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Abstract—In the Quantum computing era of Noisy 

Intermediate-Scale Quantum (NISQ) devices, conventional qubit 

mapping strategies typically rely on specific heuristic rules to 

solve the mapping problem, overlooking the impact of other 

factors on the mapping, which leads to increased overhead from 

extra SWAP gates. To address this issue, we propose a SWAP 

optimization strategy based on the Centric-Shortest Quantum 

Gate Set (C-SQGS) and applies it to qubit mapping. In this 

approach, the centric qubit is determined by analyzing the 

maximum flexibility qubit set and the physical distances between 

the associated CNOT gates, leading to the identification of the 

Centric-Shortest Quantum Gate Set. To overcome the limitations 

of traditional cost functions that consider only single factors, a 

multi-factor cost function is introduced to evaluate the overall 

overhead of candidate SWAP operations and determine pending 

SWAP gate Set. Based on qubit flexibility analysis, executable 

SWAP gate is identified and inserted into the circuit. 

Experimental results demonstrate that the C-SQGS strategy 

effectively reduces both SWAP gate and two-qubit gate 

overhead. Specifically, it achieves an average SWAP gate 

reduction of 36.9% and 47.7%, and a two-qubit gate reduction of 

13.8% and 13.5% on the t|ket⟩ and Qiskit compilers, respectively. 

These results highlight the potential of the C-SQGS strategy in 

enhancing the efficiency of qubit mapping for NISQ devices. 

Keywords—Quantum computing; qubit mapping; Centric-

Shortest Quantum Gate Set (C-SQGS); executable SWAP gate; 

multi-factor cost function 

I. INTRODUCTION 

Quantum computing is an innovative approach to 
computation that utilizes the principles of quantum mechanics 
to process information. In contrast to classical computers that 
use bits, quantum computing operates with qubits. Qubits can 
simultaneously exist and the superposition of states, this 
superposition property makes the quantum computer can 
simultaneously deal with a variety of possible states, thus 
accelerating the process of solving complex problems. The 
powerful parallel computing acceleration capability of 
quantum computing gives it great potential in areas such as 
integer factorization [1], optimization problems [2], and 
quantum simulation [3]. Due to the inherent limitations of 
traditional computers, it can be time-consuming and inefficient 
in dealing with these more complex problems, while quantum 
computers provide new solutions to these problems. 

As quantum computing technology advances rapidly, it has 
now transitioned into the NISQ era. Executing a quantum logic 

circuit involves aligning the algorithm's logical qubits with the 
physical qubits of the quantum computer, a process called 
qubit mapping [4]. Due to the limitation of the technology in 
the NISQ era, two-qubit gate operations can only be performed 
on physically coupled qubit pairs. Thus, during the mapping 
process, quantum circuits must be adjusted to ensure 
compatibility with the hardware's coupling constraints. For 
two-qubit gates that do not comply with the hardware coupling 
constraints, extra SWAP gates must be added to reposition the 
qubits to adjacent locations. The additional SWAP operation, 
however, not only increases the depth of the quantum circuit, 
but also introduces more noise. Thus, minimization of the 
count of extra SWAP gates has become the focus of many 
researchers [5]-[8]. 

The qubit mapping problem has been demonstrated to be 
NP-complete [9]-[10]. In recent years, domestic and foreign 
scholars have carried out many studies on heuristic qubit 
mapping algorithms. Siraichi [11] proposed to preferentially 
satisfy physically neighboring CNOT gates during the initial 
mapping, and to resolve only one two-qubit gate operation 
each time the qubits are shifted. Although this method is 
relatively fast, it is generally ineffective in coping with 
complex quantum circuits due to the relative simplicity of the 
strategy. Zulehner [12] used the A* algorithm to determine the 
optimal mapping of each logical to physical qubit to optimize 
the implementation of quantum circuits on hardware 
architectures, but due to the exhaustive search, the running 
time is long. In 2020, Adrien [4] proposed the Hardware-
Aware (HA) algorithm to decrease the quantity of SWAP gates, 
though it allows for the selection between SWAP and Bridge 
gates, it does not adequately account for the effect of varying 
numbers of look-ahead gates on the circuit's cost. Steinberg [13] 
proposed the HQAA algorithm in 2022 for assigning initial 
qubit positions for quantum algorithms on NISQ devices, but it 
fails to achieve adequate efficiency in large-scale quantum 
circuits. The above literature, while proposing valuable 
treatments on the mapping problem, still requires further 
improvements when dealing with complex quantum circuits. 

In the NISQ era, the existing quantum circuit mapping 
algorithms not only include the initial qubit mapping but also 
involve the intermediate change strategy of qubit mapping. 
After the initial mapping is completed, a reasonable 
intermediate change strategy is formulated based on the 
information of the quantum circuit, which helps to improve the 
performance of the overall quantum circuit. Due to hardware 
topology constraints, the initial mapping does not meet the 
coupling requirements for all qubits, and for the non-Nearest *Corresponding author 
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Neighbor (non-NN) gates that do not satisfy the constraints, it 
is necessary to implement an additional SWAP operation to 
exchange qubits to make them update to Nearest Neighbor (NN) 
gates, and this process will expand the size and depth of the 
circuit. Two-qubit gates have significantly higher error rates 
than single-qubit gates [14]. Hence, minimizing the 
compilation overhead is crucial for high fidelity circuit 
implementations. 

This paper focuses on the qubit mapping problem subject to 
physical topology constraints. A SWAP optimization strategy 
based on Centric-Shortest Quantum Gate Set (C-SQGS) is 
proposed, aiming to optimize quantum circuits for the 2-local 
qubit Hamiltonian simulation problem. This strategy optimizes 
the initial mapping of quantum circuits by identifying the 
Centric-Shortest Quantum Gate Set, and employs a multi-
factor cost function together with qubit flexibility analysis to 
search for optimal SWAP gates. By comprehensively 
considering multiple factors, the proposed method effectively 
minimizes the number of inserted SWAP gates. 

Unlike existing qubit mapping and routing heuristics that 
rely on single-factor optimization or local greedy decisions 
[23], the C-SQGS strategy introduces a centric decision 
paradigm that organizes SWAP insertion around a dynamically 
identified centric qubit and its associated shortest gate set. 
Rather than independently applying concepts such as qubit 
flexibility or gate frequency, C-SQGS integrates these factors 
into a unified gate-set–driven mapping framework, enabling 
coordinated optimization across both the initial mapping and 
routing stages. 

From a practical perspective, qubit mapping on NISQ 
devices is constrained not only by physical connectivity but 
also by limited coherence time and restricted scheduling 
flexibility. Existing heuristics often rely on locally optimal or 
single-metric decisions, which may introduce SWAP 
operations that are executable in isolation but suboptimal or 
even harmful when considering subsequent circuit evolution. 
The proposed C-SQGS framework, together with executable 
SWAP identification and multi-factor cost evaluation, is 
designed to address these practical limitations by enabling 
globally informed and execution-aware SWAP insertion. 

The C-SQGS strategy is able to adapt to a variety of qubit 
topologies and gate sets and can be used in conjunction with a 
wide range of existing quantum circuit mapping algorithms. 
Experimental findings indicate that the C-SQGS strategy 
somewhat reduces the count of SWAP and two-qubit gates. 
Moreover, we conduct experiments on IBM devices to verify 
the superiority of our strategy and compare it with other 
algorithms. 

This paper makes the following key contributions: 

• We focus on the qubit mapping challenge and point out 
the main influencing factors considered in this paper. 

• A SWAP optimization strategy based on a Centric-
Shortest Quantum Gate Set is proposed. 

• Designing a multi-factor cost function that considers 
multiple factors simultaneously. 

• Introduction of a selection criterion and the definition 
for executable SWAP gates. 

The remainder of this paper is structured as follows. 
Section Ⅱ outlines essential background on quantum 
computing. Section Ⅲ highlights the challenges in qubit 
mapping and introduces the proposed approach. Section Ⅳ 
details the experimental evaluation, and Section Ⅴ summarizes 
the conclusions. 

II. BACKGROUND 

A. Prior Knowledge 

In quantum computing, a qubit is the core unit that can 
simultaneously occupy the | 0 and |1 states through the 
principle of superposition. The quantum state can be 
expressed as Eq. (1), where |  is the state vector of the qubit,
 and  are complex numbers representing the probability of 

the qubit being in the states | 0 and |1 , respectively, and 

satisfying the condition
2 2| | | | 1 + = , whereas| 0 and|1 are the 

ground states of the qubit. This special property of qubits 
enables quantum computers to achieve exponential speedups. 

 0| | |1   =  +   () 

Quantum gates are the fundamental units of operation in 
quantum computing, used to manipulate the state of qubits. Fig. 
1 shows the symbolic representation of basic quantum gates. 
Among them, the Hadamard gate is a single-qubit operation 
that transforms a classical state into an equal superposition of 
basis states. Whereas CNOT and SWAP gates are gates acting 
on two qubits, CNOT gates can realize a kind of qubit control 
flip-flop operation, which passes the state of one qubit to the 
other qubit and thus establishes an entanglement between them. 
SWAP gates consist of 3 CNOT gates, as in Fig. 1(c), which 
can realize the exchange of states between qubits without 
changing their relative phase. 

H

(a) (b)

(c)
 

Fig. 1. Basic quantum gates. 

Quantum circuit is a fundamental computational model in 
quantum computing for describing the process of manipulating 
qubits through quantum gates. Fig. 2 shows a simple quantum 
circuit describing the whole process of measuring the final 
state of a qubit after the initial state of the qubit passes through 
the quantum circuit, which consists of a Hadamard, a CNOT 
and a SWAP gate, and the essence of the quantum circuit is a 
combination of the unitary transformation and measurement. 
Physically, we cannot directly realize the overly complex 
unitary transformations, so expect some easy to realize the 
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unitary transformations to produce more complex unitary 
transformations. For complex quantum operations, such as 
Hamiltonian simulation, can be realized through the rational 
design and adjustment of quantum gates within the quantum 
circuit. 

H

(a)

initial 

state
quantum circuit 

evolution

measure

ment

 
Fig. 2. Quantum circuit. 

B.  Hamiltonian 

The Hamiltonian operator characterizes the total energy of 
a system. In quantum mechanics, the Hamiltonian acts on the 
quantum state of a system, describing its energy state and time 
evolution. In quantum computing, the Hamiltonian is used to 
represent the energy states of qubits and the interactions 
between them. Quantum gate operations can be implemented 
through time evolution operators [see Eq. (2)], where 𝐻 is the 
Hamiltonian corresponding to the quantum gate. 

 
( )

ˆiHt

U t e
−

= 

 () 

Hamiltonian simulation is a vital application in quantum 
computing, involving the modeling of the Hamiltonian of a 
quantum system. By simulating Hamiltonian dynamics, one 
can predict and analyze the time evolution of quantum 
systems, with applications in quantum physics, chemistry, 
materials science, and beyond. Various methods have been 
proposed for effective Hamiltonian simulation, including 
Taylor series expansions [15], the product formula [16]-[17], 
and quantum signal processing [18]-[19]. Among these, the 
product formula is particularly notable for its simplicity and 
practical efficacy [20]. The Hamiltonian of a system, denoted 
as 𝐻, can be decomposed into a sum of polynomial ergodic 
terms 𝐻𝑗, as illustrated in Eq. (3). In quantum computing, the 
product formula is a vital tool for describing time-evolution 
operators, especially for time-dependent Hamiltonians. This 
method represents the time-evolution operator as a product of 
a series of simpler operators, thereby simplifying the 
implementation of complex quantum operations on a quantum 
computer. The product formula is detailed in Eq. (4). 

 1

L

j j

j

H h H
=

= 
 () 

 
( ) ( )

1

exp
L

j j

j

V t ith H
=

= 
 () 

where, ( )exp j jith H
represents the time evolution caused by 

the Hermitian term jH
, i is the imaginary unit, t is the time, jh

is 

the coefficient of each Hermitian term jH , L is the number of 
Hermitian terms into which the system Hamiltonian H is 

decomposed, and ( )V t
represents the total evolution operator of 

the system at moment t. Due to the flexibility of the 
arrangement of Hamiltonian operators, it is possible to 
optimize the Hamiltonian analog circuit for each Trotter step 
by rearranging  L individual operators in the product formula, 
thus optimizing the overall circuit structure. 

III. OUR DESIGN 

A. Limitations of Qubit Mapping 

Qubit mapping is an important process in quantum 
computing aimed at mapping abstract quantum algorithms or 
quantum circuits onto concrete quantum hardware for practical 
execution. This process involves several steps, including 
mapping logical to physical qubits, optimizing the sequence of 
quantum gate operations, minimizing SWAP operations, etc. 
Due to the limitations of NISQ era technology, execution is 
only possible on qubits that are allowed to be connected on 
quantum hardware coupling architectures. In executing 
quantum logic circuits, logical qubits are required to match 
physical quits. The limitations of quantum mapping are further 
explained with examples as shown in Fig. 3. Fig. 3(b) shows a 
small quantum circuit which consists of 7 CNOT gates and 1 
Hadamard gate and is executed on the 6-qubit device shown in 
Fig. 3(a). The device allows the use of two-qubit gates on the 
qubit pairs {Q1, Q2},{Q2, Q3},{Q3, Q4},{Q4, Q5},{Q0, Q5},{Q0, 
Q1},{Q2, Q5} and {Q3, Q4}, and does not allow the use of two-
qubit gates on the qubit pairs {Q1, Q5},{Q0, Q2},{Q2, Q4} and 
{Q3, Q5}. For simplicity, assume that the initial mapping is 
{q0→Q0, q1→Q1, q2→Q2, q3→Q3, q4→Q4, q5→Q5}. Due to 
the limited connectivity between qubits, only directly 
connected qubits can perform quantum gate operations. From 
Fig. 3(a), among the seven CNOT gates in Fig. 3(b), g1, g2, g3 

and g5 can be directly executed. Since the qubits associated 
with the three CNOT gates, g4, g7 and g8, do not have a direct 
mapping to the actual hardware, g4, g7 and g8 cannot be directly 
executed, and a change in the qubit mapping is required before 
executing these two gates. 

 
Fig. 3. (a) Hardware topology, (b) Original quantum circuit, (c) Updated 

quantum circuit. 
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The objective of qubit mapping is to identify the optimal 
initial qubit placement to minimize the count of SWAP 
operations required when converting all non-NN gates to NN 
gates. The qubit mapping challenge is modeled as a Quadratic 
Assignment Problem (QAP) [21]. For solving this problem, the 
qubit positions are changed by inserting SWAP gates by 
exchanging the state between two qubits [22]. In Fig. 3(c), 
CNOT gates g1, g2, g3 and g5 can be executed with the initial 
mapping, with SWAP{q2,q5} inserted after g3, the mapping is 
updated to{q0→Q0, q1→Q1, q2→Q5, q3→Q3, q4→Q4, q5→Q2}, 
which exchanges the two qubits q2, q5 and makes the 
subsequent gates g4 and g7 into executable NN gates. 

The insertion of extra SWAP gates can generate hardware-
compatible quantum circuits, but the increase in SWAP gates 
may introduce additional noise that reduces the fidelity of the 
quantum circuits, which in turn affects the overall performance 
of the circuit. In addition, the increase in line depth can extend 
the execution time and negatively affect the efficiency of 
quantum computation. Comparing the original and updated 
circuits in Fig. 3(b) and Fig. 3(c), the count of CNOT gates 
increases from 7 to 10, and the depth grows from 5 to 8. The 
addition of these gates introduces extra overhead, impacting 
both the fidelity and execution time of the quantum circuits. 
This paper is devoted to exploring the optimal solution of the 
qubit mapping challenge, with a view to minimizing the 
overhead of extra SWAP gates and effectively improving 
mapping quality. 

The qubit mapping stage is a crucial step in quantum 
computing, where the mapping of logical qubits to physical 
qubits directly impacts the execution efficiency and 
computational accuracy of quantum circuits. So far, there are 
still many challenges in the qubit mapping stage, and the 
following limitations are mainly considered in this paper:  

• Limitations of hardware topology: The way qubits are 
connected to each other and the operational limitations 
are determined by the hardware design. These 
constraints include the layout of qubits, the way they 
interact with each other, and the execution efficiency of 
quantum gates. Reasonable mapping of quantum 
circuits to the actual hardware topology can maximize 
the execution efficiency and accuracy of the algorithm. 

• Limited connectivity between qubits: The connections 
between physical qubits on a quantum processor are 
usually limited. Not all qubits are directly connected, 
and only neighboring qubits can directly perform two-
qubit gate operations. This limitation requires moving 
qubits around by adding extra SWAP operations that 
allow non-directly connected qubits to interact. 

• SWAP gate operation cost: One SWAP gate is 
equivalent to 3 CNOT gates, and the operation cost of 
SWAP gates is generally higher. Therefore, when 
addressing the qubit mapping challenge, we must 
consider the operation cost of SWAP gates and select 
the SWAP insertion with lower operation cost. 

• Balancing considerations for optimizing performance: 
The goal of qubit mapping is the minimization of the 
count of SWAP gate operations when all two-qubit 

gates are converted from non-NN gates to NN gates. 
Therefore, when dealing with the qubit mapping 
challenge, different performance metrics need to be 
considered, such as the starting point of the initial 
mapping, the design of the cost function, the cost of 
SWAP gate operations, and the selection of SWAP 
gates. 

B. SWAP Optimization Strategy Based on Centric-Shortest 

Quantum Gate Set 

In general, it is difficult to find a perfect initial mapping 
such that it satisfies the dependencies of all two-qubit gates. 
For non-NN gates, additional SWAP operations are required to 
convert them to NN gates, a process that leads to overhead in 
gate counting and circuit depth. Therefore, efficient qubit 
routing techniques are essential to minimize compilation 
overhead for reliable computation. Lao [23] introduced a 
quantum compiler, 2QAN, in 2022, which mainly optimizes 
the 2-local quantum simulation problem, such as the Quantum 
Approximation Optimization Algorithm (QAOA). It leverages 
flexibility in arranging Hamiltonian quantum operations and 
reduces two-qubit gate overhead by integrating SWAP gates 
with circuit gates into a single unitary transformation. 
Although 2QAN presents a meaningful solution to qubit 
mapping challenge, it neglects the effect of the number of 
qubits involved in the CNOT operation on the mapping process. 
It has been found that prioritizing the mapping of qubits 
involved in a high number of CNOT gates to locations close to 
each other reduces the subsequent additional SWAP gates, thus 
reducing the circuit depth and execution time [24]. Based on 
this, this paper proposes a SWAP optimization strategy based 
on the Centric-Shortest Quantum Gate Set(C-SQGS). 

Definition 1 Qubit Flexibility:  In a quantum circuit C, let 

iq  be any qubit whose number ( )iF q
of times it participates in a 

non-NN gate operation is iq
's Qubit Flexibility. 

Definition 2 Maximum Flexibility Qubit Set:  In a quantum 

circuit C, assuming 
 1 2, ,n nG g g g= ……,

 be the set of non-NN 

gates and 
 1 2,m mQ q q q= ，……,

be the set of qubits involved in the 

quantum gates in nG . The Qubit Flexibility Set is 

( ) , 1,2, ,Q iF F q i m= = …… . If ( ) maxmax j QF q F=
, then 

{ , 1,2, , }jq q j m= = ……
 is 

said to be the Maximum Flexibility Qubit Set in mQ . 

Definition 3 Centric Qubit: In a quantum circuit C, 

assuming  1 2, , mG G G G= ……,
 be the set of quantum gate sets 

associated with jq
. The set of physical spacings of the 

corresponding qubits in the set of quantum gates in G  is 
( ) ( ) ( ) 1 2, , , mD D G D G D G= …… . If ( ) minkD G D= , then kq

is said to be 

the Centric Qubit in mQ , where, 1,2, ,j m= …… ; 1,2, ,k m= …… . 

Definition 4 Centric-Shortest Quantum Gate Set:  In a 
quantum circuit C, assuming the set of quantum gates 

associated with the Centric Qubit kq
 be  1 2, , ,k rG g g g= ……

, 
and the set of physical spacings of the corresponding qubits for 

each quantum gate in kG  be ( ) ( ) ( ) '

1 2, , , rD D g D g D g= ……
. If 
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( ) '

z minD g D= , and then  '

z , 1,2, ,kG g z r= = ……  is said to be the 
Centric-Shortest Quantum Gate Set for the quantum circuit C 

where, 0 z r n   . 

The SWAP optimization strategy based on Centric-Shortest 
Quantum Gate Set (C-SQGS) is a method for optimizing 
quantum circuit mapping. It aims to identify the Centric-
Shortest Quantum Gate Set in quantum circuits, minimize the 
use of SWAP gates and reduce communication overhead 
between qubits, and enhance the efficiency of the mapping 
process. For non-NN gates, the specific operation steps are as 
follows: 

Step 1: Based on the concept of Qubit Flexibility, 
determine Maximum Flexibility Qubit Set, denoted as q. 

Step 2: If q > 1, then the Centric qubit kq
 is further 

determined according to Definition 3. 

Step 3: kG  is the set of quantum gates associated with kq
, 

calculate the physical distance between the corresponding 
qubits of each of these CNOT gates, prioritize these CNOT 
gates based on the distances, and identify the CNOT gates with 
the shortest spacing, so as to determine the  Centric-Shortest 

Quantum Gate Set 'kG , and make sure that it is prioritized. 

Step 4: The cost function (Definition 5) is used to evaluate 
all candidate SWAP operations and select the pending SWAP 
gate set (Definition 6). 

Step 5: According to Definition 7, evaluate the pending 
SWAP gate set and determine the executable SWAP gates, 
which are inserted into the quantum circuit. 

Step 6: Update the mapping to eliminate the newly 
generated NN gates from the set of non-NN gates. 

Step 7: Repeat Step1- Step6 until all gates are mapped. 

The C-SQGS strategy deals with the quantum circuit 
mapping challenge by optimizing the selection and 
arrangement of quantum gates, thus reducing the complexity of 
the SWAP gate search space, reducing the SWAP gate 
overhead, and improving the overall performance of quantum 
computing. Algorithm 1 is the detail of the pseudocode. 

Algorithm 1 Optimization algorithm 

Input: Un-routed quantum circuit, initial mapping M 

Output: Routed quantum circuit, NN gates 

1: begin 

2: Initialize the set of NN gates for each mapping, GNN = 

{GM }, GM ← all NN gates for mapping M 

3: Initialize Gnon-NN ← all un-routed Non-NN gates 

4: Initialize Q={qi}← all qubits involved in Non-NN gates 

5: while Gnon-NN≠∅ do 

6:        q← set of qubits with Maximum Flexibility Qubit Set in 

Q 

7: if q >1 

8: Select the Centric Qubit qk∈Q in q 

9: Select the gate G'
k∈Gnon-NN that has Centric-Shortest 

Quantum Gate Set in Gnon-NN 

10:        Sg← SWAP gates with the identical cost 

11:               Sb←Select the executable SWAP gate from Sg  

12: G' NN←Find NN gates in Gnon-NN for map M' 

13: Remove all gates in G' NN from Gnon-NN, add G' NN to 

GNN 

14: end if  

15: end while 

16: end 

C. Multi-Factor Cost Function Design 

The design of the cost function is particularly important 
when dealing with qubit mapping challenges, and a reasonable 
cost function can ensure the executability of quantum circuits. 
However, the traditional cost function usually takes the 
distance between qubits as the core criterion of measurement, 
which lacks the comprehensive consideration of multiple 
factors and makes it difficult to accurately assess the actual 
overhead of SWAP gates. To solve this problem, a multi-factor 
cost function is designed in this paper. 

Definition 5 Multi-Factor Cost Function: The minimization 
of the sum of the weighted products of the distance between 
qubits, the number of interactions, and the interaction time is 
shown in Eq. (5). 

 
( ) ( )cos

1 1

min
i j i ji jn

n n

t q q q qq qS
i j

H F D R
     = =

 
=  

 


 () 

where, nS represents the set of all possible permutations, i jq qF

is the interaction time between circuit qubits iq
and jq

, i jq qR
is the 

number of interactions between qubits iq
and jq

in the circuit, 

and ( ) ( )i jq q
D

  
   denotes the distance between physical qubits on 

the hardware ( )iq
and ( )jq , calculated using the Floyd-Warshall 

algorithm. 

The interaction time between qubits affects the execution 
speed of the circuit, the shorter the interaction time between 
qubits, the faster the circuit executes, and longer interaction 
times lengthen the overall execution time of the quantum 
circuit [25]. The number of interactions is also another 
important factor affecting the mapping of quantum circuits [26], 
each quantum gate operation introduces errors, a higher 
number of interactions leads to more operations, increasing the 
risk of error accumulation and decreasing the accuracy and 
reliability of the computation. Reducing the number of 
interactions helps to reduce the accumulation of errors and 
improve the accuracy of the calculation. In quantum circuits, 
CNOT gates need to be executed between directly connected 
qubits. If two qubits are physically distant from each other, 
multiple intermediate SWAP operations need to be introduced 
to make them physically adjacent. These additional operations 
increase the depth and execution time of the circuit and affect 
the overall performance of the quantum algorithm. In this 
paper, we combine these three factors to design a Multi-Factor 
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Cost Function that can handle the qubit mapping challenge 
more comprehensively. For non-NN gates, the cost function 
can assign a value to each candidate SWAP gate to measure the 
advantages and disadvantages of each operation and filter out 
the optimal SWAP operation. The mapping layout of qubits 
needs to be re-evaluated and adjusted after each SWAP 
operation. 

D.  Executable SWAP Gate 

In the field of quantum computing, CNOT gates are crucial, 
and together with any single-qubit gate, they form a universal 
set of quantum gates. This means that any complex quantum 
circuit can be realized with the appropriate combination of 
these fundamental gates. When dealing with the qubit mapping 
challenge, some of the CNOT gates do not satisfy the 
conditions for execution in the initial mapping because the 
qubit arrangement and interactions in a real quantum computer 
are limited by the hardware topology. To make all CNOT gates 
executable, extra SWAP gates need to be inserted so that the 
control and target bits of the CNOT gates satisfy the conditions 
of the hardware coupling constraints. However, extra SWAP 
gates impose additional overhead on the circuit. The 
identification of executable SWAP operations from all 
candidate SWAP gates is key to the considerations in this 
paper. 

Definition 6 Pending SWAP Gate Set: The set of SWAP 
operations that minimize the cost function by evaluating all 
candidate SWAP gates using the cost function is referred to as 
the Pending SWAP Gate Set. 

Definition 7 Executable SWAP Gate: There are n qubits in 

quantum circuit C. Assuming
( )max ( ), 1,2,iF q i n= ……,

 be the 
Maximum Flexibility Qubit Set under the initial mapping M. 

 1 2 z, , ,SWAPG g g g= ……
 is a list of Pending SWAP Gate set, and 

( ) ' '

r , 1,2, ,zF F q r= = ……
 denotes the Maximum Flexibility 

Qubit Set corresponding to a SWAP operation under the new 

mapping M' after the execution of  SWAPG . If 
' '

max ( ) maxjF q F=
, 

then the SWAP gate jg
corresponding to jq

 is said to be an 

Executable SWAP Gate, where , 1 j z  . 

To minimize the count of SWAP gates, firstly, Pending 
SWAP Gate Set is filtered by using the cost function 
(Definition 5); secondly, considering that highly flexible qubits 
usually have strong dependence on other qubits, based on 
Qubit Flexibility, the SWAP operation mode corresponding to 
maximum flexibility qubit is selected, so as to minimize the 
exchange distance between physical qubits and determine the 
Executable SWAP Gate. This selection strategy achieves the 
reduction of extra overhead and improves the overall 
performance of the quantum circuit. The specific procedure for 
determining an Executable SWAP Gate is as follows: 

Step 1: Calculate the Maximum Flexibility Qubit Set 

max ( )iF q  under the initial mapping M. 

Step 2: The simulation executes each potential SWAP gate 

to obtain the Maximum Flexibility Qubit Set
'F  corresponding 

to SWAP operations under the new mapping M'. 

Step 3: Compare the values in 
'F  to obtain the max' ( )jF q

 
under the new mapping M'. 

Step 4: Under the new mapping M', the SWAP gate 
corresponding to the largest value in the set 

'F  is considered as 
an executable SWAP gate and applied to the circuit. By in this 
way, the count of extra SWAP operations can be reduced and 
the whole quantum circuit can be optimized. 

The details of the pseudocode are presented in Algorithm 2, 
with a concrete example provided in Fig. 4. 

Algorithm 2 Select the Executable_SWAP  

Input: top_qubit_number: After inserting a SWAP gate, Maximum 

Flexibility Qubit Set under the new mapping M'. 

moves: A Pending SWAP Gate Set 

Output: Executable_SWAP 

1: Begin 

2: max_top_qubit_number_add ← 0 

3: Executable_SWAP ← None 

4: for move in moves do 

5:         top_qubit_ number_ add←top_qubit_ number [move] 

6: if top_qubit_numbe _add > max_top_qubit_ number_ 

add 

7: max_top_qubit_number_add ← top_qubit_ 

number_ add 

8: Executable_SWAP ← move 

9: end if  

10:       end for 

11: end 

The IBM Q20 Tokyo localized architecture is shown in Fig. 
4. Assume that the code block on Fig. 4(a) is executed on this 
architecture, where SWAP {q0, q4} and SWAP {q0, q1} are 

pending SWAP gates. According to as in Fig. 4(a), ( )max 0 2F q =  
under the initial mapping M. Insert the candidate SWAP {q0, q4} 
and SWAP {q0, q1} into the quantum circuit to see the 

corresponding max' ( )jF q
 values under the updated mapping M', 

respectively. As in Fig. 4(b), insert SWAP {q0, q4}, under the 

current mapping M', ( )'

max 0 1F q =
. As in Fig. 4(c), insert 

SWAP {q0, q1}, under the updated mapping M', 
'

max 9( ) 2F q =
. 

The strategy in this paper is to find the SWAP operation that 

maximizes the max' ( )jF q
. By comparison, SWAP {q0, q1} gives 

more benefits to the circuit than SWAP {q0, q4}, therefore, 
SWAP {q0, q1} is chosen to insert and update the mapping. Fig. 
4(d) shows the final mapping result graph obtained based on 
the SWAP strategy proposed in this paper, where only 2 extra 
SWAP operations need to be added to Fig. 4(c) to update all 
quantum gates to NN gates, SWAP {q5, q9} and SWAP {q2, 
q3}. However, the method of Fig. 4(b) requires at least 3 
SWAP gates to be inserted to update all quantum gates to NN 
gates. C-SQGS strategy increases qubit flexibility, and the 
increase in flexibility reduces the non-NN gate operations, 
allowing qubits to be closer to each other, thus optimizing the 
overall structure of the quantum circuit. 
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Fig. 4. (a) Original circuit, (b) Updated circuit after inserting SWAP {q0, q4}, (c) Updated circuit after inserting SWAP {q0, q1}, (d) Final circuit.

IV. RESULTS ASSESSMENT 

In this section, the main focus is on evaluating the 
operational results. Compared with one-dimensional chains and 
three-dimensional structures, two-dimensional structures have 
higher parallelism, qubits are arranged in the plane, and 
coupling and control are more simplified, which helps to 
reduce the noise level and error accumulation. Therefore, in 
this paper, we chose to compile on the IBM Quantum 
ibmq_montreal device with a two-dimensional structure, as 
shown in Fig. 5. The following key metrics are used to measure 
the effectiveness of the C-SQGS strategy on the compiler, one 
is the count of extra SWAP gates, and the other is the count of 
two-qubit gates, both of which are evaluated on the basis of the 
criterion that fewer is better [8]. The benchmark test program is 
IBM's Qiskit quantum program, which uses the Qiskit compiler 
to decompose and optimize the CNOT (CX) gate set. The 
benchmarking methodology of Tannu [27] was employed. The 
entire experiment was conducted using Python 3.11, with all 
compilations running on a laptop equipped with an Intel Core 
i5 processor (2.50 GHz, 8 GB RAM). Evaluations for 4 to 22 
qubits were carried out, running the mapping process five 
times and selecting the best outcome. 

 
Fig. 5. Ibmq_montreal device. 

In this paper, we compare the C-SQGS strategy with the 
compilation overhead of t|ket⟩ and Qiskit. The t|ket⟩ [28] and 
the Qiskit compiler [29] are equipped with the recommended 
“FullPass”. The specific overheads of the C-SQGS with respect 
to the t|ket⟩ and Qiskit compilers are shown in Fig. 6. There are 
some optimizations in both the extra SWAP gate and CNOT 
gate counting overheads. The C-SQGS strategy is optimized 
relative to 2QAN, although the optimization is more significant 
for large qubits than for small qubits. 

In the t|ket⟩ compiler, for circuits with 12-22 qubits, the C-
SQGS strategy reduces the quantity of extra SWAP gates and 
CNOT gates by 6.1% and 5.5%, respectively, compared to 
2QAN, as illustrated in Fig. 6(a), (b). For circuits with 4-10 
qubits, the quantity of SWAP gates is decreased by an average 
of 26.4% and the quantity of CNOT gates by an average of 
13.2% across all evaluated benchmarks after applying the C-
SQGS strategy of this paper; the quantity of SWAP gates and 
CNOT gates are reduced by an average of 43.8% and 14.3%, 
respectively, after optimization of quantum circuits of 12-22 
qubits, as illustrated in Fig. 7(a). 

Within the Qiskit compiler framework, for circuits with 12-
22 qubits, the C-SQGS strategy reduces the quantity of extra 
SWAP and CNOT gates by 5.7% and 7.6%, respectively, 
compared to 2QAN, as illustrated in Fig. 6(c), (d). For circuits 
with 4-10 qubits, after utilizing the C-SQGS strategy proposed 
in this paper, the quantity of SWAP gates is reduced by an 
average of 27.8% and the quantity of CNOT gates by an 
average of 14.9% in all the evaluated benchmarks, and the 
optimization of the quantum circuits of 12-22 qubits results in 
an average reduction of 61% in the quantity of SWAP gates, an 
average reduction in the quantity of CNOTs of 12.5%, and the 
overhead of double quantum gates is reduced by a factor of 2.5 
compared to using only 2QAN, as shown in Fig. 7(b). 
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To further validate the advancement of the C-SQGS 
strategy, it is compared with the BSOS [8] and HQAA 
algorithms [13], as seen in Fig. 8. Within the t|ket⟩ compiler 
framework, for circuits with 4-10 qubits, the optimization 
effect of the C-SQGS is relatively tiny compared with the 
BSOS and HQAA algorithms, which is due to the fact that the 
circuit is simpler and the number of SWAP gates originally 
required is less in smaller quantum circuits, and the 
optimization effect is not easy to be seen. For circuits with 12-

22 qubits, the advantage effect of the C-SQGS becomes more 
apparent. Specifically, compared with HQAA, the C-SQGS 
reduces the quantity of SWAP gates and CNOT gates by 9.3% 
and 12%, respectively. In the Qiskit compiler, for circuits with 
4-10 qubit, C-SQGS reduces the quantity of CNOT gates by 
4.1% and 4.3% compared to BSOS and HQAA, respectively. 
For circuits with 10-22 qubits, the quantity of SWAP gates is 
reduced by 3.1% and 12.7%, and the quantity of CNOT gates 
is reduced by 2% and 9.6%, respectively. 

 
Fig. 6. (a) SWAP gate Overhead comparison between C-SQGS strategy, t|ket⟩ and 2QAN, (b) CNOT gate Overhead comparison between C-SQGS strategy, 

t|ket⟩ and 2QAN, (c) SWAP gate Overhead comparison between C-SQGS strategy, Qiskit and 2QAN, (d) CNOT gate Overhead comparison between C-SQGS 

strategy, Qiskit and 2QAN. 

 
Fig. 7. The C-SQGS strategy was assessed for circuits with 4-10 qubits and 12-22 qubits. (a) Optimization ratio of SWAP and CNOT gates for C-SQGS 

compared to t|ket⟩ and 2QAN. (b) Optimization ratio SWAP and CNOT gate for C-SQGS compared to Qiskit and 2QAN. 

(a) (b)
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Fig. 8. Comparison of compilation overhead of different optimization algorithms. (a) Comparison of SWAPs and CNOTs overhead in the t| ket⟩. (b) Comparison 

of SWAPs and CNOTs overhead in the Qiskit. 

The research in this paper focuses on the qubit mapping 
challenge, emphasizing the extra SWAP gate overhead and 
also considering the change in time complexity, which is a key 
measure of the algorithm's running efficiency. Table I shows 
the results of comparing the average running time of the 2QAN 
with the C-SQGS strategy in the t|ket⟩ and Qiskit compilers. 
The time complexity increases gradually with the increase in 
the count of qubits. Specifically, for smaller-scale quantum 
circuits, such as the 4-qubit model, the running time in the 
t|ket⟩ and Qiskit compilers is about 0.01s and 0.07s, 
respectively. However, the running time increases significantly 
as the circuit size increases. As an example, the runtime in the 
t|ket⟩ and Qiskit compilers for a 22-qubit circuit is about 27.4s 
and 0.29s, respectively. 

TABLE I.  COMPARE THE AVERAGE RUNTIME OF 2QAN AND C-SQGS 

STRATEGY IN T|KRT⟩ AND QISKIT COMPILERS 

Qubit Compiler 
Running time(t/s) 

2QAN C-SQGS 

4 
t|ket⟩ 0.1 0.01 

Qiskit 0.01 0.07 

6 
t|ket⟩ 0.3 0.28 

Qiskit 0.09 0.09 

8 
t|ket⟩ 0.46 0.41 

Qiskit 0.1 0.09 

20 
t|ket⟩ 11.79 11.18 

Qiskit 0.24 0.22 

22 
t|ket⟩ 28.23 27.4 

Qiskit 0.30 0.29 

V. SUMMARY 

This paper provides an in-depth discussion of the qubit 
mapping challenge, with a particular focus on the impact of 
physical topology on the mapping process in quantum 
computing. In the NISQ era, qubit mapping plays a key role in 
quantum circuit compilation. It aims to efficiently map logical 
qubits onto physical qubits, minimizing SWAP gates caused by 
topological constraints and enhancing circuit performance. To 

address this challenge, the C-SQGS strategy is proposed, 
aiming to optimize quantum circuits for the 2-local quantum 
simulation problem. To test the strategy, multiple experiments 
are conducted. The experimental results demonstrate that the 
C-SQGS strategy exhibits some advantages in reducing SWAP 
gate and hardware gate overhead. Specifically, the quantity of 
SWAP gates is diminished by an average of 36.9% and 47.7%, 
and the quantity of two-qubit gates is diminished by an average 
of 13.8% and 13.5% on the t|ket⟩ and Qiskit compilers, 
respectively. 

Beyond empirical performance improvements, the results 
indicate several broader implications for qubit mapping and 
quantum compilation. Specifically, qubit flexibility–driven 
routing, centric gate prioritization, and multi-factor SWAP 
evaluation emerge as key design elements that help avoid 
short-sighted routing decisions and enable more execution-
aware optimization under hardware constraints. 

Although the C-SQGS strategy has achieved certain results 
in reducing the number of SWAP gates and the overhead of 
two-qubit gates, it still has limitations. First, this method is 
primarily designed and experimentally verified for medium-
scale quantum circuits. For larger-scale quantum circuits, the 
computation of its multi-factor cost function and the evaluation 
process of candidate SWAP sets may introduce significant 
computational overhead, and the scalability of the algorithm 
requires further investigation. Second, experimental 
evaluations are primarily based on typical quantum circuits and 
a limited range of quantum chip topologies. Its applicability 
and generalization capabilities in more complex application 
scenarios and diverse quantum algorithms still have room for 
improvement. 

With the continuous advancement of quantum computing 
technology, qubit mapping — a central problem in quantum 
computing — still faces significant challenges. Future research 
needs to explore several directions in greater depth to meet the 
evolving demands of quantum hardware and algorithms. On 
one hand, based on the C-SQGS strategy, optimization 
algorithms capable of adapting to more complex quantum 
topologies and higher-dimensional quantum gate sets will be 
developed, further enhancing the versatility and adaptability of 
the approach. On the other hand, efforts will be devoted to 
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designing more scalable mapping algorithms that can handle 
larger quantum circuits, while simultaneously pursuing the 
joint optimization of circuit design and mapping strategies. 
Since qubit mapping is closely linked to circuit structure, 
optimizing their interplay can further reduce redundant 
operations and improve the overall efficiency of quantum 
computing, thereby laying a solid foundation for its practical 
applications. 
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