), energy consumption reduction (up to 
73%), and cost savings (up to 19%), particularly in 
circumstances with a high volume of activities. 

Considering the aforementioned studies illustrating 
enhancements in minimizing the makespan of cloud computing 
systems, numerous present methodologies remain susceptible 
to local optima, particularly inside high-dimensional search 
spaces. The intrinsic complexity and organization of task-to-
VM mappings underscore the necessity for ongoing study in 
task scheduling. A brief summary of the related research is 
shown in Table I. 
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TABLE I.  AN OVERVIEW OF THE RELATED WORKS 

Reference Technique Used Contributions Objective 

[17] 
Antlion optimization 

algorithm 

Introduced a hybrid antlion optimization method including elite-based 

differential evolution to address multi-objective task scheduling 

challenges in cloud computing environments. 

Degree of imbalance, response time, and 

makespan 

[18] Dragonfly algorithm 

Integrated the b-hill climbing technique as a local search mechanism to 

improve DA's exploitation ability and prevent it from getting trapped in 

local optima. 

Makespan measure, response time, resource 

utilization, and the degree of imbalance 

[19] 
Adaptive symbiotic 

organisms search 

Introduces an adaptive strategy for handling constraints within the 

scheduling process. 

Makespan, financial cost, hypervolume, and 

percentage change 

[25] 
Improved black widow 

optimization 

Introduces a new select ion scheme to improve BWO, which resulted in  

an enhanced performance in cloud task scheduling. 

Optimize resource allocation, ascertain the 

minimal waiting time, and identify least 

cost for scheduling duties. 

[9] 

Improved synergist ic 

swarm optimization 

algorithm 

Introduces an adaptive technique that dynamically affects the search 

process, directing the algorithm towards promising areas of the solution 

space. 

Total execution time, makespan, Resource 

utilization 

[20] 
Grey wolf optimization 

algorithm 

Incorporates GWO and combines crossover and mutation operators to 

enhance optimization performance. 
Energy consumption, makespan, and cost 

[21] 

A chameleon and 

remora search 

optimization algorithm 

Proposes a model that employs a multi-objective optimization 

technique for cloud task scheduling, utilizing a greedy methodology to 

emulate actual cloud computing task scheduling. 

Resource utilization, energy consumption, 

cost, makespan, and degree of imbalance 

[22] 
Improved harris hawk 

optimizer 

Optimizes the initial posit ioning of the "hawks" or search agents to 

improve the efficiency of finding solutions. 

Makespan, energy consumption, execution 

cost, resource utilization 

[26] 
Enhanced marine 

predator algorithm 

Integrates techniques from the whale optimization algorithm, with a 

nonlinear inertia weight coefficient and a golden sine technique. 

Resource utilization, performance 

improvement ratio, degree of imbalance, 

and makespan 

[23] 
Flower Po llination 

Algorithm 

Presents a proficient resource selection method to alleviate the 

stagnation of local solutions. 

Makespan, resource utilization, degree of 

imbalance, and throughput 

[24] 
Improved Harris hawk 

optimization algorithm 

Leverages the strengths of the HHO algorithm to explore and evaluate 

solutions within a vast solution space through the lens of fuzzy logic. 

Makespan, energy consumption, cost, and 

runtime 
 

III. PROBLEM DESCRIPTION 

Upon submission of tasks by users, the Cloud Broker (CB) 
initially receives them and subsequently requests the Cloud 
Information Service (CIS) to identify the necessary services for 
task execution. After finding the relevant services, the CB 
organizes the tasks on the identified VMs. For example, a set 
of tasks {𝑇1,  𝑇2 , 𝑇3 ,   … ,  𝑇𝑛} may be submitted within a given 
time frame. The available VMs are heterogeneous, each with 
different processing capabilities and memory capacities, 
meaning that the same task may have different execution times 
and costs depending on the VM it is assigned to. 

After receiving tasks, the CB assigns them to available 
virtual machines {𝑉1 ,  𝑉2 , 𝑉3 ,   … ,  𝑉𝑚} . In the baseline 
configuration, task execution follows the First-Come, First-
Serve (FCFS) policy. The main goal of this work is to enhance 
this scheduling process to improve VM utilization and 
minimize makespan. For this purpose, the Expected Time to 
Compute (ETC) metric is utilized as the basis for task 
assignment. The ETC value for a task on a VM is calculated by 
dividing the task’s length by the VM’s processing capacity in 
millions of instructions per second (MIPS). These values are 
organized in a matrix structure, where rows correspond to tasks 
and columns to VMs, and each entry represents the estimated 
execution time for a particular task-VM pair. The execution 
time of task 𝑗on virtual machine 𝑖 is denoted as 𝐶𝑖𝑗, where 𝑖 ∈
{1,2, … ,𝑚}  and 𝑗 ∈ {1,2,… , 𝑛} . Here, 𝑚  corresponds to the 
total number of VMs and 𝑛 to the total number of tasks. 

To resolve challenges faced by current task scheduling 
techniques, including high computational overhead, poor 
scalability, and premature convergence, this work utilizes the 
DMO algorithm to obtain efficient task-to-VM assignments. 

Modeled after the cooperative and adaptive behaviors of dwarf 
mongoose colonies, DMO maintains an effective trade-off 
between exploration and exploitation. Integrating the ETC 
matrix into the scheduling process allows the proposed 
approach to minimize makespan while enhancing resource 
utilization across heterogeneous cloud environments. 

IV. DMO FOR THE TASK SCHEDULING PROBLEM 

The DMO algorithm [27] draws inspiration from the social 
structure and foraging patterns of dwarf mongooses. By 
simulating the coordinated behavior of scouts, alpha leaders, 
and babysitters, the algorithm maintains a robust balance 
between exploration and exploitation across the search space. 
Owing to these features, DMO is well-suited for addressing 
complex optimization tasks such as task scheduling in cloud 
computing, aiming to achieve near-optimal task-to-VM 
allocations under heterogeneous and dynamic conditions. 

A. Overview of DMO Algorithm 

DMO simulates a colony of dwarf mongooses navigating 
the solution space in search of food sources, which are 
analogous to optimal or near-optimal solutions. The algorithm 
operates through iterative updates of a population of candidate 
solutions, where exploration is guided by scout mongooses, 
and exploitation is controlled by the alpha mongoose. The 
babysitter mongoose ensures stability in the population by 
managing diversity and maintaining solution feasibility. Each 
candidate solution in the DMO model encodes a distinct task-
to-VM mapping. Its fitness value is calculated using a 
scheduling criterion, most often the makespan, obtained from 
the ETC matrix. The goal is to minimize the makespan, 
ensuring balanced workload distribution and efficient resource 
usage across VMs. 
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The DMO algorithm begins by initializing a population 
matrix 𝑋  of dimensions (𝑛 ×𝑑) , where 𝑛  denotes the 
population size (rows) and 𝑑 represents the number of problem 
dimensions (columns), as shown in Eq. (1). This matrix models 
the mongoose population. 

𝑋 = [𝑥𝑖𝑗]𝑛∗𝑑
 , 𝑖 = 1,2,… , 𝑛; 𝑗 = 1,2,… , 𝑑           (1) 

In Eq. (2), the population matrix 𝑋 is initialized randomly, 

where 𝑥𝑖𝑗represents the position of the 𝑗𝑡ℎ  dimension for the 

𝑖 𝑡ℎ individual. Here, 𝑛 is the total population size and 𝑑 is the 
number of problem dimensions. 

𝑥𝑖𝑗 = 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(𝑉𝑎𝑟𝑀𝑖𝑛,𝑉𝑎𝑟𝑀𝑎𝑥,𝑉𝑎𝑟𝑆𝑖𝑧𝑒)     (2) 

The function unifrnd  generates random values uniformly 
distributed between 𝑉𝑎𝑟𝑀𝑖𝑛  and 𝑉𝑎𝑟𝑀𝑎𝑥, which define the 
lower and upper bounds of the problem, respectively. Once the 
initial population is generated, the fitness of each individual is 
evaluated. The probability associated with each individual’s 
fitness is computed according to Eq. (3), which is then used to 
select the alpha female (𝛼) based on these probabilities. 

α = 
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑛
𝑖=1

                                       (3) 

The parameter 𝑛 − 𝑏𝑠 denotes the number of mongooses in 
the alpha group, where 𝑏𝑠  corresponds to the number of 
babysitters. The alpha female’s vocalization, referred to as 
𝑃𝑒𝑒𝑝,  influences the group’s movement direction. Eq. (4) is 
used to generate a candidate food location, guiding the search 
process. 

𝑋𝑖+1  =  𝑋𝑖 + 𝜙 ∗ 𝑝𝑒𝑒𝑝                            (4) 

Here, 𝜙  is a uniformly distributed random number in the 
range (0,1). After each iteration, the sleeping mound value is 
calculated using Eq. (5): 

𝑠𝑚𝑖 = 
𝑓𝑖𝑡𝑖+1− 𝑓𝑖𝑡𝑖

𝑚𝑎𝑥{|𝑓𝑖𝑡𝑖+1,𝑓𝑖𝑡𝑖 |} 
                            (5) 

The average sleeping mound value across all individuals is 
then obtained from Eq. (6): 

𝜙 = 
∑ 𝑠𝑚𝑖

𝑛
𝑖=1

𝑛
                                    (6) 

Scout mongooses perform exploration by searching for new 
sleeping mounds and preventing revisits to previous locations. 
This exploratory movement is modeled by Eq. (7): 

𝑋𝑖+1 = {
𝑋𝑖  − 𝐶𝐹 ∗𝜙 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − 𝑀⃗⃗ ], 𝑖𝑓 𝜙𝑖+1 > 𝜙𝑖

𝑋𝑖 + 𝐶𝐹 ∗ 𝜙 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − 𝑀⃗⃗ ], 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
     

(7) 

The control factor 𝐶𝐹 is defined in Eq. (8) and decreases 
gradually over iterations to balance exploration and 
exploitation. 

𝐶𝐹 =  (1 −  
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)
(

2∗𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

                      (8) 

Finally, Eq. (9) defines the movement vector 𝑀⃗⃗ , which 
directs the mongoose population toward new sleeping mound 
positions. 

𝑀⃗⃗ =  ∑
𝑥𝑖 × 𝑠𝑚𝑖

𝑋𝑖

𝑛
𝑖=1                                  (9) 

Algorithm 1 presents the pseudocode representation of the 
DMO algorithm, detailing its procedural logic and 
computational operations that can be directly applied for task 
scheduling in cloud computing environments. 

Algorithm 1: Pseudocode for DMO 

Input: Task set, VM set, population size n, maximum iterations 
Max_iter, control parameters 

Output: Optimal task-to-VM mapping (minimum makespan) 

1. Initialize all control parameters. 

2. Generate the initial mongoose population X=[x_ij ]_(n×d) using 

Eq. (2). 

3.Divide the population into three functional groups: scouts, 

babysitters, and alphas. 

4. Determine the number of active search agents by excluding 

babysitters from the total population. 

5. Assign the babysitter exchange rate L. 

6. Repeat until the stopping condition or Max_iter is reached: 

a. Evaluate the fitness of each mongoose using the scheduling 

objective (makespan). 

b. Identify the alpha group based on selection probability using 

Eq. (3). 

c. Generate a new candidate food source location using Eq. (4).  

d. Compute the sleeping mound value for each mongoose using 

Eq. (5). 

e. Calculate the average sleeping mound value and movement 

vector M   using Eq. (6) and (9). 

f. Update scout mongoose positions using Eq. (7) based on 

exploration conditions. 

g. Perform babysitter exchange according to rate L. 

h. Update the best solution found so far if improvement occurs.  

Return the final best solution as the optimal task scheduling 

configuration. 

V. EXPERIMENTAL EVALUATION 

The efficiency and scalability of the proposed task 
scheduling technique based on the DMO algorithm are 
evaluated and compared against benchmark techniques 
reported in the literature. As outlined earlier, this study 
primarily focuses on assessing the scheduling performance of 
the proposed technique. Accordingly, all tasks considered in 
the experimental evaluation are assumed to be pre-decomposed 
and mutually independent. The experimental configuration, 
performance metrics, and evaluation procedures are described 
in detail in the following subsections. 

A. Experimental Settings 

The benchmarking process involved comparing the 
proposed DMO algorithm with several state-of-the-art 
metaheuristic approaches, including MALPSO [28], EMPA 
[26], and GWOEM [29]. Each algorithm was executed 
independently 20 times to reduce the influence of stochastic 
variations and to ensure the statistical reliability of the obtained 
results. All experiments were performed using the CloudSim 
simulation toolkit, which enables the modeling and analysis of 
cloud computing environments. The simulations were 
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conducted on a system equipped with a 12th Gen Intel(R) Core 
(TM) i7-12700H processor operating at 2.70 GHz, 16 GB of 
RAM, and running the Windows 11 operating system. 

TABLE II.  PARAMETER IMPLEMENTATION 

Algorithm Parameter Value 

GBOEM 

Population size 100 

𝑎 Linearly decrease from 2 to 0 

  

MALPSO 

Population size 100 

𝑐1, 𝑐2 [2.1, 2.1] 

𝑤𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛  [0.9, 0.6] 

EMPA 

Population size 100 

FADs 0.2 

P 0.5 

DMO 

Population size 100 

  

  

The experimental parameter settings are summarized in 
Table II. To ensure consistency, all algorithms were executed 
with a population size of 100 and a maximum of 100 iterations, 
following configurations commonly adopted in recent studies. 
Although increasing the number of iterations can improve 
solution quality in terms of makespan, it also results in higher 
computational overhead. 

B. Dataset Description 

This study employs the Google Cloud Jobs (GoCJ) dataset 
to establish the task workload in order to more accurately 
simulate the task scheduling scenario in cloud computing. In 
this dataset, the computational capability of each VM is 
expressed in millions of instructions per second (MIPS), while 
task sizes are characterized by the number of instructions 
required for completion. The GoCJ repository comprises 
multiple datasets, each stored in a text file format. Every 
dataset contains a specific number of tasks, as summarized in 
Table III. Each text file comprises a sequence of lines, each of 
which denotes a task and contains a single value representing 
the task's magnitude in MI. 

C. Experimental Results and Analysis 

This subsection presents the experimental findings derived 
from the proposed DMO-based task scheduling method and 
compares them with the results of three established algorithms: 
MALPSO, EMPA, and GWOEM. A comprehensive analysis 
of the comparative performance is also included. The 
simulations are conducted under two separate circumstances to 
ensure a thorough evaluation. A constant quantity of VMs is 
utilized across all datasets. In the second scenario, the quantity 
of VMs is altered for each dataset to evaluate the algorithm's 
adaptability and scalability under varying resource constraints. 

TABLE III.  THE NUMBER OF TASKS CONTAINED IN EACH DATASET 

CATEGORY 

Dataset category Number of tasks 

GoCJ_100 100 

GoCJ_200 200 

GoCJ_300 300 

GoCJ_400 400 

GoCJ_500 500 

GoCJ_600 600 

GoCJ_700 700 

GoCJ_800 800 

GoCJ_900 900 

GoCJ_1000 1000 

1) Performance comparison with a constant number of 

VMs: A fixed number of VMs is used in the experiment for 

every dataset. The assessment is centered on a diverse array of 

activities extracted from the aforementioned GoCJ datasets, 

which encompass tasks of varied magnitudes. The goal of 

optimization is to effectively allocate these jobs to 50 VMs. 

Performance for each algorithm under comparison, including 

the proposed DMO-based technique, is evaluated using the 

makespan metric to ascertain the overall time necessary to 

accomplish all assigned jobs. 

Table IV presents the makespan results for four task 
scheduling algorithms evaluated across different task sizes 
using a fixed set of 50 virtual machines. The DMO-based 
method is compared against MALPSO, GWOEM, and MPA. 
The evaluation includes the Best, Worst, and Mean values 
obtained from 20 independent runs for each algorithm. From 
the results, it is evident that DMO consistently achieves lower 
Mean values across nearly all task sizes. Specifically, DMO 
obtains the lowest Mean makespan in all cases, ranging from 
228.2 (for 200 tasks) to 727.96 (for 1000 tasks), outperforming 
the competing algorithms. 

To provide a more intuitive comparison, the cumulative 
ranks based on the Mean makespan values across 10 datasets 
are illustrated in Fig. 2. For each dataset, the algorithms are 
ranked from best to worst in terms of average performance, 
where a lower bar height indicates better overall performance. 
The top-performing algorithm in each dataset receives a rank 
of 1, and the ranks are summed to produce the cumulative 
values shown in the figure. As depicted in Fig. 2, the proposed 
DMO-based scheduling algorithm consistently outperforms the 
competing methods, achieving the lowest cumulative rank of 
10, which indicates it ranked first in all datasets. While 
MALPSO, GWOEM, and MPA accumulate ranks of 19, 28, 
and 37, respectively, reflecting their lower relative 
performance. These results further validate the effectiveness of 
DMO in solving the cloud task scheduling problem. 
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TABLE IV.  MAKESPAN ACROSS ALL DATASETS WITH 50 FIXED VMS 

Task MALPSO GWOEM MPA DMO 

 Best Worst Mean Best Worst Mean Best Worst Mean Best Worst Mean 

100 180.1 180.21 180.1 180.1 180.1 180.1 180.1 180.21 180.1 180.1 180.11 180.1 

200 215.4 255.57 238.99 219.7 251.1 240.46 225.55 269.7 250.1 216.5 237.2 228.69 

300 282.14 343.52 321.35 296.3 344.9 324 303.1 361.6 334.63 281.9 314.7 298.32 

400 333.1 388.3 369.44 343.4 394.9 370.31 346.1 407.1 377.27 311.3 359.84 339.78 

500 405.55 468.52 441.26 384.93 462.3 443.77 421.9 474.72 451.65 378.4 426.1 408.05 

600 488.4 582.8 545.94 516.8 576.86 549.28 514.85 593.12 558.57 484.95 532.91 509.06 

700 505.92 594.41 556.27 526.6 591.31 560.39 515 615.8 570.15 492.6 534.4 518.05 

800 566.05 644.5 611.21 569.97 651.3 618.65 588.01 662.5 628.62 538.1 590.94 573.81 

900 656.11 764.6 727.52 670.31 768.3 734.85 695.6 789.9 741.67 630.7 701.26 680.6 

1000 727.61 832.7 776.72 737.31 830.4 785.59 748.6 831.71 795.9 694.46 749.71 729.25 
 

 

Fig. 2. Mean rank comparison across datasets with fixed VMs. 

 
Fig. 3. Fitness convergence curves of algorithms on fixed number of VMs. 

Fig. 3 presents the fitness convergence curve of the 
proposed DMO algorithm in comparison with GWOEM, 
MALPSO, and MPA for the 1000-task dataset. As observed 
from the curve, DMO achieves a significantly lower average 
makespan than the competing algorithms. Although MALPSO 
converges faster in the early iterations, it plateaus earlier and 
stabilizes at a higher makespan compared to DMO. In contrast, 
DMO continues refining its solution steadily throughout the 
search process, reflecting a balanced exploration-exploitation 
dynamic that avoids premature convergence. GWOEM and 

MPA show comparatively slower convergence and higher final 
makespan values, indicating their limited ability to escape local 
optima or adapt efficiently under heavier task loads. DMO, 
however, demonstrates strong robustness and convergence 
stability, consistently maintaining a downward trend in fitness 
even toward later iterations. 

 
Fig. 4. Average runtime per dataset with fixed VMs. 

Fig. 4 displays the average runtime of each algorithm: 
DMO, MALPSO, GWOEM, and MPA across increasing task 
sizes under a fixed number of virtual machines. The x-axis 
represents the number of tasks (ranging from 100 to 1000), 
while the y-axis indicates the average computational time in 
seconds required to complete one run. As shown in the figure, 
the DMO algorithm consistently demonstrates the lowest 
runtime across all task sizes, indicating its superior 
computational efficiency. The consistently shorter execution 
time of DMO, coupled with its high-quality results observed in 
earlier evaluations, shows its practical suitability for large-scale 
task scheduling applications particularly in real-time or 
resource-constrained cloud environments. 

A paired t-test was conducted to statistically assess the 
performance of the proposed DMO algorithm against 
MALPSO, GWOEM, and MPA on the GoCJ dataset under 
fixed VM configurations as shown in Table V, using a 
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significance level of α = 0.05. For small-scale workloads (100 
tasks), no statistically significant differences were observed (p 
> 0.05), indicating comparable performance due to limited 
scheduling complexity. However, for task sizes of 200 and 
above, DMO consistently achieved significantly lower 
makespan values, as reflected by negative mean differences, 
large-magnitude t-values, and extremely small p-values (often 
< 10⁻²⁹), leading to rejection of the null hypothesis. The 

magnitude and consistency of these improvements increase 
with problem size, particularly for medium to large workloads 
(300–1000 tasks), demonstrating DMO’s robustness and 
scalability in high-dimensional scheduling spaces. These 
statistically significant results confirm that the observed 
performance gains are not due to random variation and provide 
strong empirical evidence supporting the effectiveness of DMO 
for large-scale cloud task scheduling. 

TABLE V.  STATISTICAL T-TEST RESULTS FOR MAKESPAN COMPARISON ON THE GOCJ DATASET WITH FIXED VMS 

Task Size Comparison Mean Difference Std Difference t-value p-value Better Algorithm Significant 

100 DMO vs MALPSO -0.001 0.011055 -0.90453 0.367908227 DMO FALSE 

100 DMO vs GWOEM 0.0001 0.001 1 0.319748474 GWOEM FALSE 

100 DMO vs MPA -0.000998 0.011035 -0.90435 0.368003029 DMO FALSE 

200 DMO vs MALPSO -10.296463 8.083912 -12.737 1.40E-22 DMO TRUE 

200 DMO vs GWOEM -11.771234 7.242589 -16.2528 1.07E-29 DMO TRUE 

200 DMO vs MPA -21.408265 9.20326 -23.2616 6.51E-42 DMO TRUE 

300 DMO vs MALPSO -23.035018 12.02804 -19.1511 4.61E-35 DMO TRUE 

300 DMO vs GWOEM -25.681148 11.8629 -21.6483 2.52E-39 DMO TRUE 

300 DMO vs MPA -36.306611 15.15638 -23.9547 5.49E-43 DMO TRUE 

400 DMO vs MALPSO -29.663394 12.11074 -24.4935 8.32E-44 DMO TRUE 

400 DMO vs GWOEM -30.523941 13.7605 -22.1823 3.39E-40 DMO TRUE 

400 DMO vs MPA -37.484893 14.85506 -25.2338 6.53E-45 DMO TRUE 

500 DMO vs MALPSO -33.212818 14.36265 -23.1244 1.07E-41 DMO TRUE 

500 DMO vs GWOEM -35.719619 13.81348 -25.8585 7.95E-46 DMO TRUE 

500 DMO vs MPA -43.595315 15.41503 -28.281 3.20E-49 DMO TRUE 

600 DMO vs MALPSO -36.88152 19.63754 -18.7811 2.10E-34 DMO TRUE 

600 DMO vs GWOEM -40.214484 17.52061 -22.9527 1.99E-41 DMO TRUE 

600 DMO vs MPA -49.507718 18.89599 -26.2001 2.55E-46 DMO TRUE 

700 DMO vs MALPSO -38.222648 18.76097 -20.3735 3.44E-37 DMO TRUE 

700 DMO vs GWOEM -42.340123 18.12233 -23.3635 4.51E-42 DMO TRUE 

700 DMO vs MPA -52.092789 19.99794 -26.0491 4.21E-46 DMO TRUE 

800 DMO vs MALPSO -37.393152 21.04933 -17.7645 1.49E-32 DMO TRUE 

800 DMO vs GWOEM -44.840048 19.5918 -22.8871 2.53E-41 DMO TRUE 

800 DMO vs MPA -54.803758 19.53037 -28.0608 6.37E-49 DMO TRUE 

900 DMO vs MALPSO -46.924606 24.33758 -19.2807 2.72E-35 DMO TRUE 

900 DMO vs GWOEM -54.256754 21.77357 -24.9186 1.92E-44 DMO TRUE 

900 DMO vs MPA -61.076888 21.59429 -28.2838 3.17E-49 DMO TRUE 

1000 DMO vs MALPSO -47.467969 27.49125 -17.2666 1.26E-31 DMO TRUE 

1000 DMO vs GWOEM -56.336122 19.23301 -29.2914 1.43E-50 DMO TRUE 

1000 DMO vs MPA -66.645948 22.46125 -29.6715 4.54E-51 DMO TRUE 
 

Fig. 5 illustrates the average makespan values obtained by 
four algorithms as the number of tasks increases from 100 to 
1000. As depicted, the makespan values increase 
proportionally with the number of tasks which is expected due 
to the growing computational workload. However, the DMO 
algorithm consistently achieves the lowest makespan across all 
dataset sizes, demonstrating its superior scheduling capability. 
Notably, the gap between DMO and the other methods 
becomes more prominent as task volume increases, 
highlighting DMO’s scalability and robustness under larger 
workloads. 

Fig. 6 presents the degree of imbalance of the task 
scheduling solutions generated by the four compared 
algorithms under a fixed number of VMs. DoI reflects how 
evenly tasks are distributed across available resources, with 
lower values indicating better load balancing. As illustrated, 
DMO consistently achieves the lowest imbalance across all 
task volumes, demonstrating its strong ability to maintain load 
uniformity among VMs. While all algorithms show a 
downward trend in DoI as the task count grows, indicating 
improved balance with larger workloads DMO outperforms 
others in both convergence speed and final balance quality. 
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Fig. 5. Average makespan per dataset with fixed VMs. 

 
Fig. 6. Degree of imbalance per dataset with fixed VMs. 

 
Fig. 7. Average throughput per dataset with fixed VMs. 

Fig. 7 illustrates the average throughput achieved by each 
of the four algorithms across increasing numbers of tasks under 
a fixed number of VMs. Throughput measures the number of 

tasks successfully completed per unit time and is a critical 
metric for evaluating the responsiveness and efficiency of 
scheduling algorithms in cloud environments. From the figure 
it is observed that MALPSO, GWOEM, and MPA exhibit 
similar patterns, with slightly lower throughput values. While 
all algorithms show improved throughput with increased task 
sizes due to higher resource utilization DMO maintains a clear 
performance lead, particularly beyond 400 tasks, where its 
optimization capabilities yield a noticeable efficiency 
advantage. 

2) Scenario with varying number of VMs: To further 

assess the scalability and performance of the proposed 

algorithm under varying resource conditions, a second set of 

experiments was conducted using different numbers of VMs 

for each dataset category. The allocation of VMs for each 

dataset was determined to be 10% of the total number of tasks, 

yielding VM counts between 10 and 100. The number of VMs 

designated for each dataset is summarized in Table VI. This 

experimental configuration aims to evaluate how changes in 

resource availability impact key performance indicators, 

particularly makespan. By correlating scheduling efficiency 

with increasing task-to-resource ratios, the results provide 

insight into the scalability and robustness of the algorithms 

under more realistic and dynamic cloud environments. 

Table VII presents the makespan results of four algorithms: 
DMO, MALPSO, GWOEM, and MPA. The evaluation metrics 
include the Best, Worst, and Mean of the makespan over 20 
independent runs. From the data in Table VII, it is evident that 
the proposed DMO consistently achieves the best Mean 
makespan values across all datasets. For instance, in the largest 
dataset (1000 tasks), DMO yields a Mean makespan of 468.68, 
which is significantly lower than the corresponding results 
from GWOEM (505.52), MPA (514.72), and MALPSO 
(503.82). DMO also performs strongly in the Best-case results, 
outperforming the other algorithms in most datasets, reflecting 
its superior ability to locate high-quality solutions. 

TABLE VI.  VM DISTRIBUTION PER DATASET SIZE 

Dataset size Number of VMs 

100 10 

200 20 

300 30 

400 40 

500 50 

600 60 

700 70 

800 80 

900 90 

1000 100 
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TABLE VII.  MAKESPAN ACROSS ALL DATASETS WITH VARIABLE VM COUNTS 

Task MALPSO GWOEM MPA DMO 

 Best Worst Mean Best Worst Mean Best Worst Mean Best Worst Mean 

100 305.1 347.56 327.91 303.3 361.1 335.61 314.2 379 351.35 294.2 323.1 311.75 

200 354.9 414.9 389.57 370.93 422.6 396.29 361.31 449.2 410.52 342.21 382.87 364.22 

300 381.7 465.1 432.9 388.5 465.4 434.7 423.3 492.6 451.1 372.72 422.12 403.97 

400 383.7 446.9 419.35 396 446.51 424.54 400.33 456.4 432.59 374.2 405.61 390.58 

500 393.77 462.24 438.06 402.3 465.3 440.23 413.42 479 450.84 374.1 428.14 408.18 

600 436.13 525.21 488.6 443.64 515.3 490.46 462.68 530.94 501.29 420.44 476.1 455.19 

700 404.71 475.67 451.87 430.74 480.34 456.76 432.43 491.9 462.34 394.02 435.06 417.94 

800 413.32 482.84 458.24 413.12 493.11 461.07 427.71 499.3 470.37 404.01 442.67 426.23 

900 464.9 527.85 499.9 465.44 533.42 503.5 474.53 546.8 510.91 443.21 486.13 468.56 

1000 460.74 528.95 503.82 465.21 530.93 505.5 467.96 543.04 514.7 441.21 491.2 468.68 
 

 
Fig. 8. Mean rank comparison across datasets with variable VMs. 

To better visualize the comparative performance, Fig. 8 
ranks each algorithm based on its Best, Worst, and Mean. The 
proposed DMO achieves the lowest cumulative rank in three of 
the four subplots, especially excelling in the Best and Mean 
categories. This confirms DMO’s capability to consistently 
find better solutions and maintain overall stability. Even in the 
Worst and Std categories, DMO ranks among the top 
performers, further supporting its robustness. 

Fig. 9 shows the fitness convergence of DMO, GWOEM, 
MALPSO, and MPA on the 1000-task dataset using a variable 
number of VMs. DMO exhibits the fastest and most stable 
convergence, achieving the lowest average fitness. While other 
algorithms plateau early, DMO continues improving, showing 
strong exploitation capability. These results confirm DMO's 
efficiency and robustness in high-load, dynamic VM 
environments. 

To further examine the robustness of the proposed DMO 
algorithm, a paired t-test was performed on the makespan 
results obtained from the GoCJ dataset with varying numbers 
of VMs as shown in Table VIII. Unlike the fixed-VM scenario, 
all comparisons across task sizes from 100 to 1000 exhibit 
statistically significant differences (p < 0.05), with DMO 
consistently identified as the superior algorithm. The uniformly 
negative mean differences and large-magnitude t-values 
indicate substantial and reliable reductions in makespan when 

DMO is applied. Notably, the statistical significance persists 
even for small-scale workloads (100 tasks), highlighting 
DMO’s strong adaptability to dynamic resource availability. 
As task sizes increase, the magnitude of the mean differences 
remains consistently high, demonstrating that DMO effectively 
maintains solution quality despite increased scheduling 
complexity and VM variability. These results confirm that 
DMO is not only scalable but also resilient to changes in cloud 
infrastructure, making it particularly suitable for real-world 
cloud environments characterized by fluctuating resource 
configurations. 

 
Fig. 9. Fitness convergence curves of algorithms on variable number of 

VMs. 

 

Fig. 10. Average runtime per dataset with variable VMs. 
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TABLE VIII.  STATISTICAL T-TEST RESULTS FOR MAKESPAN COMPARISON ON THE GOCJ DATASET WITH VARYING VMS 

Task Size Comparison Mean Difference Std Difference t-value p-value Better Algorithm Significant 

100 DMO vs MALPSO -16.1569 11.04326 -14.6306 1.72E-26 DMO TRUE 

100 DMO vs GWOEM -23.8587 11.50375 -20.7399 8.20E-38 DMO TRUE 

100 DMO vs MPA -39.5934 15.05279 -26.303 1.82E-46 DMO TRUE 

200 DMO vs MALPSO -25.3435 16.30967 -15.539 2.65E-28 DMO TRUE 

200 DMO vs GWOEM -32.0692 13.95662 -22.9778 1.82E-41 DMO TRUE 

200 DMO vs MPA -46.2917 18.73325 -24.711 3.91E-44 DMO TRUE 

300 DMO vs MALPSO -28.9261 17.46182 -16.5654 2.69E-30 DMO TRUE 

300 DMO vs GWOEM -30.7284 17.15124 -17.9161 7.83E-33 DMO TRUE 

300 DMO vs MPA -47.1226 16.66213 -28.2812 3.20E-49 DMO TRUE 

400 DMO vs MALPSO -28.7707 13.0834 -21.9902 6.95E-40 DMO TRUE 

400 DMO vs GWOEM -33.9668 13.17658 -25.7781 1.04E-45 DMO TRUE 

400 DMO vs MPA -42.0102 12.98203 -32.3603 1.88E-54 DMO TRUE 

500 DMO vs MALPSO -29.8839 16.69724 -17.8975 8.47E-33 DMO TRUE 

500 DMO vs GWOEM -32.0542 13.75281 -23.3074 5.52E-42 DMO TRUE 

500 DMO vs MPA -42.6606 14.48119 -29.4593 8.60E-51 DMO TRUE 

600 DMO vs MALPSO -33.4175 18.49725 -18.0662 4.15E-33 DMO TRUE 

600 DMO vs GWOEM -35.2753 14.874 -23.7161 1.28E-42 DMO TRUE 

600 DMO vs MPA -46.1056 19.00228 -24.2632 1.86E-43 DMO TRUE 

700 DMO vs MALPSO -33.9315 16.89139 -20.088 1.06E-36 DMO TRUE 

700 DMO vs GWOEM -38.8176 14.08342 -27.5626 3.08E-48 DMO TRUE 

700 DMO vs MPA -44.3964 17.91821 -24.7772 3.12E-44 DMO TRUE 

800 DMO vs MALPSO -32.0093 15.58234 -20.542 1.78E-37 DMO TRUE 

800 DMO vs GWOEM -34.8438 15.05719 -23.141 1.01E-41 DMO TRUE 

800 DMO vs MPA -44.1438 14.65385 -30.1243 1.18E-51 DMO TRUE 

900 DMO vs MALPSO -31.3355 18.51359 -16.9257 5.53E-31 DMO TRUE 

900 DMO vs GWOEM -34.9396 17.65528 -19.7899 3.48E-36 DMO TRUE 

900 DMO vs MPA -42.3484 16.74164 -25.2952 5.30E-45 DMO TRUE 

1000 DMO vs MALPSO -35.1394 17.35888 -20.2429 5.75E-37 DMO TRUE 

1000 DMO vs GWOEM -36.8164 15.39813 -23.9096 6.44E-43 DMO TRUE 

1000 DMO vs MPA -46.0187 18.92846 -24.3119 1.57E-43 DMO TRUE 
 

Fig. 10 compares the runtime of the four algorithms across 
varying task sizes using a variable number of VMs. The 
proposed DMO maintains the lowest runtime throughout, 
showing excellent computational efficiency. GWOEM incurs 
the highest cost, scaling poorly as task size increases. This 
confirms DMO’s lightweight nature and scalability, making it 
suitable for real-time cloud scheduling. Even with increased 
workload, DMO’s runtime growth remains modest, reflecting 
its optimized search process. This efficiency makes it ideal for 
deployment in latency-sensitive environments. 

Fig. 11 presents the average makespan performance of 
DMO, MALPSO, GWOEM, and MPA as the number of tasks 
increases under a variable VM setup. The DMO achieves the 
lowest makespan value across all task sizes, indicating superior 
task-to-resource mapping. While the makespan naturally 
increases with task load, DMO maintains a significant margin 
of improvement over competing algorithms. This trend reflects 
DMO’s efficiency and scalability, especially in dynamically 
resourced environments. The stability in DMO’s curve also 

suggests consistent performance across heterogeneous 
workloads. 

 
Fig. 11. Average makespan per dataset with variable VMs. 
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Fig. 12. Degree of imbalance per dataset with variable VMs. 

Fig. 12 illustrates the degree of imbalance for four 
algorithms as the task count increases under variable VM 
settings. The DMO maintains the lowest imbalance values, 
indicating more uniform load distribution. Although DoI 
increases with task volume, DMO's curve rises more slowly, 
showing greater stability and fairness. In contrast, MPA 
consistently shows the highest imbalance, highlighting less 
efficient task scheduling. These results confirm DMO’s 
robustness in balancing workloads, even in dynamic VM 
environments. 

 
Fig. 13. Average throughput per dataset with variable VMs. 

Fig. 13 depicts the average throughput achieved by each 
algorithm as the number of tasks increases under a variable 
number of VMs. The proposed DMO consistently outperforms 
its counterparts, achieving the highest throughput across all 
task sizes. This indicates more tasks are completed per time 
unit, highlighting DMO's superior efficiency. The gap becomes 
more significant as task volume scales, confirming DMO’s 
strong adaptability and parallelism handling. This makes it 
well-suited for high-throughput cloud environments. 

VI. CONCLUSION AND FUTURE WORK 

Task scheduling is a substantial and complex challenge in 
CC, with ongoing research aimed at discovering efficient 
methods for assigning tasks to computational resources to 
minimize makespan. This study presents a DMO-based task 
scheduling technique aimed at enhancing system performance 
through the optimal utilization of available computing 
resources. The comprehensive execution of the proposed DMO 
methodology has been delineated, and its efficacy was 
validated utilizing the GoCJ benchmark datasets. Two 
experimental situations were executed to evaluate performance, 
and the outcomes were compared with those of the MALPSO, 
GWOEM, and MPA algorithms. For each algorithm, essential 
performance measures such as response time, degree of 
imbalance, throughput, and makespan were meticulously 
assessed to gauge overall scheduling efficacy and resource 
consumption in the cloud context. The analysis demonstrated 
that the DMO-based method consistently produced superior 
makespan results, especially under high task loads and varying 
VM conditions. These findings highlight DMO’s capability in 
efficiently exploring complex solution spaces and maintaining 
balanced resource distribution. Therefore, the proposed 
approach significantly enhances task scheduling performance 
and contributes to improving the overall efficiency and 
responsiveness of cloud computing systems. 

Despite the promising results obtained, this study has 
several limitations that should be acknowledged to provide a 
clear and accurate interpretation of the findings. First, the 
experimental evaluation was conducted using the GoCJ 
benchmark dataset, which although widely adopted may not 
fully capture all characteristics of real-world cloud workloads 
such as bursty task arrivals, task dependencies, or strict 
deadline constraints. Second, the performance assessment 
focused primarily on makespan minimization, while other 
important quality of service metrics such as energy 
consumption, monetary cost, load balancing, and service level 
agreement violations were not jointly optimized or analyzed. 
Third, the experiments were performed under simulated cloud 
environments with fixed and varying VM configurations and 
therefore the observed performance may differ in large scale 
production clouds where network latency, VM failures, and 
dynamic resource provisioning occur. In addition, the proposed 
DMO algorithm was compared with a limited set of 
metaheuristic baselines and comparisons with a broader range 
of recent scheduling approaches could further strengthen the 
generality of the conclusions. Finally, algorithm parameter 
tuning was carried out empirically and alternative tuning 
strategies may lead to different performance outcomes. 
Addressing these limitations in future studies through real 
cloud experimentation, multi objective optimization, and 
expanded comparative analysis would further enhance the 
applicability and robustness of the proposed approach. 

As future work, we plan to develop a multi-objective 
performance model that incorporates additional quality service 
metrics to further enhance task scheduling in cloud computing 
environments. In particular, optimizing load balancing will be 
a key focus, as it plays a critical role in maintaining system 
stability and performance. We also intend to extend the DMO 
algorithm to support more complex task structures, including 
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scientific workflows and cloud-based deep learning workloads, 
thereby improving its adaptability to diverse application 
scenarios. Furthermore, the applicability of the proposed DMO 
methodology will be explored in other optimization domains, 
including workflow scheduling, underwater wireless sensor 
networks, feature selection, and Internet of Things scheduling 
problems, to evaluate its generalization capability. 
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