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Abstract—The rapid advancement of the Internet and
Internet of Things (IoT) technologies has significantly increased
the demand for scalable and efficient cloud computing solutions.
Task scheduling, a critical aspect of cloud computing, directly
impacts system performance by influencing resource utilization,
execution time, and operational costs. However, scheduling tasks
in large-scale, dynamic cloud environments remains an NP-hard
problem, with existing metaheuristic methods often struggling
with scalability, convergence, and adaptability. This study
proposes a novel task scheduling approach based on the dwarf
mongoose optimization (DMO) algorithm. To assess its
effectiveness, we conduct two experimental scenarios. The results
demonstrate that, compared with existing algorithms, the
proposed DMO algorithm offers faster convergence and higher
accuracy in identifying optimal task scheduling solutions,
particularly under large-scale task loads. We evaluated the
method using the Google Cloud Jobs (GoCJ) dataset, and the
findings confirm that DMO outperforms prior state-of-the-art
techniques in terms of reducing makespan.

Keywords—Task scheduling; cloud computing; virtual
machines; dwarf mongoose optimization algorithm; Cloudsim;
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I.  INTRODUCTION

The exponential expansion of the Internet and the Internet
of Things has resulted in a significant increase in network data,
rendering cloud computing (CC) increasingly essential. Unlike
other distributed computing models like grid computing, CC
offers users more flexible and scalable services. To efficiently
meet the rising computational demands of large-scale
applications, CC now enables the rapid deployment of such
applications by offering flexible and resilient resources on a
pay-per-use basis [1]. CC has transformed how computational
resources are allocated and used, providing unmatched
scalability, flexibility, and cost-efficiency for a wide range of
applications and services. These massive applications involve a
vast number of jobs or tasks processed within service-oriented
cloud environments. Among the various cloud service models,
the most prominent are Software as a Service (SaaS), Platform
as a Service (PaaS), and Infrastructure as a Service (IaaS) [2].
Fig. 1 highlights the key entities in cloud computing that
contribute to ensuring continuous service delivery.

In the SaaS paradigm, cloud applications are provided to
customers via the Internet and accessed by client programs
such as web browsers on desktops or workstations. SaaS is
frequently utilized for services including webmail, video-
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sharing platforms, social networking sites, and online
document editors. Concurrently, PaaS provides a development
environment tailored for the construction, testing, and
deployment of applications. Furthermore, laaS offers users
scalable and adaptable computer resources to facilitate the
deployment of extensive applications. In the IaaS paradigm,
users employ virtual machines (VMs) that are provisioned with
pre-configured CPU, storage, memory, and bandwidth to fulfill
their individual requirements. Various VM configurations are
available at different price points, giving users control over
their computing resources. laaS offers three main advantages:
1) users pay only for what they use, similar to utilities like
electricity or water, allowing flexible resource scaling based on
application demands; 2) direct provisioning of resources,
which boosts application performance; and 3) global
accessibility to rented resources at any time according to the
required service level. However, determining the optimal
number of resources needed to execute large-scale tasks on an
IaaS cloud remains a significant and unresolved challenge [3,
4].
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Fig. 1. Cloud Computing Architecture.

Central to CC is the effective management of resources,
especially task scheduling across distributed and virtualized
systems. Task scheduling plays a vital role in optimizing
resource utilization, minimizing execution time, and enhancing
overall system performance. However, the complexity and
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constantly changing conditions in cloud environments present
major challenges for conventional scheduling methods. CC
operates by allocating computational tasks to VMs within a
resource pool to meet user demands and minimizing task
completion time. The scheduling process generally has two
primary stages: first, allocating user-submitted tasks to a
selection of accessible VMs; second, establishing or relocating
virtual machines onto suitable hosts [5]. The efficiency of task-
to-VM scheduling directly impacts the overall processing
capability of a cloud computing system, making it a critical
area of study. Among the various performance metrics,
makespan, which represents the total time required to complete
all tasks, is one of the most important indicators for evaluating
system efficiency [6, 7]. Therefore, an efficient task scheduling
algorithm should aim to minimize makespan. However, as the
number of tasks and VMs grows, the problem becomes an NP-
hard optimization challenge, often leading to dimensional
complexity issues.

Due to the practical applications and challenges associated
with executing large-scale tasks, task scheduling for massive-
scale applications has become a major research focus in cloud
computing, gaining considerable scholarly attention. Various
metaheuristic algorithms have been employed to address task
scheduling and other optimization problems, often producing
promising results for small-scale tasks. Nonetheless, when the
problem size and variable count escalate, the quality of
candidate solutions produced by these algorithms deteriorates
drastically. Furthermore, numerous existing techniques fail to
satisfy diverse Quality of Service (QoS) requirements, which
are essential for both scientific and industrial applications.
Recent research has employed metaheuristic techniques,
including grey wolf optimization (GWO) [8], synergistic
swarm optimization (SSO) [9], particle swarm optimization
(PSO) [10], symbiotic organism search (SOS) [11], and
African Vultures optimization Algorithm (AVOA) [12] to
address task scheduling challenges. Despite their effectiveness
in improving performance and constraining the solution search
space, these methods still struggle with challenges such as
excessive computational time, premature convergence to local
optima, poor balance between exploration and exploitation, and
unreliable performance across larger search spaces [13,14].

Owing to the constraints of existing scheduling techniques
in large-scale dynamic cloud environments, this research
proposes a DMO-based task scheduling algorithm. To the best
of our knowledge, this is the first application of the DMO
algorithm for optimizing execution time (makespan) in cloud
computing [15]. By hamessing DMO’s strong balance between
exploration and exploitation, motivated by the foraging and
social habits of dwarf mongooses, the proposed approach aims
to enhance cloud system performance, reduce makespan, and
improve scheduling efficiency for large-scale applications.
This novel application of DMO addresses the critical need for
high-performance, scalable scheduling solutions in modern
cloud environments.

The study focuses on the design, development, and
performance evaluation of an innovative task scheduling
algorithm tailored for cloud computing environments. The
effectiveness of the proposed method is benchmarked against
various state-of-the-art algorithms using recognized task
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scheduling scenarios. Through extensive experimentation and
comparative analysis, the algorithm’s capability in scalability,
convergence speed, and solution quality is clearly shown. The
proposed task scheduling method, founded on the DMO
algorithm, delivers an efficient and robust solution for task
scheduling in cloud computing environments. In large-scale
and dynamic cloud environments, it enhances overall system
efficacy and resource utilization. This study's primary
contributions can be succinctly presented as follows:

e C(Clearer Presentation of DMO Procedures: We provide a
structured and detailed explanation of the DMO
algorithm, enhancing its interpretability for cloud-based
optimization problems.

e Design and Implementation of a Discrete DMO Variant:
A discrete version of the DMO algorithm is proposed
and implemented specifically for task scheduling in
cloud computing, enabling it to handle non-continuous
scheduling spaces effectively.

e Experimental Validation on GoCJ Dataset: The
proposed algorithm undergoes extensive testing on the
widely known GoCJ benchmark dataset, showcasing its
efficacy and computing efficiency in realistic
circumstances.

e Comprehensive Performance Evaluation: To evaluate
performance, the algorithm is analyzed through
essential metrics like makespan, response time, and
degree of imbalance among VMs, demonstrating its
impact on efficient resource utilization and balanced
workload distribution.

The rest of the study is organized as follows: Section II
discusses related studies and analyzes existing solutions for
task scheduling in cloud computing. Section III defines the
optimization model and problem statement adopted in this
work. Section IV explains the design and implementation
process of the proposed DMO-based algorithm. Section V
presents a comprehensive performance evaluation based on
simulation results and comparative metrics. Section VI
concludes the study with a summary of outcomes and possible
future research directions.

II. RELATED WORK

Researchers have formulated diverse scheduling models
from various directions to tackle the task scheduling issue in
CC environments, as proven in the available literature. These
models are generally improved by sophisticated algorithms,
yielding favorable outcomes in reducing performance
indicators such as average response times, makespan, total
execution time, and enhancing load balancing. While numerous
approaches have been proposed, this section focuses on
summarizing the most recent and commonly used task
scheduling algorithms documented in the literature [16].
Despite the progress made, there remains significant room for
improvement, particularly in enhancing scalability, solution
quality, and execution efficiency in large-scale, dynamic cloud
environments.

The research [17] presents a unique methodology termed
MALO, which is a hybrid antlion optimization algorithm
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integrated with elite-based differential evolution. This strategy
is explicitly formulated to address the multi-objective
characteristics of task scheduling by concentrating on
minimizing makespan and optimizing resource consumption
concurrently. The innovation lies in improving the antlion
optimization algorithm with a local search technique to better
explore potential solutions and avoid suboptimal results.
Through experiments using synthetic and real trace datasets
with the CloudSim toolkit, MALO demonstrated superior
performance compared to other well-known optimization
algorithms. It was especially recognized for its accelerated
convergence in extensive search areas, rendering it
exceptionally appropriate for tackling large-scale scheduling
challenges. The efficacy of MALO was further substantiated
through statistical analysis, affirming its substantial
enhancement in task scheduling results.

Task scheduling in CC is essential for the optimum
utilization of resources. It entails organizing multiple tasks
among diverse VMs to reduce the overall completion time
(makespan) and optimize resource use. This method is
intricate, particularly for large-scale data applications, as it
constitutes an NP-hard problem, indicating that identifying the
optimal approach is exceedingly difficult. In [18], the authors
propose a method employing a hybrid dragonfly algorithm
(MHDA) designed to optimize task scheduling by minimizing
makespan and augmenting resource consumption. The
dragonfly algorithm mimics the swarming behavior of
dragonflies and is combined with b-hill climbing, a technique
that helps in exploring solutions more effectively to avoid
getting stuck in less optimal solutions.

The study [19] proposes an adaptive symbiotic organism
search (ABFSOS) algorithm that aims to address this issue by
adjusting its parameters to better balance exploration and
exploitation, leading to faster and more effective solutions.
Additionally, the study introduces an adaptive strategy for
handling constraints within the scheduling process.

CC is vital for contemporary computational frameworks
because of its scalability and adaptability, influencing system
efficiency and resource management. The proposed
optimization algorithm detailed in [9] integrates the strengths
of the Jaya algorithm's capacity to exploit optimal solutions,
the collaborative search strategy of SSO, and the stochastic
component introduced by Levy flights, thereby offering a
synergistic optimization framework.

The paper [20] proposed a novel approach integrating
GWO and the genetic algorithm (GA) to optimize task
scheduling in cloud computing, aiming to address
shortcomings in existing methods and enhance efficiency. The
proposed method overcomes issues like premature
convergence and suboptimal solutions, resulting in more
effective task scheduling in cloud environments, allowing for
faster convergence in large scheduling problems, as evaluated
using the CloudSim toolkit.

The proposed chameleon and remora search optimization
(CRSOA) [21] tackles these difficulties by accounting for
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MIPS and network bandwidth impacts, which directly
influence VM performance. The system simultaneously
accounts for uncertainty factors, including task completion
rate, load balance, scheduling cost, and makespan, hence
improving scheduling processes. The CRSOA model develops
a multi-objective optimization strategy for cloud task
scheduling with a greedy methodology to replicate actual cloud
computing work scheduling. Experimental findings
demonstrate that CRSOA diminishes completion time, reduces
makespan by 18.96%, lowers cost by 22.18%, and enhances
load balancing among VMs by 20.54% relative to other
metaheuristic algorithms.

The study [22] proposes a new multi-objective task
scheduling algorithm named DCOHHOTS, which is an
enhancement of the Harris Hawks Optimizer (HHO) through
the integration of differential evolution (DE), chaotic maps,
and opposition-based learning (OBL). The proposed algorithm
optimizes the initial positioning of the "hawks" or search
agents to improve the efficiency of finding solutions. By
prioritizing tasks and efficiently assigning them to resources,
the algorithm seeks to reduce makespan, lower energy
consumption, and minimize execution costs.

The research [23] integrates the pollination behavior of
flowers with the exploratory search abilities of grey wolves, in
conjunction with crossover operators from evolutionary
algorithms. To enhance the exploration capabilities of the FPA,
the grey wolf optimizer is integrated. This strategy mimics the
social hierarchy and hunting techniques of grey wolves,
improving the algorithm's ability to avoid local optima and
ensuring a thorough search of the solution space. The crossover
operators from genetic algorithms are employed to facilitate the
exploitation phase.

The study [24] introduces a novel task scheduling
algorithm that integrates the Harris Hawk Optimization (HHO)
algorithm with fuzzy logic to tackle the intricate issue of task
scheduling in cloud environments. This combination seeks to
optimize allocation of tasks to virtual machines, focusing on
enhancing many objectives, including reducing makespan,
decreasing energy usage, and minimizing expenses. The
efficacy of the suggested fuzzy-HHO approach is substantiated
by comprehensive simulations in the CloudSim framework,
where it is juxtaposed with two prominent algorithms. The
results demonstrate substantial improvements in makespan
reduction (up to 47%), energy consumption reduction (up to
73%), and cost savings (up to 19%), particularly in
circumstances with a high volume of activities.

Considering the aforementioned studies illustrating
enhancements in minimizing the makespan of cloud computing
systems, numerous present methodologies remain susceptible
to local optima, particularly inside high-dimensional search
spaces. The intrinsic complexity and organization of task-to-
VM mappings underscore the necessity for ongoing study in
task scheduling. A brief summary of the related research is
shown in Table L.
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TABLEI. AN OVERVIEW OF THE RELATED WORKS
Reference Technique Used Contributions Objective
Antlion optimization h.ltmduc?d a hybnq antlion optimization r.net}.md .mcmdmg ehte'ba?ed Degree of imbalance, response time, and
[17] X differential evolution to address multi-objective task scheduling
algorithm . . . makespan
challenges in cloud computing environments.
Integrated the b-hill climbing technique as a local search mechanism to Makespan measure. response fime. resource
[18] Dragonfly algorithm E{;r]og/;ﬁlr)nzz's exploitation ability and prevent it from getting trapped in utilizatlijon, and the ,degrl;e ofimba’lance
[19] Adaptive symbiotic | Introduces an adaptive strategy for handling constraints within the | Makespan, financial cost, hypervolume,and
organisms search scheduling process. percentage change
. . . . . timi llocati rtain th
[25] Improved black widow | Introduces a new selection scheme to improve BWO, which resulted in gpml.ru?lljf s::g;rcet;nzcaaf;’;:;if mleaset
optimization an enhanced performance in cloud task scheduling. & ] y
cost for scheduling duties.
Improved synergistic | Introduces an adaptive technique that dynamically affects the search Total execution time. makespan. Resource
91 swarm optimization | process, directing the algorithm towards promising areas of the solution tilizati ’ pan,
algorithm space. uttization
[20] Grey wolf optimization | Incorporates GWO and combines crossover and mutation operators to Enerey consumption. makespan. and cost
algorithm enhance optimization performance. & ption, pan,
A chameleon  and | Proposes a model that employs a multi-objective optimization R . tilization. ener nsumption
[21] remora search | technique for cloud task scheduling, utilizing a greedy methodology to esource utlization, energy consumption,
R . . . cost, makespan, and degree of imbalance
optimization algorithm emulate actual cloud computing task scheduling.
[22] Improved harris hawk | Optimizes the initial positioning of the "hawks" or search agents to | Makespan, energy consumption, execution
optimizer improve the efficiency of finding solutions. cost, resource utilization
. . L . . R ilizati 1l
[26] Enhanced marine | Integrates techniques from the whale optimization algorithm, with a | . esource ¢ u?.lzat(;on’ fpt? (f)mlqance
predator algorithm nonlinear inertia weight coefficient and a golden sine technique. improvement ratio, degree of imbalance,
and makespan
(23] Flower Pollination | Presents a proficient resource selection method to alleviate the | Makespan, resource utilization, degree of
Algorithm stagnation of local solutions. imbalance, and throughput
mprove arris hawl everages the strengths ot the algorithm to explore and evaluate akespan, energy consumption, cost, an
[24] Imp d Harris hawk | L ges th hs of the HHO algorith pl d eval Makesp: gy pti d
optimization algorithm solutions within a vast solution space through the lens of fuzzy logic. runtime

III. PROBLEM DESCRIPTION

Upon submission of tasks by users, the Cloud Broker (CB)
initially receives them and subsequently requests the Cloud
Information Service (CIS) to identify the necessary services for
task execution. After finding the relevant services, the CB
organizes the tasks on the identified VMs. For example, a set
of tasks {T}, T,, T3, ..., T} may be submitted within a given
time frame. The available VMs are heterogeneous, each with
different processing capabilities and memory capacities,
meaning that the same task may have different execution times
and costs depending on the VM it is assigned to.

After receiving tasks, the CB assigns them to available
virtual machines {V;, V,,V;, ..., V,} . In the baseline
configuration, task execution follows the First-Come, First-
Serve (FCFS) policy. The main goal of this work is to enhance
this scheduling process to improve VM utilization and
minimize makespan. For this purpose, the Expected Time to
Compute (ETC) metric is utilized as the basis for task
assignment. The ETC value for a task on a VM is calculated by
dividing the task’s length by the VM’s processing capacity in
millions of instructions per second (MIPS). These values are
organized in a matrix structure, where rows correspond to tasks
and columns to VMs, and each entry represents the estimated
execution time for a particular task-VM pair. The execution
time of task jon virtual machine i is denoted as C;;, where i €
{1,2,...,m} and j € {1,2,...,n}. Here, m corresponds to the
total number of VMs and n to the total number of tasks.

To resolve challenges faced by current task scheduling
techniques, including high computational overhead, poor
scalability, and premature convergence, this work utilizes the
DMO algorithm to obtain efficient task-to-VM assignments.

Modeled after the cooperative and adaptive behaviors of dwarf
mongoose colonies, DMO maintains an effective trade-off
between exploration and exploitation. Integrating the ETC
matrix into the scheduling process allows the proposed
approach to minimize makespan while enhancing resource
utilization across heterogeneous cloud environments.

IV. DMO FOR THE TASK SCHEDULING PROBLEM

The DMO algorithm [27] draws inspiration from the social
structure and foraging patterns of dwarf mongooses. By
simulating the coordinated behavior of scouts, alpha leaders,
and Dbabysitters, the algorithm maintains a robust balance
between exploration and exploitation across the search space.
Owing to these features, DMO is well-suited for addressing
complex optimization tasks such as task scheduling in cloud
computing, aiming to achieve near-optimal task-to-VM
allocations under heterogeneous and dynamic conditions.

A. Overview of DMO Algorithm

DMO simulates a colony of dwarf mongooses navigating
the solution space in search of food sources, which are
analogous to optimal or near-optimal solutions. The algorithm
operates through iterative updates of a population of candidate
solutions, where exploration is guided by scout mongooses,
and exploitation is controlled by the alpha mongoose. The
babysitter mongoose ensures stability in the population by
managing diversity and maintaining solution feasibility. Each
candidate solution in the DMO model encodes a distinct task-
to-VM mapping. Its fitness value is calculated using a
scheduling criterion, most often the makespan, obtained from
the ETC matrix. The goal is to minimize the makespan,
ensuring balanced workload distribution and efficient resource
usage across VMs.
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The DMO algorithm begins by initializing a population
matrix X of dimensions (n Xd), where n denotes the
population size (rows) and d represents the number of problem
dimensions (columns), as shown in Eq. (1). This matrix models
the mongoose population.

X =[x;] =1.2,..,.nj=12..4d (1)

ned "
In Eq. (2), the population matrix X is initialized randomly,
where x;;represents the position of the j th dimension for the

i*" individual. Here,n is the total population size and d is the
number of problem dimensions.

Xij = unifrnd(VarMin,VarMax,VarSize) (2)

The function unifrnd generates random values uniformly
distributed between VarMin and VarMax, which define the
lower and upper bounds of the problem, respectively. Once the
initial population is generated, the fitness of each individual is
evaluated. The probability associated with each individual’s
fitness is computed according to Eq. (3), which is then used to
select the alpha female (@) based on these probabilities.

fit;

I )
The parameter n — bs denotes the number of mongooses in
the alpha group, where bs corresponds to the number of
babysitters. The alpha female’s vocalization, referred to as
Peep, influences the group’s movement direction. Eq. (4) is
used to generate a candidate food location, guiding the search

process.

Xiy1 = X; + ¢ * peep (4)

Here, ¢ is a uniformly distributed random number in the

range (0,1). After each iteration, the sleeping mound value is
calculated using Eq. (5):

Smi =

fiti+1_ fiti (5)
max{|fitiy1.fit;|}

The average sleeping mound value across all individuals is
then obtained from Eq. (6):

g = Hzm (6)

Scout mongooses perform exploration by searching for new
sleeping mounds and preventing revisits to previous locations.
This exploratory movement is modeled by Eq. (7):

¥ _{Xl- — CF » ¢ xrand * [X; — 1\71], if ¢ip1> &
e X; + CF* ¢p+rand * [XL- - ﬁ], elsewhere
(7
The control factor CF is defined in Eq. (8) and decreases

gradually over iterations to balance exploration and
exploitation.
't (Z*iter)
or= (1- ey
iter

Finally, Eq. (9) defines the movement vector M, which
directs the mongoose population toward new sleeping mound
positions.
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Algorithm 1 presents the pseudocode representation of the
DMO algorithm, detailing its procedural logic and
computational operations that can be directly applied for task
scheduling in cloud computing environments.

Algorithm 1: Pseudocode for DMO

Input: Task set, VM set, population size n, maximum iterations
Max_iter, control parameters

Output: Optimal task-to-VM mapping (minimum makespan)

1. Initialize all control parameters.
2. Generate the initial mongoose population X=[x _ij | (nxd) using
Eq. (2).
3.Divide the population into three functional groups: scouts,
babysitters, and alphas.
4. Determine the number of active search agents by excluding
babysitters from the total population.
5. Assign the babysitter exchange rate L.
6. Repeat until the stopping condition or Max_iter is reached:
a. Evaluate the fitness of each mongoose using the scheduling
objective (makespan).
b. Identify the alpha group based on selection probability using
Eq. (3).
c. Generate a new candidate food source location using Eq. (4).
d. Compute the sleeping mound value for each mongoose using
Eq. (5).
e. Calculate the average sleeping mound value and movement
vector M ~ using Eq. (6) and (9).
f. Update scout mongoose positions using Eq. (7) based on
exploration conditions.
g. Perform babysitter exchange according to rate L.
h. Update the best solution found so far if improvement occurs.
Return the final best solution as the optimal task scheduling
configuration.

V. EXPERIMENTAL EVALUATION

The efficiency and scalability of the proposed task
scheduling technique based on the DMO algorithm are
evaluated and compared against benchmark techniques
reported in the literature. As outlined earlier, this study
primarily focuses on assessing the scheduling performance of
the proposed technique. Accordingly, all tasks considered in
the experimental evaluation are assumed to be pre-decomposed
and mutually independent. The experimental configuration,
performance metrics, and evaluation procedures are described
in detail in the following subsections.

A. Experimental Settings

The benchmarking process involved comparing the
proposed DMO algorithm with several state-of-the-art
metaheuristic approaches, including MALPSO [28], EMPA
[26], and GWOEM [29]. Each algorithm was executed
independently 20 times to reduce the influence of stochastic
variations and to ensure the statistical reliability of the obtained
results. All experiments were performed using the CloudSim
simulation toolkit, which enables the modeling and analysis of
cloud computing environments. The simulations were
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conducted on a system equipped with a 12th Gen Intel(R) Core
(TM) i7-12700H processor operating at 2.70 GHz, 16 GB of
RAM, and running the Windows 11 operating system.

Vol. 16, No. 12, 2025

TABLE III. THE NUMBER OF TASKS CONTAINED IN EACH DATASET
CATEGORY
Dataset category Number of tasks
GoCJ_100 100
GoCJ_200 200
GoCJ_300 300
GoCJ_400 400
GoCJ_500 500
GoCJ_600 600
GoCJ_700 700
GoCJ_800 800
GoCJ_900 900
GoCJ_1000 1000

TABLE II. PARAMETER IMPLEMENTATION
Algorithm Parameter Value

Population size 100

GBOEM a Linearly decrease from 2 to 0
Population size 100

MALPSO €1,C; [2.1,2.1]
Wina- Wonin [0.9,0.6]
Population size 100

EMPA FADs 02
P 0.5
Population size 100

DMO

The experimental parameter settings are summarized in
Table II. To ensure consistency, all algorithms were executed
with a population size of 100 and a maximum of 100 iterations,
following configurations commonly adopted in recent studies.
Although increasing the number of iterations can improve
solution quality in terms of makespan, it also results in higher
computational overhead.

B. Dataset Description

This study employs the Google Cloud Jobs (GoClJ) dataset
to establish the task workload in order to more accurately
simulate the task scheduling scenario in cloud computing. In
this dataset, the computational capability of each VM is
expressed in millions of instructions per second (MIPS), while
task sizes are characterized by the number of instructions
required for completion. The GoCJ repository comprises
multiple datasets, each stored in a text file format. Every
dataset contains a specific number of tasks, as summarized in
Table III. Each text file comprises a sequence of lines, each of
which denotes a task and contains a single value representing
the task's magnitude in ML

C. Experimental Results and Analysis

This subsection presents the experimental findings derived
from the proposed DMO-based task scheduling method and
compares them with the results of three established algorithms:
MALPSO, EMPA, and GWOEM. A comprehensive analysis
of the comparative performance is also included. The
simulations are conducted under two separate circumstances to
ensure a thorough evaluation. A constant quantity of VMs is
utilized across all datasets. In the second scenario, the quantity
of VMs is altered for each dataset to evaluate the algorithm's
adaptability and scalability under varying resource constraints.

1) Performance comparison with a constant number of
VMs: A fixed number of VMs is used in the experiment for
every dataset. The assessment is centered on a diverse array of
activities extracted from the aforementioned GoCJ datasets,
which encompass tasks of varied magnitudes. The goal of
optimization is to effectively allocate these jobs to 50 VMs.
Performance for each algorithm under comparison, including
the proposed DMO-based technique, is evaluated using the
makespan metric to ascertain the overall time necessary to
accomplish all assigned jobs.

Table IV presents the makespan results for four task
scheduling algorithms evaluated across different task sizes
using a fixed set of 50 virtual machines. The DMO-based
method is compared against MALPSO, GWOEM, and MPA.
The evaluation includes the Best, Worst, and Mean values
obtained from 20 independent runs for each algorithm. From
the results, it is evident that DMO consistently achieves lower
Mean values across nearly all task sizes. Specifically, DMO
obtains the lowest Mean makespan in all cases, ranging from
2282 (for 200 tasks) to 727.96 (for 1000 tasks), outperforming
the competing algorithms.

To provide a more intuitive comparison, the cumulative
ranks based on the Mean makespan values across 10 datasets
are illustrated in Fig. 2. For each dataset, the algorithms are
ranked from best to worst in terms of average performance,
where a lower bar height indicates better overall performance.
The top-performing algorithm in each dataset receives a rank
of 1, and the ranks are summed to produce the cumulative
values shown in the figure. As depicted in Fig. 2, the proposed
DMO-based scheduling algorithm consistently outperforms the
competing methods, achieving the lowest cumulative rank of
10, which indicates it ranked first in all datasets. While
MALPSO, GWOEM, and MPA accumulate ranks of 19, 28,
and 37, respectively, reflecting their lower relative
performance. These results further validate the effectiveness of
DMO in solving the cloud task scheduling problem.
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TABLEIV. MAKESPAN ACROSS ALL DATASETS WITH 50 FIXED VMS
Task MALPSO GWOEM MPA DMO
Best Worst Mean Best Worst Mean Best Worst Mean Best Worst Mean
100 180.1 180.21 180.1 180.1 180.1 180.1 180.1 180.21 180.1 180.1 180.11 180.1
200 2154 255.57 238.99 219.7 251.1 240.46 225.55 269.7 250.1 216.5 237.2 228.69
300 282.14 343.52 321.35 296.3 3449 324 303.1 361.6 334.63 281.9 314.7 298.32
400 333.1 3883 369.44 343.4 3949 37031 346.1 407.1 377.27 3113 359.84 339.78
500 405.55 468.52 441.26 384.93 4623 443.77 421.9 474.72 451.65 378.4 426.1 408.05
600 488.4 582.8 545.94 516.8 576.86 549.28 514.85 593.12 558.57 484.95 53291 509.06
700 505.92 594.41 556.27 526.6 59131 560.39 515 615.8 570.15 492.6 534.4 518.05
800 566.05 644.5 611.21 569.97 6513 618.65 588.01 662.5 628.62 538.1 590.94 573.81
900 656.11 764.6 727.52 670.31 768.3 734.85 695.6 789.9 741.67 630.7 701.26 680.6
1000 727.61 832.7 776.72 737.31 830.4 785.59 748.6 831.71 795.9 694.46 749.71 729.25
Rank Comparison of Algorithms in 10 Datasets on Fixed 50 VMs MPA ShOW COHIparatiVely SIOWGI‘ convergence a.Ild highel‘ ﬁnal
37 Dataset . . . T [
- = 100 makespan values, indicating their limited ability to escape local
— 200 . . .
= 0 optima or adapt efficiently under heavier task loads. DMO,
» = %0 however, demonstrates strong robustness and convergence
N = 100 stability, consistently maintaining a downward trend in fitness
i = sco even toward later iterations.
S 2 " . 1000
g Average Runtime of Algorithms (Fixed VMs)
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Fig.2. Mean rank comparison across datasets with fixed VMs.
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Fig. 3. Fitness convergence curves of algorithms on fixed number of VMs.

Fig. 3 presents the fitness convergence curve of the
proposed DMO algorithm in comparison with GWOEM,
MALPSO, and MPA for the 1000-task dataset. As observed
from the curve, DMO achieves a significantly lower average
makespan than the competing algorithms. Although MALPSO
converges faster in the early iterations, it plateaus earlier and
stabilizes at a higher makespan compared to DMO. In contrast,
DMO continues refining its solution steadily throughout the
search process, reflecting a balanced exploration-exploitation
dynamic that avoids premature convergence. GWOEM and

=
2

Runtime (seconds)
e
=]
=]

0.50

025

0.00
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Number of Tasks

Fig.4. Average runtime per dataset with fixed VMs.

Fig. 4 displays the average runtime of each algorithm:
DMO, MALPSO, GWOEM, and MPA across increasing task
sizes under a fixed number of virtual machines. The x-axis
represents the number of tasks (ranging from 100 to 1000),
while the y-axis indicates the average computational time in
seconds required to complete one run. As shown in the figure,
the DMO algorithm consistently demonstrates the lowest
runtime across all task sizes, indicating its superior
computational efficiency. The consistently shorter execution
time of DMO, coupled with its high-quality results observed in
earlier evaluations, shows its practical suitability for large-scale
task scheduling applications particularly in real-time or
resource-constrained cloud environments.

A paired t-test was conducted to statistically assess the
performance of the proposed DMO algorithm against
MALPSO, GWOEM, and MPA on the GoCJ dataset under
fixed VM configurations as shown in Table V, using a
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significance level of a = 0.05. For small-scale workloads (100
tasks), no statistically significant differences were observed (p
> 0.05), indicating comparable performance due to limited
scheduling complexity. However, for task sizes of 200 and
above, DMO consistently achieved significantly lower
makespan values, as reflected by negative mean differences,
large-magnitude t-values, and extremely small p-values (often
< 10%), leading to rejection of the null hypothesis. The

Vol. 16, No. 12, 2025

magnitude and consistency of these improvements increase
with problem size, particularly for medium to large workloads
(300-1000 tasks), demonstrating DMO’s robustness and
scalability in high-dimensional scheduling spaces. These
statistically significant results confirm that the observed
performance gains are not due to random variation and provide
strong empirical evidence supporting the effectiveness of DMO
for large-scale cloud task scheduling.

TABLE V. STATISTICAL T-TEST RESULTS FOR MAKESPAN COMPARISON ON THE GOCJ DATASET WITH FIXED VMS
Task Size Comparison Mean Difference | Std Difference t-value p-value Better Algorithm Significant
100 DMO vs MALPSO -0.001 0.011055 -0.90453 0.367908227 DMO FALSE
100 DMO vs GWOEM 0.0001 0.001 1 0.319748474 GWOEM FALSE
100 DMO vs MPA -0.000998 0.011035 -0.90435 0.368003029 DMO FALSE
200 DMO vs MALPSO -10.296463 8.083912 -12.737 1.40E-22 DMO TRUE
200 DMO vs GWOEM -11.771234 7.242589 -16.2528 1.07E-29 DMO TRUE
200 DMO vs MPA -21.408265 9.20326 -23.2616 6.51E-42 DMO TRUE
300 DMO vs MALPSO -23.035018 12.02804 -19.1511 4.61E-35 DMO TRUE
300 DMO vs GWOEM -25.681148 11.8629 -21.6483 2.52E-39 DMO TRUE
300 DMO vs MPA -36.306611 15.15638 -23.9547 5.49E-43 DMO TRUE
400 DMO vs MALPSO -29.663394 12.11074 -24.4935 8.32E-44 DMO TRUE
400 DMO vs GWOEM -30.523941 13.7605 -22.1823 3.39E-40 DMO TRUE
400 DMO vs MPA -37.484893 14.85506 -25.2338 6.53E-45 DMO TRUE
500 DMO vs MALPSO -33.212818 14.36265 -23.1244 1.07E-41 DMO TRUE
500 DMO vs GWOEM -35.719619 13.81348 -25.8585 7.95E-46 DMO TRUE
500 DMO vs MPA -43.595315 15.41503 -28.281 3.20E-49 DMO TRUE
600 DMO vs MALPSO -36.88152 19.63754 -18.7811 2.10E-34 DMO TRUE
600 DMO vs GWOEM -40.214484 17.52061 -22.9527 1.99E-41 DMO TRUE
600 DMO vs MPA -49.507718 18.89599 -26.2001 2.55E-46 DMO TRUE
700 DMO vs MALPSO -38.222648 18.76097 -20.3735 3.44E-37 DMO TRUE
700 DMO vs GWOEM -42.340123 18.12233 -23.3635 4.51E-42 DMO TRUE
700 DMO vs MPA -52.092789 19.99794 -26.0491 4.21E-46 DMO TRUE
800 DMO vs MALPSO -37.393152 21.04933 -17.7645 1.49E-32 DMO TRUE
800 DMO vs GWOEM -44.840048 19.5918 -22.8871 2.53E-41 DMO TRUE
800 DMO vs MPA -54.803758 19.53037 -28.0608 6.37E-49 DMO TRUE
900 DMO vs MALPSO -46.924606 24.33758 -19.2807 2.72E-35 DMO TRUE
900 DMO vs GWOEM -54.256754 21.77357 249186 1.92E-44 DMO TRUE
900 DMO vs MPA -61.076888 21.59429 -28.2838 3.17E-49 DMO TRUE
1000 DMO vs MALPSO -47.467969 2749125 -17.2666 1.26E-31 DMO TRUE
1000 DMO vs GWOEM -56.336122 19.23301 -29.2914 1.43E-50 DMO TRUE
1000 DMO vs MPA -66.645948 2246125 -29.6715 4.54E-51 DMO TRUE

Fig. 5 illustrates the average makespan values obtained by
four algorithms as the number of tasks increases from 100 to
1000. As depicted, the makespan values increase
proportionally with the number of tasks which is expected due
to the growing computational workload. However, the DMO
algorithm consistently achieves the lowest makespan across all
dataset sizes, demonstrating its superior scheduling capability.
Notably, the gap between DMO and the other methods
becomes more prominent as task volume increases,
highlighting DMO’s scalability and robustness under larger
workloads.

Fig. 6 presents the degree of imbalance of the task
scheduling solutions generated by the four compared
algorithms under a fixed number of VMs. Dol reflects how
evenly tasks are distributed across available resources, with
lower values indicating better load balancing. As illustrated,
DMO consistently achieves the lowest imbalance across all
task volumes, demonstrating its strong ability to maintain load
uniformity among VMs. While all algorithms show a
downward trend in Dol as the task count grows, indicating
improved balance with larger workloads DMO outperforms
othersin both convergence speed and final balance quality.
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Fig.5. Average makespan per dataset with fixed VMs.
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Fig. 6. Degree of imbalance per dataset with fixed VMs.
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Fig. 7. Average throughput per dataset with fixed VMs.
Fig. 7 illustrates the average throughput achieved by each

of the four algorithms across increasing numbers of tasks under
a fixed number of VMs. Throughput measures the number of

Vol. 16, No. 12, 2025

tasks successfully completed per unit time and is a critical
metric for evaluating the responsiveness and efficiency of
scheduling algorithms in cloud environments. From the figure
it is observed that MALPSO, GWOEM, and MPA exhibit
similar patterns, with slightly lower throughput values. While
all algorithms show improved throughput with increased task
sizes due to higher resource utilization DMO maintains a clear
performance lead, particularly beyond 400 tasks, where its
optimization capabilities yield a noticeable efficiency
advantage.

2) Scenario with varying number of VMs: To further
assess the scalability and performance of the proposed
algorithm under varying resource conditions, a second set of
experiments was conducted using different numbers of VMs
for each dataset category. The allocation of VMs for each
dataset was determined to be 10% of the total number of tasks,
yielding VM counts between 10 and 100. The number of VMs
designated for each dataset is summarized in Table VI. This
experimental configuration aims to evaluate how changes in
resource availability impact key performance indicators,
particularly makespan. By correlating scheduling efficiency
with increasing task-to-resource ratios, the results provide
insight into the scalability and robustness of the algorithms
under more realistic and dynamic cloud environments.

Table VII presents the makespan results of four algorithms:
DMO, MALPSO, GWOEM, and MPA. The evaluation metrics
include the Best, Worst, and Mean of the makespan over 20
independent runs. From the data in Table VII, it is evident that
the proposed DMO consistently achieves the best Mean
makespan values across all datasets. For instance, in the largest
dataset (1000 tasks), DMO yields a Mean makespan of 468.68,
which is significantly lower than the corresponding results
from GWOEM (505.52), MPA (514.72), and MALPSO
(503.82). DMO also performs strongly in the Best-case results,
outperforming the other algorithms in most datasets, reflecting
its superior ability to locate high-quality solutions.

TABLE VI. VM DISTRIBUTION PER DATASET SIZE
Dataset size Number of VMs
100 10
200 20
300 30
400 40
500 50
600 60
700 70
800 80
900 90
1000 100
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TABLE VII. MAKESPAN ACROSS ALL DATASETS WITH VARIABLE VM COUNTS
Task MALPSO GWOEM MPA DMO

Best Worst Mean Best Worst Mean Best Worst Mean Best Worst Mean
100 305.1 347.56 32791 3033 361.1 335.61 3142 379 351.35 2942 323.1 311.75
200 354.9 4149 389.57 370.93 422.6 396.29 361.31 4492 410.52 34221 382.87 364.22
300 381.7 465.1 432.9 388.5 465.4 434.7 4233 492.6 451.1 372.72 422.12 403.97
400 383.7 446.9 419.35 396 446.51 424.54 400.33 456.4 432.59 374.2 405.61 390.58
500 393.77 462.24 438.06 402.3 465.3 440.23 41342 479 450.84 374.1 428.14 408.18
600 436.13 52521 488.6 443.64 5153 490.46 462.68 530.94 501.29 420.44 476.1 455.19
700 404.71 475.67 451.87 430.74 480.34 456.76 432.43 491.9 462.34 394.02 435.06 417.94
800 413.32 482.84 458.24 413.12 493.11 461.07 427.71 4993 470.37 404.01 442.67 426.23
900 464.9 527.85 499.9 465.44 533.42 503.5 474.53 546.8 51091 44321 486.13 468.56
1000 460.74 528.95 503.82 465.21 530.93 505.5 467.96 543.04 514.7 44121 491.2 468.68

Rank Comparison of Algorithms in 10 Datasets on Variable VMs

40

Dataset

DMO is applied. Notably, the statistical significance persists
even for small-scale workloads (100 tasks), highlighting

— 1o
» = DMO’s strong adaptability to dynamic resource availability.
- As task sizes increase, the magnitude of the mean differences
» == remains consistently high, demonstrating that DMO effectively
» = maintains solution quality despite increased scheduling
- complexity and VM variability. These results confirm that

B

Cumulative Rank

DMO_Mean

MALPSO_Mean
Algorithm

GWOEM_Mean MPA_Mean

Fig. 8. Mean rank comparison across datasets with variable VMs.

To better visualize the comparative performance, Fig. 8
ranks each algorithm based on its Best, Worst, and Mean. The
proposed DMO achieves the lowest cumulative rank in three of
the four subplots, especially excelling in the Best and Mean
categories. This confirms DMO’s capability to consistently
find better solutions and maintain overall stability. Even in the
Worst and Std categories, DMO ranks among the top
performers, further supporting its robustness.

Fig. 9 shows the fitness convergence of DMO, GWOEM,
MALPSO, and MPA on the 1000-task dataset using a variable
number of VMs. DMO exhibits the fastest and most stable
convergence, achieving the lowest average fitness. While other
algorithms plateau early, DMO continues improving, showing
strong exploitation capability. These results confirm DMO's
efficiency and robustness in high-load, dynamic VM
environments.

To further examine the robustness of the proposed DMO
algorithm, a paired t-test was performed on the makespan
results obtained from the GoCJ dataset with varying numbers
of VMs as shown in Table VIII. Unlike the fixed-VM scenario,
all comparisons across task sizes from 100 to 1000 exhibit
statistically significant differences (p < 0.05), with DMO
consistently identified as the superior algorithm. The uniformly
negative mean differences and large-magnitude t-values
indicate substantial and reliable reductions in makespan when

DMO is not only scalable but also resilient to changes in cloud
infrastructure, making it particularly suitable for real-world
cloud environments characterized by fluctuating resource
configurations.

166 Fitness Curve for Dataset 1000 (Variable VMs)
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Fig. 9. Fitness convergence curves of algorithms on variable number of
VMs.
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Fig. 10. Average runtime per dataset with variable VMs.
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TABLE VIII. STATISTICAL T-TEST RESULTS FOR MAKESPAN COMPARISON ON THE GOCJ DATASET WITH VARYING VMS

Task Size Comparison Mean Difference | Std Difference t-value p-value Better Algorithm Significant
100 DMO vs MALPSO -16.1569 11.04326 -14.6306 1.72E-26 DMO TRUE
100 DMO vs GWOEM -23.8587 11.50375 -20.7399 8.20E-38 DMO TRUE
100 DMO vs MPA -39.5934 15.05279 -26.303 1.82E-46 DMO TRUE
200 DMO vs MALPSO -25.3435 16.30967 -15.539 2.65E-28 DMO TRUE
200 DMO vs GWOEM -32.0692 13.95662 229778 1.82E-41 DMO TRUE
200 DMO vs MPA -46.2917 18.73325 24711 3.91E-44 DMO TRUE
300 DMO vs MALPSO 2289261 17.46182 -16.5654 2.69E-30 DMO TRUE
300 DMO vs GWOEM -30.7284 17.15124 -17.9161 7.83E-33 DMO TRUE
300 DMO vs MPA -47.1226 16.66213 282812 3.20E-49 DMO TRUE
400 DMO vs MALPSO 287707 13.0834 21.9902 6.95E-40 DMO TRUE
400 DMO vs GWOEM -33.9668 13.17658 257781 1.04E-45 DMO TRUE
400 DMO vs MPA -42.0102 12.98203 -32.3603 1.88E-54 DMO TRUE
500 DMO vs MALPSO 29.8839 16.69724 -17.8975 8.47E-33 DMO TRUE
500 DMO vs GWOEM -32.0542 13.75281 -23.3074 5.52E-42 DMO TRUE
500 DMO vs MPA -42.6606 14.48119 -29.4593 8.60E-51 DMO TRUE
600 DMO vs MALPSO -33.4175 18.49725 -18.0662 4.15E-33 DMO TRUE
600 DMO vs GWOEM -35.2753 14.874 -23.7161 1.28E-42 DMO TRUE
600 DMO vs MPA -46.1056 19.00228 242632 1.86E-43 DMO TRUE
700 DMO vs MALPSO -33.9315 16.89139 20.088 1.06E-36 DMO TRUE
700 DMO vs GWOEM -38.8176 14.08342 275626 3.08E-48 DMO TRUE
700 DMO vs MPA -44.3964 17.91821 247772 3.12E-44 DMO TRUE
800 DMO vs MALPSO -32.0093 15.58234 20.542 1.78E-37 DMO TRUE
800 DMO vs GWOEM 34.8438 15.05719 23.141 1.01E-41 DMO TRUE
800 DMO vs MPA -44.1438 14.65385 -30.1243 1.18E-51 DMO TRUE
900 DMO vs MALPSO 31.3355 18.51359 -16.9257 5.53E-31 DMO TRUE
900 DMO vs GWOEM -34.9396 17.65528 -19.7899 3.48E-36 DMO TRUE
900 DMO vs MPA -42.3484 16.74164 -25.2952 5.30E-45 DMO TRUE
1000 DMO vs MALPSO -35.1394 17.35888 -20.2429 5.75E-37 DMO TRUE
1000 DMO vs GWOEM -36.8164 15.39813 -23.9096 6.44E-43 DMO TRUE
1000 DMO vs MPA -46.0187 18.92846 243119 1.57E-43 DMO TRUE

Fig. 10 compares the runtime of the four algorithms across suggests consistent performance across heterogeneous
varying task sizes using a variable number of VMs. The workloads.
proposed DMO maintains the lowest runtime throughout, Average Hakespan of Algorithims (Varabls VHs)
showing excellent computational efficiency. GWOEM incurs Aigorithm
the highest cost, scaling poorly as task size increases. This 0 |y e

confirms DMOQ’s lightweight nature and scalability, making it
suitable for real-time cloud scheduling. Even with increased
workload, DMO’s runtime growth remains modest, reflecting
its optimized search process. This efficiency makes it ideal for
deployment in latency-sensitive environments.

Fig. 11 presents the average makespan performance of
DMO, MALPSO, GWOEM, and MPA as the number of tasks
increases under a variable VM setup. The DMO achieves the
lowest makespan value across all task sizes, indicating superior
task-to-resource mapping. While the makespan naturally
increases with task load, DMO maintains a significant margin
of improvement over competing algorithms. This trend reflects
DMO’s efficiency and scalability, especially in dynamically
resourced environments. The stability in DMO’s curve also

—*— MPA
DMO

Makespan

200 400 600 800 1000
Number of Tasks

Fig. 11. Average makespan per dataset with variable VMs.
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Fig. 12. Degree of imbalance per dataset with variable VMs.

Fig. 12 illustrates the degree of imbalance for four
algorithms as the task count increases under variable VM
settings. The DMO maintains the lowest imbalance values,
indicating more uniform load distribution. Although Dol
increases with task volume, DMO's curve rises more slowly,
showing greater stability and fairness. In contrast, MPA
consistently shows the highest imbalance, highlighting less
efficient task scheduling. These results confirm DMO’s
robustness in balancing workloads, even in dynamic VM
environments.
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Fig. 13. Average throughput per dataset with variable VMs.

Fig. 13 depicts the average throughput achieved by each
algorithm as the number of tasks increases under a variable
number of VMs. The proposed DMO consistently outperforms
its counterparts, achieving the highest throughput across all
task sizes. This indicates more tasks are completed per time
unit, highlighting DMO's superior efficiency. The gap becomes
more significant as task volume scales, confirming DMOQO’s
strong adaptability and parallelism handling. This makes it
well-suited for high-throughput cloud environments.

Vol. 16, No. 12, 2025

VI. CONCLUSION AND FUTURE WORK

Task scheduling is a substantial and complex challenge in
CC, with ongoing research aimed at discovering efficient
methods for assigning tasks to computational resources to
minimize makespan. This study presents a DMO-based task
scheduling technique aimed at enhancing system performance
through the optimal utilization of available computing
resources. The comprehensive execution of the proposed DMO
methodology has been delineated, and its efficacy was
validated utilizing the GoCJ benchmark datasets. Two
experimental situations were executed to evaluate performance,
and the outcomes were compared with those of the MALPSO,
GWOEM, and MPA algorithms. For each algorithm, essential
performance measures such as response time, degree of
imbalance, throughput, and makespan were meticulously
assessed to gauge overall scheduling efficacy and resource
consumption in the cloud context. The analysis demonstrated
that the DMO-based method consistently produced superior
makespan results, especially under high task loads and varying
VM conditions. These findings highlight DMO’s capability in
efficiently exploring complex solution spaces and maintaining
balanced resource distribution. Therefore, the proposed
approach significantly enhances task scheduling performance
and contributes to improving the overall efficiency and
responsiveness of cloud computing systems.

Despite the promising results obtained, this study has
several limitations that should be acknowledged to provide a
clear and accurate interpretation of the findings. First, the
experimental evaluation was conducted using the GoCl
benchmark dataset, which although widely adopted may not
fully capture all characteristics of real-world cloud workloads
such as bursty task armrivals, task dependencies, or strict
deadline constraints. Second, the performance assessment
focused primarily on makespan minimization, while other
important quality of service metrics such as energy
consumption, monetary cost, load balancing, and service level
agreement violations were not jointly optimized or analyzed.
Third, the experiments were performed under simulated cloud
environments with fixed and varying VM configurations and
therefore the observed performance may differ in large scale
production clouds where network latency, VM failures, and
dynamic resource provisioning occur. In addition, the proposed
DMO algorithm was compared with a limited set of
metaheuristic baselines and comparisons with a broader range
of recent scheduling approaches could further strengthen the
generality of the conclusions. Finally, algorithm parameter
tuning was carried out empirically and alternative tuning
strategies may lead to different performance outcomes.
Addressing these limitations in future studies through real
cloud experimentation, multi objective optimization, and
expanded comparative analysis would further enhance the
applicability and robustness of the proposed approach.

As future work, we plan to develop a multi-objective
performance model that incorporates additional quality service
metrics to further enhance task scheduling in cloud computing
environments. In particular, optimizing load balancing will be
a key focus, as it plays a critical role in maintaining system
stability and performance. We also intend to extend the DMO
algorithm to support more complex task structures, including
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scientific workflows and cloud-based deep learning workloads,
thereby improving its adaptability to diverse application
scenarios. Furthermore, the applicability of the proposed DMO
methodology will be explored in other optimization domains,
including workflow scheduling, underwater wireless sensor
networks, feature selection, and Internet of Things scheduling
problems, to evaluate its generalization capability.
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