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Abstract—Nonlinear systems are integral to contemporary 

engineering applications, yet their regulation remains a significant 

challenge due to complex and highly dynamic behaviors. Robust 

control frameworks, particularly H∞ methods, provide systematic 

tools to ensure stability and performance in the presence of 

disturbances and modeling uncertainties. This study proposes an 

integrated design methodology that combines H∞ loop-shaping 

techniques with multimodel approaches to achieve resilient 

control of nonlinear systems. The control law is structured around 

the H∞ loop-shaping scheme, which shapes the open-loop 

dynamics to meet desired robustness and performance 

specifications. The multimodel strategy further enhances 

adaptability by accommodating diverse operating conditions and 

capturing variations in system behavior. Several control 

architectures are presented that unify H∞ loop-shaping with 

multimodel representations, offering a flexible framework for 

nonlinear system control. The design methodology also ensures 

desirable transient responses, thereby improving practical 

applicability for complex systems. A study is conducted to validate 

the proposed approaches. Simulation results confirm the 

effectiveness of multimodel H∞ control systems, underscoring 

their potential as a robust solution for complex nonlinear 

applications. 
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I. INTRODUCTION 

Nonlinear systems are pervasive across engineering and 
scientific domains, naturally arising in mechanical structures 
[1], electrical circuits, chemical processes, aerospace vehicles, 
and biological networks. Unlike linear systems, which benefit 
from analytical tractability and the principle of superposition, 
nonlinear systems [2] often exhibit complex phenomena such as 
bifurcations [3], limit cycles, chaotic dynamics [4], and strong 
coupling effects [5]. These behaviors significantly complicate 
analysis and control, yet their regulation remains essential for 
ensuring stability and performance in modern applications. 
Classical control strategies, including feedback linearization [6], 
Lyapunov-based methods [7], and sliding mode control [8], 
have provided effective tools for nonlinear regulation. However, 
these techniques typically depend on stringent modeling 
assumptions and may lose reliability in the presence of 
uncertainties, disturbances, or parameter variations. In practice, 
nonlinear systems are rarely known with complete accuracy [9], 
necessitating robust control frameworks to guarantee 
performance under imperfect knowledge [10] and [11]. 

Within this context, H∞ control has emerged as a powerful 
methodology [12]. Its primary objective is to minimize the 
worst-case impact of disturbances on system performance, 

thereby ensuring both stability and robustness against 
uncertainties. Although originally formulated for linear systems, 
H∞ control has been extended to nonlinear dynamics through 
various approaches, offering a systematic means of addressing 
external perturbations and modeling errors. This makes H∞ 
particularly attractive for safety-critical applications such as 
aerospace flight control [13], robotics [14], and power systems 
[15]. 

Despite its advantages, direct application of H∞ control to 
nonlinear systems often proves analytically intractable and 
computationally intensive. To mitigate these challenges, 
researchers have introduced multimodel approaches [16], in 
which a nonlinear system is represented by a collection of local 
models, typically linear or weakly nonlinear, valid within 
specific operating regions [17]. By switching between or 
blending these models, multimodel strategies provide a tractable 
representation of complex nonlinear dynamics [18]. This 
framework facilitates the design of controllers that adapt to 
varying operating conditions [19], thereby enhancing robustness 
and performance without resorting to overly conservative 
assumptions [20]. 

The integration of multimodel representations with H∞ 
control offers a promising pathway toward resilient regulation 
of nonlinear systems. While multimodel structures reduce 
complexity by decomposing nonlinear behavior into 
manageable local models, H∞ design ensures robustness against 
uncertainties and disturbances. Together, they enable the 
synthesis of controllers capable of maintaining stability and 
performance across diverse operating regimes. This study 
contributes to this growing field by presenting a comprehensive 
study of H∞ control for nonlinear systems using multimodel 
approaches, aiming to bridge theoretical rigor with practical 
applicability in complex engineering contexts. 

The remainder of this study is structured as follows: In 
Section II, we provide a preliminary study on H∞ loop-shaping 
techniques, highlighting their theoretical foundations and 
relevance for robust control of nonlinear systems. Section III 
introduces the multimodel approaches, where nonlinear 
dynamics are represented through sets of local models to 
facilitate analysis and controller design. In Section IV, we 
present an integrated scheme that combines H∞ loop-shaping 
techniques with multimodel strategies, demonstrating how the 
synergy between these methods strengthens robustness and 
flexibility in control system design. Proposed approaches are 
formulated within this composite methodology to ensure that 
stability and performance objectives are simultaneously 
satisfied, and four distinct architectures based on this concept 
are introduced. The effectiveness of the developed structures is 
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examined in Section V through rigorous simulation studies, 
highlighting their robustness and feasibility for real systems 
implementation. Finally, Section VI concludes the study by 
summarizing the main contributions and outlining potential 
perspectives for future research. 

II. PRELIMINARY STUDY OF H∞ LOOP-SHAPING 

TECHNIQUES FOR ROBUST CONTROL 

A. Foundations of H∞ Loop-Shaping 

H∞ loop-shaping control design offers a systematic 
approach to achieving robust performance in uncertain systems. 
By shaping the open-loop frequency response to meet desired 
performance objectives and subsequently applying H∞ 
optimization, the method ensures stability margins and 
resilience against modeling errors. This integration of classical 
intuition with modern robust control theory makes H∞ loop-
shaping particularly effective for complex multi-input multi-
output systems. 

The robust stability problem in the H∞ framework is to 
determine a controller K(s) that stabilizes the plant G(s) while 
ensuring that the closed-loop system satisfies prescribed 
performance and robustness criteria. Specifically, the objective 
is to design K(s) such that the weighted closed-loop transfer 
functions achieve a bounded H∞ norm, thereby guaranteeing 
stability margins in the presence of model uncertainties and 
external disturbances. 

The robust stability H∞ problem is to find 
min

 as defined in 

Eq. (1) and K(s) in Eq. (7) in order to stabilize the studied plan 
G(s), such as: 

𝑚𝑖𝑛 = √1 + 𝜆(𝑌𝑋)𝑠𝑢𝑝   (1) 

where, 𝝀𝒔𝒖𝒑 is the largest eigenvalue and the matrices X and 

Y are respectively the solutions of the following Riccati equations 
given by Eq. (2): 

{ 𝑋𝐴 + 𝐴
𝑇𝑋 − 𝑋𝐵𝐵𝑇𝑋 + 𝐶𝑇𝐶 = 0

𝑌𝐴𝑇 + 𝐴𝑇𝑌 − 𝑌𝐶𝑇𝐶𝑌 + 𝐵𝐵𝑇 = 0
  (2) 

with (A, B, C) is the state space representation of the 
shaped plant G denoted 𝐺𝑠(𝑆), defined by Eq. (3): 

𝐺𝑠(𝑠) = 𝑊1(𝑠)𝐺(𝑠)𝑊2(𝑠)   (3) 

 A controller 𝐾∞(𝑠) stabilizing all the models is described by 
the state space representation Eq. (4) and Eq. (5): 

{
𝑥̇𝑐  (𝑡) =  𝐴𝐶𝑥𝑐(𝑡) + 𝐵𝐶𝑦𝑐(𝑡)

𝑢 (𝑡) = 𝐶𝑐 𝑥𝑐(𝑡)
  (4) 

where, 

{
 
 

 
 𝐴𝑐 = 𝐴 − 𝐵𝐵

𝑇𝑋 + 2𝑍𝑌𝐶𝑇𝐶

𝐵𝑐 = 2𝑍𝑌𝐶𝑇

𝐶𝑐 = 𝐵𝑇𝑋

𝑍 = (𝐼 + 𝑌𝑋 − 2𝐼)−1

  (5) 

Using Eq. (5), the H∞ controller is given in Eq. (6) as 
follows: 

𝐾∞(𝑠) = 𝐶𝐶(𝑠𝐼 − 𝐴𝐶)
−1𝐵𝐶   (6) 

The final feedback controller 𝐾(𝑠) , is obtained by 
combining controller K∞(𝑠) with the shaping functions 𝑊1(𝑆) 
and 𝑊2(𝑆), which is described by the relation Eq. (7): 

𝐾(𝑠) = 𝑊1(𝑠)𝐾∞(𝑠)𝑊2(𝑠)  (7) 

B. Architecture of H∞ Loop-Shaping Control Systems 

H∞ loop-shaping control provides a systematic framework 
that combines classical frequency-domain design with modern 
robust optimization. The method begins by shaping the open-
loop transfer function with appropriate weighting functions to 
achieve desired performance characteristics such as bandwidth, 
disturbance rejection, and noise attenuation. Once the loop is 
shaped, H∞ optimization is applied to guarantee robustness 
against model uncertainties and unmodeled dynamics. This 
architecture in Fig. 1 is particularly effective for both 
Single-Input/ Single-Output (SISO) and 
Multiple-Input/Multiple-Output (MIMO) systems, as it balances 
intuitive design with rigorous mathematical guarantees, making 
it a widely applicable framework in robust control engineering. 

 

Fig. 1. Architecture of H∞ loop-shaping control systems. 

The H∞ loop-shaping control design framework provides a 
rigorous and principled methodology for achieving robust 
performance by integrating intuitive frequency-domain shaping 
with formal optimization techniques. By simultaneously 
enhancing stability margins and accommodating model 
uncertainties, this framework is particularly well-suited for the 
control of complex nonlinear systems. Building upon this 
foundation, the subsequent section introduces multimodel 
approaches, which serve as complementary tools for 
representing nonlinear dynamics through collections of local 
models. Such representations enable computationally feasible 
analysis and facilitate systematic controller synthesis, thereby 
extending the applicability of robust control methods to a 
broader class of nonlinear systems. 

III. MULTIMODEL APPROACHES FOR NONLINEAR SYSTEM 

REPRESENTATION AND CONTROLLER DESIGN 

A. Multimodel Control for Nonlinear System 

The principal objective is the synthesis of a global control 
law u(t) described by Eq. (8) for the considered nonlinear system 
Eq. (9), constructed on the basis of the multimodel 
representation. The resulting control input, designated as the 
multimodel command, is obtained through the aggregation of 
partial control signals generated by each local model. 

𝑢(𝑡) =  ∑ 𝑣𝑖
𝑛
𝑖=1 (𝑡)𝑢𝑖(𝑡)   (8) 
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{
𝑥̇ (𝑡) = ∑ 𝑣𝑖

𝑛
𝑖=1 (𝑡)(𝐴𝑖 𝑥(𝑡) + 𝐵𝑖𝑢𝑖(𝑡))

𝑦 (𝑡) = ∑ 𝑣𝑖
𝑛
𝑖=1 (𝑡)𝐶𝑖  𝑥(𝑡)

 (9) 

where, 

∑𝑣𝑖

𝑛

𝑖=1

= 1 

υi (t) denotes the validity coefficient corresponding to the ith 

local model, ensuring that the global control law is obtained as 
a weighted fusion of the partial commands ui. 

In the multimodel representation, Ai denotes the state matrix 
of the ith local model, characterizing the intrinsic dynamics of the 
system states. The matrix Bi represents the input matrix, 
mapping the control signal ui into the state space and thereby 
defining the influence of external commands. Similarly, Ci is the 
output matrix, which relates the internal state vector x(t) to the 
measurable output y(t). 

B. Multimodel Architecture  for Nonlinear Systems 

The multimodel structure constitutes a comprehensive 
analytical framework that employs multiple local linear time-
invariant (LTI) models, expressed in either linear or affine form. 
This methodology is predicated on the assumption that a 
complex nonlinear system can be effectively approximated by a 
structured combination of simpler local models, thereby 
establishing a representative model base. Each constituent 
model delineates the system dynamics at a specific operating 
point, while the global nonlinear behavior emerges from the 
coordinated interaction of these local models Mi through 
normalized activation functions. Consequently, the multimodel 
approach mitigates system complexity by facilitating the 
investigation of dynamic behavior under rigorously defined 
operating conditions. The conceptual foundation of this 
methodology is schematically illustrated in Fig. 2. 

 

Fig. 2. Architecture of a multimodel approach for control systems. 

The multimodel framework is organized into three core 
components. The model base consists of a library of local or 
generic models, which may vary in form and order but 
collectively provide simplified representations of the system 
across distinct operating regimes. The decision unit governs the 
selection and activation of these models, ensuring that the most 
appropriate local representation contributes to the global system 
defined by M in Eq. (10), given that each model is valid only 
within a specific operating region. Finally, the output unit 

synthesizes the overall system response by processing the 
validity vector associated with the model base. Two strategies 
are typically employed: commutation, which switches models 
according to operating conditions, and fusion, which aggregates 
outputs through a weighted combination. In this study, the 
fusion approach is adopted and formally defined in the following 
section. 

𝑀 = ∑ 𝑣𝑖
𝑛
𝑖=1 (𝑡)𝑀𝑖(𝑡)  (10) 

With 

∑𝑣𝑖

𝑛

𝑖=1

= 1 

IV. H∞ SYNTHESIS UNDER MULTIMODEL CONTROL DESIGN 

A. General Principles of H∞ Loop-Shaping Synthesis in 

Multimodel Control 

The integration of H∞ synthesis within a multimodel control 
paradigm aims to achieve robust performance for nonlinear 
systems by combining the advantages of multiple local linear 
models. In this framework, each local model contributes a partial 
control law derived from H∞ design, ensuring attenuation of 
disturbances and preservation of stability margins. The global 
control input is then obtained through a fusion mechanism, 
where the partial commands are weighted according to the 
validity coefficients associated with each model. This 
methodology facilitates seamless transitions among local 
controllers while ensuring robustness with respect to parameter 
variations and inherent system nonlinearities. On the basis of 
this principle, the proposed control architecture is structured 
around a set of local H∞ controllers, each associated with its 
corresponding base model. A validity estimation mechanism 
operates in real time to determine the weighting coefficients that 
quantify the relevance of each local model. These coefficients 
are subsequently employed within a fusion module, which 
synthesizes the global control input delivered to the plant. In the 
following sections, four distinct architectural configurations of 
this multimodel H∞ control strategy are introduced and 
analyzed. 

B. Synthesis of Partial H∞ Loop- Shaping controller 

For each local model Mi (i = 1, .., n), an H∞ Loop- Shaping 
controller K∞i(s)  is associated.  The corresponding partial 
control law Ki(s) is then derived by using local shaping W1i(S) 
and W2i(s), as expressed in Eq. (11): 

𝐾𝑖(𝑠) = 𝑊1𝑖(𝑠)𝐾∞𝑖(𝑠)𝑊2𝑖(𝑠)                  , for i=1..n(11) 

The synthesis procedure ensures that each controller attains 
the desired performance objectives while maintaining stability 
margins specifically adapted to the dynamic characteristics of its 
associated local model. By configuring the loop-shaping design 
to individual operating regimes, the resulting set of partial 
controllers provides localized robustness and performance 
guarantees across the multimodel framework. This localized 
design not only enhances the fidelity of control in each regime 
but also establishes a foundation for constructing a global 
control law capable of maintaining robustness under parameter 
variations, nonlinearities, and external perturbations. 
Consequently, the multimodel H∞ synthesis approach enables a 
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systematic balance between local precision and global stability, 
ensuring reliable performance across the entire operating 
domain. 

C. Synthesis of Global H∞ Loop- Shaping Controller 

Once the parameters of the partial controllers have been 
identified, the subsequent step consists of deducing the global 
control law to be applied to the nonlinear system under study. A 
fusion-based control strategy is adopted, as it provides a 
coherent and effective framework for the proposed multimodel 
representation. In situations where the system can be accurately 
approximated by a weighted aggregation of local models, the 
global controller K(s) is constructed through the fusion of the 
elementary controllers Ki(s), described by Eq. (12): 

𝐾(𝑠) =  ∑ 𝑣𝑖
𝑛
𝑖=1 𝐾𝑖(𝑠)  (12) 

υi (k)  denotes the validity coefficient corresponding to the 
ith  local model. 

With, 

∑𝑣𝑖

𝑛

𝑖=1

= 1 

Based on the multimodel H∞ Loop-shaping synthesis 
framework, four representative architectures are proposed to 
illustrate different design philosophies and implementation 
strategies. The following subsection introduces four 
architectural configurations developed under the multimodel 
H∞ synthesis framework, highlighting their structural 
characteristics and the control strategies employed. 

D. Proposed Architectures for Multimodel H∞ Control 

a) Architecture 1 – Aggregated local controllers: The 

global control law is synthesized as the summation of local H∞ 

controllers, each designed with respect to its corresponding 

local model. The resulting global system is thus formed by the 

collective contribution of all local models. The architecture is 

illustrated in Fig. 3 below: 

 

Fig. 3. Architecture 1- Aggregated local controllers. 

b) Architecture 2 – Decentralized local control: Each 

local model is paired with its dedicated H∞ controller, 

operating independently. The control action applied to the plant 

is determined by the validity of the associated local model, 

ensuring model-specific regulation. The subsequent Fig. 4 

depicts the structure of the proposed architecture. 

 

Fig. 4. Architecture 2 - Decentralized local control. 

c) Architecture 3 – Global controller from multimodel 

representation: A single H∞ Loop-shaping controller, denoted 

K, is designed directly from the global multimodel 

representation. This controller is then connected to the 

aggregated global model formed by the ensemble of local 

models. This architecture is provided in Fig. 5. 

 

Fig. 5. Architecture 3- Global controller from multimodel representation. 

d) Architecture 4 – Global controller applied to the real 

nonlinear system: The global H∞ Loop-shaping controller K, 

synthesized from the multimodel framework, is directly 

implemented on the real nonlinear system. Simulation studies 

are conducted to evaluate its robustness and performance under 

practical operating conditions.This architecture is 

schematically shown in Fig. 6 that follows. 

 

Fig. 6. Architecture 4 - Global controller applied to the real nonlinear 

system. 
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V. NUMERICAL VALIDATION OF PROPOSED METHODS 

To evaluate the effectiveness of the proposed multimodel 
H∞ loop-shaping framework, a comparative validation of four 
distinct architectural configurations is conducted. Each 
architecture is examined with respect to its structural 
characteristics, control synthesis methodology, and resulting 
performance indices. The numerical simulations highlight the 
effectiveness of the individual designs to ensure robustness and 
stability margins under varying operating conditions [16]. 

Consider the nonlinear system given by Eq. (13): 

𝑦 + (15 − 10𝑦)𝑦 ̇ = (36𝑦(𝑦 − 1) + 10)𝑢 (13) 

Through the multimodel approach, a set of four linear 
models has been formulated, with the corresponding transfer 
functions presented in the following Eq. (14), Eq. (15), Eq. (16) 
and Eq. (17): 

𝐺1(𝑠) =
1

1+5𝑠
   (14) 

𝐺2(𝑠) =
1

1+15𝑠
   (15) 

𝐺3(𝑠) =
10

1+5𝑠
   (16) 

  𝐺4(𝑠) =
10

1+15𝑠
      (17) 

Following the definition of the models, the design of the 
multimodel controller is undertaken, beginning with the partial 
H∞ loop-shaping approach and subsequently extending to the 
global H∞ loop-shaping controller. The design criterion is 
established to ensure an overshoot D=10%.  The transfer 
function expressions and the value of 

𝑚𝑖𝑛
 corresponding to each 

partial model are summarized in Table I below. 

We consider W2i=1. 

TABLE I.  PARTIAL H∞ LOOP-SHAPING CONTROLLER 

System 
Models 

Partial H∞ loop-shaping 

controller 𝐾𝑖∞ 
W1i 

𝑚𝑖𝑛
 

 
M1 

3.297𝑠 + 1.197

𝑠2 + 3.43𝑠 + 1.96
 

𝑠 + 1

𝑠
 

 
1.7634 

M2 

1.08𝑠 + 0.102

𝑠2 + 0.87𝑠 + 0.58
 

0.25𝑠 + 0.25

𝑠
 

 

1.9254 

 

M3 

4.47𝑠 + 1.43

𝑠2 + 3.88𝑠 + 2.35
 

0.12𝑠 + 0.12

𝑠
 

 
1.7618 

M4 

1.08𝑠 + 0.102

𝑠2 + 0.87𝑠 + 0.58
 

0.025𝑠 + 0.025

𝑠
 

 

1.9254 

 

The step responses of the four models, depicted in Fig. 7, 
Fig. 8, Fig. 9 and Fig. 10, confirm that the partial H∞ loop-
shaping controller fulfills the prescribed performance objectives 
while ensuring robustness across all models. 

 

Fig. 7. Step response of the controlled model 1 using K1. 

 

Fig. 8. Step response of the controlled model 2 using K2. 

 

Fig. 9. Step response of the controlled model 3 using K3. 

 

Fig. 10. Step response of the controlled model 4 using K4. 
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While the first simulation demonstrates the behavior of a 
single partial controller, the second extends this concept by 
integrating the partial controllers within the four-architecture 
control framework to evaluate their performance. 

 

Fig. 11. Step response using architecture 1 - Aggregated local controllers. 

 

Fig. 12. Step response using architecture 2- Decentralized local control. 

 

Fig. 13. Step response using architecture 3- Global controller from 

multimodel representation. 

 

Fig. 14. Step response using architecture 4- Global controller applied to the 

real nonlinear system. 

The comparative analysis of the four control architectures 
highlights the classical performance limitation between rapid 
response and system stability, particularly when applied to 
uncertain, disturbed, or otherwise complex systems. 
Architecture 1, the Aggregated Local Controllers (Fig. 11), 
achieves a rapid response time of 15 units but suffers from a 
significant overshoot of 10%, which compromises stability and 
makes it unsuitable for systems exposed to external 
perturbations or parameter uncertainties. Architecture 2, the 
Decentralized Local Control (Fig. 12), provides excellent 
precision with only 1% overshoot; however, its slow response 
time of 36 s limits its applicability in dynamic environments 
where rapid adaptation is essential. Architecture 3, the Global 
Controller based on a multimodel representation (Fig. 13), 
integrates these conflicting objectives by delivering the fastest 
response at 15 s with minimal overshoot of 1%, thereby offering 
the most efficient theoretical design under complex operating 
regimes. Finally, Architecture 4, the Global Controller 
implemented on the physical system (Fig. 14), demonstrates 
slightly slower dynamics at 18 s while maintaining the same low 
overshoot, thus confirming the robustness and practical 
effectiveness of the global approach in applied system contexts 
characterized by uncertainty and external disturbances. Overall, 
Architectures 3 and 4 provide the most favorable balance 
between speed and stability, ensuring reliable performance 
across a wide range of complex system scenarios, whereas 
Architectures 1 and 2 exemplify the extremes of this 
performance limitation. 

Although standard H∞ and H2 control have been combined 
with multimodel frameworks in several earlier studies, these 
approaches generally rely on applying classical robust 
controllers to each local model or on implementing multimodel 
switching and scheduling strategies, often without guaranteeing 
global robustness across the entire operating domain. In 
contrast, the present work introduces a fundamentally different 
integration by embedding H∞ loop-shaping within a multimodel 
architecture. Rather than designing loop-shaped controllers 
independently for each model, our methodology performs a joint 
synthesis that enforces a global robustness objective over the full 
multimodel set. This results in a coherent, system-wide 
loop-shaping design that departs from existing standard H∞/H2 
multimodel formulations both in purpose and in structural 
organization. 

VI. CONCLUSION 

This study has presented an integrated design methodology 
that unifies H∞ loop-shaping with multimodel architectures to 
address a central challenge in robust nonlinear control: 
achieving global performance guarantees without relying solely 
on locally valid controllers. Beyond the comparative evaluation 
of four architectures, the results highlight a broader conceptual 
contribution—global multimodel coordination can effectively 
overcome the classical speed-stability trade-off that constrains 
traditional local or single-model designs. 

Architectures 3 and 4 demonstrate that embedding H∞ loop 
shaping within a global multimodel framework yields 
controllers capable of maintaining fast dynamics, minimal 
overshoot, and robust stability across the full operating 
envelope. This positions multimodel H∞ control as a scalable 
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and practically deployable strategy for nonlinear systems subject 
to uncertainty, disturbances, and complex regime transitions. 
The successful experimental validation of Architecture 4 further 
confirms that the proposed methodology is not only theoretically 
sound but also operationally reliable in real-world conditions. 
Conceptually, this work shifts the perspective in robust 
nonlinear control from isolated local designs toward globally 
coherent control structures that preserve robustness throughout 
the entire state space. By bridging advanced linear robust control 
tools with nonlinear multimodel representations, the 
methodology contributes a systematic pathway for designing 
controllers that are both high-performance and globally robust. 

Future research may advance this framework along several 
significant directions. A promising line of inquiry concerns its 
extension to large-scale interconnected systems, where 
multimodel representations arise naturally from subsystem 
interactions and where uncertainty is both structural and 
pervasive. Furthermore, the integration of adaptive and 
data-driven mechanisms within the multimodel architecture 
offers considerable potential for enhancing real-time 
performance in highly dynamic environments. Particular 
attention should be directed toward the incorporation of 
machine-learning-based modules capable of augmenting or 
partially replacing the controller, provided that their deployment 
is accompanied by rigorous guarantees of stability and 
robustness. 
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