
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

889 | P a g e
www.ijacsa.thesai.org

SWAP Optimization for Qubit Mapping Based on the

Centric-Shortest Quantum Gate Set in NISQ Devices

Shujuan Liu1, Hui Li2*, Yingsong Ji3, Jiepeng Wang4

School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China 1, 2, 3, 4

Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin, China 2

Abstract—In the Quantum computing era of Noisy

Intermediate-Scale Quantum (NISQ) devices, conventional qubit

mapping strategies typically rely on specific heuristic rules to

solve the mapping problem, overlooking the impact of other

factors on the mapping, which leads to increased overhead from

extra SWAP gates. To address this issue, we propose a SWAP

optimization strategy based on the Centric-Shortest Quantum

Gate Set (C-SQGS) and applies it to qubit mapping. In this

approach, the centric qubit is determined by analyzing the

maximum flexibility qubit set and the physical distances between

the associated CNOT gates, leading to the identification of the

Centric-Shortest Quantum Gate Set. To overcome the limitations

of traditional cost functions that consider only single factors, a

multi-factor cost function is introduced to evaluate the overall

overhead of candidate SWAP operations and determine pending

SWAP gate Set. Based on qubit flexibility analysis, executable

SWAP gate is identified and inserted into the circuit.

Experimental results demonstrate that the C-SQGS strategy

effectively reduces both SWAP gate and two-qubit gate

overhead. Specifically, it achieves an average SWAP gate

reduction of 36.9% and 47.7%, and a two-qubit gate reduction of

13.8% and 13.5% on the t|ket⟩ and Qiskit compilers, respectively.

These results highlight the potential of the C-SQGS strategy in

enhancing the efficiency of qubit mapping for NISQ devices.

Keywords—Quantum computing; qubit mapping; Centric-

Shortest Quantum Gate Set (C-SQGS); executable SWAP gate;

multi-factor cost function

I. INTRODUCTION

Quantum computing is an innovative approach to
computation that utilizes the principles of quantum mechanics
to process information. In contrast to classical computers that
use bits, quantum computing operates with qubits. Qubits can
simultaneously exist and the superposition of states, this
superposition property makes the quantum computer can
simultaneously deal with a variety of possible states, thus
accelerating the process of solving complex problems. The
powerful parallel computing acceleration capability of
quantum computing gives it great potential in areas such as
integer factorization [1], optimization problems [2], and
quantum simulation [3]. Due to the inherent limitations of
traditional computers, it can be time-consuming and inefficient
in dealing with these more complex problems, while quantum
computers provide new solutions to these problems.

As quantum computing technology advances rapidly, it has
now transitioned into the NISQ era. Executing a quantum logic

circuit involves aligning the algorithm's logical qubits with the
physical qubits of the quantum computer, a process called
qubit mapping [4]. Due to the limitation of the technology in
the NISQ era, two-qubit gate operations can only be performed
on physically coupled qubit pairs. Thus, during the mapping
process, quantum circuits must be adjusted to ensure
compatibility with the hardware's coupling constraints. For
two-qubit gates that do not comply with the hardware coupling
constraints, extra SWAP gates must be added to reposition the
qubits to adjacent locations. The additional SWAP operation,
however, not only increases the depth of the quantum circuit,
but also introduces more noise. Thus, minimization of the
count of extra SWAP gates has become the focus of many
researchers [5]-[8].

The qubit mapping problem has been demonstrated to be
NP-complete [9]-[10]. In recent years, domestic and foreign
scholars have carried out many studies on heuristic qubit
mapping algorithms. Siraichi [11] proposed to preferentially
satisfy physically neighboring CNOT gates during the initial
mapping, and to resolve only one two-qubit gate operation
each time the qubits are shifted. Although this method is
relatively fast, it is generally ineffective in coping with
complex quantum circuits due to the relative simplicity of the
strategy. Zulehner [12] used the A* algorithm to determine the
optimal mapping of each logical to physical qubit to optimize
the implementation of quantum circuits on hardware
architectures, but due to the exhaustive search, the running
time is long. In 2020, Adrien [4] proposed the Hardware-
Aware (HA) algorithm to decrease the quantity of SWAP gates,
though it allows for the selection between SWAP and Bridge
gates, it does not adequately account for the effect of varying
numbers of look-ahead gates on the circuit's cost. Steinberg [13]
proposed the HQAA algorithm in 2022 for assigning initial
qubit positions for quantum algorithms on NISQ devices, but it
fails to achieve adequate efficiency in large-scale quantum
circuits. The above literature, while proposing valuable
treatments on the mapping problem, still requires further
improvements when dealing with complex quantum circuits.

In the NISQ era, the existing quantum circuit mapping
algorithms not only include the initial qubit mapping but also
involve the intermediate change strategy of qubit mapping.
After the initial mapping is completed, a reasonable
intermediate change strategy is formulated based on the
information of the quantum circuit, which helps to improve the
performance of the overall quantum circuit. Due to hardware
topology constraints, the initial mapping does not meet the
coupling requirements for all qubits, and for the non-Nearest *Corresponding author

This work was supported by the Natural Science Foundation of

Heilongjiang Province of China [Grant Number: LH2024F042].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

890 | P a g e
www.ijacsa.thesai.org

Neighbor (non-NN) gates that do not satisfy the constraints, it
is necessary to implement an additional SWAP operation to
exchange qubits to make them update to Nearest Neighbor (NN)
gates, and this process will expand the size and depth of the
circuit. Two-qubit gates have significantly higher error rates
than single-qubit gates [14]. Hence, minimizing the
compilation overhead is crucial for high fidelity circuit
implementations.

This paper focuses on the qubit mapping problem subject to
physical topology constraints. A SWAP optimization strategy
based on Centric-Shortest Quantum Gate Set (C-SQGS) is
proposed, aiming to optimize quantum circuits for the 2-local
qubit Hamiltonian simulation problem. This strategy optimizes
the initial mapping of quantum circuits by identifying the
Centric-Shortest Quantum Gate Set, and employs a multi-
factor cost function together with qubit flexibility analysis to
search for optimal SWAP gates. By comprehensively
considering multiple factors, the proposed method effectively
minimizes the number of inserted SWAP gates.

Unlike existing qubit mapping and routing heuristics that
rely on single-factor optimization or local greedy decisions
[23], the C-SQGS strategy introduces a centric decision
paradigm that organizes SWAP insertion around a dynamically
identified centric qubit and its associated shortest gate set.
Rather than independently applying concepts such as qubit
flexibility or gate frequency, C-SQGS integrates these factors
into a unified gate-set–driven mapping framework, enabling
coordinated optimization across both the initial mapping and
routing stages.

From a practical perspective, qubit mapping on NISQ
devices is constrained not only by physical connectivity but
also by limited coherence time and restricted scheduling
flexibility. Existing heuristics often rely on locally optimal or
single-metric decisions, which may introduce SWAP
operations that are executable in isolation but suboptimal or
even harmful when considering subsequent circuit evolution.
The proposed C-SQGS framework, together with executable
SWAP identification and multi-factor cost evaluation, is
designed to address these practical limitations by enabling
globally informed and execution-aware SWAP insertion.

The C-SQGS strategy is able to adapt to a variety of qubit
topologies and gate sets and can be used in conjunction with a
wide range of existing quantum circuit mapping algorithms.
Experimental findings indicate that the C-SQGS strategy
somewhat reduces the count of SWAP and two-qubit gates.
Moreover, we conduct experiments on IBM devices to verify
the superiority of our strategy and compare it with other
algorithms.

This paper makes the following key contributions:

• We focus on the qubit mapping challenge and point out
the main influencing factors considered in this paper.

• A SWAP optimization strategy based on a Centric-
Shortest Quantum Gate Set is proposed.

• Designing a multi-factor cost function that considers
multiple factors simultaneously.

• Introduction of a selection criterion and the definition
for executable SWAP gates.

The remainder of this paper is structured as follows.
Section Ⅱ outlines essential background on quantum
computing. Section Ⅲ highlights the challenges in qubit
mapping and introduces the proposed approach. Section Ⅳ
details the experimental evaluation, and Section Ⅴ summarizes
the conclusions.

II. BACKGROUND

A. Prior Knowledge

In quantum computing, a qubit is the core unit that can
simultaneously occupy the | 0 and |1 states through the
principle of superposition. The quantum state can be
expressed as Eq. (1), where |  is the state vector of the qubit,
 and  are complex numbers representing the probability of

the qubit being in the states | 0 and |1 , respectively, and

satisfying the condition
2 2| | | | 1 + = , whereas| 0 and|1 are the

ground states of the qubit. This special property of qubits
enables quantum computers to achieve exponential speedups.

 0| | |1   =  +  ()

Quantum gates are the fundamental units of operation in
quantum computing, used to manipulate the state of qubits. Fig.
1 shows the symbolic representation of basic quantum gates.
Among them, the Hadamard gate is a single-qubit operation
that transforms a classical state into an equal superposition of
basis states. Whereas CNOT and SWAP gates are gates acting
on two qubits, CNOT gates can realize a kind of qubit control
flip-flop operation, which passes the state of one qubit to the
other qubit and thus establishes an entanglement between them.
SWAP gates consist of 3 CNOT gates, as in Fig. 1(c), which
can realize the exchange of states between qubits without
changing their relative phase.

H

(a) (b)

(c)

Fig. 1. Basic quantum gates.

Quantum circuit is a fundamental computational model in
quantum computing for describing the process of manipulating
qubits through quantum gates. Fig. 2 shows a simple quantum
circuit describing the whole process of measuring the final
state of a qubit after the initial state of the qubit passes through
the quantum circuit, which consists of a Hadamard, a CNOT
and a SWAP gate, and the essence of the quantum circuit is a
combination of the unitary transformation and measurement.
Physically, we cannot directly realize the overly complex
unitary transformations, so expect some easy to realize the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

891 | P a g e
www.ijacsa.thesai.org

unitary transformations to produce more complex unitary
transformations. For complex quantum operations, such as
Hamiltonian simulation, can be realized through the rational
design and adjustment of quantum gates within the quantum
circuit.

H

(a)

initial

state
quantum circuit

evolution

measure

ment

Fig. 2. Quantum circuit.

B. Hamiltonian

The Hamiltonian operator characterizes the total energy of
a system. In quantum mechanics, the Hamiltonian acts on the
quantum state of a system, describing its energy state and time
evolution. In quantum computing, the Hamiltonian is used to
represent the energy states of qubits and the interactions
between them. Quantum gate operations can be implemented
through time evolution operators [see Eq. (2)], where 𝐻 is the
Hamiltonian corresponding to the quantum gate.

()

ˆiHt

U t e
−

= 

 ()

Hamiltonian simulation is a vital application in quantum
computing, involving the modeling of the Hamiltonian of a
quantum system. By simulating Hamiltonian dynamics, one
can predict and analyze the time evolution of quantum
systems, with applications in quantum physics, chemistry,
materials science, and beyond. Various methods have been
proposed for effective Hamiltonian simulation, including
Taylor series expansions [15], the product formula [16]-[17],
and quantum signal processing [18]-[19]. Among these, the
product formula is particularly notable for its simplicity and
practical efficacy [20]. The Hamiltonian of a system, denoted
as 𝐻, can be decomposed into a sum of polynomial ergodic
terms 𝐻𝑗, as illustrated in Eq. (3). In quantum computing, the
product formula is a vital tool for describing time-evolution
operators, especially for time-dependent Hamiltonians. This
method represents the time-evolution operator as a product of
a series of simpler operators, thereby simplifying the
implementation of complex quantum operations on a quantum
computer. The product formula is detailed in Eq. (4).

 1

L

j j

j

H h H
=

= 
 ()

() ()

1

exp
L

j j

j

V t ith H
=

= 
 ()

where, ()exp j jith H
represents the time evolution caused by

the Hermitian term jH
, i is the imaginary unit, t is the time, jh

is

the coefficient of each Hermitian term jH , L is the number of
Hermitian terms into which the system Hamiltonian H is

decomposed, and ()V t
represents the total evolution operator of

the system at moment t. Due to the flexibility of the
arrangement of Hamiltonian operators, it is possible to
optimize the Hamiltonian analog circuit for each Trotter step
by rearranging L individual operators in the product formula,
thus optimizing the overall circuit structure.

III. OUR DESIGN

A. Limitations of Qubit Mapping

Qubit mapping is an important process in quantum
computing aimed at mapping abstract quantum algorithms or
quantum circuits onto concrete quantum hardware for practical
execution. This process involves several steps, including
mapping logical to physical qubits, optimizing the sequence of
quantum gate operations, minimizing SWAP operations, etc.
Due to the limitations of NISQ era technology, execution is
only possible on qubits that are allowed to be connected on
quantum hardware coupling architectures. In executing
quantum logic circuits, logical qubits are required to match
physical quits. The limitations of quantum mapping are further
explained with examples as shown in Fig. 3. Fig. 3(b) shows a
small quantum circuit which consists of 7 CNOT gates and 1
Hadamard gate and is executed on the 6-qubit device shown in
Fig. 3(a). The device allows the use of two-qubit gates on the
qubit pairs {Q1, Q2},{Q2, Q3},{Q3, Q4},{Q4, Q5},{Q0, Q5},{Q0,
Q1},{Q2, Q5} and {Q3, Q4}, and does not allow the use of two-
qubit gates on the qubit pairs {Q1, Q5},{Q0, Q2},{Q2, Q4} and
{Q3, Q5}. For simplicity, assume that the initial mapping is
{q0→Q0, q1→Q1, q2→Q2, q3→Q3, q4→Q4, q5→Q5}. Due to
the limited connectivity between qubits, only directly
connected qubits can perform quantum gate operations. From
Fig. 3(a), among the seven CNOT gates in Fig. 3(b), g1, g2, g3

and g5 can be directly executed. Since the qubits associated
with the three CNOT gates, g4, g7 and g8, do not have a direct
mapping to the actual hardware, g4, g7 and g8 cannot be directly
executed, and a change in the qubit mapping is required before
executing these two gates.

Fig. 3. (a) Hardware topology, (b) Original quantum circuit, (c) Updated

quantum circuit.

Q1 Q2

Q0 Q5 Q4

Q3

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

q5(Q5)

H

CNOT q2,q3

CNOT q4,q5

CNOT q0,q5

CNOT q2,q4

CNOT q0,q1

H q3

CNOT q0,q2

CNOT q3,q5

Original Code

Block

g1

g2

g3

g4

g5

g6

g7

(Q0)

(Q1)

(Q5)

(Q3)

(Q4)

(Q2)

H

CNOT q2,q3

CNOT q4,q5

CNOT q0,q5

SWAP q2,q5

CNOT q2,q4

CNOT q0,q1

H q3

CNOT q0,q2

CNOT q3,q5

Updated Code Blockq0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

q5(Q5)

g1

g2

g3

g4

g5

g6

g7

g8

g8

a b

c

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

892 | P a g e
www.ijacsa.thesai.org

The objective of qubit mapping is to identify the optimal
initial qubit placement to minimize the count of SWAP
operations required when converting all non-NN gates to NN
gates. The qubit mapping challenge is modeled as a Quadratic
Assignment Problem (QAP) [21]. For solving this problem, the
qubit positions are changed by inserting SWAP gates by
exchanging the state between two qubits [22]. In Fig. 3(c),
CNOT gates g1, g2, g3 and g5 can be executed with the initial
mapping, with SWAP{q2,q5} inserted after g3, the mapping is
updated to{q0→Q0, q1→Q1, q2→Q5, q3→Q3, q4→Q4, q5→Q2},
which exchanges the two qubits q2, q5 and makes the
subsequent gates g4 and g7 into executable NN gates.

The insertion of extra SWAP gates can generate hardware-
compatible quantum circuits, but the increase in SWAP gates
may introduce additional noise that reduces the fidelity of the
quantum circuits, which in turn affects the overall performance
of the circuit. In addition, the increase in line depth can extend
the execution time and negatively affect the efficiency of
quantum computation. Comparing the original and updated
circuits in Fig. 3(b) and Fig. 3(c), the count of CNOT gates
increases from 7 to 10, and the depth grows from 5 to 8. The
addition of these gates introduces extra overhead, impacting
both the fidelity and execution time of the quantum circuits.
This paper is devoted to exploring the optimal solution of the
qubit mapping challenge, with a view to minimizing the
overhead of extra SWAP gates and effectively improving
mapping quality.

The qubit mapping stage is a crucial step in quantum
computing, where the mapping of logical qubits to physical
qubits directly impacts the execution efficiency and
computational accuracy of quantum circuits. So far, there are
still many challenges in the qubit mapping stage, and the
following limitations are mainly considered in this paper:

• Limitations of hardware topology: The way qubits are
connected to each other and the operational limitations
are determined by the hardware design. These
constraints include the layout of qubits, the way they
interact with each other, and the execution efficiency of
quantum gates. Reasonable mapping of quantum
circuits to the actual hardware topology can maximize
the execution efficiency and accuracy of the algorithm.

• Limited connectivity between qubits: The connections
between physical qubits on a quantum processor are
usually limited. Not all qubits are directly connected,
and only neighboring qubits can directly perform two-
qubit gate operations. This limitation requires moving
qubits around by adding extra SWAP operations that
allow non-directly connected qubits to interact.

• SWAP gate operation cost: One SWAP gate is
equivalent to 3 CNOT gates, and the operation cost of
SWAP gates is generally higher. Therefore, when
addressing the qubit mapping challenge, we must
consider the operation cost of SWAP gates and select
the SWAP insertion with lower operation cost.

• Balancing considerations for optimizing performance:
The goal of qubit mapping is the minimization of the
count of SWAP gate operations when all two-qubit

gates are converted from non-NN gates to NN gates.
Therefore, when dealing with the qubit mapping
challenge, different performance metrics need to be
considered, such as the starting point of the initial
mapping, the design of the cost function, the cost of
SWAP gate operations, and the selection of SWAP
gates.

B. SWAP Optimization Strategy Based on Centric-Shortest

Quantum Gate Set

In general, it is difficult to find a perfect initial mapping
such that it satisfies the dependencies of all two-qubit gates.
For non-NN gates, additional SWAP operations are required to
convert them to NN gates, a process that leads to overhead in
gate counting and circuit depth. Therefore, efficient qubit
routing techniques are essential to minimize compilation
overhead for reliable computation. Lao [23] introduced a
quantum compiler, 2QAN, in 2022, which mainly optimizes
the 2-local quantum simulation problem, such as the Quantum
Approximation Optimization Algorithm (QAOA). It leverages
flexibility in arranging Hamiltonian quantum operations and
reduces two-qubit gate overhead by integrating SWAP gates
with circuit gates into a single unitary transformation.
Although 2QAN presents a meaningful solution to qubit
mapping challenge, it neglects the effect of the number of
qubits involved in the CNOT operation on the mapping process.
It has been found that prioritizing the mapping of qubits
involved in a high number of CNOT gates to locations close to
each other reduces the subsequent additional SWAP gates, thus
reducing the circuit depth and execution time [24]. Based on
this, this paper proposes a SWAP optimization strategy based
on the Centric-Shortest Quantum Gate Set(C-SQGS).

Definition 1 Qubit Flexibility: In a quantum circuit C, let

iq be any qubit whose number ()iF q
of times it participates in a

non-NN gate operation is iq
's Qubit Flexibility.

Definition 2 Maximum Flexibility Qubit Set: In a quantum

circuit C, assuming
 1 2, ,n nG g g g= ……,

 be the set of non-NN

gates and
 1 2,m mQ q q q= ，……,

be the set of qubits involved in the

quantum gates in nG . The Qubit Flexibility Set is

() , 1,2, ,Q iF F q i m= = …… . If () maxmax j QF q F=
, then

{ , 1,2, , }jq q j m= = ……
 is

said to be the Maximum Flexibility Qubit Set in mQ .

Definition 3 Centric Qubit: In a quantum circuit C,

assuming  1 2, , mG G G G= ……,
 be the set of quantum gate sets

associated with jq
. The set of physical spacings of the

corresponding qubits in the set of quantum gates in G is
() () () 1 2, , , mD D G D G D G= …… . If () minkD G D= , then kq

is said to be

the Centric Qubit in mQ , where, 1,2, ,j m= …… ; 1,2, ,k m= …… .

Definition 4 Centric-Shortest Quantum Gate Set: In a
quantum circuit C, assuming the set of quantum gates

associated with the Centric Qubit kq
 be  1 2, , ,k rG g g g= ……

,
and the set of physical spacings of the corresponding qubits for

each quantum gate in kG be () () () '

1 2, , , rD D g D g D g= ……
. If

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

893 | P a g e
www.ijacsa.thesai.org

() '

z minD g D= , and then  '

z , 1,2, ,kG g z r= = …… is said to be the
Centric-Shortest Quantum Gate Set for the quantum circuit C

where, 0 z r n   .

The SWAP optimization strategy based on Centric-Shortest
Quantum Gate Set (C-SQGS) is a method for optimizing
quantum circuit mapping. It aims to identify the Centric-
Shortest Quantum Gate Set in quantum circuits, minimize the
use of SWAP gates and reduce communication overhead
between qubits, and enhance the efficiency of the mapping
process. For non-NN gates, the specific operation steps are as
follows:

Step 1: Based on the concept of Qubit Flexibility,
determine Maximum Flexibility Qubit Set, denoted as q.

Step 2: If q > 1, then the Centric qubit kq
 is further

determined according to Definition 3.

Step 3: kG is the set of quantum gates associated with kq
,

calculate the physical distance between the corresponding
qubits of each of these CNOT gates, prioritize these CNOT
gates based on the distances, and identify the CNOT gates with
the shortest spacing, so as to determine the Centric-Shortest

Quantum Gate Set 'kG , and make sure that it is prioritized.

Step 4: The cost function (Definition 5) is used to evaluate
all candidate SWAP operations and select the pending SWAP
gate set (Definition 6).

Step 5: According to Definition 7, evaluate the pending
SWAP gate set and determine the executable SWAP gates,
which are inserted into the quantum circuit.

Step 6: Update the mapping to eliminate the newly
generated NN gates from the set of non-NN gates.

Step 7: Repeat Step1- Step6 until all gates are mapped.

The C-SQGS strategy deals with the quantum circuit
mapping challenge by optimizing the selection and
arrangement of quantum gates, thus reducing the complexity of
the SWAP gate search space, reducing the SWAP gate
overhead, and improving the overall performance of quantum
computing. Algorithm 1 is the detail of the pseudocode.

Algorithm 1 Optimization algorithm

Input: Un-routed quantum circuit, initial mapping M

Output: Routed quantum circuit, NN gates

1: begin

2: Initialize the set of NN gates for each mapping, GNN =

{GM }, GM ← all NN gates for mapping M

3: Initialize Gnon-NN ← all un-routed Non-NN gates

4: Initialize Q={qi}← all qubits involved in Non-NN gates

5: while Gnon-NN≠∅ do

6: q← set of qubits with Maximum Flexibility Qubit Set in

Q

7: if q >1

8: Select the Centric Qubit qk∈Q in q

9: Select the gate G'
k∈Gnon-NN that has Centric-Shortest

Quantum Gate Set in Gnon-NN

10: Sg← SWAP gates with the identical cost

11: Sb←Select the executable SWAP gate from Sg

12: G' NN←Find NN gates in Gnon-NN for map M'

13: Remove all gates in G' NN from Gnon-NN, add G' NN to

GNN

14: end if

15: end while

16: end

C. Multi-Factor Cost Function Design

The design of the cost function is particularly important
when dealing with qubit mapping challenges, and a reasonable
cost function can ensure the executability of quantum circuits.
However, the traditional cost function usually takes the
distance between qubits as the core criterion of measurement,
which lacks the comprehensive consideration of multiple
factors and makes it difficult to accurately assess the actual
overhead of SWAP gates. To solve this problem, a multi-factor
cost function is designed in this paper.

Definition 5 Multi-Factor Cost Function: The minimization
of the sum of the weighted products of the distance between
qubits, the number of interactions, and the interaction time is
shown in Eq. (5).

() ()cos

1 1

min
i j i ji jn

n n

t q q q qq qS
i j

H F D R
     = =

 
=  

 


 ()

where, nS represents the set of all possible permutations, i jq qF

is the interaction time between circuit qubits iq
and jq

, i jq qR
is the

number of interactions between qubits iq
and jq

in the circuit,

and () ()i jq q
D

  
  denotes the distance between physical qubits on

the hardware ()iq
and ()jq , calculated using the Floyd-Warshall

algorithm.

The interaction time between qubits affects the execution
speed of the circuit, the shorter the interaction time between
qubits, the faster the circuit executes, and longer interaction
times lengthen the overall execution time of the quantum
circuit [25]. The number of interactions is also another
important factor affecting the mapping of quantum circuits [26],
each quantum gate operation introduces errors, a higher
number of interactions leads to more operations, increasing the
risk of error accumulation and decreasing the accuracy and
reliability of the computation. Reducing the number of
interactions helps to reduce the accumulation of errors and
improve the accuracy of the calculation. In quantum circuits,
CNOT gates need to be executed between directly connected
qubits. If two qubits are physically distant from each other,
multiple intermediate SWAP operations need to be introduced
to make them physically adjacent. These additional operations
increase the depth and execution time of the circuit and affect
the overall performance of the quantum algorithm. In this
paper, we combine these three factors to design a Multi-Factor

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

894 | P a g e
www.ijacsa.thesai.org

Cost Function that can handle the qubit mapping challenge
more comprehensively. For non-NN gates, the cost function
can assign a value to each candidate SWAP gate to measure the
advantages and disadvantages of each operation and filter out
the optimal SWAP operation. The mapping layout of qubits
needs to be re-evaluated and adjusted after each SWAP
operation.

D. Executable SWAP Gate

In the field of quantum computing, CNOT gates are crucial,
and together with any single-qubit gate, they form a universal
set of quantum gates. This means that any complex quantum
circuit can be realized with the appropriate combination of
these fundamental gates. When dealing with the qubit mapping
challenge, some of the CNOT gates do not satisfy the
conditions for execution in the initial mapping because the
qubit arrangement and interactions in a real quantum computer
are limited by the hardware topology. To make all CNOT gates
executable, extra SWAP gates need to be inserted so that the
control and target bits of the CNOT gates satisfy the conditions
of the hardware coupling constraints. However, extra SWAP
gates impose additional overhead on the circuit. The
identification of executable SWAP operations from all
candidate SWAP gates is key to the considerations in this
paper.

Definition 6 Pending SWAP Gate Set: The set of SWAP
operations that minimize the cost function by evaluating all
candidate SWAP gates using the cost function is referred to as
the Pending SWAP Gate Set.

Definition 7 Executable SWAP Gate: There are n qubits in

quantum circuit C. Assuming
()max (), 1,2,iF q i n= ……,

 be the
Maximum Flexibility Qubit Set under the initial mapping M.

 1 2 z, , ,SWAPG g g g= ……
 is a list of Pending SWAP Gate set, and

() ' '

r , 1,2, ,zF F q r= = ……
 denotes the Maximum Flexibility

Qubit Set corresponding to a SWAP operation under the new

mapping M' after the execution of SWAPG . If
' '

max () maxjF q F=
,

then the SWAP gate jg
corresponding to jq

 is said to be an

Executable SWAP Gate, where , 1 j z  .

To minimize the count of SWAP gates, firstly, Pending
SWAP Gate Set is filtered by using the cost function
(Definition 5); secondly, considering that highly flexible qubits
usually have strong dependence on other qubits, based on
Qubit Flexibility, the SWAP operation mode corresponding to
maximum flexibility qubit is selected, so as to minimize the
exchange distance between physical qubits and determine the
Executable SWAP Gate. This selection strategy achieves the
reduction of extra overhead and improves the overall
performance of the quantum circuit. The specific procedure for
determining an Executable SWAP Gate is as follows:

Step 1: Calculate the Maximum Flexibility Qubit Set

max ()iF q under the initial mapping M.

Step 2: The simulation executes each potential SWAP gate

to obtain the Maximum Flexibility Qubit Set
'F corresponding

to SWAP operations under the new mapping M'.

Step 3: Compare the values in
'F to obtain the max' ()jF q

under the new mapping M'.

Step 4: Under the new mapping M', the SWAP gate
corresponding to the largest value in the set

'F is considered as
an executable SWAP gate and applied to the circuit. By in this
way, the count of extra SWAP operations can be reduced and
the whole quantum circuit can be optimized.

The details of the pseudocode are presented in Algorithm 2,
with a concrete example provided in Fig. 4.

Algorithm 2 Select the Executable_SWAP

Input: top_qubit_number: After inserting a SWAP gate, Maximum

Flexibility Qubit Set under the new mapping M'.

moves: A Pending SWAP Gate Set

Output: Executable_SWAP

1: Begin

2: max_top_qubit_number_add ← 0

3: Executable_SWAP ← None

4: for move in moves do

5: top_qubit_ number_ add←top_qubit_ number [move]

6: if top_qubit_numbe _add > max_top_qubit_ number_

add

7: max_top_qubit_number_add ← top_qubit_

number_ add

8: Executable_SWAP ← move

9: end if

10: end for

11: end

The IBM Q20 Tokyo localized architecture is shown in Fig.
4. Assume that the code block on Fig. 4(a) is executed on this
architecture, where SWAP {q0, q4} and SWAP {q0, q1} are

pending SWAP gates. According to as in Fig. 4(a), ()max 0 2F q =
under the initial mapping M. Insert the candidate SWAP {q0, q4}
and SWAP {q0, q1} into the quantum circuit to see the

corresponding max' ()jF q
 values under the updated mapping M',

respectively. As in Fig. 4(b), insert SWAP {q0, q4}, under the

current mapping M', ()'

max 0 1F q =
. As in Fig. 4(c), insert

SWAP {q0, q1}, under the updated mapping M',
'

max 9() 2F q =
.

The strategy in this paper is to find the SWAP operation that

maximizes the max' ()jF q
. By comparison, SWAP {q0, q1} gives

more benefits to the circuit than SWAP {q0, q4}, therefore,
SWAP {q0, q1} is chosen to insert and update the mapping. Fig.
4(d) shows the final mapping result graph obtained based on
the SWAP strategy proposed in this paper, where only 2 extra
SWAP operations need to be added to Fig. 4(c) to update all
quantum gates to NN gates, SWAP {q5, q9} and SWAP {q2,
q3}. However, the method of Fig. 4(b) requires at least 3
SWAP gates to be inserted to update all quantum gates to NN
gates. C-SQGS strategy increases qubit flexibility, and the
increase in flexibility reduces the non-NN gate operations,
allowing qubits to be closer to each other, thus optimizing the
overall structure of the quantum circuit.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

895 | P a g e
www.ijacsa.thesai.org

Fig. 4. (a) Original circuit, (b) Updated circuit after inserting SWAP {q0, q4}, (c) Updated circuit after inserting SWAP {q0, q1}, (d) Final circuit.

IV. RESULTS ASSESSMENT

In this section, the main focus is on evaluating the
operational results. Compared with one-dimensional chains and
three-dimensional structures, two-dimensional structures have
higher parallelism, qubits are arranged in the plane, and
coupling and control are more simplified, which helps to
reduce the noise level and error accumulation. Therefore, in
this paper, we chose to compile on the IBM Quantum
ibmq_montreal device with a two-dimensional structure, as
shown in Fig. 5. The following key metrics are used to measure
the effectiveness of the C-SQGS strategy on the compiler, one
is the count of extra SWAP gates, and the other is the count of
two-qubit gates, both of which are evaluated on the basis of the
criterion that fewer is better [8]. The benchmark test program is
IBM's Qiskit quantum program, which uses the Qiskit compiler
to decompose and optimize the CNOT (CX) gate set. The
benchmarking methodology of Tannu [27] was employed. The
entire experiment was conducted using Python 3.11, with all
compilations running on a laptop equipped with an Intel Core
i5 processor (2.50 GHz, 8 GB RAM). Evaluations for 4 to 22
qubits were carried out, running the mapping process five
times and selecting the best outcome.

Fig. 5. Ibmq_montreal device.

In this paper, we compare the C-SQGS strategy with the
compilation overhead of t|ket⟩ and Qiskit. The t|ket⟩ [28] and
the Qiskit compiler [29] are equipped with the recommended
“FullPass”. The specific overheads of the C-SQGS with respect
to the t|ket⟩ and Qiskit compilers are shown in Fig. 6. There are
some optimizations in both the extra SWAP gate and CNOT
gate counting overheads. The C-SQGS strategy is optimized
relative to 2QAN, although the optimization is more significant
for large qubits than for small qubits.

In the t|ket⟩ compiler, for circuits with 12-22 qubits, the C-
SQGS strategy reduces the quantity of extra SWAP gates and
CNOT gates by 6.1% and 5.5%, respectively, compared to
2QAN, as illustrated in Fig. 6(a), (b). For circuits with 4-10
qubits, the quantity of SWAP gates is decreased by an average
of 26.4% and the quantity of CNOT gates by an average of
13.2% across all evaluated benchmarks after applying the C-
SQGS strategy of this paper; the quantity of SWAP gates and
CNOT gates are reduced by an average of 43.8% and 14.3%,
respectively, after optimization of quantum circuits of 12-22
qubits, as illustrated in Fig. 7(a).

Within the Qiskit compiler framework, for circuits with 12-
22 qubits, the C-SQGS strategy reduces the quantity of extra
SWAP and CNOT gates by 5.7% and 7.6%, respectively,
compared to 2QAN, as illustrated in Fig. 6(c), (d). For circuits
with 4-10 qubits, after utilizing the C-SQGS strategy proposed
in this paper, the quantity of SWAP gates is reduced by an
average of 27.8% and the quantity of CNOT gates by an
average of 14.9% in all the evaluated benchmarks, and the
optimization of the quantum circuits of 12-22 qubits results in
an average reduction of 61% in the quantity of SWAP gates, an
average reduction in the quantity of CNOTs of 12.5%, and the
overhead of double quantum gates is reduced by a factor of 2.5
compared to using only 2QAN, as shown in Fig. 7(b).

q0 q1 q2 q3

q4 q5 q6 q7

q8 q9 q10 q11

Original Circuit

CNOT q1,q2

CNOT q0,q6

CNOT q0,q9

CNOT q7,q10

CNOT q3,q9

Candidate SWAP

SWAP q0,q4

SWAP q0,q1

q4 q1 q2 q3

q0 q5 q6 q7

q8 q9 q10 q11

Insert SWAP {q0,q4}

CNOT q1,q2

CNOT q0,q9

CNOT q7,q10

SWAP q0,q4

New NN gates1

q1 q0 q2 q3

q4 q5 q6 q7

q8 q9 q10 q11

Insert SWAP{ q0,q1}

CNOT q1,q2

CNOT q0,q6

CNOT q7,q10

SWAP q0,q1

q1 q0 q3 q2

q4 q9 q6 q7

q8 q5 q10 q11

CNOT q1,q2

CNOT q0,q6

CNOT q0,q9

CNOT q7,q10

CNOT q3,q9

Final Circuit

New Non-NN gates1

CNOT q0,q6

CNOT q3,q9

New NN gates2

New Non-NN gates2

CNOT q0,q9

CNOT q3,q9

a b

c d

q1 q4 q7 q10 q12 q15 q18 q21 q23

q3 q5 q8 q11 q14 q16 q19 q22 q25 q26

q2 q24q13

q6

q9

q17

q20

q0

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

896 | P a g e
www.ijacsa.thesai.org

To further validate the advancement of the C-SQGS
strategy, it is compared with the BSOS [8] and HQAA
algorithms [13], as seen in Fig. 8. Within the t|ket⟩ compiler
framework, for circuits with 4-10 qubits, the optimization
effect of the C-SQGS is relatively tiny compared with the
BSOS and HQAA algorithms, which is due to the fact that the
circuit is simpler and the number of SWAP gates originally
required is less in smaller quantum circuits, and the
optimization effect is not easy to be seen. For circuits with 12-

22 qubits, the advantage effect of the C-SQGS becomes more
apparent. Specifically, compared with HQAA, the C-SQGS
reduces the quantity of SWAP gates and CNOT gates by 9.3%
and 12%, respectively. In the Qiskit compiler, for circuits with
4-10 qubit, C-SQGS reduces the quantity of CNOT gates by
4.1% and 4.3% compared to BSOS and HQAA, respectively.
For circuits with 10-22 qubits, the quantity of SWAP gates is
reduced by 3.1% and 12.7%, and the quantity of CNOT gates
is reduced by 2% and 9.6%, respectively.

Fig. 6. (a) SWAP gate Overhead comparison between C-SQGS strategy, t|ket⟩ and 2QAN, (b) CNOT gate Overhead comparison between C-SQGS strategy,

t|ket⟩ and 2QAN, (c) SWAP gate Overhead comparison between C-SQGS strategy, Qiskit and 2QAN, (d) CNOT gate Overhead comparison between C-SQGS

strategy, Qiskit and 2QAN.

Fig. 7. The C-SQGS strategy was assessed for circuits with 4-10 qubits and 12-22 qubits. (a) Optimization ratio of SWAP and CNOT gates for C-SQGS

compared to t|ket⟩ and 2QAN. (b) Optimization ratio SWAP and CNOT gate for C-SQGS compared to Qiskit and 2QAN.

(a) (b)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

897 | P a g e
www.ijacsa.thesai.org

Fig. 8. Comparison of compilation overhead of different optimization algorithms. (a) Comparison of SWAPs and CNOTs overhead in the t| ket⟩. (b) Comparison

of SWAPs and CNOTs overhead in the Qiskit.

The research in this paper focuses on the qubit mapping
challenge, emphasizing the extra SWAP gate overhead and
also considering the change in time complexity, which is a key
measure of the algorithm's running efficiency. Table I shows
the results of comparing the average running time of the 2QAN
with the C-SQGS strategy in the t|ket⟩ and Qiskit compilers.
The time complexity increases gradually with the increase in
the count of qubits. Specifically, for smaller-scale quantum
circuits, such as the 4-qubit model, the running time in the
t|ket⟩ and Qiskit compilers is about 0.01s and 0.07s,
respectively. However, the running time increases significantly
as the circuit size increases. As an example, the runtime in the
t|ket⟩ and Qiskit compilers for a 22-qubit circuit is about 27.4s
and 0.29s, respectively.

TABLE I. COMPARE THE AVERAGE RUNTIME OF 2QAN AND C-SQGS

STRATEGY IN T|KRT⟩ AND QISKIT COMPILERS

Qubit Compiler
Running time(t/s)

2QAN C-SQGS

4
t|ket⟩ 0.1 0.01

Qiskit 0.01 0.07

6
t|ket⟩ 0.3 0.28

Qiskit 0.09 0.09

8
t|ket⟩ 0.46 0.41

Qiskit 0.1 0.09

20
t|ket⟩ 11.79 11.18

Qiskit 0.24 0.22

22
t|ket⟩ 28.23 27.4

Qiskit 0.30 0.29

V. SUMMARY

This paper provides an in-depth discussion of the qubit
mapping challenge, with a particular focus on the impact of
physical topology on the mapping process in quantum
computing. In the NISQ era, qubit mapping plays a key role in
quantum circuit compilation. It aims to efficiently map logical
qubits onto physical qubits, minimizing SWAP gates caused by
topological constraints and enhancing circuit performance. To

address this challenge, the C-SQGS strategy is proposed,
aiming to optimize quantum circuits for the 2-local quantum
simulation problem. To test the strategy, multiple experiments
are conducted. The experimental results demonstrate that the
C-SQGS strategy exhibits some advantages in reducing SWAP
gate and hardware gate overhead. Specifically, the quantity of
SWAP gates is diminished by an average of 36.9% and 47.7%,
and the quantity of two-qubit gates is diminished by an average
of 13.8% and 13.5% on the t|ket⟩ and Qiskit compilers,
respectively.

Beyond empirical performance improvements, the results
indicate several broader implications for qubit mapping and
quantum compilation. Specifically, qubit flexibility–driven
routing, centric gate prioritization, and multi-factor SWAP
evaluation emerge as key design elements that help avoid
short-sighted routing decisions and enable more execution-
aware optimization under hardware constraints.

Although the C-SQGS strategy has achieved certain results
in reducing the number of SWAP gates and the overhead of
two-qubit gates, it still has limitations. First, this method is
primarily designed and experimentally verified for medium-
scale quantum circuits. For larger-scale quantum circuits, the
computation of its multi-factor cost function and the evaluation
process of candidate SWAP sets may introduce significant
computational overhead, and the scalability of the algorithm
requires further investigation. Second, experimental
evaluations are primarily based on typical quantum circuits and
a limited range of quantum chip topologies. Its applicability
and generalization capabilities in more complex application
scenarios and diverse quantum algorithms still have room for
improvement.

With the continuous advancement of quantum computing
technology, qubit mapping — a central problem in quantum
computing — still faces significant challenges. Future research
needs to explore several directions in greater depth to meet the
evolving demands of quantum hardware and algorithms. On
one hand, based on the C-SQGS strategy, optimization
algorithms capable of adapting to more complex quantum
topologies and higher-dimensional quantum gate sets will be
developed, further enhancing the versatility and adaptability of
the approach. On the other hand, efforts will be devoted to

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

898 | P a g e
www.ijacsa.thesai.org

designing more scalable mapping algorithms that can handle
larger quantum circuits, while simultaneously pursuing the
joint optimization of circuit design and mapping strategies.
Since qubit mapping is closely linked to circuit structure,
optimizing their interplay can further reduce redundant
operations and improve the overall efficiency of quantum
computing, thereby laying a solid foundation for its practical
applications.

ACKNOWLEDGMENT

This work was supported by the Natural Science
Foundation of Heilongjiang Province of China [Grant Number:
LH2024F042].

REFERENCES

[1] Zhang X, Zhang F. Variational quantum computation integer

factorization algorithm[J]. International Journal of Theoretical Physics,

2023, 62(11): 245.

[2] Au-Yeung R, Chancellor N, Halffmann P. NP-hard but no longer hard to

solve? Using quantum computing to tackle optimization problems[J].

Frontiers in Quantum Science and Technology, 2023, 2: 1128576.

[3] Paudel H P, Syamlal M, Crawford S E, et al. Quantum computing and

simulations for energy applications: Review and perspective[J]. ACS

Engineering Au, 2022, 2(3): 151-196.

[4] Niu S, Suau A, Staffelbach G, et al. A hardware-aware heuristic for the

qubit mapping problem in the nisq era[J]. IEEE Transactions on

Quantum Engineering, 2020, 1: 1-14.

[5] Itoko T, Raymond R, Imamichi T, et al. Optimization of quantum circuit

mapping using gate transformation and commutation[J]. Integration,

2020, 70: 43-50.

[6] Wille R, Burgholzer L. MQT QMAP: Efficient quantum circuit

mapping[C]//Proceedings of the 2023 International Symposium on

Physical Design. 2023: 198-204.

[7] Liu H, Zhang B, Zhu Y, et al. QM-DLA: an efficient qubit mapping

method based on dynamic look-ahead strategy[J]. Scientif ic Reports,

2024, 14(1): 13118.

[8] Li H, Lu K, Qin H, et al. Research on Qubit Mapping Technique Based

on Batch SWAP Optimization[J]. International Journal of Advanced

Computer Science & Applications, 2023, 14(12).

[9] Chatterjee Y, Bourreau E, Rančić M J. Solv ing various NP-hard

problems using exponentially fewer qubits on a quantum computer[J].

Physical Review A, 2024, 109(5): 052441..

[10] Luteberget B, Pettersen K F, Sartor G, et al. An Exact Branch and

Bound Algorithm for the generalized Qubit Mapping Problem[J]. arXiv

preprint arXiv:2508.21718, 2025.

[11] Siraichi M Y, Santos V F, Collange C, et al. Qubit

allocation[C]//Proceedings of the 2018 international symposium on code

generation and optimization. 2018: 113-125.

[12] Zulehner A, Paler A, Wille R. An efficient methodology for mapping

quantum circuits to the IBM QX architectures[J]. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2018,

38(7): 1226-1236.

[13] Steinberg M A, Feld S, Almudever C G, et al. Topological-graph

dependencies and scaling properties of a heurist ic qubit-assignment

algorithm[J]. IEEE Transactions on Quantum Engineering, 2022, 3: 1-

14.

[14] Li Z, Liu P, Zhao P, et al. Error per single-qubit gate below 10−4 in a

superconducting qubit[J]. npj Quantum Information, 2023, 9(1): 111.

[15] Lau J W Z, Haug T, Kwek L C, et al. NISQ Algorithm for Hamiltonian

simulation via truncated Taylor series[J]. SciPost Physics, 2022, 12(4):

122.

[16] Faehrmann P K, Steudtner M, Kueng R, et al. Randomizing multi-

product formulas for Hamiltonian simulation[J]. Quantum, 2022, 6: 806.

[17] Zhang Z J, Sun J, Yuan X, et al. Low-depth Hamiltonian simulation by

an adaptive product formula[J]. Physical Review Letters, 2023, 130(4):

040601.

[18] Dong Y, Lin L, Ni H, et al. Infinite quantum signal processing[J].

Quantum, 2024, 8: 1558.

[19] Motlagh D, Wiebe N. Generalized quantum signal processing[J]. PRX

Quantum, 2024, 5(2): 020368.

[20] Childs A M, Maslov D, Nam Y, et al. Toward the first quantum

simulation with quantum speedup[J]. Proceedings of the National

Academy of Sciences, 2018, 115(38): 9456-9461.

[21] Khumalo M. Review of Quantum Optimisation Techniques for the

Quadratic Assignment Problem[J]. 2023.

[22] Li G, Ding Y, Xie Y. Tackling the qubit mapping problem for NISQ-era

quantum devices[C]//Proceedings of the twenty-fourth international

conference on architectural support for programming languages and

operating systems. 2019: 1001-1014.

[23] Lao L, Browne D E. 2qan: A quantum compiler for 2-local qubit

hamiltonian simulation algorithms[C]//Proceedings of the 49th Annual

International Symposium on Computer Architecture. 2022: 351-365.

[24] Niemann P, Mueller L, Drechsler R. Combining SWAPs and remote

CNOT gates for quantum circuit transformation[C]//2021 24th

Euromicro Conference on Digital System Design (DSD). IEEE, 2021:

495-501.

[25] Deng H, Zhang Y, Li Q. Codar: A contextual duration-aware qubit

mapping for various nisq devices[C]//2020 57th ACM/IEEE Design

Automation Conference (DAC). IEEE, 2020: 1-6.

[26] Lao L, van Wee B, Ashraf I, et al. Mapping of lattice surgery -based

quantum circuits on surface code architectures[J]. Quantum Science and

Technology, 2018, 4(1): 015005.

[27] Tannu S S, Qureshi M K. A case for variability-aware policies for nisq-

era quantum computers[J]. arXiv preprint arXiv:1805.10224, 2018.

[28] Sivarajah S, Dilkes S, Cowtan A, et al. t|ket⟩: a retargetable compiler for

NISQ devices[J]. Quantum Science and Technology, 2020, 6(1):

014003.

[29] Neha K. Quantum programming: working with IBM'S q iskit tool[J]. The

Scientific Temper, 2023, 14(01): 93-99.

