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Abstract—Accurate traffic forecasting remains challenging
when sensor data are noisy, incomplete, or non-stationary. Recent
advances in spatio-temporal learning have combined Graph
Neural Networks (GNNs) with recurrent, convolutional, or
attention mechanisms to capture spatio-temporal dependencies.
However, most existing approaches remain largely deterministic
and rely on fixed or pre-learned adjacency matrices, limiting their
adaptability when network structures evolve or sensor reliability
varies. Some methods further stack multiple adjacency matrices
to represent complex spatial relations, yet still lack explicit
mechanisms to model uncertainty, resulting in reduced robustness
under degraded data conditions. This work introduces the Latent
Topology Graph State-Space Model (LT-GSSM), a probabilistic
framework designed to enhance robustness and adaptability in
traffic forecasting. LT-GSSM represents the road network as a
latent dynamic graph whose structure evolves over-time through
dynamic adjacency learning based on past hidden states and
observations, enabling the model to capture evolving spatial
correlations such as congestion propagation. Temporal
dependencies are modelled by a nonlinear state-space function
implemented with a Temporal Convolutional Network (TCN),
which captures long-range temporal patterns without recurrence.
The probabilistic state-space formulation explicitly represents
sensor noise and handles missing data through probabilistic
estimation inspired by Kalman filtering. By jointly integrating
dynamic graph learning, explicit noise modelling, and nonlinear
temporal transitions, LT-GSSM achieves greater stability and
resilience to data uncertainty. Experiments on SUMO simulations
and real-world PeMS datasets show that LT-GSSM consistently
outperforms static and adaptive-graph models, providing a strong
foundation for robust spatio-temporal forecasting under
uncertain conditions.

Keywords—Traffic forecasting; graph neural networks; state-
space models; latent topology; dynamic adjacency learning; spatio-
temporal modeling; noise and missing data robustness; probabilistic
modeling

1. INTRODUCTION

Despite major advances in artificial intelligence, spatio-
temporal learning remains challenging due to complex spatial
dependencies, dynamic temporal patterns, and inherent data
uncertainty. These difficulties are particularly evident in traffic
forecasting, where large-scale sensor data are often noisy,
incomplete, and non-stationary [1].

Traditional prediction models perform well under ideal
conditions but lack explicit mechanismsto handlenoise, missing
data, or uncertainty, leading to poor stability in real
deployments. Moreover, traffic networks are non-Euclidean,
governed by road connectivity rather than distance [2], and their

correlations evolve dynamically with congestion, incidents, or
weather [3,4].

Recent advances in spatio-temporal graph architectures—
such as diffusion-based DCRNN [5], recurrent T-GCN [6], and
attention-driven ASTGCN or ST-Transformer [7,8]—have
improved prediction accuracy However, deterministic graph
adaptation remains fundamentally limited under noisy or
incomplete observations, as it cannot represent the structural
uncertainty induced by sensor degradation or missing data.

To address these limitations, we propose the Latent
Topology Graph State-Space Model (LT-GSSM), a
probabilistic framework for robust and adaptive traffic
forecasting. Unlike conventional adaptive GNNs (e.g., AGCRN,
DGCRN), where adjacency updates depend on static node
embeddings or deterministic functions, LT-GSSM leams a
latent dynamic graph, where the adjacency is treated as a state-
conditioned latent variable rather than a deterministic function
of node embeddings. This enables joint modeling of temporal
and structural uncertainty, resulting in a self-evolving spatio-
temporal representation that better reflects real-world non-
stationarity.

The adjacency matrix A,evolves from past hidden states and
observations, allowingthe model to capture time-varying spatial
correlations such as congestion propagation or structural shifts.
Temporal dependencies are modeled by a nonlinear state-space
transition using a Temporal Convolutional Network (TCN),
which captures long-range patterns without recurrence. The
probabilistic state-space formulation explicitly represents
process and observation noise, enabling robust estimation under
sensor degradation or missing data—an approach inspired by
Kalman filtering.

The main contributions of this work are as follows:

e A unified probabilistic graph state-space formulation, in
which both temporal dynamics and graph structure are
modelled within a single latent state-space framework,
rather than treating adaptive graphs and temporal
uncertainty as separate components.

e State-conditioned latent topology modelling, where the
adjacency matrix is inferred as a latentrandom variable
conditioned on hidden states, instead of being
deterministically parameterized from node embeddings
as in existing adaptive GNNs.

e Explicitmodelingofprocess and observation uncertainty
within the state-space dynamics, enabling robust spatio-
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temporal forecasting under sensor noise and missing
data, without relying on deterministic graph updates.

The remainder of this paper is organized as follows:
Sectionll reviews related work on spatio-temporal and
probabilistic models; Section II describes the LT-GSSM
methodology; Section IV presents experimental results and
robustness analyses; Discussion is given in Section V and
Section VI concludes with future research directions.

II. RELATED WORKS

Traffic forecasting is a complex spatio-temporal task shaped
by irregular topologies, non-stationary dynamics, and noisy
sensor conditions.

Classical time-seriesmodelssuch as ARIMA and VAR [7,8]
capture temporal patterns but ignore spatial correlations among
sensors. Early machine-learming methods [9] improved
flexibility but struggled with high-dimensional dependencies
across the road network.

Deep learning advanced the field through Recurrent Neural
Networks (RNNs) such as LSTM and GRU [10,11], which
model temporal sequences but process each sensor
independently. Convolutional Neural Networks (CNNs) [12]
extended modeling to spatial grids, yet their Euclidean structure
limits generalization to real road networks [13].

To overcome these limitations, Graph Neural Networks
(GNNs) [14] model traffic as a graph, where nodes represent
sensors and edges capture road connectivity. Hybrid spatio-
temporal architectures such as DCRNN, T-GCN, and attention-
based models like ASTGCN [15] and ST-Transformer [16]
jointly learn spatial and temporal dependencies. While accurate,
these models assume fixed or pre-leamed adjacency matrices,
neglecting dynamic spatial relationships that vary with
congestion, incidents, or weather.

Recent advances introduced adaptive and dynamic graph
learning, including AGCRN [17], DGCRN [18], and RT-GCN
[19], which update adjacency matrices using learned node
embeddings or Gaussian-based convolutions. These designs
improve flexibility but remain deterministic, failing to model
uncertainty or stochastic graph evolution explicitly.

Parallel progress in probabilistic state-space models (SSMs)
such as KalmanNet [20], Deep Kalman Filters [21], and Neural
State-Space Models [22] has reintroduced uncertainty
estimation and latent dynamics into deep learning. However,
these frameworks are typically temporal only, lacking explicit
graph reasoning. Attempts to combine GNNs with probabilistic
methods, such as Probabilistic GNNs [23] and Graph
Variational Filters [24], remain computationally costly and
seldom applied to large-scale traffic networks.

In summary, prior models either:

e Learn dynamic graphs without probabilistic treatment of
noise and uncertainty, or

e Apply probabilistic state-space reasoning without spatial
modelling.

This gap motivates our Latent Topology Graph State-Space
Model (LT-GSSM), a unified probabilistic framework that
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jointly models time-varying graph topology and temporal
dynamics. By treating the adjacency A, as a latent variable
evolving from hidden states and observations, LT-GSSM
captures both structural and stochastic uncertainty, achieving
robust forecasting under noisy, incomplete, and dynamically
changing conditions.

III. METHODOLOGY

A. Data Simulation and Preparation

A key element of our methodology is the use of both
synthetic and real-world datasets to assess robustness. Real data
often suffers from partial sensor coverage and measurement
noise, whereas synthetic data generated with SUMO
(Simulation of Urban Mobility) [24] allows full control over
network coverage, traffic conditions, and injected noise. This
controlled environment enables systematic evaluation of our
GSSM under diverse and challenging scenarios.

1) Synthetic dataset (SUMO): We generated a two-month
traffic dataset using SUMO for the Outaouais region near
Ottawa (Fig. 1), based on real road networks extracted from
OpenStreetMap. Traffic flows were dynamically managed
through TraCl (Traffic Control Interface) [25] to emulate
realistic conditions such as peak-hour congestion and weekend
traffic reduction. Vehicle counts were aggregated into 5-minute
intervals, following common benchmarking practices [26,27].

The chosen duration aligns with established datasets such as
METR-LA and PEMS-BAY [14, 15], which span 2—4 months.
This ensures a balance between temporal coverage and
computational efficiency, while remaining comparable to
standard baselines. To assess robustness, we generated several
perturbed versions of the SUMO dataset:

e Gaussian noise injected at 5-30 % levels to simulate
Sensor errors.

e Reduced sensor coverage through three controlled
scenarios:

o Sensors limited to main roads,
o Random removal of 20 % of sensors, and
o Random removal of 50 % of sensors.

These perturbations make it possible to study the model’s
resilience to measurement uncertainty and coverage sparsity,
establishing SUMO as an effective robustness benchmark.

2) Validation of realism: To validate the realism of our
synthetic dataset, we compared key traffic patterns with re-al-
world datasets such as PEMS08 and UTD19 [28]. Despite
differences in absolute magnitudes, our dataset reproduces
essential traffic behaviors observed in real-world da-ta,
including:

e morning and evening peak-hour congestion,
e sharp reductions in weekend traffic, and

e daily distribution patterns. These similarities, illustrated
in Fig. 2 and Fig. 3, confirm that SUMO-based data
capture fundamental traffic dynamics.
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Fig. 1. Road network and traffic flow visualization: (a) Selected road
network, (b)Traffic flow visualization.
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Fig.2. Comparison of hourly traffic density trends: our dataset vs. Real-
world datasets.

This SUMO-based dataset thus provides a reliable testbed
for assessing the performance and robustness of GSSM under
controlled scenarios of noise and sensor sparsity,

complementing evaluations on real-world datasets.

Vol. 16, No. 12, 2025

Average Daily Traffic Density Trend - Custom Dataset

!\ 8 Average Traffic Density (Custom Dataset}
90 1

100

80 . s

60 4 \

50 4 \

Average Traffic Flow
(Vehicles)

40 1 >

20

- Average Daily Traffic Density Trend - Toronto (UTD19}

== Average TrafMc Density (Toronto)
- - s
280 1 . ~
'-—
-~ A

-
260 4 " ~

-—" S
- N

240 4 .

Average Traffic Flow
{Vehicles)
/

2201

200

Average Daily Traffic Density Trend - PEMS Datasets

—& average Traffic Density (PEMS)

260

504 &
= ~
= s
L 2a0q AN
% E \\
= T 230 4 . .
SE ~. Pt
o3 . - e .
uE; 220 4 e ) o, - -

~ -

g -
E] w»

210 4

200

Manday Tuesday Wiednesday  Thursday Friday Saturday Sunday

Day of the Week

Fig. 3. Weekend traffic density comparison: our dataset vs. Real-world
datasets.

B. Spatio-Temporal Data Modeling and Representation

To capture spatio-temporal dependencies in traffic data, we
represent all datasets as three-dimensional tensors X €
R(TxExV), where T denotes the number of time steps (e.g., 5-
minute intervals), Ethe number ofroad segments or sensors, and
V the set of traffic variables such as vehicle density and average
speed. This tensor formatenables the joint modeling of temporal
dynamics, spatial interactions, and multivariate dependencies,
and is well-suited for graph-based neural architectures [29, 30].

Complementing this tensor structure, we construct an initial
spatial adjacency matrix A,to encode the physical connectivity
betweenroad segments. This matrix serves as a topological prior
— it provides an initial structural representation of the network,
which will later be refined dynamically during model training
based on learned latent representations. Thus, while A,defines
the initial spatial configuration, the model does not assume a
fixed topology, allowing subsequent updates to better capture
evolving spatio-temporal correlations. The method used for
constructing A,differs depends on the dataset:

e SUMO (Synthetic Data): Since the simulated Outaouais
network is relatively small and geographically localized,
distances between connected roads are short and highly
heterogeneous. To preserve strong locality while
avoiding dense, fully connected graphs, we define
adjacency entries inversely proportional to the physical
distances between connected segments. This choice
ensures that immediate neighbors exert stronger
influence, reflecting realistic propagation of congestion
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within a compact road network. This ensures that spatial
relationshipsreflectreal-world topology rather than mere
Euclidean proximity [31].

Our adjacency matrix has the following structure:

edge, edge, edgey
1 1
edge; 0 w am
_ 1 1
Ay= edge, ™ 0 "
H ::l H
edgey » v 0

e PEMS Datasets These datasets cover larger and more
heterogeneous urban areas with complex traffic flows.
To model smooth spatial dependencies while avoiding
overly dense connections, we adopt a Gaussian kernel
approach [14, 15], computing adjacency as:

Ay =exp(- (22)") M)

where, d;;is the physical distance between sensorsiand j,
and o is set to 1000 meters. This distinction reflects the different
scales and characteristics of the networks: SUMO enables
precise control and sparse adjacency, whereas PEMS requires
soft, distance-based weighting to capture complex spatial
patterns without excessive graph density. This adjacency matrix
serves as an initial structural prior reflecting geographic
connectivity. During LT-GSSM training, this matrix evolves
into a latent, data-driven adjacency A,that adapts to changing
spatial correlations and temporal patterns in traffic dynamics.

C. Hybrid Graph-State—Space Model with Latent Topology

(LT-GSSM)

The main innovation of this work is the integration of a
latent, dynamically evolving graph topology within a state—
space framework—a dimension rarely addressed in spatio-
temporal modeling.

Unlike prior adaptive GNNs such as AGCRN [17] and
DGCRN [18], which learn static or semi-static adjacency
matrices, the proposed LT-GSSM continuously updates its
graph structure during both training and inference.

The model beginswith a static prior 4, derived fromspatial
proximity (e.g., inverse distance or Gaussian similarity). As
learning progresses, the adjacency matrix 4,is inferred from the
previous hidden state h,_;, coupling spatial evolution with
temporal reasoning.

Unlike adaptive GNNs such as AGCRN or DGCRN, where
adjacency updates are deterministic functions of node
embeddings, LT-GSSM treats topology evolution as part of the
latent state dynamics under uncertainty.

At each time step, LT-GSSM performs four operations:
e Latent topology inference — infers A,from h,_;

e Spatial feature extraction — applies GCN using 4,and
input X;;

e Temporal modeling — updates h, via a Temporal
Convolutional Network (TCN).
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e Topology update — refines A, using the new latent
state.

This feedback loop makes the graph self-evolving, allowing
spatial dependencies to adapt dynamically to non-stationary or
uncertain conditions. By linking latent state evolution to graph
adaptation, LT-GSSM (Fig. 4) jointly models spatial, temporal,
and structural uncertainty, achieving a robust and adaptive
representation for real-world spatio-temporal forecasting.

Spatial Temporal

Extract
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Fig. 4. Overview of LT-GSSM architecture.

1) Temporal layer — state-space model and uncertainty
management: The LT-GSSM adopts a probabilistic state—space
formulation in which latent states evolve under dynamic graph
structures and stochastic perturbations. This allows the model
to jointly capture temporal dependencies and uncertainty due to
sensor noise, missing data, or non-stationary traffic. Two noise
sources are modeled: transition uncertainty (latent fluctuations
in dynamics) and observation uncertainty (measurement errors
and delays).

In a classical linear SSM:
h,=Ah,  +Bx;+w,y, =Hh,+v, (2)

where, w,and v, denote Gaussian process and observation
noise. To handle nonlinear and time-varying dynamics, the LT-
GSSM replaces fixed matrices with a Temporal Convolutional
Network (TCN):

hy = TCN(Zye) + wpwe ~ N(0,02D)  (3)

The TCN serves as the nonlinear transition function,
capturing long-range temporal dependencies without recurrence
while preserving probabilistic uncertainty through w,.

2) Integration with dynamic graph topology: Temporal
evolution is explicitly coupled with a time-varying
adjacency.From the previous latent state, node embeddings are
obtained via a learnable projection:

E, = ¢pg(hy),E, €RVT  (4)

Pairwise similarities define a latent affinity matrix:

.
S, = = (5)

which is row-normalized to yield the dynamic adjacency:

A, = softmax,,(S,) (6)
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This attention-like normalization ensures each row forms a
probability distribution over neighbors, making the graph
context-dependent rather than fixed. The updated A, guides the
spatial layer, and the resulting latent state h,generates A, 4,
creating a feedback loop where topology and dynamics co-
evolve.

3) Graph Convolutional Network (GCN): At each step, the
GCN extracts spatial dependencies from X, using the dynamic
A

Zy= Bt_l/z‘qtﬁt_l/zxtWGCN 7

where A, = A, + I,adds self-connections, D, is the degree
matrix, and Wgcnare learnable weights. A normalization layer
stabilizes training, producing spatially filtered features Z, that
encode latent correlations among sensors.

4) Unified spatio-temporal formulation: The LT-GSSM
integrates both modules within a unified probabilistic
transition:

h, = TCN(GCN(X,, Ap)) + wy, w, ~ N(0,021) (®)
and the observation equation:
9, = Hhy+ v, v, ~ N(0,72)  (10)

This formulation fuses dynamic spatial reasoning and
nonlinear temporal modeling while explicitly quantifying
uncertainty, yielding a robust framework for spatio-temporal
forecasting under noisy and evolving conditions.

IV. RESULTS

A. Dataset Summary

We evaluated the proposed LT-GSSM and all baseline
models on both synthetic (SUMO) and real-world (PeMS)
datasets, which differ in scale, variability, and network
complexity.

The SUMO dataset provides a controlled environment to
systematically assess robustness to noise and sensor sparsity,
while PeMS datasets reflect real-world traffic dynamics across
large urban regions. This dual setup ensures that robust trends
observed in simulation can be validated under realistic,
heterogeneous conditions.

All datasets span 2—4 months at 5-minute intervals, with
traffic flow as the key variable. Table I summarizes the main
characteristics of the synthetic (SUMO) and real-world (PeMS)
datasets used in this study, including network size, temporal
resolution, and observation period.

TABLE I. SUMMARY OF DATASETS USED IN THIS STUDY
Dataset Nodes Time Steps Period
PeMSDO03 358 26,208 09/2018-11/2018
PeMSD04 307 16,992 01/2018-02/2018
PeMSDO07 883 28,224 05/2017-08/2017
PeMSD08 170 17,856 07/2016-08/2016
SUMO 127 16,992 Simulated (2 months)

Vol. 16, No. 12, 2025

B. Model Selection and Architectural Variants

We compared LT-GSSM againsta broad spectrum of spatio-
temporal architectures, ensuring fair and representative
evaluation:

e C(lassical temporal baselines: ARIMA, VAR, and
BiLSTM.

e Hybrid sequential models: LSTM—CNN, LSTM-GCN
(T-GCN), and GRU-based variants.

e Convolutional models: 3D CNNs capturing local spatio-
temporal dependencies.

e Attention and transformer architectures: ST-
Transformer, attention-based GCNs.

e Diffusion and robustness models: DCRNN and RT-
GCN, integrating diffusion or Gaussian convolutions for
stability.

e Adaptive graph model: AGCRN as a dynamic-graph
baseline using learnable node embeddings.

e Proposed model: LT-GSSM introduces a latent,
probabilistic topology derived from hidden states,
allowing state-driven graph evolution rather than
deterministic embedding updates.

All baselines were re-implemented according to their
original papers, with minimal adaptations for uniform
preprocessing and input size. This guarantees that performance
differences stem from model design, not implementation bias.

C. Experimental Framework and Hyperparameter Sensitivity

All models were trained under identical preprocessing, input
windows (10 time steps), and forecast horizons (10 time steps,
~50 minutes) to ensure fair comparison. Hyperparameters for
each baseline—such as hidden dimensions, learning rates, and
kernel sizes—were initialized following their original
publications and fine-tuned within reported ranges. The LT-
GSSM used a hidden size of 64—-128, learning rate 0.0005—
0.005, and learable noise parameters to capture both process
and observation uncertainty. This consistent setup guarantees
that observed performance differences reflect architectural
robustness rather than arbitrary tuning.

The following experimental settings and sensitivity analyses
were considered to ensure fair comparison and to assess the
robustness of LT-GSSM:

e Weadopted a forecastinghorizon of 10 time steps (= 50
minutes), a common setting in prior traffic studies [32 -
35].

e A hyperparameter sensitivity analysis was conducted
exclusively on LT-GSSM, focusing on the hidden state
dimension and the learnable noise parameter, as both
directly affect model capacity and robustness.

e Hidden dimensions from 64 to 128 yielded the most
stable results: smaller sizes caused underfitting, whereas
larger ones amplified noise and led to overfitting. For the
noise parameter, learnable variance consistently
converged near 0 > ~ 0.2, outperforming fixed settings.
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e Low fixed values made the modeltoo rigid, while high
ones introduced instability. The adaptive formulation
improved convergence and reduced RMSE by about 1-2

Vol. 16, No. 12, 2025

Fig. 5 summarizes these trends, showing steady performance
forhidden sizes 64—128 and optimal stability when the learnable
noise variance converges around 0.2.

%, confirming that dynamic noise learning enhances
robustness under noisy or incomplete data.
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Fig. 5. Sensitivity of LT-GSSM to hidden state dimension (top) and noise variance o2 (bottom) across five datasets.

D. Baseline Performance Comparison

Table II reports the average results over seven runs with
different random seeds. Variance remained below 2 %,
confirming the stability and reproducibility of all experiments,
and paired t-tests showed that LT-GSSM’s improvements are
statistically significant (p < 0.05).

Across both SUMO and PeMS datasets, LT-GSSM
consistently achieves the lowest error among all models.
Compared to classical temporal baselines (ARIMA, VAR), it
reduces RMSE by 35-40 % (= 5.8 points on SUMO, = 6.2 on
PeMSDO04). While recurrent models like BILSTM (avg RMSE
~ 22.1) perform better, they remain limited by the absence of
spatial modeling. Hybrid spatio-temporal models (LSTM-GCN,
GCN-GRU) further cut RMSE by = 20 % on average,

confirming the benefit of explicit spatial reasoning. 3D-CNN
and LSTM-CNN improve temporal baselines but generalize
poorly on irregular networks. Attention-based models show
mixed behavior: ST-Transformer performs well on large
datasets but underutilizes short input windows, while Attention-
GCN offers only modest gains. Robust baselines like RT-GCN
and AGCRN deliver strong accuracy under normal conditions
but slightly trail LT-GSSM, especially on SUMO and PeMS08.

Overall, LT-GSSM’s integration of a probabilistic state-
space formulation with dynamic latent topology leaming yields
the bestaccuracy and stability across all settings, outperforming
recent robust graph models while remaining computationally
efficient. This establishes LT-GSSM as a strong benchmark for
reliable spatio-temporal forecasting under noisy or incomplete
data.

TABLEIL.  SUMMARY OF BASELINE MODELS AND EXPERIMENTAL
Model SUMO SUMO PeMS03 PeMS03 PeMS04 PeMS04 PeMS07 PeMS07 PeMS08 PeMS08
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

ARIMA 35.23 22.57 46.80 31.26 45.32 3142 50.98 35.16 40.32 29.64
VAR 24.29 13.80 38.26 23.28 38.61 23.19 69.75 47.14 28.12 20.97
BiLSTM 20.29 11.76 31.09 19.13 36.87 22.72 43.12 25.90 31.39 22.12
GCN-GRU 16.67 8.93 26.52 15.67 28.48 1591 33.15 22.24 24.73 14.15
LSTM-GCN 16.72 8.98 26.39 15.42 28.45 15.76 32.40 21.19 24.70 14.25
ST-Transformer 17.98 9.31 24.16 14.11 30.74 16.32 35.23 23.40 2495 14.02
Attention GCN 16.68 891 25.06 14.55 28.49 15.54 32.78 21.09 25.06 15.19
LSTM-CNN 17.73 9.83 29.15 17.38 28.72 155 36.93 22.80 27.76 159

3D-CNN 19.56 10.1 30.33 17.89 30.94 17.32 38.64 24.18 28.34 17.63
STGCN 19.99 9.26 28.17 19.95 30.23 16.45 38.12 24.45 2691 15.24
DCRNN 17.3 9.26 27.89 18.23 30.68 16.6 34.57 22.80 243 15.34
RT-GCN 16.90 8.90 26.80 16.25 28.55 15.60 31.40 21.40 24.80 14.40
AGCRN 16.73 9.11 26.82 16.45 29.72 16.93 31.28 22.51 24.76 15.52
LTGSSM 16.11 8.27 23.51 15.63 28.01 14.12 31.17 21.49 23.96 14.24
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E. Ablation Study

To assess thecontributionof each module within LT-GSSM,
four ablation variants were evaluated: 1) a state-space only
configuration (without GCN), 2) a classical SSM-GCN using
linear temporal transitions instead of a TCN, 3) a noise-free
variant without explicit process and observation noise, and 4) a
comparisonbetweenstaticanddynamicadjacency learning. Fig.
6 summarizes the results across all datasets.

The SSM-only configuration already achieved competitive
accuracy, outperforming purely temporal models such as LSTM
and GRU on several datasets. This confirms that the recursive
state-space formulation and process noise terms provide strong
temporal modeling capacity, even without explicit spatial
reasoning.

Replacing the nonlinear TCN with a linear update led to a
consistent increase in error (=20% higher RMSE on average),
indicating that nonlinear temporal transitions are crucial for
capturing complex latent traffic dynamics. Similarly, removing
explicit noise modeling degraded robustness under noisy or
incomplete conditions, with the full LT-GSSM achieving up to
25% lower RMSE compared to the deterministic version.

Finally, dynamic adjacency learning further improved
performance relative to static topologies, reducing RMSE by
approximately 10% across datasets. This confirms that allowing
the graph structure to evolve with latent state dynamics better
captures non-stationary spatial correlations such as congestion
propagation or sensor drift.

&0 SsM-only

B Linear S5M-GCN
N No Noise

- static Adj

= Oynamic Adj (Full)

50

PeMs07

50 sSM-only

- Linear SSM-GCN
o Noise

- static Ad)

a0 W Dynamic Adj (Full)

SUMO PeMs03 PeMs04. PeMS07 PeMS08

(b)

Fig. 6. RMSE and MAE comparison of LT-GSSM ablation variants across
SUMO and PeMS datasets.

Fig. 6 and Fig. 7 illustrate these trends: Fig. 6 shows RMSE
and MAE across ablation variants, while Fig. 7 visualizes
relative performance gains over the static baseline. Overall, each
component—state-space recursion, nonlinear transition, explicit
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noise modeling, and dynamic topology—contributes
significantly to the robustness and accuracy of LT-GSSM, with
the complete model consistently achieving the best balance
across datasets.
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Fig. 7. Relative performance gain (%) of LT-GSSM components compared
to the static baseline.

V. DISCUSSION

A. Effect of Sensor Placement and Noise on Spatiotemporal
Prediction

We used the custom SUMO network to evaluate how sensor
placement and noise affect forecastingrobustness. Two practical
scenarios were simulated: 1) prioritizing sensors on major
arterial roads, and 2) reducing overall sensor coverage to 50 %
and 20 %.

Concentrating sensors along main corridors improved
accuracy by capturing structured, correlated traffic flows,
whereas reduced coverage increased errors across all models.
Nevertheless, LT-GSSM remained the most stable, confirming
that its dynamic adjacency learning effectively adapts spatial
correlations even when observations are sparse.

By wupdating its graph topology from latent state
representations, the model can infer missing spatial
dependencies, rather than relying solely on static connectivity.
Comparable resilience was observed in RT-GCN and AGCRN,
yet LT-GSSM showed the smallest degradation under both
sensorlossand noisy data, demonstrating the strength of its joint
spatio-temporal uncertainty modeling.

Fig. 8 illustrates the impact of sensor coverage on prediction
accuracy.

Model Robustness vs Sensor

- Main roads
20 20% missing
B 50% missing

\ N » ] W l M
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Fig. 8. Impact of sensor coverage on the performance of spatiotemporal
prediction models.
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B. Robustness Under Gaussian Noise

Beyond spatial sparsity, robustness was also tested under
Gaussian sensor noise injected into traffic flow data at three
levels (5 %, 15 %, 30 %). Noise was applied selectively to
subsets of sensors, simulating real detector failures. As
expected, higher noise levels increased errors for all models
(Table 1II), but LT-GSSM exhibited only a = 2-7 % RMSE
increase at 30 % noise—significantly lower than competing
architectures.

This resilience stems from its explicit uncertainty modeling:

Vol. 16, No. 12, 2025

lightweight execution profile, ranking among the most efficient
models overall.

Although inference latency was not extensively
benchmarked, average forward-pass times remained below 100
ms. per prediction step, indicating that LT-GSSM can operate
effectively in near real-time forecasting scenarios without
sacrificing accuracy or stability. Table IV reports the average
training time per epoch for LT-GSSM and competing spatio-
temporal models under identical hardware and software settings.

o : . . TABLEIV.  AVERAGE TRAINING TIME PER EPOCH ACROSS
the transition function captures latent dynamic fluctuations, SPATIOTEMPORAL MODELS
while the observation model accounts for measurement errors,
allowing LT-GSSM to maintain stable performance even under Model Avg. Time per Epoch (s)
severe data corruption. ST-GCN (parallel) 2352
TABLEIIl.  IMPACT OF GAUSSIAN NOISE LEVELS ON MODEL PREDICTION ST-Transformer 168.7
ERRORS Attention-GCN 144.5
SUMO 0 o, | PeMS08 0 0 3D CNN 129.1
Model (5%) 15% | 30% (5%) 15% | 30%
GCN-GRU | 175 180 | 184 | 252 257 | 26.1 DCRN 173
LSTM-GCN | 17.1 178 | 182 | 25.1 256 | 260 RT-GEN 1105
ST- AGCRN 104.2
T f 17.6 18.3 188 | 255 26.1 26.6
A‘;‘nstf’m‘er LTGSSM (ours) 99.8
ention-
GON 17.2 178 | 183 | 255 259 | 264 LSTM.GCN 96.7
LSTM-CNN | 17.7 184 | 189 | 282 288 | 293 GRU-GCN 96.2
3D-CNN 18.1 187 | 192 | 289 29.4 | 299 LSTM-CNN 703
STGCN 17.5 182 | 18.7 | 273 278 | 283
DCRNN 17.3 17.9 183 | 248 253 | 258 VL. CONCLUSION
RT-GCN T 71 | 179 | 253 259 | 265 This paper presented the Latent quol'ogy Ggaph State-
Space Model (LT-GSSM), a probabilistic spatio-temporal
AGCRN 174 176 | 182 | 250 254 | 259 framework that dynamically learns graph structures from latent
LT-GSSM 162 168 | 174 | 242 246 | 251 reprgsentations rather than relying on fixed connectivity. By
(ours) treating topology evolution as part of the latent state dynamics,

C. Computational Complexity and Execution Time

LT-GSSM maintains complexity comparable to standard
spatio-temporal GNNs. The TCN-based temporal layer replaces
recurrent cells, reducing sequential dependencies and allowing
efficient parallelization with per-step cost O(H? X L) (with
L; < 3). Dynamic adjacency learning adds a manageable
0 (V?)term, negligible for medium-sized networks (hundreds of
sensors). Overall, LT-GSSM offers a better trade-off between
robustness and cost than diffusion- or attention-based models,
which scale as 0(T?d).To validate this analysis, we measured
execution times under identical hardware and software
conditions (Intel i7-10700 CPU, 32 GB RAM, NVIDIA GTX
1660 GPU, PyTorch 2.0, CUDA 11.8).

Usinga batch size of 32, input length T=12, and hidden size
H=64, LT-GSSM consistently trained 10—20% faster per epoch
than recurrent baselines such as LSTM-GCN, GRU-GCN, and
DCRNN on the PeMS04 and PeMS08 datasets.

These gains arise mainly from the parallelizable temporal
convolutions and the absence of recurrent backpropagation.

Compared to heavier architectures such as ST-Transformer,
Attention-GCN, or 3D-CNN, LT-GSSM maintained a

LT-GSSM reframes graphadaptationitselfas anuncertain latent
process, enabling robust modeling of non-stationary spatial
dependencies under noise and missing data.

The main scientific contribution of this work lies in
explicitly modeling spatial structure uncertainty within a state-
space formulation, rather than relying on deterministic or
heuristically updated graph topologies. This perspective
provides a principled explanation for robustness in spatio-
temporal forecasting, complementing existing dynamic-graph
architectures.

Experiments on SUMO and PeMS datasets confirm that this
formulation yields stable and adaptive forecasting performance
even with reduced sensor coverage or high noise levels, while
maintaining a computational cost comparable to standard GCN-
based hybrids (e.g., LSTM-GCN, AGCRN), making it suitable
for practical deployment in intelligent transportation systems.

Despite these advantages, dynamic adjacency learning
introduces a quadratic dependency in the number of nodes,
which may require sparsification strategies for very large-scale
networks. Robustness was evaluated under commonly adopted
noise and missing-data settings, and further extensions are left
for future work.
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Beyond traffic forecasting, the proposed modeling paradigm
is applicable to a broader class of spatio-temporal problems
involving evolving relational structures, such as sensor
networks, urban monitoring, and environmental dynamics.
Future work will investigate scalability improvements,
alternative uncertainty models, and extensions to other spatio-
temporal domains.
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