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Abstract—Predicting drug response in cancer cell lines is a
critical step toward precision oncology, enabling more efficient
therapeutic discovery and personalized treatment strategies.
However, the complexity of drug—cell interactions, driven by
diverse omics profiles and structural variability among drugs,
poses significant challenges for conventional machine learning
approaches. In this study, we propose an end-to-end pipeline that
integrates multi-omics data (gene expression, copy number
variation, and mutations) with chemical structure representations
of drugs to predict binary drug response. Our method employs
principal component analysis (PCA) for dimensionality reduction
of high-dimensional omics data, followed by the computation of
drug—drug and cell-cell similarity matrices. These are used to
construct a heterogeneous graph combining intra-class similarities
with drug—cell interactions. A customized graph neural network
model, DrugCellGNN, is then applied to learn context-aware
embeddings of drugs and cells. The fused representations are
passed to a downstream multi-layer perceptron for classification.
To address class imbalance, we introduce a dynamic focal loss
function that adaptively emphasizes hard-to-classify examples.
Evaluation on the GDSC dataset with an 80/20 train—test split
demonstrates strong performance: Accuracy = 0.8935, F1 =
0.9201, AUC = 0.9510. This work highlights the utility of graph-
based integration of multi-omics and drug features for drug
sensitivity prediction. By leveraging both molecular and relational
information, the proposed framework offers a robust and
extensible foundation for advancing computational approaches in
precision oncology.
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I.  INTRODUCTION

Cancer is a disease of the genome that causes mortality
worldwide, characterized by high complexity and inter-patient
heterogeneity that complicate effective treatment [1].
Traditional therapies, such as chemotherapy and radiotherapy,
often exhibit limited specificity, leading to substantial toxicity
in healthy tissues and suboptimal efficacy [2]. However, not all
patients react to pharmacological therapy in the same manner,
and biological data, such as gene mutations or gene expression,
can help predict which patients are most likely to benefit from a
certain medicine [3]. Thus, establishing strategies for predicting
drug sensitivity is critical for individualized therapy. According
to the National Research Council, precision medicine can be
used to divide patients into subgroups based on their unique

reactions to medical treatment [4]. Customizing effective
treatments based on individual characteristics can improve
therapy quality, reduce wasteful expenses, and minimize
negative side effects. Precision medicine aims to optimize
cancer therapy by selecting drugs tailored to each patient's
unique genetic profile [4]. This process presents a complex
challenge in cancer treatment. These challenges have led to
large-scale experiments on human cancer cell lines and a wide
range of anticancer drugs, which have led to the availability of
free datasets for cancer cell drug sensitivity information and
molecular markers of drug responses. The Genomics of Cancer
Drug Sensitivity (GDSC) [5] is one of the most widely used
projects, providing molecular profiles and drug response data for
hundreds of cancer cell lines treated with various anticancer
drugs. These datasets provide genetic features of cancer cell line
panels, such as gene expression profiles, copy number
alterations, and single-nucleotide mutations. This enormous
accumulation of data paves the way for the advancement of data
analysis and computational techniques, including machine
learning and artificial intelligence approaches.

Despite notable progress, existing computational approaches
face several limitations. Traditional machine learning models
often struggle to capture complex interactions between drugs
and cancer cell lines and are limited by the high dimensionality
and heterogeneity of multi-omics data. Moreover, many
methods treat drugs and cell lines independently, overlooking
their intrinsic relational structure, which is crucial for accurate
prediction and generalization across unseen samples.

To address these challenges, this study proposes
DrugCellGNN, a graph neural network—based framework for
binary drug sensitivity prediction. The proposed method
integrates multi-omics features, drug structural information, and
functional drug response data to construct biologically
meaningful drug—cell interaction graphs. Dimensionality
reduction using principal component analysis (PCA) is
employed to mitigate data sparsity, while a dynamic focal loss
is introduced to handle class imbalance. Through
comprehensive  evaluation, DrugCellGNN demonstrates
improved predictive performance compared to existing
approaches, highlighting its potential utility in precision
oncology.

The remainder of this study is organized as follows:
Section II briefly reviews some of the recent work published in
the area of prediction of the drug response by using genomics
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data. Section III explains the methodology that has been used to
create the model. Evaluation criteria is explained in Section IV.
The results of the proposed model are presented in Section V.
Finally, Section VI concludes the study.

II. RELATED WORK

Several computational approaches have been developed to
predict medication response by analyzing gene expression
profiles or other molecular information of cell lines. This
Computational method for predicting drug response can be
grouped into two main approaches: 1) classification (predicting
drug responses as sensitive vs. resistant), 2) regression
(Estimating a quantitative measure to evaluate a cell line's
response to a drug). Various computational approaches have
been developed to solve classification problems for predicting
the sensitivity of anticancer drugs. Choi et al. [6] created
RefDNN, a computational model that utilizes a deep neural
network and ElasticNet repressors. They established a collection
of reference medications and a baseline for classifying drugs to
evaluate others. Drug sensitivity probabilities for a given cell
line-drug pair were predicted using the drug's similarity to the
reference set. RefDNN has the potential to be utilized for
repositioning anticancer medications. Similarly, Logistic matrix
factorization with regularization terms was used in DSPLMF [7]
to classify drug response. This approach incorporates drug
similarity derived from chemical structures and cell line
similarity computed from gene expression, copy number
variation, mutation profiles, and drug response data. While these
methods demonstrate promising performance, they primarily
rely on pairwise similarities and do not explicitly model higher-
order interactions between drugs and cell lines.

Furthermore, various computational regression approaches
have been developed to predict the half-maximal inhibitory
concentration (IC50) of cell lines in response to drugs. Wang et
al. [4] proposed the Similarity Regularized Matrix Factorization
(SRMF) method, which incorporates the gene expression
similarity of cell lines and the chemical similarity of drugs to
enhance the prediction of anticancer drug responses. Ahmadi
Moughari et al. have introduced ADRML, a framework for
predicting how well cancer cells will respond to drugs using
manifold learning. ADRML maps drug response values into a
low-dimensional latent space and predicts the drug response for
new cell line-drug pairs based on this latent space. The
framework incorporates multiple types of cell line similarities
and drug similarities into the manifold learning process [8].

Selecting the optimal set of genetic features for predicting
drug response is crucial for developing effective classification
models. Consequently, numerous feature selection algorithms
employing diverse strategies have been developed.
AutoBorutaRF [9] is a method which based on feature selection
and designed for predicting drug response. It combines an
autoencoder network with the Boruta algorithm [10]. The
autoencoder is used initially, and then Boruta is applied to select
the most relevant features. These selected features are then used
to train a Random Forest classifier for predicting drug response.
Dong et al. [11] developed a drug response prediction model
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called Support Vector Machine Recursive Feature Elimination
(SVM-RFE), which employs a wrapper approach, combining
recursive feature selection with an SVM classifier. Emdadi et al.
[12] introduced a feature selection method designed for drug
response prediction. It uses Hidden Markov Models (HMM)
and Autoencoders (AE). While these techniques reduce
dimensionality and noise, they typically treat samples
independently and fail to exploit relational structures between
drugs and cell lines.

Considering the complexity and noise inherent in biological
data, deep learning methods often outperform traditional
machine learning algorithms in predicting drug sensitivity [13].
A hybrid graph convolutional network (GCN) has been
proposed in [14], This approach, known as DeepCDR, utilizes a
variational autoencoder (VAE) framework to effectively model
the complex relationships between multi-omics profiles of
cancer cells and the intrinsic chemical structures of drugs,
achieving strong results; nevertheless, it performs late-stage
omics fusion, employs limited similarity types (primarily
structural), and does not explicitly mitigate severe class
imbalance common in pharmacogenomic data.

Other studies suggest several statistical learning strategies,
such as regularized linear regression models, ridge regression
lasso [15], and Support vector machines [16].

Although prior studies have progressively improved
prediction accuracy, they share common limitations: over-
reliance on pairwise or late-fused similarities, inadequate
handling of class imbalance, limited integration of hybrid
(structural + functional) drug/cell similarities, and insufficient
relational modeling of multi-omics interactions. To overcome
these gaps, the proposed DrugCellGNN framework integrates
multi-omics features, functional and structural drug similarities,
and graph neural networks to explicitly model drug—cell
relationships, enabling robust and biologically informed binary
drug sensitivity prediction.

[II. METHODOLOGY

The primary objective of this study is to develop a predictive
framework for binary drug response classification, as it may be
more important whether a drug is effective for a given cancer
cell line or not. There are two classifications of drug Responses:
"sensitivity” and "non-sensitivity". We focused on integrating
multi-omics profiles of cancer cell lines with structural and
functional representations of drugs. The first step begins with
extensive data preprocessing, including the removal of samples
and features with excessive missingness, followed by a hybrid
imputation strategy. Then, for improving the prediction
performance, the cleaned datasets are dimensionally reduced to
retain the most informative features, and similarity matrices are
computed for both drugs and cell lines. Finally, a model is used
for predicting the probability that a cell line would become drug-
sensitive. Every pair was then categorized into a sensitive or
resistant class by applying the threshold to the predicted
probability of the cell line-drug pairs. The main scheme of our
model is represented in Fig. 1.
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Fig. 1. Overview of the DrugCellGNN framework.
A Dataset data before performing imputation. For the response

Genomics of Drug Sensitivity in Cancer (GDSC) [17] is
used in this study. This dataset includes drug response
measurements, such as the half-maximal inhibitory
concentration (IC50 wvalues), Cell line omics information
(including gene expression profiles, copy number variation
(CNV), and mutation data), and maximum concentration values
for drugs. The GDSC has 1,084 cell lines and 344 drugs;
however, some values were missing in the dataset, so we filtered
the dataset and applied preprocessing steps to address this issue.
After the preprocessing, we had 551 cell lines and 91 drugs. In
addition to the mentioned cell line information, chemical
compound information is used and represented by Simplified
Molecular Input Line Entry System (SMILES) [18], which was
downloaded from PubChem [19]. And molecular fingerprints of
drugs were extracted using the rdkit package in Python [20].

B. Preprocessing

We organize the collected data into three main types of
matrices. The first is the response matrix, which captures the
drug response data; rows represent cell lines, and columns
represent different drugs. Each entry in this matrix holds either
an IC50 value or a sensitivity label. The second type is the cell
line feature matrices, where each row refers to a specific cell line
and the columns represent its associated features. Lastly, drug
feature matrices, with drugs as rows and their corresponding
features arranged across the columns. Once these matrices were
prepared, we carried out a series of preprocessing steps to ensure
they were ready for downstream analysis.

The preprocessing steps are as follows:

e Missing value analysis and filtering: Because some of the
information above has a high ratio of missing values, we
first needed to remove samples with substantial missing

matrix, according to the distribution of missing values in
Fig. 2(A), we initially removed cell lines with more than
95% missing values. Then, we eliminated cell lines and
drugs with more than 30% missing data. Fig. 2(B) shows
the distribution after filtering. In the gene expression
matrix, we identified 72 cell lines that contained only
missing values (i.e., no data across all features);
therefore, the dataset became fully complete after
excluding these cell lines. In the CNV matrix in Fig. 3(A)
and Fig. 3(B), we removed features and cell lines with
more than 30% missing values. For the mutation matrix,
we eliminated features with over 35% missing data,
resulting in a fully complete dataset.

e Imputing missing values: After removing samples and
features with a high percentage of missing values, some
missing entries still remained in the response and CNV
matrices. To fill these gaps, we used a hybrid imputation
method that combines mean imputation with K-nearest
neighbors (KNN) imputation.

Let the drug response matrix be denoted by:
ReR™™

where, n and m represent the number of cell lines and drugs,
respectively.

Mean Imputation is used for Low-Missing Drugs,
where each drug j with a missing rate less than a threshold 1 (in
our study, T=0.1), for drugs missing <10% values, fills gaps with
the average response [Eq. (1)]:

1
ﬂj:mZiEIRij (1
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(A) Missing value distribution for the response matrix before filtering. (B) Missing value distribution for the response matrix after filtering.
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Fig. 3. (A) Missing values distribution for cell lines in the CNV matrix before filtering. (B) Missing values distribution for CNV features in the CNV matrix
before filtering.

where, R;; represents the response of cell line i to drug j, and
may be missing (i.e., R;=NaN), I<={i|R,-j is observed}, then for
all missing entries R;; where j € low-missing drugs, set: ﬁij= K

For drugs with missing values greater than 1, we used KNN
Imputation. To prepare for KNN imputation, the matrix is scaled
using Eq. (2):

S Rij—Median(Rj)
0 IQR®;)

2)

1

where, IQR(R;) is the interquartile range of drugj 's

responses.

We then applied KNN imputation on the scaled data. For
each missing value R,»j, the imputed value is computed as the
average of the same feature from the k nearest samples (rows)
based on Euclidean distance [see Eq. (3)]:

N R
Rjj=Yren; Ryj 3)

where, N; is the set of k nearest neighbors of the
sample i with observed values in feature j. After imputation, the
scaled data were transformed back to their original scale using
the inverse of the robust scaling operation [Eq. (4)]:

R{"™=R;;.IQR(R;)+Median(R;) 4)

This hybrid approach ensures that low-missing features are
imputed efficiently using simple statistics, while high-missing
features benefit from structure-aware imputation via KNN.

e Binary conversion using IC50: This research aims to
develop classification-based modeling, so we converted
the continuous drug response data into binary labels
(sensitivity and non-sensitivity). Several research studies
have adopted different threshold values of IC50 for
binarization. Such as median values [7], [9] or a specific
deviation from the normalized mean [11]. While others
have relied on more Dbiologically grounded
pharmacokinetic thresholds, such as the maximum drug
concentration (Cmax) [6]. Cmax makes more sense
among the different thresholds used to assign labels to
drug response data because it is predicated on the
medication's pharmacokinetic characteristics. Cmax is
the highest concentration of a medication that can be
found in plasma. Thus, it is clear that a cell line is
resistant to a medicine if it needs a molar concentration
greater than the drug's Cmax for 50% inhibition. For this
reason, we adopted the Cmax in our study for classifying
drug response. And based on it, we labeled a cell line as
“sensitive” if the IC50;; < Cmax, which is represented
by 1; otherwise, it’s labeled as “non-sensitive”.
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C. Feature Engineering

Omics Integration and Dimensionality Reduction: To
construct a comprehensive representation of each cell line, we
integrated multiple omics data types, including gene expression,
copy number variation (CNV), and mutation profiles. Only cell
lines present in all three sources were retained to ensure
consistency. The aligned datasets were then concatenated to
form a unified omics feature matrix. To reduce scale disparities
and improve model stability, the omics matrix was standardized
using z-score normalization and subsequently, Principal
Component Analysis (PCA) [21]. In our study, PCA was applied
to reduce dimensionality while preserving 80% of the variance.
This step helped eliminate redundancy and emphasized the most
informative biological features.

The cumulative explained variance curve (Fig. 4)
demonstrates a smooth and steady increase, indicating that a
relatively moderate number of components (~140) is sufficient
to retain 80% of the variance. This gradual curve suggests that
the variance is well distributed across components, meaning no
single feature dominates the representation. Such a distribution
supports the stability and robustness of the compressed feature
space, as it captures diverse biological signals rather than being
overly dependent on a few dominant factors.

To explore the potential benefit of non-linear dimensionality
reduction, we compared PCA with a shallow autoencoder
trained on the standardized omics feature matrix. Both
approaches yielded comparable performance in downstream
tasks, suggesting that the underlying structure of the data is
predominantly linear. Given PCA’s simplicity, interpretability,
and computational efficiency, we opted to use PCA for feature
compression in the final pipeline.

Gene Expression PCA
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0.6 1

0.5

0.4

Cumulative Explained Variance

0.3 9

T T T T
0 20 40 60 80 100 120 140
Number of PCA Components

Fig. 4. PCA explained variance curve.

e Similarity Computation: To enhance the representation
of both cell lines and drugs, we constructed similarity
networks using a weighted combination of functional
and structural measures. This approach captures
complementary biological and chemical relationships,
enabling the model to generalize better across diverse
drug-cell line pairs.

Vol. 16, No. 12, 2025

For cell lines, similarity was computed using two modalities:

e Response-Based Similarity: We calculated cosine
similarities from the drug response matrix RER™™,
where R; and R; are the response vectors of cell lines
i and j. Cosine similarity is defined in Eq. (5):

R;. R;
response_ i- Rj 5
Y IRill2[Rj I, )

e Omics-Based Similarity: derived from the omics feature
matrix O € R™™ where O; and O; are the feature
vectors of cell lines i andj. Using the same cosine
similarity equation [Eq. (6)]:

0. O;

ngics:
Y oill2 o4l

(6)

The final cell line similarity matrix was computed as a
weighted combination [see Eq. (7)]:

SceH:;\’C 'Sresponse+(1 _7\’0) .Somics (7)

A is a parameter that represents the weight of the matrix; in
our study, A,=0.3 was selected empirically to balance
phenotypic response patterns and intrinsic molecular.

This fusion strategy balances phenotypic behavior with
intrinsic biological or chemical characteristics.

For drug similarity, the similarity between two
drugsiandj is computed using MACCS fingerprints [22] and
the response matrix; we computed both similarity matrices using
Jaccard similarity.

Structural similarity: computed using the Jaccard similarity
over MACCS fingerprints [see Eq. (8)].
[Fin |
|F iUF _l|

truc_
where, Fj, F; are Sets of active bits in the MACCS
fingerprints of drugs i and j, respectively.

Functional similarity: using cosine similarity across binary
response profiles Sifj“m.

The final drug similarity matrix was Eq. (9):
Sdrug:)\’d.sfunc_,'_(l_}\Id).sstruc (9)

Aq 1s a parameter that represents the weight of the matrix; in
our study, A;,=0.3.

D. Model Architecture

To capture the complex interplay between drugs and cancer
cell lines, we propose a novel graph-based deep learning
framework, DrugCellGNN, that integrates structural drug
information, functional cell similarities, and multi-omics
features into a unified predictive model.

Graph Construction and Node Embedding: To include the
structural relationships between drugs and cell lines, we built
two separate graphs: a drug similarity graph and a cell line
similarity graph. Each graph G= (V, E) is composed of nodes V
(drugs or cell lines) and edges E, which are defined based on a
pairwise similarity threshold. Specifically, an edge (i,j) € E is
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formed if the similarity score S;; > 0.7, a threshold selected to
retain only strong associations.

Each node is initialized with a trainable embedding vector of
size e from E4€RM™ for drug and E,€R"!"® for cell lines,
where |v4|and |v,| denote the number of drug and cell nodes,
respectively. These embeddings were then updated using a
graph convolution operation defined as Eq. (10):

1 1
H" =6 (B'ZAB'ZH‘W‘) (10)

Where A=A+1 is the adjacency matrix with self-loops, D is
the corresponding degree matrix, H' is the node feature matrix
at layer 1, W! is the trainable weight matrix, and o is a non-linear
activation function (ReLU in our case).

Alternatively, this operation can be interpreted from a node-
wise perspective as Eq. (11):

h(1+1)_ 1

i~ ZieNO TROToN

This emphasizes how each node i updates its feature by
aggregating normalized information from its neighbors N(i).

wOn®) (11)

Using this, the final graph-enhanced embedding is Eq. (12):
di:GCNdrug (EdsGd) s cj:GCNcell (EcaGc) (12)

The output embedding for drugs and cell lines — denoted
d;=GCN gy (E4,Gy) and ¢;=GCNe (E.,G,), respectively — are

then concatenated with the corresponding omics feature vector
ojERO of the cell line, resulting in a fused representation [see

Eq. (13)]:
2= |dileloy | €R>** (13)

This vector z; is passed into a multi-layer perceptron (MLP)

— a deep learning model for classification. Where the first
hidden layer can be represented by Eq. (14):

h;=RELU(BN(W,z;+b,)) (14)
The second layer [see Eq. (15)]:
h,=RELU(W,h;+b,) (15)

To prevent overfitting, a dropout layer with a probability of
p =3 is applied after the second fully connected layer. Dropout
randomly deactivates a fraction p of neurons during training,
encouraging the network to learn distributed representations
rather than memorizing specific patterns [Eq. (16)].

h,=m ® h,, m~Bernoulli(1-p) (16)

Finally, the transformed features are passed to a sigmoid
output layer to produce the predicted probability of drug
sensitivity, as in Eq. (17):

?ij:G(W3f12+b3) (17)

where, ?ijE[O.l] indicates the likelihood that cell line
j responds to drug i.
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E. Dynamic Focal Loss Function for Imbalanced Data

To address class imbalance inherent in drug response data,
we implemented a custom focal loss function with dynamic
weighting, where the per-sample weight a4 is given in Eq. (18):

(18)

This formulation increases the loss contribution from drugs
with few positive (sensitive) samples, preventing the model
from being biased toward majority-class drugs.

__ # sensitive cell lines for drug d

o=
d Total cell lines tested for drug d

The overall loss for a sample (i.j) is in Eq. (19):

Lfocalzad'(l_pt)Y'BCE (yij’yij) (19)

where, §/ij, y; are the predicted probability and ground truth
label, respectively, pt:}”fij if yijzl, otherwise 1-§Iij. And vy is the
focusing parameter.

IV. EVALUATION CRITERIA

The dataset was split into 80% training and 20% testing
using stratified sampling, which is widely used in drug response
prediction benchmarks to ensure sufficient training data while
maintaining an unbiased test set. This setting evaluates the
model’s ability to generalize across unseen drug—cell line pairs
under standard experimental conditions. Training was
conducted for 100 epochs with early stopping based on
validation AUC. All computations were accelerated via GPU.
The model parameters were optimized using the Adam
optimizer (Ir = 0.001).

The model is evaluated on the test set using a comprehensive
set of metrics:

A 3 TP + TN
Y T TP T FP+ TN + FN
. Tp
Precision=
Tp+Fp
Recall= TP
TP EN
precision.Recall
F1 score=2

"precision+Recall

where, TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively. In
addition to the metrics mentioned above, AUPR, AUC, and
Specificity were also used.

V. RESULTS

A. Data Description

Data filtering helped to reduce the missing values. For the
IC50 response matrix, missing values reduced from 54.39% to
12.50%, and the Omics: RNA missing values reduced from
6.64% to 0.00%, CNV missing values reduced from 11.20% to
2.40%.

Since the GDSC dataset still includes missing entries, we
compensated for them by applying a hybrid imputation
approach, as outlined in the Materials and Methods section
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(Section III). The total number of features and samples after this
step is in Table .

TABLE L. GDSC DATASET INFORMATION BEFORE AND AFTER
PREPROCESSING
Datase State Drug (.jell RNA | CNV Mutatio
t s lines n
Raw 343 108 1761 2290 68
GDSC 4 2 3
greprocesse 103 643 1761 5277 55

So we had omics data with more than 40 thousand features,
which were integrated with the response matrix to calculate cell
line similarities. This analysis produced a 551 x 551 cell line
similarity matrix, reflecting the 551 common cell lines shared
across the datasets. For the drug data, compounds lacking
SMILES representations were excluded. MACCS fingerprints
were then computed and combined with the response matrix to
derive drug similarities, resulting in a 91 x 91 similarity matrix
corresponding to the 91 drugs common across the datasets. Then
we reduced the dimensionality of the omics data by applying
PCA, ensuring that 80% of the total variance is preserved,
reducing the number to 146 features.

For labeling, we used Cmax to convert IC50 values to
labeled values. The GDSC dataset exhibits a moderately
balanced class distribution, with 62.93% of drug-cell pairs
classified as sensitive and 37.07% as resistant, yielding a 1.7:1
ratio. However, per-drug sensitivity rates vary significantly,
with some drugs showing as low as 13% or as high as 76%
sensitive cell lines, creating drug-specific imbalances (see
Fig. 5). To ensure robust performance on both classes,
particularly the clinically critical resistant cases, we employed
focal loss with dynamic per-drug alpha
(a=1-sensative fraction,y=3). This approach weights the loss
inversely to each drug’s sensitivity rate, prioritizing
underrepresented classes (e.g., resistant cases for highly
effective drugs). As a result, the DrugCellGNN achieved
balanced performance, with an AUPR of 0.9698, Fl-score of
0.9228, and specificity of 0.7853, demonstrating effective
handling of per-drug class variations and enhancing its utility for
precision oncology.

Distribution of Drug Sensitivity Across Drugs

35 A

;%] v} w
[= w (=]
L L L

Number of Drugs
=
w

20 30 40 50 60 70
Percentage of Sensitive Cell Lines per Drug (%)

Fig. 5. Distribution of drug sensitivity across drugs.
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B. Predictive Performance of the Model

To validate the effectiveness of our approach, we compared
its predictive performance with that of the state-of-the-art
models, including DSPLMF [7], Auto-HMM-LMF[12],
CDSML [23], and MOICVAE [24]. All the methods mentioned
above are classification models. All baseline models were
evaluated using the same preprocessed dataset and identical
train—test splits to ensure a fair comparison. The results in
Table II show that in the GDSC cell line data set, the five
indicators of our model framework were the highest.

TABLE I PREDICTION PERFORMANCE OF DIFFERENT ALGORITHMS

BASED ON SIX CRITERIA ON THE (GDSC) DATASET

Method ACC Rec SPC F1 AUC | Precision

DrugCellGNN 0.895 | 0.941 0.807 | 0.921 0.951 0.902

AutoBorutaRF | 0.653 0.652 0.654 | 0.650 0.711 0.646

DSPLMF 0.682 | 0.750 0.615 | 0.702 0.760 0.671
MOICVAE 0.772 | 0.787 - 0.775 0.856 0.764
CDSML 0.838 | 0.9031 0.8715 | 0.9157 | 0.842
Auto-HMM-

0.70 0.78 0.63 0.73 0.78 0.77
LMF

VI. CONCLUSION AND DISCUSSION

In this study, we introduced DrugCellGNN, a pioneering
Graph Neural Network framework that revolutionizes cancer
drug sensitivity prediction by seamlessly integrating multi-
omics data—encompassing gene expression, copy number
variations, and mutations—with structural and functional
similarities between drugs and cell lines. Leveraging the GDSC
dataset, our pipeline addresses key challenges in
pharmacogenomics, including data sparsity through hybrid
imputation, high dimensionality via PCA reduction, and class
imbalance with dynamic focal loss. Evaluated on 50141drug-
cell pairs (80/20 train-test split), DrugCellGNN achieved an
AUC of 0.9516, Fl-score of 0.9228, and AUPR of 0.9698,
outperforming traditional baselines Random Forest and SVM by
leveraging relational dependencies. These results highlight
DrugCellGNN’s ability to model complex interactions,
enhancing prediction accuracy for rare sensitive cases critical in
precision oncology. A key factor contributing to the
effectiveness of DrugCellGNN is the integration of functional
and structural similarity information for both drugs and cell
lines. By combining response-based similarities with molecular
and chemical features, the constructed graphs provide a
biologically meaningful representation of drug—cell interactions.
This fusion strategy allows the model to leverage
complementary information, balancing phenotypic drug
response patterns with intrinsic biological characteristics of
cancer cell lines and chemical properties of drugs.

Future work should aim to expand this framework to other
datasets, such as CCLE or CTRP, to evaluate how well it
performs across different data sources. Using more advanced
molecular representations (like transformer-based encoders or
molecular graph embeddings) could boost predictive accuracy.
Adding more layers of omics data, such as epigenomic or
proteomic information, might also deepen the biological
understanding. Lastly, integrating explainability features into
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GNN could reveal mechanistic insights by pinpointing

which molecular features or graph edges most influence the
predictions.
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