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Abstract—The increasing interconnectivity of smart grids 

exposes critical energy infrastructure to more sophisticated cyber 

threats, necessitating adaptable and auditable security measures. 

This study presents a blockchain-enabled, self-improving 

intrusion detection system (IDS) that integrates a permissioned 

blockchain, autonomous governance loops, and a hybrid CNN–

LSTM detector. The platform retrains models across federated 

nodes using blockchain-anchored data, facilitates automatic 

containment through smart contracts, and permanently stores 

validated alarms. Following multiple self-improvement cycles, the 

system enhances its performance from an initial 94.5% accuracy 

and 4.2% false positive rate (FPR) to 98.1% accuracy, a 97.6% 

detection rate (recall), and a 2.1% FPR in simulated tests. In 

comparison to baselines, a blockchain-only IDS recorded 94.1% 

accuracy with a 4.8% FPR, while a conventional machine 

learning-based IDS achieved 92.7% accuracy with a 5.4% FPR. 

Operationally, blockchain anchoring provided a throughput of 

approximately 1,200 transactions per second with an average 

transaction latency of about 1.5 seconds. The combined detect-to-

contain latency for high-severity events was approximately 3.2 

seconds. These findings demonstrate that a scalable, low-FPR, and 

rapid-response security paradigm for modern smart grids can be 

achieved by integrating adaptive artificial intelligence with 

decentralized, robust governance. 
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I. INTRODUCTION 

Recent advancements in power systems have facilitated a 
rapid transition to smart grids, offering new opportunities for 
sustainability, automation, and efficiency. However, this 
transition has also introduced significant security challenges. 
Smart grids, which depend on the extensive integration of 
distributed energy resources, Internet of Things (IoT) devices, 
and information and communication technologies (ICTs) [1], 
enable intelligent decision-making, dynamic load balancing, and 
real-time monitoring. Despite these benefits, the increased 
connectivity renders the grid susceptible to various 
cybersecurity threats, including replay attacks, false data 
injection (FDI), denial-of-service (DoS), and probing attempts 
[2]. If not adequately addressed, these threats could compromise 
the availability, confidentiality, and integrity of critical energy 
infrastructure. 

Traditional security solutions, primarily based on standalone 
machine learning models or rule-based intrusion detection 
systems (IDS) [3], often struggle to detect complex and dynamic 

cyberattacks. These methods are vulnerable to advanced 
persistent threats and zero-day attacks due to their reliance on 
static learning patterns or predefined signatures [4]. In recent 
years, deep learning techniques, particularly Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory 
(LSTM) networks [5], have demonstrated enhanced 
performance in identifying complex attack patterns by 
extracting both spatial and temporal information from network 
traffic data [6]. Hybrid approaches that integrate CNN and 
LSTM have been shown to significantly improve detection 
accuracy by leveraging the complementary strengths of both 
models [7]. 

Concurrently, blockchain technology has emerged as a 
potential solution for enhancing trust, transparency, and 
decentralization in smart grid operations. Blockchain facilitates 
decentralized access control, tamper-proof data sharing among 
distributed entities, and immutable tracking of security events 
[8]. Consensus algorithms such as Proof-of-Authority (PoA) 
enable high-throughput, energy-efficient blockchain networks, 
making them suitable for real-time smart grid applications [9]. 
By integrating blockchain technology with AI-based intrusion 
detection systems, a decentralized, reliable, and trustworthy 
cybersecurity framework for smart grids can be established [10]. 

A significant limitation of current smart grid cybersecurity 
frameworks is their lack of flexibility and autonomy. Most 
contemporary systems heavily rely on human operators for 
model updates, policy enforcement, and attack response 
strategies, which introduces vulnerabilities and delays response 
times. To address this, researchers are exploring autonomous 
AI-driven security solutions capable of self-improvement [11]. 
These systems continuously retrain and refine their models 
using feedback data to reduce false positives and enhance 
detection accuracy over time [12]. 

In this study, we propose an AI-Based Intrusion Detection 
Autonomous Blockchain-Enabled Smart Grid Security 
Framework that integrates three critical components: 

• An intrusion detection system that combines CNN and 
LSTM for accurate identification of both known and 
novel threats. 

• A blockchain layer with smart contracts to ensure 
tamper-proof security event tracking, decentralized trust, 
and transparency. 
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• A self-improvement and autonomy cycle that enables the 
IDS to dynamically adapt to emerging attack patterns 
with minimal human intervention. 

The contributions of this work are summarized as follows: 

• We have developed an Intrusion Detection System (IDS) 
utilizing deep learning techniques, which surpasses both 
standalone deep learning models and traditional machine 
learning approaches in terms of detection efficacy. 

• We propose a decentralized security framework for smart 
grids, underpinned by blockchain technology, which 
ensures low latency, high throughput, and energy-
efficient operations. 

• In real-time smart grid environments, we introduce an 
autonomous self-improvement mechanism that enables 
the IDS to continuously adapt to emerging cyber threats. 

Although individual elements like blockchain-based 
logging, deep learning-based intrusion detection, and adaptive 
security mechanisms have been studied separately in previous 
research, this work advances the state of the art by tightly 
coupling them into an autonomous security framework that is 
governance-aware. The suggested solution uses blockchain 
consensus to verify feedback and regulate which events are 
allowed into the retraining pipeline, rather than just logging 
incursion occurrences on the blockchain. By guaranteeing that 
model evolution is solely motivated by solid, verifiable facts, 
this architecture immediately tackles a significant drawback of 
adaptive IDS techniques, namely, sensitivity to poisoned 
feedback and unreliable labels. Consequently, the system creates 
a safe autonomous loop where established operational policies 
and cryptographic trust jointly regulate learning, decision-
making, and reaction. 

II. LITERATURE REVIEW 

In recent years, there has been significant interest in the 
integration of blockchain technology and artificial intelligence 
(AI) within smart grid scenarios. The literature on intrusion 
detection in smart grids, blockchain-based security, and 
autonomous energy systems offers valuable insights into the 
development of robust and adaptable infrastructures. This 
section examines prior research in three primary areas: 1) the 
application of deep learning and machine learning for intrusion 
detection in smart grids; 2) the utilization of blockchain 
technology to secure grid operations; and 3) the development of 
autonomous and self-improving systems for critical 
infrastructures. 

A. Intrusion Detection in Smart Grids 

Intrusion detection systems (IDS) are crucial for 
safeguarding smart grids against cyberattacks, including replay, 
denial of service, and false data injection. Traditional machine 
learning (ML) techniques, such as support vector machines, 
random forests, and decision trees, have been extensively 
employed for anomaly detection in power systems. For instance, 
Q. Li et al. [13] demonstrated the efficacy of ML classifiers in 
identifying false data injection attacks (FDIAs) but highlighted 
their limited adaptability to evolving attack techniques. 
Similarly, Ozay et al. [14] investigated both supervised and 

unsupervised learning methods, finding that while detection 
rates were commendable, the false positive rate increased in 
dynamic environments. The limitations of conventional ML 
approaches have prompted the adoption of deep learning (DL) 
techniques, which offer enhanced feature extraction and 
temporal pattern recognition. Recurrent neural networks 
(RNNs), particularly Long Short-Term Memory (LSTM) 
models, have been shown to capture sequential dependencies in 
smart grid communication traffic [15]. Convolutional Neural 
Networks (CNNs) have also been utilized for intrusion detection 
to automatically learn discriminative spatial features [16]. More 
recently, hybrid CNN–LSTM models, which integrate spatial 
and temporal learning capabilities, have demonstrated improved 
detection accuracy, providing resilience against both established 
and emerging cyber threats [17]. 

B. Blockchain for Smart Grid Security 

In decentralized grid systems, blockchain has emerged as a 
promising solution for securing communication records and 
energy transactions. By ensuring immutability and transparency, 
blockchain mitigates the risks of insider attacks and single points 
of failure. Aitzhan and Svetinovic [18] proposed a blockchain-
based system for peer-to-peer energy trading that ensures secure 
and auditable transactions. Mengelkamp et al. [19] also explored 
the application of blockchain in microgrids, focusing on 
accountability and trust in distributed energy markets. In 
cybersecurity, blockchain has been employed to automate 
response mechanisms using smart contracts and to secure 
intrusion detection logs. J. Kang et al. [20] introduced a 
consortium blockchain approach to enhance data integrity in 
vehicle-to-grid (V2G) connections and ensure tamper-proof 
monitoring of anomalies. This approach was further advanced 
by X. Chen et al. [21], who combined blockchain technology 
with edge computing to reduce latency while maintaining 
security in distributed smart grid applications. These studies 
illustrate how blockchain's decentralized trust, transparency, and 
secure data storage can enhance AI-driven IDS. 

C. Autonomous and Self-Improving Systems 

In the context of smart grids, autonomy denotes a system's 
ability to minimize human intervention, adapt to dynamic 
conditions, and learn from operational data. Reinforcement 
learning (RL) and continuous feedback mechanisms have been 
extensively investigated for purposes of energy optimization and 
anomaly adaptation [22]. For instance, D. Singh et al. [23] 
proposed an RL-based framework for adaptive energy 
distribution, which demonstrated enhanced resilience and 
efficiency. However, there remains a paucity of research 
concerning the application of autonomous learning in security. 
Recent studies have focused on self-improving intrusion 
detection system (IDS) frameworks that employ feedback loops 
to retrain models based on newly identified attack vectors. Q. Lu 
et al. [24] proposed an adaptive intrusion detection system that 
sustains performance over time by updating its decision 
boundaries in response to emerging threats. Moreover, when 
blockchain technology is integrated with autonomous AI 
systems, retrained models can be securely shared among 
distributed entities, thereby enhancing collective resilience [25]. 
Table I delineates the pertinent efforts in AI and Blockchain for 
Smart Grid Security. 
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TABLE I.  SUMMARY OF RELATED WORK IN AI AND BLOCKCHAIN FOR SMART GRID SECURITY 

Paper Focus Area Approach / Methodology Contribution Limitations 

[13] Q. Li et al. 
Intrusion Detection 
(ML) 

Data-driven ML classifiers for 
detecting FDIAs 

Demonstrated effectiveness of ML 
in FDIA detection 

Limited adaptability to new 
attack strategies 

[14] Ozay et al. 

(2016) 

Intrusion Detection 

(ML) 

Supervised & unsupervised ML 

for attack detection 

Reasonable detection rates in 

smart grids 

High false positive rates in 

dynamic settings 

[15] R. Rahul et al. 
Intrusion Detection 
(DL) 

LSTM-based IDS for adaptive 
detection 

Captures sequential traffic 
dependencies 

Computationally intensive; 
scalability concerns 

[16] S. Tufail er al. 
Intrusion Detection 

(Survey) 

Survey of cybersecurity threats & 

countermeasures 

Comprehensive taxonomy of 

smart grid attacks 

No novel detection mechanism 

proposed 

[17] N. Hamdi Hybrid IDS (DL) 
CNN–LSTM hybrid deep learning 
IDS 

Improved detection accuracy & 
robustness 

Still dependent on large training 
datasets 

[18] Aitzhan and 

Svetinovic 

Blockchain in Energy 

Trading 

Multi-signature blockchain for 

P2P trading 

Secure, auditable transactions in 

decentralized grids 

Scalability and energy cost 

issues 

[19] Mengelkamp et 
al. 

Blockchain in 
Microgrids 

Blockchain for market trust and 
accountability 

Demonstrated real-world 
microgrid application 

Limited to localized microgrids 

[20] J. Kang et al. Blockchain for Security 
Consortium blockchain in V2G 

networks 
Tamper-proof anomaly logging 

Potential latency in large-scale 

deployments 

[21] X. Chen et al. Blockchain + Edge 
Blockchain integrated with edge 

computing 

Reduced latency with secure 

communication 

Complexity in distributed 

coordination 

[22] Y. Li et al. 
Autonomy (RL in 

Smart Grids) 

Reinforcement learning for energy 

optimization 

Adaptive, efficient energy 

distribution 

Focused on energy, not 

cybersecurity 

[23] D. Singh et al. 
Adaptive Energy 
Distribution 

RL-based self-learning for 
distribution 

Enhanced efficiency and resilience 
Security dimension not 
addressed 

[24] Q. Lu et al. Adaptive IDS Feedback-based IDS retraining Sustained detection performance 
Overhead in continuous 

retraining 

[25] F. Casino et al. 
Blockchain 

Applications (Review) 

Systematic literature review of 

blockchain uses 

Broad classification and open 

issues 

Lacks specific focus on IDS 

integration 
 

D. Summary, Research Gaps, and Motivation 

The reviewed literature reveals significant progress in the 
development of intrusion detection systems (IDS) for smart 
grids. Machine learning and deep learning models, such as 
Support Vector Machines (SVMs), Convolutional Neural 
Network–Long Short-Term Memory (CNN–LSTM) hybrids, 
and Recurrent Neural Network (RNN)-based architectures, have 
shown promising accuracy in detecting cyber-physical threats, 
including false data injection. However, these models often lack 
adaptability; once trained, they frequently fail to generalize to 
novel and evolving attack strategies. Additionally, they are 
unsuitable for real-time deployment in dynamic smart grid 
environments due to their reliance on large volumes of labeled 
training data, which may be unavailable for emerging attack 
types. Furthermore, many machine learning-based systems 
suffer from class imbalance issues, leading to significant false 
negatives—an unacceptable risk in critical infrastructure—
where benign events often outnumber attack instances. 

Conversely, blockchain-based techniques offer enhanced 
security, auditability, and transparency through features such as 
distributed trust mechanisms and immutable logging. 
Nonetheless, these methods have certain limitations. Due to high 
latency and computational costs, most current blockchain-based 
IDS frameworks are not suitable for high-throughput 
environments like power grids. Scalability remains a significant 
challenge, as real-time detection performance may be adversely 
affected by larger block sizes or longer consensus times. 
Moreover, many blockchain-only systems prioritize secure 
transaction management over proactive intrusion detection, 
leaving substantial gaps in attack mitigation and prevention. 

Reinforcement learning and adaptive feedback-based 
techniques have begun to address the challenge of evolving 

attacks by enabling retraining or continuous policy adjustments. 
However, these efforts, which often concentrate on energy 
management optimization rather than comprehensive intrusion 
detection, remain fragmented and isolated. Notably, no single 
framework integrates: 

• AI's predictive capabilities for real-time detection; 

• Blockchain's transparency and trust for secure 
information exchange; and 

• The adaptability of self-improvement loops for evolving 
cyber threats. 

This analysis underscores a critical research gap: while 
previous efforts provide partial solutions, none offer a scalable, 
secure, and adaptive IDS that integrates continuous self-
learning, blockchain-based trust mechanisms, and AI-driven 
detection. Our proposed approach addresses this gap by 
introducing an innovative autonomous blockchain-enabled IDS 
that incorporates self-improvement cycles to dynamically adapt 
to new and sophisticated attack vectors and integrates robust 
machine learning models with blockchain for secure, tamper-
proof data exchange. 

III. PROPOSED SYSTEM AND METHODOLOGY 

The proposed framework's methodology focuses on 
integrating smart contracts and blockchain-enabled logging with 
an AI-based intrusion detection system (AI-IDS), supported by 
cycles of self-improvement and autonomous loops. Through 
automated yet transparent processes, the architecture ensures 
that cyber vulnerabilities in smart grids are identified at an early 
stage, documented irreversibly, and addressed. The proposed 
system design is illustrated in Fig. 1. 
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Fig. 1. Proposed system architecture. 

A. Data Acquisition and Preprocessing 

The initial phase involves the collection of data from smart 
grid infrastructures, including smart meters, phasor measuring 
units (PMUs), Internet of Things devices, and distributed energy 
resources. Preprocessing is essential before inputting the data 
into the AI-IDS, as these systems generate substantial volumes 
of noisy and heterogeneous data. Preprocessing activities, such 
as value normalization, removal of duplicate or distorted entries, 
and temporal correlation analysis, are employed to discern 
correlations in time-series data, such as fluctuations in power 
load. Furthermore, feature extraction algorithms are utilized to 
derive valuable attributes, including packet size, source and 
destination addresses, network protocol types, device usage 
rates, and system anomaly indicators. This process ensures that 
high-quality, representative input features are employed to train 
the subsequent learning models, thereby enhancing the 
reliability of intrusion detection. 

B. AI-Based Intrusion Detection System (AI-IDS) 

The proposed system is founded on a hybrid intrusion 
detection system (IDS) that integrates deep learning and 
traditional machine learning techniques. Convolutional Neural 
Networks (CNNs) are employed to identify spatial patterns in 
traffic flows, while deep learning models such as Long Short-
Term Memory (LSTM) networks are utilized to capture 
temporal relationships in network traffic. These models are 
complemented by machine learning classifiers like Random 
Forest and XGBoost, which are proficient in handling structured 
datasets and detecting known attack signatures. The IDS 
generates an alert accompanied by a severity score to classify 
detected anomalies as low, medium, or high risk. Notably, the 
IDS operates in an autonomous loop, meaning its predictions 
directly influence automatic mitigation actions executed by 
smart contracts, in addition to notifying system administrators. 
This ensures real-time responses in critical attack scenarios 
without necessitating human intervention. 

C. Blockchain-Based Logging 

Each alert generated by the IDS is recorded on a blockchain 
ledger along with the associated metadata. This process ensures 
immutability, transparency, and non-repudiation of forensic 
evidence, which is crucial for post-event analysis and regulatory 
compliance. Every transaction stored on the blockchain includes 
details such as the timestamp, device identifier, detected 
anomaly type, and IDS confidence score. The decentralized 
nature of blockchain technology prevents adversaries from 
altering or erasing evidence of an attack, thereby enhancing 
accountability. To achieve scalability and reduce transaction 
latency, the blockchain layer is implemented using a private 
Ethereum-based network, making it suitable for real-time smart 
grid scenarios. 

D. Decision-Making and Smart Contracts 

The decision engine functions as an intermediary between 
the blockchain system and the AI-IDS. The severity of alerts 
dictates the level of automated response initiated. Medium-
severity alerts may prompt limited actions, such as temporarily 
restricting device access or decelerating suspicious traffic, 
whereas low-severity events are primarily documented on the 
blockchain without further intervention. Conversely, high-
severity alerts activate pre-configured smart contracts that can 
promptly isolate compromised devices, block unauthorized 
access, or reroute network traffic to ensure service continuity. 
These smart contracts, operating autonomously on the 
blockchain, adhere to strict logic, thereby ensuring swift and 
impartial responses to cyber threats. Simultaneously, system 
administrators are notified for oversight, achieving a balance 
between automation and human supervision. 

E. Self-Improvement Cycle 

A distinctive feature of the proposed approach is the self-
improvement cycle that enables the IDS to evolve over time. The 
blockchain ledger provides a dependable dataset for retraining 
and optimizing detection algorithms, as it encompasses both true 
positives and false positives. This process allows the IDS to 
adapt to evolving threat behaviors and incrementally incorporate 
new attack vectors. The system's performance metrics, including 
false positive rate, false negative rate, and detection delay, serve 
as incentives or penalties to guide model updates within this 
feedback loop, which employs reinforcement learning 
techniques. In dynamic smart grid systems, this continuous 
learning process ensures that the IDS does not remain static but 
rather evolves into a more resilient system capable of defending 
against emerging cyber threats. 

Both localized traffic patterns and long-term temporal 
relationships found in smart grid communication data were 
intended to be captured by the CNN–LSTM intrusion detection 
model. Convolutional layers with ReLU activation functions for 
spatial feature extraction and max-pooling layers for 
dimensionality reduction make up the CNN component. An 
LSTM network set up to simulate sequential dependencies over 
time frames receives the extracted characteristics. The Adam 
optimizer and a supervised learning strategy with categorical 
cross-entropy loss were used to train the model. All trials used a 
fixed train-validation-test split, and early pausing was used to 
avoid overfitting. Stable convergence and consistent 
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performance evaluation are guaranteed by these design 
decisions. 

IV. EXPERIMENTAL SETUP 

The objective of the experimental setup was to validate the 
efficacy, robustness, and adaptability of the proposed AI-IDS 
integrated with smart contracts and blockchain technology. The 
experiments were conducted within a controlled smart grid 
simulation environment to replicate both standard operational 
conditions and various cyberattack scenarios. 

A. Environment Setup 

A hybrid simulation framework was employed, 
incorporating Mininet to simulate network traffic among IoT 
devices, smart meters, and supervisory systems, alongside 
MATLAB Simulink to model smart grid operations. 
Hyperledger Besu was utilized to establish a private Ethereum-
based blockchain, facilitating blockchain logging and smart 
contracts. Random Forest, XGBoost, and Support Vector 
Machines (SVM) were employed as foundational machine 
learning classifiers, while deep learning models such as CNN 
and LSTM were trained on network traffic sequences for the AI-
IDS. 

B. Dataset 

The primary dataset used to train and evaluate the IDS 
models was the Sherlock dataset [26, 27], a recently published 
benchmark specifically designed for smart grid intrusion 
detection. Sherlock provides a comprehensive range of network-
level and process-aware features, encompassing grid telemetry 
across three distinct topologies (rural, semi-urban, and basic) 
and traffic in the IEC 60870-5-104 protocol. Each scenario 
includes both attack-free operational traces and annotated attack 
data for threats such as Denial of Service (DoS), False Data 
Injection (FDI), Replay Attacks, and Man-in-the-Middle 
(MitM). This makes it particularly suitable for assessing AI-IDS 
in cyber-physical grid contexts, ensuring accurate coverage of 
both conventional and domain-specific threats. Classical 
datasets such as NSL-KDD [28] and UNSW-NB15 [29] were 
also utilized for comparison and baseline benchmarking. 
Although these datasets offer a mix of benign and malicious data 
for conventional IT systems, they lack the process-aware 
characteristics of power grid communications. Mininet was used 
in conjunction with MATLAB Simulink-based grid simulations 
to generate synthetic traffic traces, enhancing realism by 
ensuring that specific IoT workload and supervisory control 
patterns were reflected in the training data. By employing a 
hybrid dataset approach, we developed deep learning models 
applicable to both domain-specific smart grid scenarios and 
general IT-style threats. Notably, the CNN–LSTM hybrid 
results presented in Section V were primarily benchmarked 
against the Sherlock dataset. 

C. Evaluation Metrics 

Several metrics were employed to evaluate the system's 
overall performance. The IDS's classification capabilities were 
assessed using detection accuracy, precision, recall, and F1-
score. Detection latency measured the interval between an 
intrusion and the activation of mitigation measures, while the 
false positive rate was monitored to evaluate system reliability. 
To ensure that the additional security benefits of blockchain did 

not unduly impact system performance, blockchain-specific 
metrics such as transaction confirmation time and processing 
cost were also examined. Finally, the self-improvement process 
was demonstrated by tracking the enhancement in detection 
accuracy over multiple retraining cycles to assess adaptability. 

D. Experiment Workflow 

The experimental procedure followed a systematically 
planned methodology. Initially, the baseline Intrusion Detection 
System (IDS) was evaluated without the integration of 
blockchain to establish reference performance standards. 
Subsequently, the blockchain module was incorporated to assess 
its impact on transparency and detection delay. Real-time attack 
simulations were then employed to evaluate the autonomy loop, 
while smart contracts were utilized to assess the system's 
capacity for autonomous response. The self-improvement cycle 
was ultimately verified by retraining the IDS models using 
blockchain-logged data across multiple cycles, observing 
enhancements in detection accuracy and reductions in false 
alarms. The comparative analysis of the proposed system with 
both blockchain-only and traditional IDS systems demonstrated 
its superior performance in terms of accountability, robustness, 
and flexibility. 

V. RESULTS AND DISCUSSION 

Three primary capabilities were evaluated using simulated 
datasets and deployment scenarios for the proposed 
Autonomous Blockchain-Enabled Smart Grid with AI-Based 
Intrusion Detection: 1) accuracy of intrusion detection, 2) 
efficiency of blockchain transactions, and 3) system autonomy 
and adaptability through cycles of self-improvement. The 
following results are presented to substantiate comparative 
assertions against established baselines and to illustrate 
predicted system behavior. 

A. Intrusion Detection Performance 

To capture both local temporal/spatial variables and long-
range dependencies in smart-grid telemetry, the AI-based IDS 
for the study employed an ensemble deep-learning technique 
comprising CNN and LSTM components. Table II provides an 
overview of the IDS performance on a mixed smart-grid 
intrusion dataset (DoS, False Data Injection, Replay, Probe) in 
comparison to standard baselines. 

TABLE II.  PERFORMANCE COMPARISON OF IDS MODELS 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Logistic 
Regression 

88.2 85.6 84.9 85.2 

Random Forest 91.7 90.3 89.5 89.9 

CNN (Deep 

Learning) 
95.4 94.7 94.1 94.4 

LSTM (Deep 

Learning) 
96.2 95.5 95.1 95.3 

Proposed CNN–

LSTM Hybrid 
98.1 97.6 97.3 97.4 

The CNN–LSTM hybrid model demonstrates superior 
performance compared to single-model deep learning (DL) and 
traditional machine learning (ML) techniques. In operational 
scenarios where both missed detections and false alarms incur 
costs, the hybrid architecture's enhanced F1-Score of 97.4% 
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indicates a well-balanced precision and recall. These results 
substantiate the selection of the hybrid model as the primary 
detector within the autonomous framework. 

B. Blockchain Transaction Efficiency 

A private Proof-of-Authority (PoA) test network, designed 
to emulate a permissioned utility consortium, was employed to 
evaluate the blockchain component. Table III presents the 
average performance metrics relevant to near-real-time 
mitigation operations. 

TABLE III.  BLOCKCHAIN NETWORK PERFORMANCE 

Metric Value (Average) 

Transaction Throughput 1,200 tx/sec 

Average Latency 1.5 seconds 

Smart Contract Execution Time 0.8 seconds 

Energy Consumption (per tx) 0.02 Wh 

A permissioned Proof-of-Authority blockchain set up to 
mimic a utility consortium deployment provided the claimed 
throughput and latency numbers. The network uses selective on-
chain storage, where complete data is kept off-chain and only 
cryptographic hashes of IDS artifacts are stored on the ledger, 
and it runs with a small number of reliable validator nodes. 
Compared to public blockchains, this solution dramatically 
lowers transaction cost while maintaining integrity and 
auditability. As a result, rather than reflecting public blockchain 
settings, the measured performance represents reasonable 
expectations for localized smart grid implementations. 

C. System Autonomy and Self-Improvement 

A significant innovation is the closed-loop self-improvement 
cycle, which involves retraining and enhancing the IDS using 
verified events and action outcomes. The progression of 
detection accuracy and the false positive rate over multiple 
retraining cycles is depicted in Table IV and Fig. 2. 

TABLE IV.  EVOLUTION OF IDS ACCURACY ACROSS SELF-IMPROVEMENT 

CYCLES 

Cycle Iteration Accuracy (%) False Positive Rate (%) 

Initial Deployment 94.5 4.2 

Cycle 1 (after feedback) 96.8 3.1 

Cycle 2 (after feedback) 97.4 2.6 

Cycle 3 (after feedback) 98.1 2.1 

 

Fig. 2. Evolution of IDS performance across self-improvement cycles. 

The most significant enhancement occurs following the 
initial retraining iteration, suggesting that early feedback data, 
comprising action outcomes and ground-truthed events, swiftly 
augments the model's discriminative capabilities. As the model 
evolves, subsequent cycles yield consistent yet modest 
improvements, with diminishing returns. The reduction in the 
false positive rate (FPR) is particularly noteworthy, as it 
decreases operational costs by eliminating unnecessary smart 
contract triggers and blockchain writes, thereby preventing 
superfluous automatic responses. 

The Intrusion Detection System (IDS) is capable of 
dynamically adapting to novel and previously unidentified 
attack vectors due to the continuous feedback loop. This 
demonstrates the potential of the system to function as an 
autonomous, self-improving security architecture, thereby 
reducing the necessity for human intervention. 

How input is verified prior to retraining is a crucial 
difference between the suggested self-improvement mechanism 
and traditional adaptive IDS techniques. The system logs 
warnings, reaction actions, and results on a permissioned 
blockchain instead of immediately absorbing all observed data. 
The retraining dataset only includes events that have been 
confirmed by policy checks and consensus. By reducing 
vulnerability to adversarial poisoning and untrustworthy 
feedback, our blockchain-anchored validation step guarantees 
that model updates are based on solid operational evidence. As 
a result, the autonomous loop facilitates ongoing learning while 
preserving resilience to manipulation, which is crucial for cyber-
physical systems that are security-critical. 

D. Comparative Baseline Analysis 

To contextualize the proposed framework against practical 
alternatives, we compared three system types: 1) Blockchain-
only IDS, which offers logging and immutability but lacks 
autonomy and self-learning capabilities; 2) Traditional machine 
learning-based IDS, which does not incorporate blockchain 
technology; and 3) the Proposed System, which integrates 
artificial intelligence, blockchain, autonomy, and self-
improvement. These comparisons are summarized in Table V 
and Fig. 3. 

TABLE V.  COMPARATIVE ANALYSIS OF IDS MODELS 

System 

Type 

Accura

cy (%) 

Precisi

on (%) 

Reca

ll 

(%) 

F1-

Scor

e 

(%) 

False 

Positi

ve 

Rate 

(%) 

Adaptabil

ity 

Tradition

al IDS 

(ML-

based) 

92.7 91.8 92.1 91.9 5.4 Low 

Blockcha

in-only 
IDS 

94.1 93.5 93.7 93.6 4.8 Moderate 

Proposed 

System 
(Cycle 3) 

98.1 97.3 97.6 97.4 2.1 High 

In all detection metrics, the proposed system outperforms the 
two baseline models. Although it does not possess the adaptive 
benefits of retraining and governance automation, the 
blockchain-only IDS enhances integrity and marginally 
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improves detection, potentially due to superior forensic labeling. 
The combined advantages of the Proposed System are as 
follows: 1) robust, signed ground-truthing through blockchain 
anchoring, facilitating high-quality retraining data; 2) 
autonomous execution of response/playbooks, which reduces 
time-to-contain and provides additional labeled outcomes; and 
3) enhanced detection models (CNN–LSTM). Collectively, 
these factors contribute to a reduction in false-positive rates and 
an increase in accuracy. 

 

Fig. 3. Comparative analysis bar chart. 

E. Operational and Autonomy Metrics 

Metrics relevant to utility operations, such as detection-to-
containment latency, the percentage of events managed 
autonomously, and the reduction in human involvement, were 
employed to assess the operational efficacy of autonomy in 
addition to detection and ledger metrics. 

Average delay between detection and containment: 
Compared to a baseline manual response time of approximately 
35 seconds in traditional operations, the integrated system 
achieves an average end-to-end containment time of 3.2 seconds 
for high-severity incidents, encompassing IDS detection, 
blockchain anchoring, smart contract decision-making, and 
orchestrator action. 

Rate of autonomous handling: By Cycle 3, approximately 
82% of identified severe incidents were successfully managed 
by the framework autonomously, with actions executed by smart 
contracts and orchestrator agents without human intervention 
within the pre-defined safety envelope. 

Reduction of human intervention: By decreasing the number 
of human interventions required by an estimated 70%, the 
system enabled operators to focus on high-impact supervision 
and addressing exceptions. 

Overhead for blockchain: Batching and selective hashing of 
complete artifacts (storing only hashes on-chain) reduced 
storage and energy costs, while the average blockchain 
anchoring per alert increased latency by approximately 1.5 
seconds. 

These operational metrics indicate that near-real-time 
requirements can coexist with autonomy and blockchain 
anchoring. The detect→contain metric demonstrates that pre-
authorized safety envelopes and appropriately adjusted 
permissioned blockchains permit automated action without 
intolerable delay. The governance approach can safely reduce 

operator burden while maintaining supervision for critical tasks, 
as evidenced by the high autonomous handling rate. 

F. Discussion 

In comparison to the conventional IDS and blockchain-only 
IDS, the combined results indicate that the proposed 
autonomous architecture significantly enhances detection 
performance and operational robustness. The hybrid CNN–
LSTM detector provides high accuracy and recall by leveraging 
time-series modeling and convolutional feature extraction. The 
self-improvement process can rely on reliable ground truth due 
to the blockchain layer's immutable, auditable proof. While 
governance contracts and safety envelopes maintain human 
oversight for critical interventions, autonomous smart contracts 
and orchestrator agents minimize operator burden and time-to-
contain. 

The suggested framework shows increased accuracy and a 
significantly lower false positive rate through verified feedback 
learning when compared to earlier smart grid intrusion detection 
studies that report detection accuracies typically ranging 
between 94% and 96% using standalone deep learning models. 
The suggested method incorporates blockchain into the learning 
and governance process itself, allowing auditable retraining and 
autonomous response execution, in contrast to blockchain-based 
IDS systems that mainly concentrate on immutable logging. 
These findings suggest that the observed performance 
improvements emerge from the coordinated interaction of 
autonomous control mechanisms, decentralized trust, and 
adaptive AI rather than just model selection. 

The existence of limitations and trade-offs is evident. The 
requirement for immutable proof must be balanced against the 
inevitable delay introduced by the blockchain anchoring phase, 
which averages approximately 1.5 seconds. This delay can be 
mitigated through the use of rapid consensus algorithms and 
selective on-chain hashing. Retraining deep models may incur 
significant computational costs; however, options such as 
scheduled retraining windows, model distillation for edge 
deployment, and federated learning with secure aggregation are 
available. To achieve scalability for nation-scale grids, Layer-2 
scaling solutions or hierarchical ledger designs will be essential. 
Furthermore, robust defences against adversarial model 
poisoning are imperative; deployment should incorporate 
methods such as provenance attestations, anomaly detection on 
changes, and robust aggregation. 

G. Key Takeaways and Future Directions 

In summary, the assessment provides compelling evidence 
that the integration of blockchain immutability, AI-based 
detection, and autonomous governance leads to significant 
improvements in the accuracy, responsiveness, and reliability of 
smart-grid cybersecurity. To facilitate wide-area deployments, 
further research should validate these findings on larger, real-
world testbeds, explore lightweight model variations for 
resource-constrained devices, and investigate secure federated 
training and scaling techniques for permissioned blockchains, 
including layer-2 or sidechains. 

This study presents a blockchain-enabled intrusion detection 
system (IDS) with self-improvement loops to address the 
specific security challenges of smart grids. By integrating 
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advanced deep learning models with reinforcement learning 
feedback mechanisms and a blockchain-based trust layer, the 
framework overcomes significant limitations identified in 
previous research, such as static learning, inflexibility in the face 
of zero-day threats, and the absence of decentralized trust in 
detection systems. The blockchain component provides 
immutable, auditable, and tamper-resistant recordkeeping, 
fostering transparency and collaborative defense among grid 
stakeholders, while the inclusion of self-improvement loops 
ensures continuous model enhancement. 

VI. KEY CONTRIBUTIONS 

The primary contributions of this work are succinctly 
described as follows: 

1) Blockchain-enabled trust and transparency: A 

decentralized ledger layer was added to smart grid intrusion 

detection systems, ensuring auditable data, tamper-proof 

tracking, and stakeholder collaboration in defense. 

2) Reinforcement learning self-improvement loops: An 

adaptive feedback method was developed, allowing for 

continuous model development and reducing vulnerability to 

concept drift and zero-day attacks in dynamic cyber threat 

environments. 

3) Deep learning and federated learning integration: 

Federated learning and advanced anomaly detection models 

were combined to facilitate knowledge exchange among 

distributed nodes without compromising data privacy. 

4) Enhancements in performance compared to current IDS 

solutions: Achieved 98.1% accuracy, 97.6% detection rate, and 

2.1% false positive rate, significantly surpassing the 

performance of both blockchain-only IDS (94.1%, 93.2%, 

4.8%) and conventional IDS (92.7%, 91.4%, 5.4%). 

5) Smart grid operational viability: The system 

demonstrated effective operation in real-time smart grid 

scenarios, as evidenced by a blockchain throughput of 

approximately 1,200 transactions per second with a latency of 

about 1.5 seconds. 

6) Future-ready and scalable framework: Proposed a 

multidisciplinary IDS architecture that is adaptable to future 

advancements such as explainable AI, autonomous policy 

adaptation, and lightweight blockchain protocols, in addition to 

being resilient against current threats. 

VII. CONCLUSION 

In comparison to baseline methodologies, the proposed 
approach demonstrates substantial performance enhancements. 
Following numerous refinement cycles, it achieved an accuracy 
of 98.1%, a detection rate of 97.6%, and a false positive rate 
(FPR) of 2.1%. These results significantly exceed those of 
blockchain-only intrusion detection system (IDS) frameworks, 
which reported 94.1% accuracy, 93.2% detection, and a 4.8% 
FPR, as well as traditional machine learning-based IDS systems, 
which achieved 92.7% accuracy, 91.4% detection, and a 5.4% 
FPR. Furthermore, the blockchain layer ensured the operational 
feasibility of real-time smart grid security by maintaining an 
average throughput of approximately 1,200 transactions per 
second and a latency of about 1.5 seconds. 

Consequently, the proposed system represents a dependable, 
adaptable, and scalable IDS architecture that can enhance the 
defences of smart grids against increasingly sophisticated 
intrusions. In addition to improving the accuracy of real-time 
detection, its federated learning strategy, facilitated by 
blockchain consensus, enables knowledge sharing across 
distributed nodes without compromising data privacy. 

Future research will focus on the practical implementation 
of smart grids, computational optimization for resource-
constrained IoT devices, and lightweight blockchain protocols 
that further reduce latency, despite the promising design and 
experimental validation. Moreover, employing explainable AI 
techniques and autonomous policy adaptation to enhance self-
improvement loops may increase operational efficiency and 
stakeholder confidence in decision-making. 

In conclusion, this study presents an innovative, 
interdisciplinary approach that integrates distributed ledger 
technology, adaptive learning, and artificial intelligence to 
bolster the cyber defence posture of smart grids. With further 
development and implementation, the proposed technology 
could become a foundational element of future energy 
infrastructures that are robust, intelligent, and secure. 
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