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Abstract—The increasing interconnectivity of smart grids
exposes critical energy infrastructure to more sophisticated cyber
threats, necessitating adaptable and auditable security measures.
This study presents a blockchain-enabled, self-improving
intrusion detection system (IDS) that integrates a permissioned
blockchain, autonomous governance loops, and a hybrid CNN-
LSTM detector. The platform retrains models across federated
nodes using blockchain-anchored data, facilitates automatic
containment through smart contracts, and permanently stores
validated alarms. Following multiple self-improvement cycles, the
system enhances its performance from an initial 94.5% accuracy
and 4.2% false positive rate (FPR) to 98.1% accuracy, a 97.6%
detection rate (recall), and a 2.1% FPR in simulated tests. In
comparison to baselines, a blockchain-only IDS recorded 94.1%
accuracy with a 4.8% FPR, while a conventional machine
learning-based IDS achieved 92.7% accuracy with a 5.4% FPR.
Operationally, blockchain anchoring provided a throughput of
approximately 1,200 transactions per second with an average
transaction latency of about 1.5 seconds. The combined detect-to-
contain latency for high-severity events was approximately 3.2
seconds. These findings demonstrate that a scalable, low-FPR, and
rapid-response security paradigm for modern smart grids can be
achieved by integrating adaptive artificial intelligence with
decentralized, robust governance.

Keywords—Smart Grid Security; intrusion detection system
(IDS); adaptive AL; deep learning; false data injection (FDI) attacks;
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I.  INTRODUCTION

Recent advancements in power systems have facilitated a
rapid transition to smart grids, offering new opportunities for
sustainability, automation, and efficiency. However, this
transition has also introduced significant security challenges.
Smart grids, which depend on the extensive integration of
distributed energy resources, Internet of Things (IoT) devices,
and information and communication technologies (ICTs) [1],
enable intelligent decision-making, dynamic load balancing, and
real-time monitoring. Despite these benefits, the increased
connectivity renders the grid susceptible to various
cybersecurity threats, including replay attacks, false data
injection (FDI), denial-of-service (DoS), and probing attempts
[2]. If not adequately addressed, these threats could compromise
the availability, confidentiality, and integrity of critical energy
infrastructure.

Traditional security solutions, primarily based on standalone
machine learning models or rule-based intrusion detection
systems (IDS) [3], often struggle to detect complex and dynamic

cyberattacks. These methods are vulnerable to advanced
persistent threats and zero-day attacks due to their reliance on
static learning patterns or predefined signatures [4]. In recent
years, deep learning techniques, particularly Convolutional
Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks [5], have demonstrated enhanced
performance in identifying complex attack patterns by
extracting both spatial and temporal information from network
traffic data [6]. Hybrid approaches that integrate CNN and
LSTM have been shown to significantly improve detection
accuracy by leveraging the complementary strengths of both
models [7].

Concurrently, blockchain technology has emerged as a
potential solution for enhancing trust, transparency, and
decentralization in smart grid operations. Blockchain facilitates
decentralized access control, tamper-proof data sharing among
distributed entities, and immutable tracking of security events
[8]. Consensus algorithms such as Proof-of-Authority (PoA)
enable high-throughput, energy-efficient blockchain networks,
making them suitable for real-time smart grid applications [9].
By integrating blockchain technology with Al-based intrusion
detection systems, a decentralized, reliable, and trustworthy
cybersecurity framework for smart grids can be established [10].

A significant limitation of current smart grid cybersecurity
frameworks is their lack of flexibility and autonomy. Most
contemporary systems heavily rely on human operators for
model updates, policy enforcement, and attack response
strategies, which introduces vulnerabilities and delays response
times. To address this, researchers are exploring autonomous
Al-driven security solutions capable of self-improvement [11].
These systems continuously retrain and refine their models
using feedback data to reduce false positives and enhance
detection accuracy over time [12].

In this study, we propose an Al-Based Intrusion Detection
Autonomous  Blockchain-Enabled Smart Grid Security
Framework that integrates three critical components:

e An intrusion detection system that combines CNN and
LSTM for accurate identification of both known and
novel threats.

e A blockchain layer with smart contracts to ensure
tamper-proof security event tracking, decentralized trust,
and transparency.
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e A self-improvement and autonomy cycle that enables the
IDS to dynamically adapt to emerging attack patterns
with minimal human intervention.

The contributions of this work are summarized as follows:

e We have developed an Intrusion Detection System (IDS)
utilizing deep learning techniques, which surpasses both
standalone deep learning models and traditional machine
learning approaches in terms of detection efficacy.

e We propose a decentralized security framework for smart
grids, underpinned by blockchain technology, which
ensures low latency, high throughput, and energy-
efficient operations.

e In real-time smart grid environments, we introduce an
autonomous self-improvement mechanism that enables
the IDS to continuously adapt to emerging cyber threats.

Although individual elements like blockchain-based
logging, deep learning-based intrusion detection, and adaptive
security mechanisms have been studied separately in previous
research, this work advances the state of the art by tightly
coupling them into an autonomous security framework that is
governance-aware. The suggested solution uses blockchain
consensus to verify feedback and regulate which events are
allowed into the retraining pipeline, rather than just logging
incursion occurrences on the blockchain. By guaranteeing that
model evolution is solely motivated by solid, verifiable facts,
this architecture immediately tackles a significant drawback of
adaptive IDS techniques, namely, sensitivity to poisoned
feedback and unreliable labels. Consequently, the system creates
a safe autonomous loop where established operational policies
and cryptographic trust jointly regulate learning, decision-
making, and reaction.

II.  LITERATURE REVIEW

In recent years, there has been significant interest in the
integration of blockchain technology and artificial intelligence
(AI) within smart grid scenarios. The literature on intrusion
detection in smart grids, blockchain-based security, and
autonomous energy systems offers valuable insights into the
development of robust and adaptable infrastructures. This
section examines prior research in three primary areas: 1) the
application of deep learning and machine learning for intrusion
detection in smart grids; 2) the utilization of blockchain
technology to secure grid operations; and 3) the development of

autonomous and self-improving systems for critical
infrastructures.
A. Intrusion Detection in Smart Grids

Intrusion detection systems (IDS) are crucial for

safeguarding smart grids against cyberattacks, including replay,
denial of service, and false data injection. Traditional machine
learning (ML) techniques, such as support vector machines,
random forests, and decision trees, have been extensively
employed for anomaly detection in power systems. For instance,
Q. Li et al. [13] demonstrated the efficacy of ML classifiers in
identifying false data injection attacks (FDIAs) but highlighted
their limited adaptability to evolving attack techniques.
Similarly, Ozay et al. [14] investigated both supervised and
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unsupervised learning methods, finding that while detection
rates were commendable, the false positive rate increased in
dynamic environments. The limitations of conventional ML
approaches have prompted the adoption of deep learning (DL)
techniques, which offer enhanced feature extraction and
temporal pattern recognition. Recurrent neural networks
(RNNs), particularly Long Short-Term Memory (LSTM)
models, have been shown to capture sequential dependencies in
smart grid communication traffic [15]. Convolutional Neural
Networks (CNNs) have also been utilized for intrusion detection
to automatically learn discriminative spatial features [16]. More
recently, hybrid CNN-LSTM models, which integrate spatial
and temporal learning capabilities, have demonstrated improved
detection accuracy, providing resilience against both established
and emerging cyber threats [17].

B. Blockchain for Smart Grid Security

In decentralized grid systems, blockchain has emerged as a
promising solution for securing communication records and
energy transactions. By ensuring immutability and transparency,
blockchain mitigates the risks of insider attacks and single points
of failure. Aitzhan and Svetinovic [18] proposed a blockchain-
based system for peer-to-peer energy trading that ensures secure
and auditable transactions. Mengelkamp et al. [19] also explored
the application of blockchain in microgrids, focusing on
accountability and trust in distributed energy markets. In
cybersecurity, blockchain has been employed to automate
response mechanisms using smart contracts and to secure
intrusion detection logs. J. Kang et al. [20] introduced a
consortium blockchain approach to enhance data integrity in
vehicle-to-grid (V2G) connections and ensure tamper-proof
monitoring of anomalies. This approach was further advanced
by X. Chen et al. [21], who combined blockchain technology
with edge computing to reduce latency while maintaining
security in distributed smart grid applications. These studies
illustrate how blockchain's decentralized trust, transparency, and
secure data storage can enhance Al-driven IDS.

C. Autonomous and Self-Improving Systems

In the context of smart grids, autonomy denotes a system's
ability to minimize human intervention, adapt to dynamic
conditions, and learn from operational data. Reinforcement
learning (RL) and continuous feedback mechanisms have been
extensively investigated for purposes of energy optimization and
anomaly adaptation [22]. For instance, D. Singh et al. [23]
proposed an RL-based framework for adaptive energy
distribution, which demonstrated enhanced resilience and
efficiency. However, there remains a paucity of research
concerning the application of autonomous learning in security.
Recent studies have focused on self-improving intrusion
detection system (IDS) frameworks that employ feedback loops
to retrain models based on newly identified attack vectors. Q. Lu
et al. [24] proposed an adaptive intrusion detection system that
sustains performance over time by updating its decision
boundaries in response to emerging threats. Moreover, when
blockchain technology is integrated with autonomous Al
systems, retrained models can be securely shared among
distributed entities, thereby enhancing collective resilience [25].
Table I delineates the pertinent efforts in Al and Blockchain for
Smart Grid Security.
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IDS

robustness

TABLE L SUMMARY OF RELATED WORK IN AI AND BLOCKCHAIN FOR SMART GRID SECURITY
Paper Focus Area Approach / Methodology Contribution Limitations
[13]Q. Lietal Intrusion Detection | Data-driven ML classifiers for | Demonstrated effectiveness of ML | Limited adaptability to new
) ) (ML) detecting FDIAs in FDIA detection attack strategies
[14] Ozay et al. | Intrusion Detection | Supervised & unsupervised ML | Reasonable detection rates in | High false positive rates in
(2016) (ML) for attack detection smart grids dynamic settings
[15] R. Rahul et al Intrusion Detection | LSTM-based IDS for adaptive | Captures sequential traffic | Computationally intensive;
) ) (DL) detection dependencies scalability concerns
[16] S. Tufail er al Intrusion Detection | Survey of cybersecurity threats & | Comprehensive taxonomy of | No novel detection mechanism
) ) (Survey) countermeasures smart grid attacks proposed
[17]N. Hamdi Hybrid IDS (DL) CNN-LSTM hybrid deep learning | Improved detection accuracy & | Still dependent on large training

datasets

[18] Aitzhan and | Blockchain in Energy | Multi-signature blockchain for | Secure, auditable transactions in | Scalability and energy cost
Svetinovic Trading P2P trading decentralized grids issues
[19] Mengelkamp et | Blockchain in | Blockchain for market trust and | Demonstrated real-world - . . .

. . o : . L Limited to localized microgrids
al. Microgrids accountability microgrid application

[20] J. Kang et al.

Blockchain for Security

Consortium blockchain in V2G
networks

Tamper-proof anomaly logging

Potential latency in large-scale
deployments

[21]X. Chen et al. Blockchain + Edge Blockchaln integrated with edge Reduced' la}tency with  secure Comp}ex{ty in  distributed
computing communication coordination
[22] Y. Lietal Autonomy (RL in | Reinforcement learning for energy | Adaptive, efficient energy | Focused on energy, not
) ) Smart Grids) optimization distribution cybersecurity
. Adaptive Energy | RL-based self-learning for . - Security dimension not
[23] D. Singh et al. Distribution distribution Enhanced efficiency and resilience addressed
[24]Q.Luetal. Adaptive IDS Feedback-based IDS retraining Sustained detection performance roerlf?ari}rll‘?zg m continuous
Blockchain Systematic literature review of | Broad classification and open | Lacks specific focus on IDS

[25] F. Casino et al. blockchain uses

Applications (Review)

issues

integration

D. Summary, Research Gaps, and Motivation

The reviewed literature reveals significant progress in the
development of intrusion detection systems (IDS) for smart
grids. Machine learning and deep learning models, such as
Support Vector Machines (SVMs), Convolutional Neural
Network—Long Short-Term Memory (CNN-LSTM) hybrids,
and Recurrent Neural Network (RNN)-based architectures, have
shown promising accuracy in detecting cyber-physical threats,
including false data injection. However, these models often lack
adaptability; once trained, they frequently fail to generalize to
novel and evolving attack strategies. Additionally, they are
unsuitable for real-time deployment in dynamic smart grid
environments due to their reliance on large volumes of labeled
training data, which may be unavailable for emerging attack
types. Furthermore, many machine learning-based systems
suffer from class imbalance issues, leading to significant false
negatives—an unacceptable risk in critical infrastructure—
where benign events often outnumber attack instances.

Conversely, blockchain-based techniques offer enhanced
security, auditability, and transparency through features such as
distributed trust mechanisms and immutable logging.
Nonetheless, these methods have certain limitations. Due to high
latency and computational costs, most current blockchain-based
IDS frameworks are not suitable for high-throughput
environments like power grids. Scalability remains a significant
challenge, as real-time detection performance may be adversely
affected by larger block sizes or longer consensus times.
Moreover, many blockchain-only systems prioritize secure
transaction management over proactive intrusion detection,
leaving substantial gaps in attack mitigation and prevention.

Reinforcement learning and adaptive feedback-based
techniques have begun to address the challenge of evolving

attacks by enabling retraining or continuous policy adjustments.
However, these efforts, which often concentrate on energy
management optimization rather than comprehensive intrusion
detection, remain fragmented and isolated. Notably, no single
framework integrates:

o Al's predictive capabilities for real-time detection;

e Blockchain's transparency and trust for

information exchange; and

secure

o The adaptability of self-improvement loops for evolving
cyber threats.

This analysis underscores a critical research gap: while
previous efforts provide partial solutions, none offer a scalable,
secure, and adaptive IDS that integrates continuous self-
learning, blockchain-based trust mechanisms, and Al-driven
detection. Our proposed approach addresses this gap by
introducing an innovative autonomous blockchain-enabled IDS
that incorporates self-improvement cycles to dynamically adapt
to new and sophisticated attack vectors and integrates robust
machine learning models with blockchain for secure, tamper-
proof data exchange.

III. PROPOSED SYSTEM AND METHODOLOGY

The proposed framework's methodology focuses on
integrating smart contracts and blockchain-enabled logging with
an Al-based intrusion detection system (AI-IDS), supported by
cycles of self-improvement and autonomous loops. Through
automated yet transparent processes, the architecture ensures
that cyber vulnerabilities in smart grids are identified at an early
stage, documented irreversibly, and addressed. The proposed
system design is illustrated in Fig. 1.
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Fig. 1. Proposed system architecture.
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Autonomous Response

A. Data Acquisition and Preprocessing

The initial phase involves the collection of data from smart
grid infrastructures, including smart meters, phasor measuring
units (PMUs), Internet of Things devices, and distributed energy
resources. Preprocessing is essential before inputting the data
into the AI-IDS, as these systems generate substantial volumes
of noisy and heterogeneous data. Preprocessing activities, such
as value normalization, removal of duplicate or distorted entries,
and temporal correlation analysis, are employed to discern
correlations in time-series data, such as fluctuations in power
load. Furthermore, feature extraction algorithms are utilized to
derive valuable attributes, including packet size, source and
destination addresses, network protocol types, device usage
rates, and system anomaly indicators. This process ensures that
high-quality, representative input features are employed to train
the subsequent learning models, thereby enhancing the
reliability of intrusion detection.

B. Al-Based Intrusion Detection System (AI-1DS)

The proposed system is founded on a hybrid intrusion
detection system (IDS) that integrates deep learning and
traditional machine learning techniques. Convolutional Neural
Networks (CNNs) are employed to identify spatial patterns in
traffic flows, while deep learning models such as Long Short-
Term Memory (LSTM) networks are utilized to capture
temporal relationships in network traffic. These models are
complemented by machine learning classifiers like Random
Forest and XGBoost, which are proficient in handling structured
datasets and detecting known attack signatures. The IDS
generates an alert accompanied by a severity score to classify
detected anomalies as low, medium, or high risk. Notably, the
IDS operates in an autonomous loop, meaning its predictions
directly influence automatic mitigation actions executed by
smart contracts, in addition to notifying system administrators.
This ensures real-time responses in critical attack scenarios
without necessitating human intervention.
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C. Blockchain-Based Logging

Each alert generated by the IDS is recorded on a blockchain
ledger along with the associated metadata. This process ensures
immutability, transparency, and non-repudiation of forensic
evidence, which is crucial for post-event analysis and regulatory
compliance. Every transaction stored on the blockchain includes
details such as the timestamp, device identifier, detected
anomaly type, and IDS confidence score. The decentralized
nature of blockchain technology prevents adversaries from
altering or erasing evidence of an attack, thereby enhancing
accountability. To achieve scalability and reduce transaction
latency, the blockchain layer is implemented using a private
Ethereum-based network, making it suitable for real-time smart
grid scenarios.

D. Decision-Making and Smart Contracts

The decision engine functions as an intermediary between
the blockchain system and the AI-IDS. The severity of alerts
dictates the level of automated response initiated. Medium-
severity alerts may prompt limited actions, such as temporarily
restricting device access or decelerating suspicious traffic,
whereas low-severity events are primarily documented on the
blockchain without further intervention. Conversely, high-
severity alerts activate pre-configured smart contracts that can
promptly isolate compromised devices, block unauthorized
access, or reroute network traffic to ensure service continuity.
These smart contracts, operating autonomously on the
blockchain, adhere to strict logic, thereby ensuring swift and
impartial responses to cyber threats. Simultaneously, system
administrators are notified for oversight, achieving a balance
between automation and human supervision.

E. Self-Improvement Cycle

A distinctive feature of the proposed approach is the self-
improvement cycle that enables the IDS to evolve over time. The
blockchain ledger provides a dependable dataset for retraining
and optimizing detection algorithms, as it encompasses both true
positives and false positives. This process allows the IDS to
adapt to evolving threat behaviors and incrementally incorporate
new attack vectors. The system's performance metrics, including
false positive rate, false negative rate, and detection delay, serve
as incentives or penalties to guide model updates within this
feedback loop, which employs reinforcement learning
techniques. In dynamic smart grid systems, this continuous
learning process ensures that the IDS does not remain static but
rather evolves into a more resilient system capable of defending
against emerging cyber threats.

Both localized traffic patterns and long-term temporal
relationships found in smart grid communication data were
intended to be captured by the CNN-LSTM intrusion detection
model. Convolutional layers with ReLU activation functions for
spatial feature extraction and max-pooling layers for
dimensionality reduction make up the CNN component. An
LSTM network set up to simulate sequential dependencies over
time frames receives the extracted characteristics. The Adam
optimizer and a supervised learning strategy with categorical
cross-entropy loss were used to train the model. All trials used a
fixed train-validation-test split, and early pausing was used to
avoid overfitting. Stable convergence and consistent
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performance evaluation are guaranteed by these design
decisions.

IV. EXPERIMENTAL SETUP

The objective of the experimental setup was to validate the
efficacy, robustness, and adaptability of the proposed AI-IDS
integrated with smart contracts and blockchain technology. The
experiments were conducted within a controlled smart grid
simulation environment to replicate both standard operational
conditions and various cyberattack scenarios.

A. Environment Setup

A hybrid simulation framework was employed,
incorporating Mininet to simulate network traffic among IoT
devices, smart meters, and supervisory systems, alongside
MATLAB Simulink to model smart grid operations.
Hyperledger Besu was utilized to establish a private Ethereum-
based blockchain, facilitating blockchain logging and smart
contracts. Random Forest, XGBoost, and Support Vector
Machines (SVM) were employed as foundational machine
learning classifiers, while deep learning models such as CNN
and LSTM were trained on network traffic sequences for the Al-
IDS.

B. Dataset

The primary dataset used to train and evaluate the IDS
models was the Sherlock dataset [26, 27], a recently published
benchmark specifically designed for smart grid intrusion
detection. Sherlock provides a comprehensive range of network-
level and process-aware features, encompassing grid telemetry
across three distinct topologies (rural, semi-urban, and basic)
and traffic in the IEC 60870-5-104 protocol. Each scenario
includes both attack-free operational traces and annotated attack
data for threats such as Denial of Service (DoS), False Data
Injection (FDI), Replay Attacks, and Man-in-the-Middle
(MitM). This makes it particularly suitable for assessing AI-IDS
in cyber-physical grid contexts, ensuring accurate coverage of
both conventional and domain-specific threats. Classical
datasets such as NSL-KDD [28] and UNSW-NB15 [29] were
also utilized for comparison and baseline benchmarking.
Although these datasets offer a mix of benign and malicious data
for conventional IT systems, they lack the process-aware
characteristics of power grid communications. Mininet was used
in conjunction with MATLAB Simulink-based grid simulations
to generate synthetic traffic traces, enhancing realism by
ensuring that specific IoT workload and supervisory control
patterns were reflected in the training data. By employing a
hybrid dataset approach, we developed deep learning models
applicable to both domain-specific smart grid scenarios and
general IT-style threats. Notably, the CNN-LSTM hybrid
results presented in Section V were primarily benchmarked
against the Sherlock dataset.

C. Evaluation Metrics

Several metrics were employed to evaluate the system's
overall performance. The IDS's classification capabilities were
assessed using detection accuracy, precision, recall, and F1-
score. Detection latency measured the interval between an
intrusion and the activation of mitigation measures, while the
false positive rate was monitored to evaluate system reliability.
To ensure that the additional security benefits of blockchain did
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not unduly impact system performance, blockchain-specific
metrics such as transaction confirmation time and processing
cost were also examined. Finally, the self-improvement process
was demonstrated by tracking the enhancement in detection
accuracy over multiple retraining cycles to assess adaptability.

D. Experiment Workflow

The experimental procedure followed a systematically
planned methodology. Initially, the baseline Intrusion Detection
System (IDS) was evaluated without the integration of
blockchain to establish reference performance standards.
Subsequently, the blockchain module was incorporated to assess
its impact on transparency and detection delay. Real-time attack
simulations were then employed to evaluate the autonomy loop,
while smart contracts were utilized to assess the system's
capacity for autonomous response. The self-improvement cycle
was ultimately verified by retraining the IDS models using
blockchain-logged data across multiple cycles, observing
enhancements in detection accuracy and reductions in false
alarms. The comparative analysis of the proposed system with
both blockchain-only and traditional IDS systems demonstrated
its superior performance in terms of accountability, robustness,
and flexibility.

V. RESULTS AND DISCUSSION

Three primary capabilities were evaluated using simulated
datasets and deployment scenarios for the proposed
Autonomous Blockchain-Enabled Smart Grid with Al-Based
Intrusion Detection: 1) accuracy of intrusion detection, 2)
efficiency of blockchain transactions, and 3) system autonomy
and adaptability through cycles of self-improvement. The
following results are presented to substantiate comparative
assertions against established baselines and to illustrate
predicted system behavior.

A. Intrusion Detection Performance

To capture both local temporal/spatial variables and long-
range dependencies in smart-grid telemetry, the Al-based IDS
for the study employed an ensemble deep-learning technique
comprising CNN and LSTM components. Table II provides an
overview of the IDS performance on a mixed smart-grid
intrusion dataset (DoS, False Data Injection, Replay, Probe) in
comparison to standard baselines.

TABLEIl.  PERFORMANCE COMPARISON OF IDS MODELS
Accuracy | Precision Recall F1-Score
Model (%) (%) (%) (%)
Logistic 88.2 85.6 84.9 85.2
Regression
Random Forest 91.7 90.3 89.5 89.9
CNN - (Deep | g5 4 94.7 94.1 94.4
Learning)
LSTM = (Deep | g¢ 95.5 95.1 953
Learning)
Proposed CNN-
LSTM Hybrid 98.1 97.6 97.3 974

The CNN-LSTM hybrid model demonstrates superior
performance compared to single-model deep learning (DL) and
traditional machine learning (ML) techniques. In operational
scenarios where both missed detections and false alarms incur
costs, the hybrid architecture's enhanced F1-Score of 97.4%
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indicates a well-balanced precision and recall. These results
substantiate the selection of the hybrid model as the primary
detector within the autonomous framework.

B. Blockchain Transaction Efficiency

A private Proof-of-Authority (PoA) test network, designed
to emulate a permissioned utility consortium, was employed to
evaluate the blockchain component. Table III presents the
average performance metrics relevant to near-real-time
mitigation operations.

TABLE IIL BLOCKCHAIN NETWORK PERFORMANCE

Metric Value (Average)

1,200 tx/sec

Transaction Throughput

Average Latency 1.5 seconds
Smart Contract Execution Time 0.8 seconds
Energy Consumption (per tx) 0.02 Wh

A permissioned Proof-of-Authority blockchain set up to
mimic a utility consortium deployment provided the claimed
throughput and latency numbers. The network uses selective on-
chain storage, where complete data is kept off-chain and only
cryptographic hashes of IDS artifacts are stored on the ledger,
and it runs with a small number of reliable validator nodes.
Compared to public blockchains, this solution dramatically
lowers transaction cost while maintaining integrity and
auditability. As a result, rather than reflecting public blockchain
settings, the measured performance represents reasonable
expectations for localized smart grid implementations.

C. System Autonomy and Self-Improvement

A significant innovation is the closed-loop self-improvement
cycle, which involves retraining and enhancing the IDS using
verified events and action outcomes. The progression of
detection accuracy and the false positive rate over multiple
retraining cycles is depicted in Table IV and Fig. 2.

TABLEIV. EVOLUTION OF IDS ACCURACY ACROSS SELF-IMPROVEMENT
CYCLES
Cycle Iteration Accuracy (%) False Positive Rate (%)
Initial Deployment 94.5 4.2
Cycle 1 (after feedback) 96.8 3.1
Cycle 2 (after feedback) 97.4 2.6
Cycle 3 (after feedback) 98.1 2.1

Evolution of IDS Accuracy Across Self-Improvement Cycles
120

96.8 97.4 98.1
100 94.5

80
60
40

20
4.2 3.1 2.6 2.1

Initial Deployment Cycle 1 (after feedback)  Cycle 2 (after feedback)  Cycle 3 (after feedback)

=@ Accuracy (%) False Positive Rate (%)

Fig. 2. Evolution of IDS performance across self-improvement cycles.
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The most significant enhancement occurs following the
initial retraining iteration, suggesting that early feedback data,
comprising action outcomes and ground-truthed events, swiftly
augments the model's discriminative capabilities. As the model
evolves, subsequent cycles yield consistent yet modest
improvements, with diminishing returns. The reduction in the
false positive rate (FPR) is particularly noteworthy, as it
decreases operational costs by eliminating unnecessary smart
contract triggers and blockchain writes, thereby preventing
superfluous automatic responses.

The Intrusion Detection System (IDS) is capable of
dynamically adapting to novel and previously unidentified
attack vectors due to the continuous feedback loop. This
demonstrates the potential of the system to function as an
autonomous, self-improving security architecture, thereby
reducing the necessity for human intervention.

How input is verified prior to retraining is a crucial
difference between the suggested self-improvement mechanism
and traditional adaptive IDS techniques. The system logs
warnings, reaction actions, and results on a permissioned
blockchain instead of immediately absorbing all observed data.
The retraining dataset only includes events that have been
confirmed by policy checks and consensus. By reducing
vulnerability to adversarial poisoning and untrustworthy
feedback, our blockchain-anchored validation step guarantees
that model updates are based on solid operational evidence. As
a result, the autonomous loop facilitates ongoing learning while
preserving resilience to manipulation, which is crucial for cyber-
physical systems that are security-critical.

D. Comparative Baseline Analysis

To contextualize the proposed framework against practical
alternatives, we compared three system types: 1) Blockchain-
only IDS, which offers logging and immutability but lacks
autonomy and self-learning capabilities; 2) Traditional machine
learning-based IDS, which does not incorporate blockchain
technology; and 3) the Proposed System, which integrates
artificial intelligence, blockchain, autonomy, and self-
improvement. These comparisons are summarized in Table V
and Fig. 3.

TABLE V. COMPARATIVE ANALYSIS OF IDS MODELS
Reca Fl- ll:::;;ei

System Accura | Precisi Scor Adaptabil
Type cy (%) | on(%) | M e ve it
P y %) | o, | Rate y
Tradition
al IDS
(ML- 92.7 91.8 92.1 919 | 54 Low
based)
Blockcha
in-only 94.1 93.5 93.7 93.6 | 4.8 Moderate
IDS
Proposed
System 98.1 97.3 97.6 974 | 2.1 High
(Cycle 3)

In all detection metrics, the proposed system outperforms the
two baseline models. Although it does not possess the adaptive
benefits of retraining and governance automation, the
blockchain-only IDS enhances integrity and marginally

819|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

improves detection, potentially due to superior forensic labeling.
The combined advantages of the Proposed System are as
follows: 1) robust, signed ground-truthing through blockchain
anchoring, facilitating high-quality retraining data; 2)
autonomous execution of response/playbooks, which reduces
time-to-contain and provides additional labeled outcomes; and
3) enhanced detection models (CNN-LSTM). Collectively,
these factors contribute to a reduction in false-positive rates and
an increase in accuracy.

Comparative Analysis of IDS Models

98.1
8 97.3 976 974

941
94 935 937 936

92.7
918 921 919

Traditional IDS (ML-based) Blockchain-only IDS Proposed System (Cycle 3)

m Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Fig. 3. Comparative analysis bar chart.

E. Operational and Autonomy Metrics

Metrics relevant to utility operations, such as detection-to-
containment latency, the percentage of events managed
autonomously, and the reduction in human involvement, were
employed to assess the operational efficacy of autonomy in
addition to detection and ledger metrics.

Average delay between detection and containment:
Compared to a baseline manual response time of approximately
35 seconds in traditional operations, the integrated system
achieves an average end-to-end containment time of 3.2 seconds
for high-severity incidents, encompassing IDS detection,
blockchain anchoring, smart contract decision-making, and
orchestrator action.

Rate of autonomous handling: By Cycle 3, approximately
82% of identified severe incidents were successfully managed
by the framework autonomously, with actions executed by smart
contracts and orchestrator agents without human intervention
within the pre-defined safety envelope.

Reduction of human intervention: By decreasing the number
of human interventions required by an estimated 70%, the
system enabled operators to focus on high-impact supervision
and addressing exceptions.

Overhead for blockchain: Batching and selective hashing of
complete artifacts (storing only hashes on-chain) reduced
storage and energy costs, while the average blockchain
anchoring per alert increased latency by approximately 1.5
seconds.

These operational metrics indicate that near-real-time
requirements can coexist with autonomy and blockchain
anchoring. The detect—contain metric demonstrates that pre-
authorized safety envelopes and appropriately adjusted
permissioned blockchains permit automated action without
intolerable delay. The governance approach can safely reduce
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operator burden while maintaining supervision for critical tasks,
as evidenced by the high autonomous handling rate.

F. Discussion

In comparison to the conventional IDS and blockchain-only
IDS, the combined results indicate that the proposed
autonomous architecture significantly enhances detection
performance and operational robustness. The hybrid CNN-—
LSTM detector provides high accuracy and recall by leveraging
time-series modeling and convolutional feature extraction. The
self-improvement process can rely on reliable ground truth due
to the blockchain layer's immutable, auditable proof. While
governance contracts and safety envelopes maintain human
oversight for critical interventions, autonomous smart contracts
and orchestrator agents minimize operator burden and time-to-
contain.

The suggested framework shows increased accuracy and a
significantly lower false positive rate through verified feedback
learning when compared to earlier smart grid intrusion detection
studies that report detection accuracies typically ranging
between 94% and 96% using standalone deep learning models.
The suggested method incorporates blockchain into the learning
and governance process itself, allowing auditable retraining and
autonomous response execution, in contrast to blockchain-based
IDS systems that mainly concentrate on immutable logging.
These findings suggest that the observed performance
improvements emerge from the coordinated interaction of
autonomous control mechanisms, decentralized trust, and
adaptive Al rather than just model selection.

The existence of limitations and trade-offs is evident. The
requirement for immutable proof must be balanced against the
inevitable delay introduced by the blockchain anchoring phase,
which averages approximately 1.5 seconds. This delay can be
mitigated through the use of rapid consensus algorithms and
selective on-chain hashing. Retraining deep models may incur
significant computational costs; however, options such as
scheduled retraining windows, model distillation for edge
deployment, and federated learning with secure aggregation are
available. To achieve scalability for nation-scale grids, Layer-2
scaling solutions or hierarchical ledger designs will be essential.
Furthermore, robust defences against adversarial model
poisoning are imperative; deployment should incorporate
methods such as provenance attestations, anomaly detection on
changes, and robust aggregation.

G. Key Takeaways and Future Directions

In summary, the assessment provides compelling evidence
that the integration of blockchain immutability, Al-based
detection, and autonomous governance leads to significant
improvements in the accuracy, responsiveness, and reliability of
smart-grid cybersecurity. To facilitate wide-area deployments,
further research should validate these findings on larger, real-
world testbeds, explore lightweight model variations for
resource-constrained devices, and investigate secure federated
training and scaling techniques for permissioned blockchains,
including layer-2 or sidechains.

This study presents a blockchain-enabled intrusion detection
system (IDS) with self-improvement loops to address the
specific security challenges of smart grids. By integrating
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advanced deep learning models with reinforcement learning
feedback mechanisms and a blockchain-based trust layer, the
framework overcomes significant limitations identified in
previous research, such as static learning, inflexibility in the face
of zero-day threats, and the absence of decentralized trust in
detection systems. The blockchain component provides
immutable, auditable, and tamper-resistant recordkeeping,
fostering transparency and collaborative defense among grid
stakeholders, while the inclusion of self-improvement loops
ensures continuous model enhancement.

VI. KEY CONTRIBUTIONS

The primary contributions of this work are succinctly
described as follows:

1) Blockchain-enabled trust and transparency: A
decentralized ledger layer was added to smart grid intrusion
detection systems, ensuring auditable data, tamper-proof
tracking, and stakeholder collaboration in defense.

2) Reinforcement learning self-improvement loops: An
adaptive feedback method was developed, allowing for
continuous model development and reducing vulnerability to
concept drift and zero-day attacks in dynamic cyber threat
environments.

3) Deep learning and federated learning integration:
Federated learning and advanced anomaly detection models
were combined to facilitate knowledge exchange among
distributed nodes without compromising data privacy.

4) Enhancements in performance compared to current IDS
solutions.: Achieved 98.1% accuracy, 97.6% detection rate, and
2.1% false positive rate, significantly surpassing the
performance of both blockchain-only IDS (94.1%, 93.2%,
4.8%) and conventional IDS (92.7%, 91.4%, 5.4%).

5) Smart grid operational viability: The system
demonstrated effective operation in real-time smart grid
scenarios, as evidenced by a blockchain throughput of
approximately 1,200 transactions per second with a latency of
about 1.5 seconds.

6) Future-ready and scalable framework: Proposed a
multidisciplinary IDS architecture that is adaptable to future
advancements such as explainable Al, autonomous policy
adaptation, and lightweight blockchain protocols, in addition to
being resilient against current threats.

VII. CONCLUSION

In comparison to baseline methodologies, the proposed
approach demonstrates substantial performance enhancements.
Following numerous refinement cycles, it achieved an accuracy
of 98.1%, a detection rate of 97.6%, and a false positive rate
(FPR) of 2.1%. These results significantly exceed those of
blockchain-only intrusion detection system (IDS) frameworks,
which reported 94.1% accuracy, 93.2% detection, and a 4.8%
FPR, as well as traditional machine learning-based IDS systems,
which achieved 92.7% accuracy, 91.4% detection, and a 5.4%
FPR. Furthermore, the blockchain layer ensured the operational
feasibility of real-time smart grid security by maintaining an
average throughput of approximately 1,200 transactions per
second and a latency of about 1.5 seconds.
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Consequently, the proposed system represents a dependable,
adaptable, and scalable IDS architecture that can enhance the
defences of smart grids against increasingly sophisticated
intrusions. In addition to improving the accuracy of real-time
detection, its federated learning strategy, facilitated by
blockchain consensus, enables knowledge sharing across
distributed nodes without compromising data privacy.

Future research will focus on the practical implementation
of smart grids, computational optimization for resource-
constrained loT devices, and lightweight blockchain protocols
that further reduce latency, despite the promising design and
experimental validation. Moreover, employing explainable Al
techniques and autonomous policy adaptation to enhance self-
improvement loops may increase operational efficiency and
stakeholder confidence in decision-making.

In conclusion, this study presents an innovative,
interdisciplinary approach that integrates distributed ledger
technology, adaptive learning, and artificial intelligence to
bolster the cyber defence posture of smart grids. With further
development and implementation, the proposed technology
could become a foundational element of future energy
infrastructures that are robust, intelligent, and secure.
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