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Abstract—Predicting drug response in cancer cell lines is a 

critical step toward precision oncology, enabling more efficient 

therapeutic discovery and personalized treatment strategies. 

However, the complexity of drug–cell interactions, driven by 

diverse omics profiles and structural variability among drugs, 

poses significant challenges for conventional machine learning 

approaches. In this study, we propose an end-to-end pipeline that 

integrates multi-omics data (gene expression, copy number 

variation, and mutations) with chemical structure representations 

of drugs to predict binary drug response. Our method employs 

principal component analysis (PCA) for dimensionality reduction 

of high-dimensional omics data, followed by the computation of 

drug–drug and cell–cell similarity matrices. These are used to 

construct a heterogeneous graph combining intra-class similarities 

with drug–cell interactions. A customized graph neural network 

model, DrugCellGNN, is then applied to learn context-aware 

embeddings of drugs and cells. The fused representations are 

passed to a downstream multi-layer perceptron for classification. 

To address class imbalance, we introduce a dynamic focal loss 

function that adaptively emphasizes hard-to-classify examples. 

Evaluation on the GDSC dataset with an 80/20 train–test split 

demonstrates strong performance: Accuracy = 0.8935, F1 = 

0.9201, AUC = 0.9510. This work highlights the utility of graph-

based integration of multi-omics and drug features for drug 

sensitivity prediction. By leveraging both molecular and relational 

information, the proposed framework offers a robust and 

extensible foundation for advancing computational approaches in 

precision oncology. 
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I. INTRODUCTION 

Cancer is a disease of the genome that causes mortality 
worldwide, characterized by high complexity and inter-patient 
heterogeneity that complicate effective treatment [1]. 
Traditional therapies, such as chemotherapy and radiotherapy, 
often exhibit limited specificity, leading to substantial toxicity 
in healthy tissues and suboptimal efficacy [2]. However, not all 
patients react to pharmacological therapy in the same manner, 
and biological data, such as gene mutations or gene expression, 
can help predict which patients are most likely to benefit from a 
certain medicine [3]. Thus, establishing strategies for predicting 
drug sensitivity is critical for individualized therapy. According 
to the National Research Council, precision medicine can be 
used to divide patients into subgroups based on their unique 

reactions to medical treatment [4]. Customizing effective 
treatments based on individual characteristics can improve 
therapy quality, reduce wasteful expenses, and minimize 
negative side effects. Precision medicine aims to optimize 
cancer therapy by selecting drugs tailored to each patient's 
unique genetic profile [4]. This process presents a complex 
challenge in cancer treatment. These challenges have led to 
large-scale experiments on human cancer cell lines and a wide 
range of anticancer drugs, which have led to the availability of 
free datasets for cancer cell drug sensitivity information and 
molecular markers of drug responses. The Genomics of Cancer 
Drug Sensitivity (GDSC) [5] is one of the most widely used 
projects, providing molecular profiles and drug response data for 
hundreds of cancer cell lines treated with various anticancer 
drugs. These datasets provide genetic features of cancer cell line 
panels, such as gene expression profiles, copy number 
alterations, and single-nucleotide mutations. This enormous 
accumulation of data paves the way for the advancement of data 
analysis and computational techniques, including machine 
learning and artificial intelligence approaches. 

Despite notable progress, existing computational approaches 
face several limitations. Traditional machine learning models 
often struggle to capture complex interactions between drugs 
and cancer cell lines and are limited by the high dimensionality 
and heterogeneity of multi-omics data. Moreover, many 
methods treat drugs and cell lines independently, overlooking 
their intrinsic relational structure, which is crucial for accurate 
prediction and generalization across unseen samples. 

To address these challenges, this study proposes 
DrugCellGNN, a graph neural network–based framework for 
binary drug sensitivity prediction. The proposed method 
integrates multi-omics features, drug structural information, and 
functional drug response data to construct biologically 
meaningful drug–cell interaction graphs. Dimensionality 
reduction using principal component analysis (PCA) is 
employed to mitigate data sparsity, while a dynamic focal loss 
is introduced to handle class imbalance. Through 
comprehensive evaluation, DrugCellGNN demonstrates 
improved predictive performance compared to existing 
approaches, highlighting its potential utility in precision 
oncology. 

The remainder of this study is organized as follows: 
Section II briefly reviews some of the recent work published in 
the area of prediction of the drug response by using genomics 
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data. Section III explains the methodology that has been used to 
create the model. Evaluation criteria is explained in Section IV. 
The results of the proposed model are presented in Section V. 
Finally, Section VI concludes the study. 

II. RELATED WORK 

Several computational approaches have been developed to 
predict medication response by analyzing gene expression 
profiles or other molecular information of cell lines. This 
Computational method for predicting drug response can be 
grouped into two main approaches: 1) classification (predicting 
drug responses as sensitive vs. resistant), 2) regression 
(Estimating a quantitative measure to evaluate a cell line's 
response to a drug). Various computational approaches have 
been developed to solve classification problems for predicting 
the sensitivity of anticancer drugs. Choi et al. [6] created 
RefDNN, a computational model that utilizes a deep neural 
network and ElasticNet repressors. They established a collection 
of reference medications and a baseline for classifying drugs to 
evaluate others. Drug sensitivity probabilities for a given cell 
line-drug pair were predicted using the drug's similarity to the 
reference set. RefDNN has the potential to be utilized for 
repositioning anticancer medications. Similarly, Logistic matrix 
factorization with regularization terms was used in DSPLMF [7] 
to classify drug response. This approach incorporates drug 
similarity derived from chemical structures and cell line 
similarity computed from gene expression, copy number 
variation, mutation profiles, and drug response data. While these 
methods demonstrate promising performance, they primarily 
rely on pairwise similarities and do not explicitly model higher-
order interactions between drugs and cell lines. 

Furthermore, various computational regression approaches 
have been developed to predict the half-maximal inhibitory 
concentration (IC50) of cell lines in response to drugs. Wang et 
al. [4] proposed the Similarity Regularized Matrix Factorization 
(SRMF) method, which incorporates the gene expression 
similarity of cell lines and the chemical similarity of drugs to 
enhance the prediction of anticancer drug responses. Ahmadi 
Moughari et al. have introduced ADRML, a framework for 
predicting how well cancer cells will respond to drugs using 
manifold learning. ADRML maps drug response values into a 
low-dimensional latent space and predicts the drug response for 
new cell line-drug pairs based on this latent space. The 
framework incorporates multiple types of cell line similarities 
and drug similarities into the manifold learning process [8]. 

Selecting the optimal set of genetic features for predicting 
drug response is crucial for developing effective classification 
models.  Consequently, numerous feature selection algorithms 
employing diverse strategies have been developed. 
AutoBorutaRF [9] is a method which based on feature selection 
and designed for predicting drug response. It combines an 
autoencoder network with the Boruta algorithm [10]. The 
autoencoder is used initially, and then Boruta is applied to select 
the most relevant features. These selected features are then used 
to train a Random Forest classifier for predicting drug response. 
Dong et al. [11] developed a drug response prediction model 

called Support Vector Machine Recursive Feature Elimination 
(SVM-RFE), which employs a wrapper approach, combining 
recursive feature selection with an SVM classifier. Emdadi et al. 
[12]  introduced a feature selection method designed for drug 
response prediction.  It uses Hidden Markov Models (HMM) 
and Autoencoders (AE). While these techniques reduce 
dimensionality and noise, they typically treat samples 
independently and fail to exploit relational structures between 
drugs and cell lines. 

Considering the complexity and noise inherent in biological 
data, deep learning methods often outperform traditional 
machine learning algorithms in predicting drug sensitivity [13]. 
A hybrid graph convolutional network (GCN) has been 
proposed in [14], This approach, known as DeepCDR, utilizes a 
variational autoencoder (VAE) framework to effectively model 
the complex relationships between multi-omics profiles of 
cancer cells and the intrinsic chemical structures of drugs, 
achieving strong results; nevertheless, it performs late-stage 
omics fusion, employs limited similarity types (primarily 
structural), and does not explicitly mitigate severe class 
imbalance common in pharmacogenomic data. 

Other studies suggest several statistical learning strategies, 
such as regularized linear regression models, ridge regression  
lasso [15], and Support vector machines [16]. 

Although prior studies have progressively improved 
prediction accuracy, they share common limitations: over-
reliance on pairwise or late-fused similarities, inadequate 
handling of class imbalance, limited integration of hybrid 
(structural + functional) drug/cell similarities, and insufficient 
relational modeling of multi-omics interactions. To overcome 
these gaps, the proposed DrugCellGNN framework integrates 
multi-omics features, functional and structural drug similarities, 
and graph neural networks to explicitly model drug–cell 
relationships, enabling robust and biologically informed binary 
drug sensitivity prediction. 

III. METHODOLOGY 

The primary objective of this study is to develop a predictive 
framework for binary drug response classification, as it may be 
more important whether a drug is effective for a given cancer 
cell line or not. There are two classifications of drug Responses: 
"sensitivity” and "non-sensitivity". We focused on integrating 
multi-omics profiles of cancer cell lines with structural and 
functional representations of drugs. The first step begins with 
extensive data preprocessing, including the removal of samples 
and features with excessive missingness, followed by a hybrid 
imputation strategy. Then, for improving the prediction 
performance, the cleaned datasets are dimensionally reduced to 
retain the most informative features, and similarity matrices are 
computed for both drugs and cell lines. Finally, a model is used 
for predicting the probability that a cell line would become drug-
sensitive. Every pair was then categorized into a sensitive or 
resistant class by applying the threshold to the predicted 
probability of the cell line-drug pairs. The main scheme of our 
model is represented in Fig. 1. 
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Fig. 1. Overview of the DrugCellGNN framework. 

A. Dataset 

Genomics of Drug Sensitivity in Cancer (GDSC) [17] is 
used in this study. This dataset includes drug response 
measurements, such as the half-maximal inhibitory 
concentration (IC50 values), Cell line omics information 
(including gene expression profiles, copy number variation 
(CNV), and mutation data), and maximum concentration values 
for drugs.  The GDSC has 1,084 cell lines and 344 drugs; 
however, some values were missing in the dataset, so we filtered 
the dataset and applied preprocessing steps to address this issue. 
After the preprocessing, we had 551 cell lines and 91 drugs. In 
addition to the mentioned cell line information, chemical 
compound information is used and represented by Simplified 
Molecular Input Line Entry System (SMILES) [18], which was 
downloaded from PubChem [19]. And molecular fingerprints of 
drugs were extracted using the rdkit package in Python [20].  

B. Preprocessing  

We organize the collected data into three main types of 
matrices. The first is the response matrix, which captures the 
drug response data; rows represent cell lines, and columns 
represent different drugs. Each entry in this matrix holds either 
an IC50 value or a sensitivity label. The second type is the cell 
line feature matrices, where each row refers to a specific cell line 
and the columns represent its associated features. Lastly, drug 
feature matrices, with drugs as rows and their corresponding 
features arranged across the columns. Once these matrices were 
prepared, we carried out a series of preprocessing steps to ensure 
they were ready for downstream analysis. 

The preprocessing steps are as follows: 

• Missing value analysis and filtering: Because some of the 
information above has a high ratio of missing values, we 
first needed to remove samples with substantial missing 

data before performing imputation. For the response 
matrix, according to the distribution of missing values in 
Fig. 2(A), we initially removed cell lines with more than 
95% missing values. Then, we eliminated cell lines and 
drugs with more than 30% missing data. Fig. 2(B) shows 
the distribution after filtering. In the gene expression 
matrix, we identified 72 cell lines that contained only 
missing values (i.e., no data across all features); 
therefore, the dataset became fully complete after 
excluding these cell lines. In the CNV matrix in Fig. 3(A) 
and Fig. 3(B), we removed features and cell lines with 
more than 30% missing values. For the mutation matrix, 
we eliminated features with over 35% missing data, 
resulting in a fully complete dataset. 

• Imputing missing values: After removing samples and 
features with a high percentage of missing values, some 
missing entries still remained in the response and CNV 
matrices. To fill these gaps, we used a hybrid imputation 
method that combines mean imputation with K-nearest 
neighbors (KNN) imputation. 

Let the drug response matrix be denoted by: 

R∈Rn×m 

where, n and m represent the number of cell lines and drugs, 
respectively. 

Mean Imputation is used for Low-Missing Drugs, 
where each drug j with a missing rate less than a threshold τ (in 
our study, τ =0.1), for drugs missing <10% values, fills gaps with 
the average response [Eq. (1)]: 

μ
j
=

1

|Ij|
∑ Riji∈I                                  (1) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 12, 2025 

865 | P a g e  

www.ijacsa.thesai.org 

  

Fig. 2. (A) Missing value distribution for the response matrix before filtering. (B) Missing value distribution for the response matrix after filtering. 

 

Fig. 3. (A) Missing values distribution for cell lines in the CNV matrix before filtering. (B) Missing values distribution for CNV features in the CNV matrix 

before filtering. 

where, Rij represents the response of cell line 𝑖 to drug 𝑗, and 

may be missing (i.e., Rij=NaN), Ij={i|Rij is observed}, then for 

all missing entries 𝑅𝑖𝑗 where j ∈ low-missing drugs, set:  R̂ij= μ
j
 

For drugs with missing values greater than τ, we used KNN 
Imputation. To prepare for KNN imputation, the matrix is scaled 
using Eq. (2): 

R̀ij=
Rij-Median(Rj)

IQR(Rj)
                                    (2) 

where, IQR(Rj) is the interquartile range of drug 𝑗 's 

responses. 

We then applied KNN imputation on the scaled data.  For 

each missing value R̀ij, the imputed value is computed as the 

average of the same feature from  the 𝑘 nearest samples (rows) 
based on Euclidean distance [see Eq. (3)]: 

R̀ij=
1

k
∑ R̀rjr∈Ni

                               (3) 

where, Ni is the set of 𝑘 nearest neighbors of the 
sample i with observed values in feature j. After imputation, the 
scaled data were transformed back to their original scale using 
the inverse of the robust scaling operation [Eq. (4)]: 

Rij
final=R̀ij.IQR(Rj)+Median(Rj)                 (4) 

This hybrid approach ensures that low-missing features are 
imputed efficiently using simple statistics, while high-missing 
features benefit from structure-aware imputation via KNN. 

• Binary conversion using IC50: This research aims to 
develop classification-based modeling, so we converted 
the continuous drug response data into binary labels 
(sensitivity and non-sensitivity). Several research studies 
have adopted different threshold values of IC50 for 
binarization. Such as median values [7], [9] or a specific 
deviation from the normalized mean [11]. While others 
have relied on more biologically grounded 
pharmacokinetic thresholds, such as the maximum drug 
concentration (Cmax) [6]. Cmax makes more sense 
among the different thresholds used to assign labels to 
drug response data because it is predicated on the 
medication's pharmacokinetic characteristics. Cmax is 
the highest concentration of a medication that can be 
found in plasma. Thus, it is clear that a cell line is 
resistant to a medicine if it needs a molar concentration 
greater than the drug's Cmax for 50% inhibition. For this 
reason, we adopted the Cmax in our study for classifying 
drug response. And based on it, we labeled a cell line as 
“sensitive” if the IC50i,j ≤ Cmax, which is represented 
by 1; otherwise, it’s labeled as “non-sensitive”. 
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C. Feature Engineering 

Omics Integration and Dimensionality Reduction:  To 
construct a comprehensive representation of each cell line, we 
integrated multiple omics data types, including gene expression, 
copy number variation (CNV), and mutation profiles. Only cell 
lines present in all three sources were retained to ensure 
consistency. The aligned datasets were then concatenated to 
form a unified omics feature matrix. To reduce scale disparities 
and improve model stability, the omics matrix was standardized 
using z-score normalization and subsequently, Principal 
Component Analysis (PCA) [21]. In our study, PCA was applied 
to reduce dimensionality while preserving 80% of the variance. 
This step helped eliminate redundancy and emphasized the most 
informative biological features. 

The cumulative explained variance curve (Fig. 4) 
demonstrates a smooth and steady increase, indicating that a 
relatively moderate number of components (~140) is sufficient 
to retain 80% of the variance. This gradual curve suggests that 
the variance is well distributed across components, meaning no 
single feature dominates the representation. Such a distribution 
supports the stability and robustness of the compressed feature 
space, as it captures diverse biological signals rather than being 
overly dependent on a few dominant factors. 

To explore the potential benefit of non-linear dimensionality 
reduction, we compared PCA with a shallow autoencoder 
trained on the standardized omics feature matrix. Both 
approaches yielded comparable performance in downstream 
tasks, suggesting that the underlying structure of the data is 
predominantly linear. Given PCA’s simplicity, interpretability, 
and computational efficiency, we opted to use PCA for feature 
compression in the final pipeline. 

 

Fig. 4. PCA explained variance curve. 

• Similarity Computation: To enhance the representation 
of both cell lines and drugs, we constructed similarity 
networks using a weighted combination of functional 
and structural measures. This approach captures 
complementary biological and chemical relationships, 
enabling the model to generalize better across diverse 
drug-cell line pairs. 

For cell lines, similarity was computed using two modalities: 

• Response-Based Similarity: We calculated cosine 
similarities from the drug response matrix R∈Rn×m, 
where Ri and Rj are the response vectors of cell lines 

i and j. Cosine similarity is defined in Eq. (5): 

Sij

response
= 

Ri. Rj

‖Ri‖2‖Rj‖2

                              (5) 

• Omics-Based Similarity: derived from the omics feature 
matrix O ∈ ℝn×m where Oi and Oj are the feature 

vectors of cell lines 𝑖 and 𝑗. Using the same cosine 
similarity equation [Eq. (6)]: 

Sij
omics= 

Oi. Oj

‖Oi‖2‖Oj‖2

                              (6) 

The final cell line similarity matrix was computed as a 
weighted combination [see Eq. (7)]: 

Scell=λc.Sresponse+(1-λc).Somics                    (7) 

λc is a parameter that represents the weight of the matrix; in 
our study, λc=0.3 was selected empirically to balance 
phenotypic response patterns and intrinsic molecular. 

This fusion strategy balances phenotypic behavior with 
intrinsic biological or chemical characteristics. 

For drug similarity, the similarity between two 
drugs i and j  is computed using  MACCS fingerprints [22] and 
the response matrix; we computed both similarity matrices using 
Jaccard similarity. 

Structural similarity: computed using the Jaccard similarity 
over MACCS fingerprints [see Eq. (8)]. 

Sij
struc=

|Fi∩ Fj|

|Fi∪ Fj|
                                (8) 

where, Fi, Fj are Sets of active bits in the MACCS 

fingerprints of drugs i  and j, respectively. 

Functional similarity: using cosine similarity across binary 

response profiles Sij
func. 

The final drug similarity matrix was Eq. (9): 

Sdrug=λd.Sfunc+(1-λd).Sstruc                  (9) 

λd is a parameter that represents the weight of the matrix; in 
our study, λd=0.3. 

D. Model Architecture 

To capture the complex interplay between drugs and cancer 
cell lines, we propose a novel graph-based deep learning 
framework, DrugCellGNN, that integrates structural drug 
information, functional cell similarities, and multi-omics 
features into a unified predictive model. 

Graph Construction and Node Embedding: To include the 
structural relationships between drugs and cell lines, we built 
two separate graphs: a drug similarity graph and a cell line 
similarity graph. Each graph  G= (V, E) is composed of nodes V 
(drugs or cell lines) and edges E, which are defined based on a 
pairwise similarity threshold. Specifically, an edge (i,j) ∈ E is 
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formed if the similarity score Sij > 0.7, a threshold selected to 

retain only strong associations. 

Each node is initialized with a trainable embedding vector of 

size 𝑒 from Ed∈R
|νd|×e  for drug and Ec∈R

|νc|×e for cell lines, 
where |νd|and |𝜈𝑐| denote the number of drug and cell nodes, 
respectively. These embeddings were then updated using a 
graph convolution operation defined as Eq. (10): 

Hl+1=σ (D̂
-2
1

ÂD̂
-2
1

HlWl)                      (10) 

Where Â=A+I is the adjacency matrix with self-loops, D̂ is 

the corresponding degree matrix, Hl is the node feature matrix 

at layer l, Wl is the trainable weight matrix, and σ is a non-linear 
activation function (ReLU in our case). 

Alternatively, this operation can be interpreted from a node-
wise perspective as Eq. (11): 

hi
(l+1)

=σ( ∑
1

√|N(i)|.|N(j)|
W

(l)hj

(l)
)j∈N(i)                  (11) 

This emphasizes how each node i updates its feature by 
aggregating normalized information from its neighbors N(i). 

Using this, the final graph-enhanced embedding is Eq. (12): 

di=GCNdrug(Ed,Gd) , cj=GCNcell(Ec,Gc)           (12) 

The output embedding for drugs and cell lines — denoted 
di=GCNdrug(Ed,Gd) and cj=GCNcell(Ec,Gc), respectively — are 

then concatenated with the corresponding omics feature vector 

oj∈RO of the cell line, resulting in a fused representation [see 

Eq. (13)]: 

zij= [di||cj
||oj] ∈R2e+o                         (13) 

This vector zij is passed into a multi-layer perceptron (MLP) 

— a deep learning model for classification. Where the first 
hidden layer can be represented by Eq. (14): 

h1=RELU(BN(W1zij+b1))                        (14) 

The second layer [see Eq. (15)]: 

h2=RELU(W2h1+b2)                      (15) 

To prevent overfitting, a dropout layer with a probability of 
p =3 is applied after the second fully connected layer. Dropout 
randomly deactivates a fraction p of neurons during training, 
encouraging the network to learn distributed representations 
rather than memorizing specific patterns [Eq. (16)]. 

h̃2=m ⨀ h2, m∼Bernoulli(1-p)                    (16) 

Finally, the transformed features are passed to a sigmoid 
output layer to produce the predicted probability of drug 
sensitivity, as in Eq. (17): 

ŷ
ij
=σ(W3h̃2+b3)                             (17) 

where, ŷ
ij
∈[0.1] indicates the likelihood that cell line 

j responds to drug i. 

E. Dynamic Focal Loss Function for Imbalanced Data 

To address class imbalance inherent in drug response data, 
we implemented a custom focal loss function with dynamic 
weighting, where the per-sample weight αd is given in Eq. (18): 

αd=
# sensitive cell lines for drug d

Total cell lines tested for drug d
                       (18) 

This formulation increases the loss contribution from drugs 
with few positive (sensitive) samples, preventing the model 
from being biased toward majority-class drugs. 

The overall loss for a sample (i.j) is in Eq. (19): 

Lfocal=αd.(1-p
t
)

γ
.BCE (ŷ

ij
,y

ij
)                   (19) 

where, ŷ
ij
, y

ij
 are the predicted probability and ground truth 

label, respectively, p
t
=ŷ

ij
 if y

ij
=1, otherwise 1-ŷ

ij
. And γ is the 

focusing parameter. 

IV. EVALUATION CRITERIA 

The dataset was split into 80% training and 20% testing 
using stratified sampling, which is widely used in drug response 
prediction benchmarks to ensure sufficient training data while 
maintaining an unbiased test set. This setting evaluates the 
model’s ability to generalize across unseen drug–cell line pairs 
under standard experimental conditions. Training was 
conducted for 100 epochs with early stopping based on 
validation AUC. All computations were accelerated via GPU. 
The model parameters were optimized using the Adam 
optimizer (lr = 0.001). 

The model is evaluated on the test set using a comprehensive 
set of metrics: 

Accuracy =
TP + TN

TP + FP + TN + FN
 

Precision=
Tp

Tp+Fp
 

Recall=
TP

TP + FN
 

F1 score=2.
precision.Recall

precision+Recall
 

where, TP, TN, FP, and FN represent true positive, true 
negative, false positive, and false negative, respectively. In 
addition to the metrics mentioned above, AUPR, AUC, and 
Specificity were also used. 

V. RESULTS 

A. Data Description 

Data filtering helped to reduce the missing values. For the 
IC50 response matrix, missing values reduced from 54.39% to 
12.50%, and the Omics: RNA missing values reduced from 
6.64% to 0.00%, CNV missing values reduced from 11.20% to 
2.40%. 

Since the GDSC dataset still includes missing entries, we 
compensated for them by applying a hybrid imputation 
approach, as outlined in the Materials and Methods section 
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(Section III). The total number of features and samples after this 
step is in Table I. 

TABLE I.  GDSC DATASET INFORMATION BEFORE AND  AFTER 

PREPROCESSING 

Datase

t 
State 

Drug

s 

Cell 

lines 
RNA CNV 

Mutatio

n 

GDSC 

Raw 343 
108

4 

1761

2 

2290

3 
68 

preprocesse
d 

103 643 
1761
1 

2277
3 

55 

So we had omics data with more than 40 thousand features, 
which were integrated with the response matrix to calculate cell 
line similarities. This analysis produced a 551 × 551 cell line 
similarity matrix, reflecting the 551 common cell lines shared 
across the datasets. For the drug data, compounds lacking 
SMILES representations were excluded. MACCS fingerprints 
were then computed and combined with the response matrix to 
derive drug similarities, resulting in a 91 × 91 similarity matrix 
corresponding to the 91 drugs common across the datasets. Then 
we reduced the dimensionality of the omics data by applying 
PCA, ensuring that 80% of the total variance is preserved, 
reducing the number to 146 features. 

For labeling, we used Cmax to convert IC50 values to 
labeled values. The GDSC dataset exhibits a moderately 
balanced class distribution, with 62.93% of drug-cell pairs 
classified as sensitive and 37.07% as resistant, yielding a 1.7:1 
ratio. However, per-drug sensitivity rates vary significantly, 
with some drugs showing as low as 13% or as high as 76% 
sensitive cell lines, creating drug-specific imbalances (see 
Fig. 5). To ensure robust performance on both classes, 
particularly the clinically critical resistant cases, we employed 
focal loss with dynamic per-drug alpha 
(α=1-sensative fraction,γ=3). This approach weights the loss 
inversely to each drug’s sensitivity rate, prioritizing 
underrepresented classes (e.g., resistant cases for highly 
effective drugs). As a result, the DrugCellGNN achieved 
balanced performance, with an AUPR of 0.9698, F1-score of 
0.9228, and specificity of 0.7853, demonstrating effective 
handling of per-drug class variations and enhancing its utility for 
precision oncology. 

 

Fig. 5. Distribution of drug sensitivity across drugs. 

B. Predictive Performance of the Model 

To validate the effectiveness of our approach, we compared 
its predictive performance with that of the state-of-the-art 
models, including DSPLMF [7], Auto-HMM-LMF[12], 
CDSML [23], and MOICVAE [24]. All the methods mentioned 
above are classification models. All baseline models were 
evaluated using the same preprocessed dataset and identical 
train–test splits to ensure a fair comparison. The results in 
Table II show that in the GDSC cell line data set, the five 
indicators of our model framework were the highest. 

TABLE II.  PREDICTION PERFORMANCE OF DIFFERENT ALGORITHMS 

BASED ON SIX CRITERIA ON THE (GDSC) DATASET 

Method ACC Rec SPC F1 AUC Precision 

DrugCellGNN 0.895 0.941 0.807 0.921 0.951 0.902 

AutoBorutaRF 0.653 0.652 0.654 0.650 0.711 0.646 

DSPLMF 0.682 0.750 0.615 0.702 0.760 0.671 

MOICVAE 0.772 0.787 - 0.775 0.856 0.764 

CDSML 0.838 0.9031 - 0.8715 0.9157 0.842 

Auto-HMM-

LMF 
0.70 0.78 0.63 0.73 0.78 0.77 

VI. CONCLUSION AND DISCUSSION 

In this study, we introduced DrugCellGNN, a pioneering 
Graph Neural Network framework that revolutionizes cancer 
drug sensitivity prediction by seamlessly integrating multi-
omics data—encompassing gene expression, copy number 
variations, and mutations—with structural and functional 
similarities between drugs and cell lines. Leveraging the GDSC 
dataset, our pipeline addresses key challenges in 
pharmacogenomics, including data sparsity through hybrid 
imputation, high dimensionality via PCA reduction, and class 
imbalance with dynamic focal loss. Evaluated on 50141drug-
cell pairs (80/20 train-test split), DrugCellGNN achieved an 
AUC of 0.9516, F1-score of 0.9228, and AUPR of 0.9698, 
outperforming traditional baselines Random Forest and SVM by 
leveraging relational dependencies. These results highlight 
DrugCellGNN’s ability to model complex interactions, 
enhancing prediction accuracy for rare sensitive cases critical in 
precision oncology. A key factor contributing to the 
effectiveness of DrugCellGNN is the integration of functional 
and structural similarity information for both drugs and cell 
lines. By combining response-based similarities with molecular 
and chemical features, the constructed graphs provide a 
biologically meaningful representation of drug–cell interactions. 
This fusion strategy allows the model to leverage 
complementary information, balancing phenotypic drug 
response patterns with intrinsic biological characteristics of 
cancer cell lines and chemical properties of drugs. 

Future work should aim to expand this framework to other 
datasets, such as CCLE or CTRP, to evaluate how well it 
performs across different data sources. Using more advanced 
molecular representations (like transformer-based encoders or 
molecular graph embeddings) could boost predictive accuracy. 
Adding more layers of omics data, such as epigenomic or 
proteomic information, might also deepen the biological 
understanding. Lastly, integrating explainability features into 
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the GNN could reveal mechanistic insights by pinpointing 
which molecular features or graph edges most influence the 
predictions. 
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