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Abstract—There is no doubt that a significant number of
individuals worldwide suffer from blood cancer. A lot of people
are unaware of the dangers associated with this disease, which
can be fatal. When diagnosed, patients may feel intense fear
and a sense of powerlessness. In addition, due to the rarity
of these diseases, patients often struggle to find the necessary
help and information. A specific type of blood cancer called
acute lymphocytic leukemia (ALL) mainly affects white blood
cells and is particularly prevalent in children. Early detection
of this disease will improve the chances of recovery. Therefore,
it is crucial to have an accurate and dependable method for
identifying blood cancers. Deep learning (DL) architectures have
garnered significant interest within the computer vision realm.
Recently, there has been a strong focus on the accomplishments
of pretrained architectures in accurately describing or classifying
data from various real-world image datasets. Classification per-
formances of the proposed models are investigated by using Soft-
max, Support Vector Machine (SVM), and K-Nearest Neighbors
algorithm (K-NN) separately on a deep learning neural network
(Alexnet and VGG19) to differentiate between the three types of
ALL using microscopic images dataset. The experimental results
demonstrate that the combination of Alexnet with SVM achieves
outstanding classification performance on the leukemia dataset,
particularly on the original(unsegmented) data, achieved 97.03 %
on bengin class, 96.14% on early class, 99.49% on pre class and
99.9% on pro class. This approach achieves higher accuracy levels
than practicing physicians.

Keywords—Deep learning; transfer
Alexnet; VGG19; SVM; K-NN; classification

learning; leukemia;

I. INTRODUCTION

In the last decades, uncontrolled growth of abnormal cells
in the leukemia patients and the bone marrow rapidly expanded
[1]. A condition distinct from other illnesses because it typi-
cally does not create detectable masses through imaging tests
like X-Rays [2]. Hematopoietic stem cells, which give rise
to all blood cells, go through multiple stages of development
before reaching maturity [3].

In leukemia, a specific type of blood cell undergoes rapid
and uncontrolled development, leading to the proliferation of
these uncontrollable cells known as leukemia cells [4]. These
abnormal cells take over the space within the bone marrow
which is known as acute lymphoblastic leukemia (ALL) [5].
It is noted that the early detection of ALL can improve
the chance of patient survival. Automatic specialized testing,
like cytogenetics, immunophenotyping, and morphological cell
categorization, can now detect leukemia. Now, due to its great
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accuracy, the method of observing blood cells using the men-
tioned processes is advised. The operator’s abilities and level
of enervation will determine how tough these procedures are
[6]. Various deep learning (DL) techniques have demonstrated
significant efficacy across diverse domains including automatic
recognition, detection, and segmentation. Examples encompass
breast cancer [7], skin lesions [8], [9], [10], brain tumor [11],
[12], the COVID-19 pandemic [13], [14], [15], and among
other areas [16].

Leukemia detection in human blood samples using micro-
scopic images is only appropriate for low-cost and remote
diagnosis systems. New-age approaches can help in this situ-
ation [17]. Numerous researchers have created algorithms that
offer a simple and incredibly accurate technique to detect and
classify various types of blood cancer using deep learning,
machine learning, and convolution neural networks (CNN)
[18]. Authors in [19], [20] used DL for COVID-19 image
recognition and classification, also for object detection and
recognition. Early detection is the paramount for successful
treatment outcomes. Medical advancements have facilitated
various screening methods to identify the disease in its nascent
stages. These techniques often involve blood tests to analyze
abnormalities in white blood cell counts, red blood cell counts,
and platelets. Additionally, bone marrow biopsies may be per-
formed to examine the composition of blood cells directly from
the source. Advanced imaging technologies such as Magnetic
Resonance Imaging (MRI) and Computed Tomography (CT)
scans can also aid in detecting leukemia-related abnormalities
within the body. Early detection enables prompt intervention,
increasing the likelihood of successful treatment and improved
patient prognosis. In this type of cancer, the primary impact is
on white blood cells. Particularly in children, this illness is fre-
quently identified, making them more susceptible. Therefore,
there is a pressing need for a precise and dependable mech-
anism for identifying such blood cancers in patients. Authors
in [21] introduces a system designed to differentiate between
the three distinct types of ALL through the implementation of
a CNN. The system offers thorough disease diagnosis along
with comprehensive information on symptoms and different
treatment stages. Through the utilization of a CNN, the system
has demonstrated an accuracy rate exceeding 85% in detecting
ALL.

The structure of this paper is organized as follows: Section
II presents the key standard techniques used for feature extrac-
tion, classification, and the Alexnet deep learning approach.
Section III describes the datasets employed for training, val-
idation, and evaluation of the proposed method. Section IV
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outlines the proposed method along with its results. Lastly,
Section V provides the conclusion and discusses future work.

II. METHODS AND MATERIALS
A. Deep Learning

A novel area within artificial intelligence is known as
Deep learning (DL), which focuses on developing techniques
enabling computers to learn complex tasks such as perception
with high accuracy. It excels in tasks like image classification,
object detection, speech recognition, language processing, and
vehicle detection. Unlike traditional classification algorithms
that rely on ad-hoc methods for feature extraction from images,
DL employs a different approach. Instead of manually defining
features, DL methods learn to extract relevant features directly
from data, leading to improved performance and reduced false
alarms.

Several challenges arise in traditional methods:

1)  Difficulty in defining general, reliable characteristics
corresponding to specific object types.

2)  Complex task of determining the optimal combina-
tion of attributes to identify each object type.

3) Challenges in developing efficient techniques for
translating, rotating, and scaling objects.

These challenges impact segmentation, classification, and de-
tection processes. DL methods address these challenges by
leveraging large labeled datasets to identify relevant features
and combinations of characteristics for accurate object cat-
egorization. They employ a hybrid feature extraction and
classification model, enabling classification of a wide range
of unseen objects beyond those included in the training set
[22].

Convolutional Neural Networks (CNNs) are a prominent
DL architecture that utilizes multiple hidden layers to perform
extensive computations on input data. Each layer’s output
serves as input to the subsequent layer as shown in Fig. 1,
facilitating hierarchical feature extraction. The final layer
outputs class labels based on the training data. During the
training stage, the network learns to predict efficiently, and
its performance is evaluated during the prediction phase.
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Fig. 1. CNN architecture.

B. Alexnet Deep Learning Neural Network

Alexnet is considered a very important CNN, had a huge
performance on the DL Field and it is used in a wide range
in computer vision applications [23]. Fig. 2 examines the
fundamental structure of Alexnet. It consists of eight layers,
with five being convolution layers and the remaining three
being fully connected layers. To accelerate the training process,
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Rectified Linear Unit (ReLU) activation is applied after each
convolution and fully connected layer. Dropout is implemented
before the first and second fully connected layers. During the
training phase, the images are resized to 256 * 256 pixels. A
dataset comprising 1.2 million images is utilized for training,
while 150,000 images are allocated for testing, and 50,000
images are reserved for network validation.

Fig. 2. Alexnet architecture.

C. Visual Geometry Group Deep Learning Neural Network

The Visual Geometry Group (VGG) 19 model, a convolu-
tional neural network (CNN), represents a significant milestone
in the field of deep learning and computer vision. Developed
by the Visual Geometry Group at the University of Oxford,
VGG19 is renowned for its remarkable performance in image
classification tasks. With its deep architecture comprising 19
layers, including 16 convolutional layers and 3 fully connected
layers, as shown in Fig. 3. VGG19 demonstrates exceptional
ability in extracting intricate features from images, enabling
accurate categorization across diverse datasets [24].
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3X3 conv, 256
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Fig. 3. VGG19 architecture.

D. Support Vector Machine

Support Vector Machine (SVM) is a powerful supervised
machine learning algorithm primarily used for classification
tasks, but it can also be employed for regression and out-
lier detection. SVM aims to find the best possible decision
boundary (known as a hyperplane) that separates data points
of different classes in such a way that the margin between the
two classes is maximized. This is achieved by forming a set of
support vectors [25]. SVM works by constructing hyperplanes
to separate two classes of raw data for classification [26], [27].
The goal of SVM is to identify the optimal hyperplane, which
maximizes the distance between the elements of the training
data. For example, if we have two groups of data, finding two
hyperplanes, as shown in Fig. 4. It is evident that Fig. 4(b),
which has a larger margin, provides better accuracy compared
to Fig. 4(a).

E. K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a straightforward, yet ef-
fective algorithm for image classification. It classifies an image
by considering the majority label of its *k* nearest neighbors
in the dataset. Each image is represented as a feature vector,
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Fig. 4. Support vector machine.

which can be derived from pixel values or higher level features
like edges or textures. When a new image is introduced,
the algorithm calculates the distance, often using Euclidean
distance, between the new image and all images in the training
set, determining the *k* closest neighbors. The image is then
assigned to the category that appears most frequently among
those neighbors. KNN is easy to implement and understand,
though its accuracy relies on selecting the right *k* value and
distance measure [28], [29].

KNN is particularly well suited for smaller datasets in
image classification, since it does not require a training phase,
making it a type of lazy learning algorithm. However, its
performance declines with larger datasets because of the
computational expense of calculating distances for each image
in the dataset. Additionally, KNN is sensitive to irrelevant
or redundant features, which can reduce its accuracy. Despite
these drawbacks, KNN serves as a strong baseline for image
classification before turning to more advanced methods like
deep learning.

III. PROPOSED METHOD AND PERFORMANCE METRICS
A. Proposed Method

Leukemia presents a significant challenge in healthcare due
to its complexity and varied subtypes. Traditional diagnostic
methods have limitations in accuracy and speed, necessitating
the exploration of advanced technologies like deep learning
and transfer learning. The proposed method explores the
development of a hybrid method incorporating the deep learn-
ing architectures Alexnet and VGG19, coupled with transfer
learning, and employing classifiers such as SVM and kNN for
leukemia prediction. Deep Learning and Transfer Learning:
Deep learning models, particularly CNNs, have demonstrated
remarkable performance in image classification tasks. Alexnet
and VGG19 are popular CNN architectures known for their
effectiveness in feature extraction and classification. By lever-
aging these architectures, we aim to extract meaningful fea-
tures from leukemia images, facilitating accurate prediction.
Transfer learning enhances model performance by transferring
knowledge gained from pretrained models to new tasks. In
the context of leukemia prediction, transfer learning allows
us to leverage the learned features from large datasets like
ImageNet and adapt them to the specific characteristics of
leukemia images, thereby improving prediction accuracy. The
hybrid method begins with pre-processing leukemia images
to enhance quality and remove noise. Subsequently, the pre-
processed images are fed into the Alexnet and VGGI19 ar-
chitectures for feature extraction. Transfer learning is applied
by fine-tuning the pre-trained models on the leukemia dataset,
allowing them to adapt to the task at hand while retaining
valuable learned features.
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Feature vectors extracted from the deep learning models
are then inputted into SVM and kNN classifiers for prediction.
SVM is chosen for its ability to handle high dimensional
data and delineate complex decision boundaries, while kNN
is selected for its simplicity and effectiveness in classification
tasks. Fig. 5 shows a flow chart of the proposed method.
Furthermore, the flexibility of the hybrid method allows for
customization and adaptation to different leukemia subtypes,
thereby enhancing its applicability in clinical settings.

A
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|i.PreProcessing |

|\ DataSet Splitting: Training, Validation, and Testing |
. ( 7 : J
| Load Pretrained Models (Alexnet, VGG19) |
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Specificity, Sensitivity, and F1Score

o

Fig. 5. Flowchart of the proposed method.

B. Performance Metrics

To evaluate the proposed method, a lot of performance
parameters were used.

True_positive (T_P), False_positive (F_P), True_negative
(T_N) and False_negative (F_N) are the main components used
for evaluating the performance metrics. T_P is described as the
total number of images predicted as class1 and they are already
found in class1. T_N is described as the total number of images
predicted as classl and they are not already found in classl.
F_P is described as the total number of images not predicted as
class1 and they are already belong to classl. F_N is described
as the total number of images incorrectly predicted as classl.
The following equations define Recall, Precision, Specificity,
Sensitivity, Accuracy, and FScore [see Eq. (1), Eq. (2), Eq. (3),
Eq. (4), Eq. (5), and Eq. (6)], respectively.
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C. Dataset

A precise diagnosis of acute lymphoblastic leukemia
(ALL), a malignancy with a high prevalence, necessitates
invasive, costly, and time consuming diagnostic procedures.
Peripheral blood smear (PBS) pictures used for ALL diagnosis
are crucial in the first cancer screening process to distinguish
cancer cases from non-cancer cases. Due to the non-specific
character of ALL indications and symptoms, misinterpretation
is a common concern when these PBS images are ana-
lyzed by laboratory users. The bone marrow laboratory at
Taleqani Hospital in Tehran, Iran, is where the photographs
for this collection were created. This dataset included 3256
PBS pictures from 89 individuals who were thought to be
ALL and whose blood samples were properly processed and
stained by knowledgeable laboratory personnel. This dataset is
separated into the benign and malignant classes. Hematogones
are included in the former. The Early Pre-B, Pre-B, and Pro-
B ALL subtypes of malignant lymphoblasts, which make up
the latter ALL group. All of the photos were taken with a
Zeiss camera at a 100x magnification in a microscope, and they
were all saved as JPG files. The specific types and subtypes
of these cells were identified by a professional using the flow
cytometry instrument. We also offer segmented photos after
color thresholding-based segmentation in the HSV color space
[30].

Fig. 6 shows a sample of the original dataset images from
all of the mentioned classes types. Fig. 7 view a sample of
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Fig. 6. Sample of the original dataset.

the segmented dataset images from all of the mentioned class
types.

IV. RESULTS AND DISCUSSION
A. Alexnet and SVM

The results presented in the Table I reflect the performance
of the Alexnet combined with SVM on the original leukemia
dataset, evaluated across four different classes: Benign, Early,
Pre, and Pro. Overall, the model demonstrates outstanding
classification performance, with all classes achieving 99% or
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Fig. 7. Sample of the segmented dataset.

100% accuracy. The Pro class exhibits perfect classification
with 100% across all metrics, indicating the model’s high
confidence and consistency in identifying this class. The Pre
and Early stages also show near-perfect performance, with
only a 1% deviation in precision or Fscore, suggesting that
the model effectively captures relevant patterns even in inter-
mediate stages of leukemia progression.

The Benign class, while still performing excellently, shows
slightly lower recall and sensitivity values at 97%, which
might indicate a small number of false negatives — cases
where benign samples were misclassified. However, its 100%
specificity suggests no benign cases were incorrectly identified
as other leukemia stages, a critical factor in clinical decision
making. These results suggest that the model is particularly
reliable for detecting advanced leukemia stages, while still
performing robustly on earlier and non-cancerous samples.
Fig. 8 shows the confusion matrix results for the desired
method. The high performance across all metrics and classes
highlights the suitability of Alexnet with SVM as a strong
classification pipeline for medical image analysis in leukemia
detection.

TABLE I. PERFORMANCE METRICS OF ALEXNET AND SVM ON
ORIGINAL DATA

Class Recall | Precision | Accuracy | Specificity | Sensitivity | Fscore
Benign 97% 98% 99% 100% 97% 98%
Early 99% 99% 99% 100% 99% 99%
Pre 100% 99% 100% 100% 100% 99%
Pro 100% 100% 100% 100% 100% 100%
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Fig. 8. Confusion matrix of Alexnet and SVM on original data.

When applied to the segmented leukemia dataset, the
Alexnet with SVM model continues to deliver strong classifica-
tion performance, though with slightly lower metrics compared
to the original unsegmented data, as shown in Table II. The
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Pro class still achieves excellent results, with perfect precision
and specificity, and a high Fscore of 98.1%, indicating that
segmentation did not significantly impact the model’s ability
to detect advanced leukemia. Fig. 9 shows the confusion matrix
on the segmented data for the same method. The Pre and Early
classes also maintain high accuracy and balanced sensitivity
and precision, suggesting reliable detection of intermediate dis-
ease stages. However, the Benign class shows a noticeable drop
in both precision (89.0%) and Fscore (90.2%), possibly due to
segmentation affecting the distinctiveness of benign features.
Overall, while segmentation may introduce some variability
in early and benign classifications, the model remains highly
effective, particularly in identifying more advanced leukemia
stages.

TABLE II. PERFORMANCE METRICS OF ALEXNET AND SVM ON
SEGMENTED DATA

Class Recall | Precision | Accuracy | Specificity Sensitivity | Fscore
Benign 91.4% 89.0% 96.9% 97.9% 91.4% 90.2%
Early 94.9% 96.2% 97.3% 98.4% 94.9% 95.6%
Pre 98.3% 95.3% 98.1% 98.0% 98.3% 96.8%
Pro 96.3% 100.0% 99.1% 100.0% 96.3% 98.1%
o 138 8 5 0
enen | 44.1% | 08% | 05% | 0.0%
= 6 280 9 0
= Y| o6% |28.7% | 09% | oo0%
k]
ST 2 3 284 o
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Fig. 9. Confusion matrix of Alexnet and SVM on segmented data.

B. Transfer Learning of Alexnet

Table IIT shows results from applying transfer learning us-
ing Alexnet on the leukemia dataset demonstrate highly effec-
tive classification across all four classes. The model achieves
consistently high recall, precision, and Fscore values, with
accuracy ranging from 98.36% to 99.08%. The Pro class stands
out with the highest overall accuracy (99.08%) and excellent
precision and Fscore, indicating that the fine-tuned Alexnet is
particularly effective in detecting advanced leukemia. The Pre
and Early classes also show strong and balanced performance,
reflecting the model’s ability to generalize across different
stages of the disease. Fig. 10 shows the confusion matrix of
the transfer learning of Alexnet. Even the Benign class, which
is typically more challenging to classify due to subtle features,
achieves a solid 94.08% recall and 95.33% precision. These
results highlight the strength of transfer learning in leveraging
pre-trained features from Alexnet, improving classification
accuracy while minimizing training time and data requirements
in medical image analysis.

When transfer learning using Alexnet is applied to the
segmented leukemia dataset, the model maintains strong over-
all performance, particularly in detecting the Pro class, which
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TABLE III. PERFORMANCE METRICS OF TRANSFER LEARNING OF
ALEXNET ON ORIGINAL DATA

Class Recall Precision | Accuracy | Specificity | Sensitivity | Fscore
Benign | 94.08% | 95.33% 98.36% 99.15% 94.08% 94.70%
Early 97.28% | 97.28% 98.36% 98.83% 97.28% 97.28%
Pre 98.26% | 97.24% 98.67% 98.84% 98.26% 97.75%
Pro 97.94% | 98.35% 99.08% 99.45% 97.94% 98.14%
o 143 5 3 1
enian | 44.7% | 0.5% | 0.3% | 0.1%
5 286 2 1
@ Early| os% | 290.3% | 02% | 0.1%
2]
S 1 2 282 2
E] 1 01% | 02% | 289% | 02%
=
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Pro | o149
97.2%
2.8%

Target Class

Fig. 10. Confusion matrix of transfer learning using Alexnet on original data.

achieves the highest accuracy (99.28%) and Fscore (98.54%),
as shown in Table IV. However, a noticeable performance drop
is observed in the Benign class, where recall decreases to
82.78%, indicating that the model struggles more to identify
benign samples correctly after segmentation. Despite this,
its high precision (90.58%) and specificity (98.42%) suggest
that false positives are minimal. The Early and Pre classes
show balanced and reliable metrics, with Fscores above 93%,
demonstrating that the model remains effective for interme-
diate disease stages. These results suggest that while seg-
mentation may introduce challenges in distinguishing non-
cancerous cases, transfer learning with Alexnet still provides
robust classification, especially for more advanced stages of
leukemia, as shown in Fig. 11.

TABLE IV. PERFORMANCE METRICS OF TRANSFER LEARNING OF
ALEXNET ON SEGMENTED DATA

Class Recall Precision | Accuracy | Specificity | Sensitivity | Fscore
Benign 82.78% 90.58% 96.00% 98.42% 82.78% 86.51%
Early 93.22% 92.91% 95.80% 96.92% 93.22% 93.06%
Pre 95.85% 91.12% 96.00% 96.07% 95.85% 93.42%
Pro 97.93% 99.16% 99.28% 99.73% 97.93% 98.54%
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NN [ 42 8% | 1.1% | 1.3% | 0.2%
= [ 275 14 o
w Y] 06% |28.2% | 1.4% | 0.0%
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= 5 3 9 277 0
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Fig. 11. Confusion Matrix of transfer learning of Alexnet on segmented data.
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C. Alexnet

The performance of Alexnet on the original leukemia
dataset shows a strong and promising classification ability,
particularly for more advanced disease stages. The Pro class
achieves perfect recall (100%) and nearly perfect precision
(99.59%), with an overall accuracy of 99.90%, demonstrating
that the model reliably identifies all Pro samples with minimal
error. Similarly, the Pre class also performs exceptionally well,
with a near-perfect Fscore of 99.13%, indicating balanced and
accurate detection at this stage. The Early class, while slightly
lower, still maintains a strong performance with a recall of
95.59% and an Fscore of 94.16%, showing that the model
is effective even at earlier stages of leukemia, as shown in
Table V and Fig. 12.

However, the Benign class displays comparatively lower
performance, with a recall of 87.42%, suggesting a higher rate
of false negatives, some benign cases are being misclassified as
leukemia. However, the high precision (92.96%) and specificity
(98.79%) imply that when the model predicts a case as benign,
it is likely correct. This pattern is consistent with the general
challenge in distinguishing benign from early pathological
features in medical imaging. Overall, Alexnet demonstrates
excellent performance on the original data, especially in iden-
tifying disease progression stages, making it a reliable model
for the classification of leukemia.

TABLE V. PERFORMANCE METRICS OF ALEXNET ON THE ORIGINAL

DATA
Class Recall Precision | Accuracy Specificity Sensitivity | Fscore
Benign | 87.42% 92.96% 97.03% 98.79% 87.42% 90.10%
Early 95.59% 92.76% 96.41% 96.77% 95.59% 94.16%
Pre 98.96% 99.31% 99.49% 99.71% 98.96% 99.13%
Pro 100.00% | 99.59% 99.90% 99.86% 100.00% 99.79%
B 132 19 o o 87 .4%
enian | 43.5% | 1.9% | 0.0% | 0.0% | 128
10 282 2 1 5.€
w Eay | 400 | 28.0% | 0.2% | 0.1%
-]
= [} 3 286 [}
= ™| oo% | 03% |20.3% | 0.0%
s
(=] . o o o
™| oo% | 00% | 00%
96.4%
3.6%

& @"S‘\-\ <
Target Class

Fig. 12. Alexnet confusion matrix results on the original data.

The results of applying Alexnet to the segmented leukemia
dataset demonstrate high and consistent classification perfor-
mance across all classes, with particularly strong results for the
Pro class. The Pro class achieves the highest metrics overall,
including 98.76% for recall, precision, sensitivity, and Fscore,
along with an impressive accuracy of 99.39%, indicating the
model’s excellent ability to detect advanced-stage leukemia
even after segmentation. The Pre and Early classes also show
balanced performance, with Fscores of 96.68% and 95.77%,
respectively, reflecting the model’s robustness in identifying
intermediate stages with high reliability as shown in Table VI
and Fig. 13.
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The Benign class, which is often more challenging to
differentiate due to its less distinct features, records a recall of
92.05% and a slightly lower precision of 89.68%. While these
values are still strong, the slightly reduced precision suggests
occasional misclassification of benign samples as leukemia.
However, the specificity remains high at 98.06%, indicating the
model rarely mislabels diseased samples as benign. Overall,
segmentation does not appear to significantly hinder Alexnet’s
performance and may even enhance class separation in some
cases, allowing the model to maintain high accuracy and
generalization across all stages of leukemia.

TABLE VI. PERFORMANCE METRICS OF ALEXNET ON THE SEGMENTED

DATA
Class Recall Precision | Accuracy | Specificity | Sensitivity | Fscore
Benign | 92.05% | 89.68% 97.13% 98.06% 92.05% 90.85%
Early 95.93% | 95.61% 97.44% 98.09% 95.93% 95.77%
Pre 95.85% | 97.54% 98.05% 98.98% 95.85% 96.68%
Pro 98.76% | 98.76% 99.39% 99.59% 98.76% 98.76%
& 139 5 4 3
eMon | 14.9% | 0.5% | 0.4% | 0.3%
i -] 283 3 o
mo Y 00% | 200% | 0.3% | 0.0%
o
o o a 8 277 0
z "l 04% | 08% |284% | 0.0%
3
3
Pro | 0.3%
96.0%
4.0%

Target Class

Fig. 13. Alexnet confusion matrix results on the segmented data.

D. Alexnet and KNN

When Alexnet is combined with KNN and applied to
the original leukemia dataset, the model demonstrates high
classification performance, particularly for advanced leukemia
stages. The Pro class achieves perfect recall (100%) and a
strong precision of 96.02%, resulting in a high Fscore of
97.97% and overall accuracy of 98.98%. Similarly, the Pre
class shows excellent results with 97.23% recall, 99.65%
precision, and an Fscore of 98.42%, indicating that the model
is highly effective at detecting and distinguishing advanced and
intermediate disease stages in the unsegmented data, as shown
in Table VII and Fig. 14.

In contrast, the Benign class exhibits lower recall (76.82%)
despite very high precision (99.15%) and specificity (99.88%),
suggesting that many benign cases are misclassified as
leukemia. This imbalance lowers the Fscore to 86.57%, point-
ing to difficulty in recognizing non-cancerous samples ac-
curately. The Early class also shows a gap between recall
(97.29%) and precision (88.04%), reflecting a tendency toward
false positives. These results suggest that while the Alexnet and
KNN combination is highly reliable for detecting later stages
of leukemia in the original dataset, its performance for benign
and early-stage classification is limited by class similarity and
KNN'’s sensitivity to overlapping feature distributions.
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TABLE VII. PERFORMANCE METRIC OF ALEXNET AND KNN ON THE
ORIGINAL DATA

Class Recall Precision | Accuracy | Specificity | Sensitivity | Fscore
Benign | 76.82% 99.15% 96.31% 99.88% 76.82% 86.57%
Early 97.29% 88.04% 95.18% 94.27% 97.29% 92.43%
Pre 97.23% 99.65% 99.08% 99.85% 97.23% 98.42%
Pro 100.00% | 96.02% 98.98% 98.64% 100.00% 97.97%
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Fig. 14. Confusion matrix results of Alexnet and KNN on the original data.

When applying the combination of Alexnet and KNN to the
segmented leukemia dataset, the model continues to perform
well overall, particularly in identifying the more advanced dis-
ease stages. The Pre and Pro classes show strong and consistent
results, with recall values of 97.58% and 97.93%, respectively,
and Fscores above 96%. These high metrics demonstrate the
model’s robustness in capturing critical patterns in segmented
images that correspond to later stages of leukemia, even
when using a non-parametric classifier like KNN after feature
extraction from Alexnet, as shown in Table VIII.

However, the Benign class again poses challenges, as
reflected by its low recall of 76.16% and the lowest Fscore
(83.33%) among all classes, as shown in Fig. 15. While
the precision is relatively high at 92.00%, the model misses
a significant portion of benign cases, indicating a tendency
to misclassify them as malignant. The Early class shows a
more balanced performance, with a recall of 94.92% and an
Fscore of 92.26%, suggesting reasonable reliability for early
detection. Overall, while segmentation does not drastically
improve performance for the benign class, the combination
of Alexnet and KNN still yields high classification accuracy
and specificity across most classes, particularly for detecting
leukemia progression.

TABLE VIII. PERFORMANCE METRIC OF ALEXNET AND KNN ON THE
SEGMENTED DATA

Class Recall Precision | Accuracy | Specificity | Sensitivity | Fscore
Benign | 76.16% | 92.00% 95.29% 98.79% 76.16% 83.33%
Early 94.92% | 89.74% 95.18% 95.30% 94.92% 92.26%
Pre 97.58% | 96.58% 98.26% 98.54% 97.58% 97.07%
Pro 97.93% | 95.55% 98.36% 98.50% 97.93% 96.72%

E. VGGI19 and SVM

When VGG19 is combined with an SVM classifier and
applied to the original leukemia dataset, the results indicate
consistently high performance across all classes, with partic-
ularly strong outcomes in the more advanced stages of the
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Fig. 15. Confusion matrix results of Alexnet and KNN on the segmented
data.

disease. The Pro class achieves perfect recall (100%) and
a high precision of 98.77%, leading to an excellent Fscore
of 99.38% and overall accuracy of 99.69%. Similarly, the
Pre class performs exceptionally well with 98.96% recall and
an Fscore of 98.79%, showcasing the model’s effectiveness
in distinguishing leukemia stages with subtle differences, as
shown in Table IX.

The model also demonstrates solid performance on the
Early and Benign classes. The Early class achieves a recall
of 96.95% and a precision of 95.97%, indicating reliable early
detection, which is critical for timely treatment. Fig. 16 shows
that the Benign class, often harder to distinguish from early
malignancies, still achieves a recall of 90.73% and precision
of 95.14%, with a strong Fscore of 92.88%. These results
reflect the strength of transfer learning with VGG19 in feature
extraction and the discriminative power of SVM in handling
complex decision boundaries, leading to robust classification
performance on unsegmented medical image data.

TABLE IX. PERFORMANCE METRICS OF VGG19 AND SVM ON THE
ORIGINAL DATA

Class Recall Precision | Accuracy Specificity | Sensitivity | Fscore
Benign | 90.73% 95.14% 97.85% 99.15% 90.73% 92.88%
Early 96.95% 95.97% 97.85% 98.24% 96.95% 96.46%
Pre 98.96% 98.62% 99.28% 99.42% 98.96% 98.79%
Pro 100.00% | 98.77% 99.69% 99.59% 100.00% 99.38%
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Fig. 16. Confusion matrix of VGG19 and SVM on the original data.

When applying VGG19 with SVM to the segmented
leukemia dataset, the model continues to demonstrate strong
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classification performance, especially in the advanced classes,
as viewed in Fig. 17. The Pro class achieves outstanding met-
rics with 97.51% recall, 98.74% precision, and a high Fscore
of 98.12%, alongside an impressive 99.08% overall accuracy.
The Pre class also performs robustly, with 95.50% recall and
97.87% precision, resulting in an Fscore of 96.67%, indicating
the model’s effectiveness in identifying subtle pathological
features within segmented regions, as shown in Table X.

For the Early class, the recall of 95.59% and precision of
91.86% reflect good early-stage detection performance, which
is vital for clinical diagnosis and intervention. The Benign
class, while showing relatively lower recall (86.09%) compared
to other classes, maintains decent precision (87.25%) and a
respectable Fscore of 86.67%. Overall, the results indicate that
VGG19’s deep features, combined with the SVM classifier, are
highly capable even on segmented images, although segmen-
tation may slightly affect the model’s ability to capture benign
patterns as clearly as it does with original images.

TABLE X. PERFORMANCE METRICS OF VGG19 AND SVM ON THE
SEGMENTED DATA

Class Recall Precision | Accuracy | Specificity | Sensitivity | Fscore
Benign | 86.09% | 87.25% 95.90% 97.70% 86.09% 86.67%
Early 95.59% | 91.86% 96.11% 96.33% 95.59% 93.69%
Pre 95.50% | 97.87% 98.05% 99.13% 95.50% 96.67%
Pro 97.51% | 98.74% 99.08% 99.59% 97.51% 98.12%
g 130
Benign 113 a0
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Fig. 17. Confusion matrix results of VGG19 and SVM on the segmented
data.

F. VGGI9 and KNN

Using VGG19 with KNN on the original leukemia dataset
yields high classification performance for the disease-related
classes, though with slightly reduced performance for benign
cases. The Pro class shows excellent recall (99.59%) and a
strong Fscore (96.97%), indicating high sensitivity to advanced
stage leukemia detection. Similarly, the Pre class achieves ro-
bust results with 97.92% recall and 97.25% precision, leading
to a high Fscore of 97.59% and an overall accuracy of 98.57%,
as shown in Table XI.

The Early class also performs well, with 96.27% recall
and 91.91% precision, producing a solid Fscore of 94.04%.
However, the Benign class lags behind with a recall of
only 78.15%, despite an excellent precision of 96.72%. This
discrepancy suggests that while the model is very confident
when it predicts a sample as benign, it may miss a significant
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number of actual benign cases, potentially due to overlapping
visual features with early leukemia stages. Overall, as shown
in Fig. 18, the VGG19-KNN combination performs reliably on
original data, particularly for detecting leukemia progression
stages, but shows some limitations in distinguishing benign
samples.

TABLE XI. PERFORMANCE METRICS OF VGG19 AND KNN ON THE
ORIGINAL DATA

Class Recall Precision | Accuracy | Specificity | Sensitivity | Fscore
Benign 78.15% 96.72% 96.21% 99.52% 78.15% 86.45%
Early 96.27% 91.91% 96.31% 96.33% 96.27% 94.04%
Pre 97.92% 97.25% 98.57% 98.84% 97.92% 97.59%
Pro 99.59% 94.49% 98.46% 98.10% 99.59% 96.97%
St 118 21 3 8 |7s1%
NN | 42 19 | 2.2% | 0.3% | 0.9% |21.9°
o 4 284 4 a
@ =AY g4% |29.1% | 0.4% | 0.3%
(1]
2 o 4 | 283 | 2 7
= "1 00% | 0.4% |29.0% | 0.2% | 2.1
5
s . [} 0 1
1 00% | 0.0% | 0.1%
91.9 7 94.8%
8.1¢ 5.2%

£S5 S <

<D
Target Class

Fig. 18. Confusion matrix results of VGG19 and KNN on original data.

As shown in Table XII, the combination of VGG19 and
KNN on the segmented data produces good overall classifica-
tion results for leukemia detection, particularly for advanced
stages, though performance for the Benign class remains
relatively low.

The Pro and Pre classes achieve high performance across
all metrics. The Pro class attains 96.68% recall and 95.88%
precision, resulting in a strong Fscore of 96.28% and an
impressive overall accuracy of 98.16%. Similarly, the **Pre**
class shows a recall of 95.85% and precision of 96.52%, with
an Fscore of 96.18% and overall accuracy of 97.75%, con-
firming the model’s reliability in identifying more developed
leukemia stages.

The Early class also performs reasonably well, with
91.86% recall and 88.85% precision, yielding a solid Fscore
of 90.33%. However, the Benign class demonstrates noticeably
weaker performance, with a recall of just 75.50% and an
Fscore of 78.08%. This indicates that while benign samples
are occasionally classified correctly, the model tends to confuse
them with leukemia stages—Ilikely due to subtle differences in
segmented cellular structures.

In summary, as viewed in Fig. 19, VGG19 with KNN
on segmented data excels at detecting leukemia stages but
continues to struggle with benign classification, reflecting a
need for enhanced feature differentiation in non-malignant
samples.

G. Transfer Learning of VGGI9

The results of applying transfer learning using VGG19 on
the original data demonstrate strong performance in classifying
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TABLE XII. PERFORMANCE METRICS OF VGG19 AND KNN ON THE
SEGMENTED DATA

Class Recall Precision | Accuracy | Specificity | Sensitivity | Fscore
Benign | 75.50% | 80.85% 93.44% 96.73% 75.50% 78.08%
Early 91.86% | 88.85% 94.06% 95.01% 91.86% 90.33%
Pre 95.85% | 96.52% 97.75% 98.54% 95.85% 96.18%
Pro 96.68% | 95.88% 98.16% 98.64% 96.68% 96.28%
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Fig. 19. Confusion matrix results of VGG19 and KNN on the segmented
data.

leukemia stages, particularly in advanced cases. The model
shows excellent recall and precision for Pre-leukemia and
Pro-leukemia classes, with Fscores of 98.25% and 96.59%,
respectively, indicating highly reliable detection. The Early
stage class also performs very well, achieving a recall of
97.97% and an Fscore of 93.68%. This reflects the model’s
strong ability to detect various leukemia stages, making it
potentially effective for clinical diagnostic support, as shown
in Table XIII and Fig. 20.

However, the performance on the Benign class is notably
weaker. With a recall of only 73.51%, the model fails to
identify a significant portion of benign cases, even though the
precision is very high at 98.23%. This indicates that while the
model is highly accurate when it predicts a case as benign, it
tends to under-predict this class, likely misclassifying benign
samples as early-stage leukemia. This imbalance is a concern
in clinical settings where distinguishing healthy cases is criti-
cal. Overall, the model favors leukemia detection—desirable in
screening—but would benefit from further tuning to improve
benign classification and reduce unnecessary alarms.

TABLE XIII. PERFORMANCE METRICS OF TRANSFER LEARNING OF
VGG19 ON ORIGINAL DATA

Class Recall Precision | Accuracy Specificity Sensitivity | Fscore

Benign | 73.51% 98.23% 95.70% 99.76% 73.51% 84.09%
Early 97.97% 89.75% 96.00% 95.15% 97.97% 93.68%
Pre 97.23% 99.29% 98.98% 99.71% 97.23% 98.25%
Pro 100.00% | 93.41% 98.26% 97.69% 100.00% 96.59%

The results in Table XIV, Fig. 21 of applying transfer
learning using VGG19 on the segmented data demonstrate
consistently high performance in detecting leukemia classes,
especially Pre and Pro-leukemia . Both classes exhibit high
recall and precision values, with Fscores of 96.90% and
97.10%, respectively. The Early-stage leukemia class also
performs well, achieving a recall of 96.61% and an Fscore of
92.83%. These results suggest that VGG19, when fine-tuned on
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Fig. 20. Confusion matrix results of transfer learning of VGG19 on original
data.

segmented data, is particularly effective at identifying various
stages of leukemia with minimal misclassification.

However, the Benign class remains a challenge. Although
the precision is relatively high at 88.80%, the recall is consid-
erably lower at 73.51%, leading to a modest Fscore of 80.43%.
This pattern indicates the model often misclassifies benign
samples as leukemia, which could lead to false positives in
a clinical setting. Despite this, the overall accuracy remains
strong at 94.47%, showing that segmentation helps maintain
good classification performance, particularly for critical dis-
ease classes, while further optimization is needed to enhance
benign detection.

TABLE XIV. PERFORMANCE METRICS OF TRANSFER LEARNING OF
VGG19 ON THE SEGMENTED DATA

Class Recall Precision | Accuracy | Specificity | Sensitivity | Fscore

Benign | 73.51% | 88.80% 94.47% 98.30% 73.51% 80.43%
Early 96.61% | 89.34% 95.49% 95.01% 96.61% 92.83%
Pre 97.23% | 96.56% 98.16% 98.54% 97.23% 96.90%
Pro 97.10% | 97.10% 98.57% 99.05% 97.10% 97.10%

Output Class

93.3%
6.7%

Target Class

Fig. 21. Confusion matrix results of transfer Learning of VGG19 on the
segmented data.

V. CONCLUSION AND FUTURE WORK

The experimental results demonstrate that the combination
of Alexnet with SVM achieves outstanding classification per-
formance on the leukemia dataset, particularly on the original
(unsegmented) data. This method consistently yields high
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accuracy, precision, recall, and Fscores across all leukemia
stages, with the Pro and Pre classes often reaching near-
perfect metrics. The model’s ability to maintain robust per-
formance—even for the challenging Benign class—highlights
its effectiveness in distinguishing subtle pathological features.
The success of this approach can be attributed to Alexnet’s
powerful feature extraction capabilities combined with SVM’s
strong discriminative classification, making it a highly reliable
pipeline for leukemia detection in medical imaging.

While other methods, such as transfer learning with
VGG19 or hybrid models with KNN, also perform well, they
exhibit more variability, particularly in classifying Benign and
Early-stage cases. Segmentation introduces additional com-
plexity, sometimes reducing performance, but Alexnet with
SVM remains resilient, maintaining high accuracy even on
segmented data. These findings suggest that deep feature
extraction with a discriminative classifier such as SVM is a
superior strategy for leukemia classification, offering a robust
and generalizable solution for clinical applications. Future
work could explore ensemble techniques or further fine-tuning
to enhance benign detection while preserving the model’s
exceptional performance in identifying advanced leukemia
stages.
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