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Abstract—Accurate traffic forecasting remains challenging 

when sensor data are noisy, incomplete, or non-stationary. Recent 

advances in spatio-temporal learning have combined Graph 

Neural Networks (GNNs) with recurrent, convolutional, or 

attention mechanisms to capture spatio-temporal dependencies. 

However, most existing approaches remain largely deterministic 

and rely on fixed or pre-learned adjacency matrices, limiting their 

adaptability when network structures evolve or sensor reliability 

varies. Some methods further stack multiple adjacency matrices 

to represent complex spatial relations, yet still lack explicit 

mechanisms to model uncertainty, resulting in reduced robustness 

under degraded data conditions. This work introduces the Latent 

Topology Graph State-Space Model (LT-GSSM), a probabilistic 

framework designed to enhance robustness and adaptability in 

traffic forecasting. LT-GSSM represents the road network as a 

latent dynamic graph whose structure evolves over-time through 

dynamic adjacency learning based on past hidden states and 

observations, enabling the model to capture evolving spatial 

correlations such as congestion propagation. Temporal 

dependencies are modelled by a nonlinear state-space function 

implemented with a Temporal Convolutional Network (TCN), 

which captures long-range temporal patterns without recurrence. 

The probabilistic state-space formulation explicitly represents 

sensor noise and handles missing data through probabilistic 

estimation inspired by Kalman filtering. By jointly integrating 

dynamic graph learning, explicit noise modelling, and nonlinear 

temporal transitions, LT-GSSM achieves greater stability and 

resilience to data uncertainty. Experiments on SUMO simulations 

and real-world PeMS datasets show that LT-GSSM consistently 

outperforms static and adaptive-graph models, providing a strong 

foundation for robust spatio-temporal forecasting under 

uncertain conditions. 
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I. INTRODUCTION 

Despite major advances in artificial intelligence, spatio-
temporal learning remains challenging due to complex spatial 
dependencies, dynamic temporal patterns, and inherent data 
uncertainty. These difficulties are particularly evident in traffic 
forecasting, where large-scale sensor data are often noisy, 
incomplete, and non-stationary [1]. 

Traditional prediction models perform well under ideal 
conditions but lack explicit mechanisms to handle noise, missing 
data, or uncertainty, leading to poor stability in real 
deployments. Moreover, traffic networks are non-Euclidean, 
governed by road connectivity rather than distance [2], and their 

correlations evolve dynamically with congestion, incidents, or 
weather [3,4]. 

Recent advances in spatio-temporal graph architectures—
such as diffusion-based DCRNN [5], recurrent T-GCN [6], and 
attention-driven ASTGCN or ST-Transformer [7,8]—have 
improved prediction accuracy However, deterministic graph 
adaptation remains fundamentally limited under noisy or 
incomplete observations, as it cannot represent the structural 
uncertainty induced by sensor degradation or missing data . 

To address these limitations, we propose the Latent 
Topology Graph State-Space Model (LT-GSSM), a 
probabilistic framework for robust and adaptive traffic 
forecasting. Unlike conventional adaptive GNNs (e.g., AGCRN, 
DGCRN), where adjacency updates depend on static node 
embeddings or deterministic functions, LT-GSSM learns a 
latent dynamic graph, where the adjacency is treated as a state-
conditioned latent variable rather than a deterministic function 
of node embeddings. This enables joint modeling of temporal 
and structural uncertainty, resulting in a self-evolving spatio-
temporal representation that better reflects real-world non-
stationarity. 

The adjacency matrix 𝐴𝑡evolves from past hidden states and 
observations, allowing the model to capture time-varying spatial 
correlations such as congestion propagation or structural shifts. 
Temporal dependencies are modeled by a nonlinear state-space 
transition using a Temporal Convolutional Network (TCN), 
which captures long-range patterns without recurrence. The 
probabilistic state-space formulation explicitly represents 
process and observation noise, enabling robust estimation under 
sensor degradation or missing data—an approach inspired by 
Kalman filtering. 

The main contributions of this work are as follows: 

• A unified probabilistic graph state-space formulation, in 
which both temporal dynamics and graph structure are 
modelled within a single latent state-space framework, 
rather than treating adaptive graphs and temporal 
uncertainty as separate components. 

• State-conditioned latent topology modelling, where the 
adjacency matrix is inferred as a latent random variable 
conditioned on hidden states, instead of being 
deterministically parameterized from node embeddings 
as in existing adaptive GNNs. 

• Explicit modeling of process and observation uncertainty 
within the state-space dynamics, enabling robust spatio-



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

84 | P a g e  
www.ijacsa.thesai.org 

temporal forecasting under sensor noise and missing 
data, without relying on deterministic graph updates. 

The remainder of this paper is organized as follows: 
Section II reviews related work on spatio-temporal and 
probabilistic models; Section III describes the LT-GSSM 
methodology; Section IV presents experimental results and 
robustness analyses; Discussion is given in Section V and 
Section VI concludes with future research directions. 

II. RELATED WORKS 

Traffic forecasting is a complex spatio-temporal task shaped 
by irregular topologies, non-stationary dynamics, and noisy 
sensor conditions. 

Classical time-series models such as ARIMA and VAR [7,8] 
capture temporal patterns but ignore spatial correlations among 
sensors. Early machine-learning methods [9] improved 
flexibility but struggled with high-dimensional dependencies 
across the road network. 

Deep learning advanced the field through Recurrent Neural 
Networks (RNNs) such as LSTM and GRU [10,11], which 
model temporal sequences but process each sensor 
independently. Convolutional Neural Networks (CNNs) [12] 
extended modeling to spatial grids, yet their Euclidean structure 
limits generalization to real road networks [13]. 

To overcome these limitations, Graph Neural Networks 
(GNNs) [14] model traffic as a graph, where nodes represent 
sensors and edges capture road connectivity. Hybrid spatio-
temporal architectures such as DCRNN, T-GCN, and attention-
based models like ASTGCN [15] and ST-Transformer [16] 
jointly learn spatial and temporal dependencies. While accurate, 
these models assume fixed or pre-learned adjacency matrices, 
neglecting dynamic spatial relationships that vary with 
congestion, incidents, or weather. 

Recent advances introduced adaptive and dynamic graph 
learning, including AGCRN [17], DGCRN [18], and RT-GCN 
[19], which update adjacency matrices using learned node 
embeddings or Gaussian-based convolutions. These designs 
improve flexibility but remain deterministic, failing to model 
uncertainty or stochastic graph evolution explicitly. 

Parallel progress in probabilistic state-space models (SSMs) 
such as KalmanNet [20], Deep Kalman Filters [21], and Neural 
State-Space Models [22] has reintroduced uncertainty 
estimation and latent dynamics into deep learning. However, 
these frameworks are typically temporal only, lacking explicit 
graph reasoning. Attempts to combine GNNs with probabilistic 
methods, such as Probabilistic GNNs [23] and Graph 
Variational Filters [24], remain computationally costly and 
seldom applied to large-scale traffic networks. 

In summary, prior models either: 

• Learn dynamic graphs without probabilistic treatment of 
noise and uncertainty, or 

• Apply probabilistic state-space reasoning without spatial 
modelling. 

This gap motivates our Latent Topology Graph State-Space 
Model (LT-GSSM), a unified probabilistic framework that 

jointly models time-varying graph topology and temporal 
dynamics. By treating the adjacency 𝐴𝑡 as a latent variable 
evolving from hidden states and observations, LT-GSSM 
captures both structural and stochastic uncertainty, achieving 
robust forecasting under noisy, incomplete, and dynamically 
changing conditions. 

III. METHODOLOGY 

A. Data Simulation and Preparation 

A key element of our methodology is the use of both 
synthetic and real-world datasets to assess robustness. Real data 
often suffers from partial sensor coverage and measurement 
noise, whereas synthetic data generated with SUMO 
(Simulation of Urban Mobility) [24] allows full control over 
network coverage, traffic conditions, and injected noise. This 
controlled environment enables systematic evaluation of our 
GSSM under diverse and challenging scenarios. 

1) Synthetic dataset (SUMO): We generated a two-month 

traffic dataset using SUMO for the Outaouais region near 

Ottawa (Fig. 1), based on real road networks extracted from 

OpenStreetMap. Traffic flows were dynamically managed 

through TraCI (Traffic Control Interface) [25] to emulate 

realistic conditions such as peak-hour congestion and weekend 

traffic reduction. Vehicle counts were aggregated into 5-minute 

intervals, following common benchmarking practices [26, 27]. 

The chosen duration aligns with established datasets such as 
METR-LA and PEMS-BAY [14, 15], which span 2–4 months. 
This ensures a balance between temporal coverage and 
computational efficiency, while remaining comparable to 
standard baselines. To assess robustness, we generated several 
perturbed versions of the SUMO dataset: 

• Gaussian noise injected at 5–30 % levels to simulate 
sensor errors. 

• Reduced sensor coverage through three controlled 
scenarios: 

o Sensors limited to main roads, 

o Random removal of 20 % of sensors, and 

o Random removal of 50 % of sensors. 

These perturbations make it possible to study the model’s 
resilience to measurement uncertainty and coverage sparsity, 
establishing SUMO as an effective robustness benchmark. 

2) Validation of realism: To validate the realism of our 

synthetic dataset, we compared key traffic patterns with re-al-

world datasets such as PEMS08 and UTD19 [28]. Despite 

differences in absolute magnitudes, our dataset reproduces 

essential traffic behaviors observed in real-world da-ta, 

including: 

• morning and evening peak-hour congestion, 

• sharp reductions in weekend traffic, and 

• daily distribution patterns. These similarities, illustrated 
in Fig. 2 and Fig. 3, confirm that SUMO-based data 
capture fundamental traffic dynamics. 
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(a) Selected road network. 

 
(b) Traffic flow visualization 

Fig. 1. Road network and traffic flow visualization: (a) Selected road 

network, (b)Traffic flow visualization. 

 
Fig. 2. Comparison of hourly traffic density trends: our dataset vs. Real-

world datasets. 

This SUMO-based dataset thus provides a reliable testbed 
for assessing the performance and robustness of GSSM under 
controlled scenarios of noise and sensor sparsity, 
complementing evaluations on real-world datasets. 

 
Fig. 3. Weekend traffic density comparison: our dataset vs. Real-world 

datasets. 

B. Spatio-Temporal Data Modeling and Representation 

To capture spatio-temporal dependencies in traffic data, we 
represent all datasets as three-dimensional tensors X ∈ 
ℝ(T×E×V), where T denotes the number of time steps (e.g., 5-
minute intervals), E the number of road segments or sensors, and 
V the set of traffic variables such as vehicle density and average 
speed. This tensor format enables the joint modeling of temporal 
dynamics, spatial interactions, and multivariate dependencies, 
and is well-suited for graph-based neural architectures [29, 30]. 

Complementing this tensor structure, we construct an initial 
spatial adjacency matrix 𝐴0to encode the physical connectivity 
between road segments. This matrix serves as a topological prior 
— it provides an initial structural representation of the network, 
which will later be refined dynamically during model training 
based on learned latent representations. Thus, while 𝐴0defines 
the initial spatial configuration, the model does not assume a 
fixed topology, allowing subsequent updates to better capture 
evolving spatio-temporal correlations. The method used for 
constructing 𝐴0differs depends on the dataset: 

• SUMO (Synthetic Data): Since the simulated Outaouais 
network is relatively small and geographically localized, 
distances between connected roads are short and highly 
heterogeneous. To preserve strong locality while 
avoiding dense, fully connected graphs, we define 
adjacency entries inversely proportional to the physical 
distances between connected segments. This choice 
ensures that immediate neighbors exert stronger 
influence, reflecting realistic propagation of congestion 
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within a compact road network. This ensures that spatial 
relationships reflect real-world topology rather than mere 
Euclidean proximity [31]. 

Our adjacency matrix has the following structure: 

𝐴0 = 

 edge1 edge2 ⋯ edge𝑁

edge1 0
1

𝑑1,2
⋯

1

𝑑1,𝑁

edge2

1

𝑑2,1
0 ⋯

1

𝑑2,𝑁

⋮ ⋮ ⋮ ⋱ ⋮

edge𝑁

1

𝑑𝑁,1

1

𝑑𝑁,2

⋯ 0

 

• PEMS Datasets These datasets cover larger and more 
heterogeneous urban areas with complex traffic flows. 
To model smooth spatial dependencies while avoiding 
overly dense connections, we adopt a Gaussian kernel 
approach [14, 15], computing adjacency as: 

𝐴𝑖𝑗  = exp(− (
𝑑𝑖𝑗

𝜎
)

2
  )                      (1) 

where,  𝑑𝑖𝑗 is the physical distance between sensors i and j, 

and σ is set to 1000 meters. This distinction reflects the different 
scales and characteristics of the networks: SUMO enables 
precise control and sparse adjacency, whereas PEMS requires 
soft, distance-based weighting to capture complex spatial 
patterns without excessive graph density. This adjacency matrix 
serves as an initial structural prior reflecting geographic 
connectivity. During LT-GSSM training, this matrix evolves 
into a latent, data-driven adjacency 𝐴𝑡that adapts to changing 
spatial correlations and temporal patterns in traffic dynamics. 

C. Hybrid Graph–State–Space Model with Latent Topology 

(LT-GSSM) 

The main innovation of this work is the integration of a 
latent, dynamically evolving graph topology within a state–
space framework—a dimension rarely addressed in spatio-
temporal modeling. 

Unlike prior adaptive GNNs such as AGCRN [17] and 
DGCRN [18], which learn static or semi-static adjacency 
matrices, the proposed LT-GSSM continuously updates its 
graph structure during both training and inference. 

The model begins with a static prior 𝐴0, derived from spatial 
proximity (e.g., inverse distance or Gaussian similarity). As 
learning progresses, the adjacency matrix 𝐴𝑡is inferred from the 
previous hidden state ℎ𝑡−1 , coupling spatial evolution with 
temporal reasoning. 

Unlike adaptive GNNs such as AGCRN or DGCRN, where 
adjacency updates are deterministic functions of node 
embeddings, LT-GSSM treats topology evolution as part of the 
latent state dynamics under uncertainty. 

At each time step, LT-GSSM performs four operations: 

• Latent topology inference — infers 𝐴𝑡from ℎ𝑡−1; 

• Spatial feature extraction — applies GCN using 𝐴𝑡and 
input 𝑋𝑡; 

• Temporal modeling — updates ℎ𝑡 via a Temporal 
Convolutional Network (TCN). 

• Topology update — refines 𝐴𝑡+1using the new latent 
state. 

This feedback loop makes the graph self-evolving, allowing 
spatial dependencies to adapt dynamically to non-stationary or 
uncertain conditions. By linking latent state evolution to graph 
adaptation, LT-GSSM (Fig. 4) jointly models spatial, temporal, 
and structural uncertainty, achieving a robust and adaptive 
representation for real-world spatio-temporal forecasting. 

 
Fig. 4. Overview of LT-GSSM architecture. 

1) Temporal layer — state-space model and uncertainty 

management: The LT-GSSM adopts a probabilistic state–space 

formulation in which latent states evolve under dynamic graph 

structures and stochastic perturbations. This allows the model 

to jointly capture temporal dependencies and uncertainty due to 

sensor noise, missing data, or non-stationary traffic.Two noise 

sources are modeled: transition uncertainty (latent fluctuations 

in dynamics) and observation uncertainty (measurement errors 

and delays). 

In a classical linear SSM: 

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡 + 𝑤𝑡, 𝑦𝑡 = 𝐻ℎ𝑡 + 𝑣𝑡     () 

where, 𝑤𝑡and 𝑣𝑡 denote Gaussian process and observation 
noise. To handle nonlinear and time-varying dynamics, the LT-
GSSM replaces fixed matrices with a Temporal Convolutional 
Network (TCN): 

ℎ𝑡 = TCN(𝑍1:𝑡) + 𝑤𝑡, 𝑤𝑡 ∼ 𝒩(0, 𝜎𝑡
2𝐼)      () 

The TCN serves as the nonlinear transition function, 
capturing long-range temporal dependencies without recurrence 
while preserving probabilistic uncertainty through 𝑤𝑡. 

2) Integration with dynamic graph topology: Temporal 

evolution is explicitly coupled with a time-varying 

adjacency.From the previous latent state, node embeddings are 

obtained via a learnable projection: 

𝐸𝑡 = 𝜙𝐸(ℎ𝑡−1),𝐸𝑡 ∈ ℝ𝑉×𝑑      () 

Pairwise similarities define a latent affinity matrix: 

𝑆𝑡 =
𝐸𝑡𝐸𝑡

⊤

√𝑑
   () 

which is row-normalized to yield the dynamic adjacency: 

𝐴𝑡 = softmax(𝑆𝑡)          () 
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This attention-like normalization ensures each row forms a 
probability distribution over neighbors, making the graph 
context-dependent rather than fixed. The updated 𝐴𝑡guides the 
spatial layer, and the resulting latent state ℎ𝑡generates 𝐴𝑡+1, 
creating a feedback loop where topology and dynamics co-
evolve. 

3) Graph Convolutional Network (GCN): At each step, the 

GCN extracts spatial dependencies from 𝑋𝑡using the dynamic 

𝐴𝑡: 

𝑍𝑡 = 𝐷̃𝑡
−1/2𝐴̃𝑡𝐷̃𝑡

−1/2𝑋𝑡𝑊GCN               () 

where 𝐴̃𝑡 = 𝐴𝑡 + 𝐼𝑉adds self-connections, 𝐷̃𝑡 is the degree 
matrix, and 𝑊GCNare learnable weights. A normalization layer 
stabilizes training, producing spatially filtered features 𝑍𝑡 that 
encode latent correlations among sensors. 

4) Unified spatio-temporal formulation: The LT-GSSM 

integrates both modules within a unified probabilistic 

transition: 

ℎ𝑡 = 𝑇𝐶𝑁(𝐺𝐶𝑁(𝑋𝑡, 𝐴𝑡)) + 𝑤𝑡, 𝑤𝑡 ∼ 𝒩(0, 𝜎𝑡
2𝐼)        (8) 

and the observation equation: 

𝑦𝑡 = 𝐻ℎ𝑡 + 𝑣𝑡 , 𝑣𝑡 ∼ 𝒩(0, 𝜏𝑡
2𝐼)      () 

This formulation fuses dynamic spatial reasoning and 
nonlinear temporal modeling while explicitly quantifying 
uncertainty, yielding a robust framework for spatio-temporal 
forecasting under noisy and evolving conditions. 

IV. RESULTS 

A. Dataset Summary 

We evaluated the proposed LT-GSSM and all baseline 
models on both synthetic (SUMO) and real-world (PeMS) 
datasets, which differ in scale, variability, and network 
complexity. 

The SUMO dataset provides a controlled environment to 
systematically assess robustness to noise and sensor sparsity, 
while PeMS datasets reflect real-world traffic dynamics across 
large urban regions. This dual setup ensures that robust trends 
observed in simulation can be validated under realistic, 
heterogeneous conditions. 

All datasets span 2–4 months at 5-minute intervals, with 
traffic flow as the key variable. Table I summarizes the main 
characteristics of the synthetic (SUMO) and real-world (PeMS) 
datasets used in this study, including network size, temporal 
resolution, and observation period. 

TABLE I.  SUMMARY OF DATASETS USED IN THIS STUDY 

Dataset Nodes Time Steps Period 

PeMSD03 358 26,208 09/2018–11/2018 

PeMSD04 307 16,992 01/2018–02/2018 

PeMSD07 883 28,224 05/2017–08/2017 

PeMSD08 170 17,856 07/2016–08/2016 

SUMO 127 16,992 Simulated (2 months) 

B. Model Selection and Architectural Variants 

We compared LT-GSSM against a broad spectrum of spatio-
temporal architectures, ensuring fair and representative 
evaluation: 

• Classical temporal baselines: ARIMA, VAR, and 
BiLSTM. 

• Hybrid sequential models: LSTM–CNN, LSTM–GCN 
(T-GCN), and GRU-based variants. 

• Convolutional models: 3D CNNs capturing local spatio-
temporal dependencies. 

• Attention and transformer architectures: ST-
Transformer, attention-based GCNs. 

• Diffusion and robustness models: DCRNN and RT-
GCN, integrating diffusion or Gaussian convolutions for 
stability. 

• Adaptive graph model: AGCRN as a dynamic-graph 
baseline using learnable node embeddings. 

• Proposed model: LT-GSSM introduces a latent, 
probabilistic topology derived from hidden states, 
allowing state-driven graph evolution rather than 
deterministic embedding updates. 

All baselines were re-implemented according to their 
original papers, with minimal adaptations for uniform 
preprocessing and input size. This guarantees that performance 
differences stem from model design, not implementation bias. 

C. Experimental Framework and Hyperparameter Sensitivity 

All models were trained under identical preprocessing, input 
windows (10 time steps), and forecast horizons (10 time steps, 
≈50 minutes) to ensure fair comparison. Hyperparameters for 
each baseline—such as hidden dimensions, learning rates, and 
kernel sizes—were initialized following their original 
publications and fine-tuned within reported ranges. The LT-
GSSM used a hidden size of 64–128, learning rate 0.0005–
0.005, and learnable noise parameters to capture both process 
and observation uncertainty. This consistent setup guarantees 
that observed performance differences reflect architectural 
robustness rather than arbitrary tuning. 

The following experimental settings and sensitivity analyses 
were considered to ensure fair comparison and to assess the 
robustness of LT-GSSM: 

• We adopted a forecasting horizon of 10 time steps (≈ 50 

minutes), a common setting in prior traffic studies [32–
35]. 

• A hyperparameter sensitivity analysis was conducted 
exclusively on LT-GSSM, focusing on the hidden state 
dimension and the learnable noise parameter, as both 
directly affect model capacity and robustness. 

• Hidden dimensions from 64 to 128 yielded the most 
stable results: smaller sizes caused underfitting, whereas 
larger ones amplified noise and led to overfitting.For the 
noise parameter, learnable variance consistently 

converged near σ² ≈ 0.2, outperforming fixed settings. 
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• Low fixed values made the model too rigid, while high 
ones introduced instability. The adaptive formulation 
improved convergence and reduced RMSE by about 1–2 
%, confirming that dynamic noise learning enhances 
robustness under noisy or incomplete data. 

Fig. 5 summarizes these trends, showing steady performance 
for hidden sizes 64–128 and optimal stability when the learnable 
noise variance converges around 0.2. 

 

Fig. 5. Sensitivity of LT-GSSM to hidden state dimension (top) and noise variance σ² (bottom) across five datasets. 

D. Baseline Performance Comparison 

Table II reports the average results over seven runs with 
different random seeds. Variance remained below 2 %, 
confirming the stability and reproducibility of all experiments, 
and paired t-tests showed that LT-GSSM’s improvements are 
statistically significant (p < 0.05). 

Across both SUMO and PeMS datasets, LT-GSSM 
consistently achieves the lowest error among all models. 
Compared to classical temporal baselines (ARIMA, VAR), it 
reduces RMSE by 35–40 % (≈ 5.8 points on SUMO, ≈ 6.2 on 
PeMSD04). While recurrent models like BiLSTM (avg RMSE 
≈ 22.1) perform better, they remain limited by the absence of 
spatial modeling. Hybrid spatio-temporal models (LSTM-GCN, 
GCN-GRU) further cut RMSE by ≈ 20 % on average, 

confirming the benefit of explicit spatial reasoning. 3D-CNN 
and LSTM-CNN improve temporal baselines but generalize 
poorly on irregular networks. Attention-based models show 
mixed behavior: ST-Transformer performs well on large 
datasets but underutilizes short input windows, while Attention-
GCN offers only modest gains. Robust baselines like RT-GCN 
and AGCRN deliver strong accuracy under normal conditions 
but slightly trail LT-GSSM, especially on SUMO and PeMS08. 

Overall, LT-GSSM’s integration of a probabilistic state-
space formulation with dynamic latent topology learning yields 
the best accuracy and stability across all settings, outperforming 
recent robust graph models while remaining computationally 
efficient. This establishes LT-GSSM as a strong benchmark for 
reliable spatio-temporal forecasting under noisy or incomplete 
data. 

TABLE II.  SUMMARY OF BASELINE MODELS AND EXPERIMENTAL 

Model 
SUMO 

RMSE 

SUMO 

MAE 

PeMS03 

RMSE 

PeMS03 

MAE 

PeMS04 

RMSE 

PeMS04 

MAE 

PeMS07 

RMSE 

PeMS07 

MAE 

PeMS08 

RMSE 

PeMS08 

MAE 

ARIMA 35.23 22.57 46.80 31.26 45.32 31.42 50.98 35.16 40.32 29.64 

VAR 24.29 13.80 38.26 23.28 38.61 23.19 69.75 47.14 28.12 20.97 

BiLSTM 20.29 11.76 31.09 19.13 36.87 22.72 43.12 25.90 31.39 22.12 

GCN-GRU 16.67 8.93 26.52 15.67 28.48 15.91 33.15 22.24 24.73 14.15 

LSTM-GCN 16.72 8.98 26.39 15.42 28.45 15.76 32.40 21.19 24.70 14.25 

ST-Transformer 17. 98 9.31 24.16 14.11 30.74 16.32 35.23 23.40 24.95 14.02 

Attention GCN 16.68 8.91 25.06 14.55 28.49 15.54 32.78 21.09 25.06 15.19 

LSTM-CNN 17.73 9.83 29.15 17.38 28.72 15.5 36.93 22.80 27.76 15.9 

3D-CNN 19. 56 10.1 30.33 17.89 30.94 17.32 38.64 24.18 28.34 17.63 

STGCN 19. 99 9.26 28.17 19.95 30.23 16.45 38.12 24.45 26.91 15. 24 

DCRNN 17.3 9.26 27.89 18.23 30.68 16.6 34.57 22.80 24.3 15.34 

RT-GCN 16.90 8.90 26.80 16.25 28.55 15.60 31.40 21.40 24.80 14.40 

AGCRN 16.73 9.11 26.82 16.45 29.72 16.93 31.28 22.51 24.76 15.52 

LTGSSM 16.11 8.27 23.51 15.63 28.01 14.12 31.17 21.49 23.96 14.24 
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E. Ablation Study 

To assess the contribution of each module within LT-GSSM, 
four ablation variants were evaluated: 1) a state-space only 
configuration (without GCN), 2) a classical SSM-GCN using 
linear temporal transitions instead of a TCN, 3) a noise-free 
variant without explicit process and observation noise, and 4) a 
comparison between static and dynamic adjacency learning. Fig. 
6 summarizes the results across all datasets. 

The SSM-only configuration already achieved competitive 
accuracy, outperforming purely temporal models such as LSTM 
and GRU on several datasets. This confirms that the recursive 
state-space formulation and process noise terms provide strong 
temporal modeling capacity, even without explicit spatial 
reasoning. 

Replacing the nonlinear TCN with a linear update led to a 
consistent increase in error (≈ 20% higher RMSE on average), 
indicating that nonlinear temporal transitions are crucial for 
capturing complex latent traffic dynamics. Similarly, removing 
explicit noise modeling degraded robustness under noisy or 
incomplete conditions, with the full LT-GSSM achieving up to 
25% lower RMSE compared to the deterministic version. 

Finally, dynamic adjacency learning further improved 
performance relative to static topologies, reducing RMSE by 
approximately 10% across datasets. This confirms that allowing 
the graph structure to evolve with latent state dynamics better 
captures non-stationary spatial correlations such as congestion 
propagation or sensor drift. 

 
(a) 

 
(b) 

Fig. 6. RMSE and MAE comparison of LT-GSSM ablation variants across 

SUMO and PeMS datasets. 

Fig. 6 and Fig. 7 illustrate these trends: Fig. 6 shows RMSE 
and MAE across ablation variants, while Fig. 7 visualizes 
relative performance gains over the static baseline. Overall, each 
component—state-space recursion, nonlinear transition, explicit 

noise modeling, and dynamic topology—contributes 
significantly to the robustness and accuracy of LT-GSSM, with 
the complete model consistently achieving the best balance 
across datasets. 

 

Fig. 7. Relative performance gain (%) of LT-GSSM components compared 

to the static baseline. 

V. DISCUSSION 

A. Effect of Sensor Placement and Noise on Spatiotemporal 

Prediction 

We used the custom SUMO network to evaluate how sensor 
placement and noise affect forecasting robustness. Two practical 
scenarios were simulated: 1) prioritizing sensors on major 
arterial roads, and 2) reducing overall sensor coverage to 50 % 
and 20 %. 

Concentrating sensors along main corridors improved 
accuracy by capturing structured, correlated traffic flows, 
whereas reduced coverage increased errors across all models. 
Nevertheless, LT-GSSM remained the most stable, confirming 
that its dynamic adjacency learning effectively adapts spatial 
correlations even when observations are sparse. 

By updating its graph topology from latent state 
representations, the model can infer missing spatial 
dependencies, rather than relying solely on static connectivity. 
Comparable resilience was observed in RT-GCN and AGCRN, 
yet LT-GSSM showed the smallest degradation under both 
sensor loss and noisy data, demonstrating the strength of its joint 
spatio-temporal uncertainty modeling. 

Fig. 8 illustrates the impact of sensor coverage on prediction 
accuracy. 

 
Fig. 8. Impact of sensor coverage on the performance of spatiotemporal 

prediction models. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

90 | P a g e  
www.ijacsa.thesai.org 

B.  Robustness Under Gaussian Noise 

Beyond spatial sparsity, robustness was also tested under 
Gaussian sensor noise injected into traffic flow data at three 
levels (5 %, 15 %, 30 %). Noise was applied selectively to 
subsets of sensors, simulating real detector failures. As 
expected, higher noise levels increased errors for all models 
(Table III), but LT-GSSM exhibited only a ≈ 2–7 % RMSE 
increase at 30 % noise—significantly lower than competing 
architectures. 

This resilience stems from its explicit uncertainty modeling: 
the transition function captures latent dynamic fluctuations, 
while the observation model accounts for measurement errors, 
allowing LT-GSSM to maintain stable performance even under 
severe data corruption. 

TABLE III.  IMPACT OF GAUSSIAN NOISE LEVELS ON MODEL PREDICTION 

ERRORS 

Model 
SUMO 

(5%) 
15% 30% 

PeMS08 

(5%) 
15% 30% 

GCN-GRU 17.5 18.0 18.4 25.2 25.7 26.1 

LSTM-GCN 17.1 17.8 18.2 25.1 25.6 26.0 

ST-

Transformer 
17.6 18.3 18.8 25.5 26.1 26.6 

Attention-

GCN 
17.2 17.8 18.3 25.5 25.9 26.4 

LSTM-CNN 17.7 18.4 18.9 28.2 28.8 29.3 

3D-CNN 18.1 18.7 19.2 28.9 29.4 29.9 

STGCN 17.5 18.2 18.7 27.3 27.8 28.3 

DCRNN 17.3 17.9 18.3 24.8 25.3 25.8 

RT-GCN 16.3 17.1 17.9 25.3 25.9 26.5 

AGCRN 17.4 17.6 18.2 25.0 25.4 25.9 

LT-GSSM 

(ours) 
16.2 16.8 17.4 24.2 24.6 25.1 

C. Computational Complexity and Execution Time 

LT-GSSM maintains complexity comparable to standard 
spatio-temporal GNNs. The TCN-based temporal layer replaces 
recurrent cells, reducing sequential dependencies and allowing 
efficient parallelization with per-step cost 𝑂(𝐻2 × 𝐿𝑡) (with 
𝐿𝑡  ≤  3 ). Dynamic adjacency learning adds a manageable 
𝑂(𝑉2)term, negligible for medium-sized networks (hundreds of 
sensors). Overall, LT-GSSM offers a better trade-off between 
robustness and cost than diffusion- or attention-based models, 
which scale as 𝑂(𝑇2𝑑).To validate this analysis, we measured 
execution times under identical hardware and software 
conditions (Intel i7-10700 CPU, 32 GB RAM, NVIDIA GTX 
1660 GPU, PyTorch 2.0, CUDA 11.8). 

Using a batch size of 32, input length T=12, and hidden size 
H=64, LT-GSSM consistently trained 10–20% faster per epoch 
than recurrent baselines such as LSTM-GCN, GRU-GCN, and 
DCRNN on the PeMS04 and PeMS08 datasets. 

These gains arise mainly from the parallelizable temporal 
convolutions and the absence of recurrent backpropagation. 

Compared to heavier architectures such as ST-Transformer, 
Attention-GCN, or 3D-CNN, LT-GSSM maintained a 

lightweight execution profile, ranking among the most efficient 
models overall. 

Although inference latency was not extensively 
benchmarked, average forward-pass times remained below 100 
ms. per prediction step, indicating that LT-GSSM can operate 
effectively in near real-time forecasting scenarios without 
sacrificing accuracy or stability. Table IV reports the average 
training time per epoch for LT-GSSM and competing spatio-
temporal models under identical hardware and software settings. 

TABLE IV.  AVERAGE TRAINING TIME PER EPOCH ACROSS 

SPATIOTEMPORAL MODELS 

Model Avg. Time per Epoch (s) 

ST-GCN (parallel) 235.2 

ST-Transformer 168.7 

Attention-GCN 144.5 

3D CNN 129.1 

DCRNN 117.3 

RT-GCN 110.5 

AGCRN 104.2 

LTGSSM (ours) 99.8 

LSTM-GCN 96.7 

GRU-GCN 96.2 

LSTM-CNN 70.3 

VI. CONCLUSION 

This paper presented the Latent Topology Graph State-
Space Model (LT-GSSM), a probabilistic spatio-temporal 
framework that dynamically learns graph structures from latent 
representations rather than relying on fixed connectivity. By 
treating topology evolution as part of the latent state dynamics, 
LT-GSSM reframes graph adaptation itself as an uncertain latent 
process, enabling robust modeling of non-stationary spatial 
dependencies under noise and missing data. 

The main scientific contribution of this work lies in 
explicitly modeling spatial structure uncertainty within a state-
space formulation, rather than relying on deterministic or 
heuristically updated graph topologies. This perspective 
provides a principled explanation for robustness in spatio-
temporal forecasting, complementing existing dynamic-graph 
architectures. 

Experiments on SUMO and PeMS datasets confirm that this 
formulation yields stable and adaptive forecasting performance 
even with reduced sensor coverage or high noise levels, while 
maintaining a computational cost comparable to standard GCN-
based hybrids (e.g., LSTM-GCN, AGCRN), making it suitable 
for practical deployment in intelligent transportation systems. 

Despite these advantages, dynamic adjacency learning 
introduces a quadratic dependency in the number of nodes, 
which may require sparsification strategies for very large-scale 
networks. Robustness was evaluated under commonly adopted 
noise and missing-data settings, and further extensions are left 
for future work. 
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Beyond traffic forecasting, the proposed modeling paradigm 
is applicable to a broader class of spatio-temporal problems 
involving evolving relational structures, such as sensor 
networks, urban monitoring, and environmental dynamics. 
Future work will investigate scalability improvements, 
alternative uncertainty models, and extensions to other spatio-
temporal domains. 
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