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Abstract—Flood forecasting is critical for improving early 

warning systems in Malaysia’s East Coast region, particularly in 

flood-prone Pekan. This study develops a Nonlinear 

Autoregressive with Exogenous Inputs (NARX) model to predict 

river water levels using data from four stations: Sungai Pahang, 

Sungai Pahang Tua, Sungai Paloh Hinai, and Sungai Mentiga 

(2020–2024). The dataset was preprocessed through short-gap 

interpolation, removal of long missing segments, and 

segmentation into continuous sequences to ensure high-quality 

inputs for modeling. A total of 75 NARX configurations were 

evaluated using different lag values, hidden neuron counts, and 

training epochs. Model performance was assessed using Mean 

Squared Error (MSE) and residual diagnostics. The best 

model—lag = 6 and 300 hidden units—achieved a validation loss 

of 0.102, demonstrating stable convergence and strong 

generalization. Prediction results showed close alignment with 

actual river levels. The findings confirm that the NARX 

approach effectively captures nonlinear hydrological dynamics 

and provides reliable short-term water level forecasts for Pekan, 

addressing an existing gap in localized flood prediction studies.  
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modelling; Pekan 

I. INTRODUCTION 

The East Coast region of Peninsular Malaysia frequently 
experiences heavy rainfall during the Northeast Monsoon 
season, which often leads to flooding in low-lying and riverine 
areas. These flood events result in significant damage to 
infrastructure, disruption of transportation systems, and 
substantial economic losses for affected communities. Accurate 
and timely flood forecasting is crucial to support early warning 
systems and minimize flood-related impacts. Reliable river 
water level prediction enables authorities to make proactive 
decisions and implement preventive measures to safeguard 
lives and reduce property damage. 

Despite ongoing advancements in hydrological monitoring, 
flood prediction in Malaysia remains challenging due to the 
nonlinear, dynamic, and spatially heterogeneous nature of river 
systems, particularly in monsoon-driven environments. These 
challenges are more pronounced at the district level, where 
complex upstream–downstream interactions and data 
continuity issues limit the effectiveness of generic basin-scale 
forecasting models. 

In recent years, data-driven modelling has gained 
increasing attention for flood forecasting due to its ability to 
capture nonlinear and complex relationships within 

hydrological systems. This study aims to develop a predictive 
model using the Nonlinear Autoregressive model with 
Exogenous Inputs (NARX) for river water level forecasting in 
the East Coast region of Peninsular Malaysia. The NARX 
model utilizes historical hydrological data to learn temporal 
patterns, enabling more accurate predictions. By implementing 
the NARX-based approach, this research seeks to improve the 
accuracy and reliability of flood forecasting systems to enhance 
early warning capabilities and reduce flood-related risks. 

Although NARX models have been widely applied in 
hydrological forecasting, most existing studies emphasize 
major river basins or regional-scale analysis, with limited focus 
on district-level river systems experiencing recurrent flooding. 
In particular, the Pekan district in Pahang—despite its high 
flood vulnerability—has received comparatively little attention 
in terms of localized, data-driven river level prediction models. 
Furthermore, prior work rarely investigates how multiple 
upstream river stations collectively influence downstream 
water level dynamics within an integrated modelling 
framework. 

This study presents a systematically optimized NARX-
based river water level prediction model tailored for the Pekan 
river system. The model integrates water level data from 
multiple upstream and downstream stations, including Sungai 
Pahang Tua, Sungai Paloh Hinai, and Sungai Mentiga, to 
predict downstream levels at Sungai Pahang (Pekan). A 
structured preprocessing and segmentation strategy is 
employed to ensure model training is conducted only on 
continuous, fully observed temporal segments, thereby 
preserving hydrological realism and avoiding artefacts 
introduced by long-gap imputation. In addition, a 
comprehensive exploration of lag length, hidden layer capacity, 
and training duration is performed to identify an optimal 
NARX configuration that balances prediction accuracy, 
convergence stability, and generalization performance. 
Through this approach, the study provides a localized and 
transferable modelling framework that supports district-level 
flood early warning applications. 

The remainder of this study is organized as follows: 
Section II reviews related work on flood forecasting and data-
driven hydrological modelling. Section III describes the 
dataset, preprocessing strategy, and NARX model architecture. 
Section IV presents the experimental results and discussion. 
Finally, Section V concludes the study and outlines limitations 
and directions for future work. 

*Corresponding author. 
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II. LITERATURE REVIEW 

Flood disasters remain a major environmental and socio-
economic concern in many regions, particularly in Malaysia, 
where seasonal monsoon patterns heavily influence 
hydrological conditions [1]. Researchers have employed 
various forecasting approaches to understand and predict flood 
behavior, ranging from traditional statistical and hydrological 
models to more recent machine learning and deep learning 
techniques. This literature review provides an overview of 
flooding characteristics in the Pantai Timur region, followed by 
a review of conventional flood forecasting methods. It then 
discusses the evolution of data-driven methods, including 
Artificial Neural Networks (ANN), Support Vector Regression 
(SVR), and Random Forest (RF), before examining advanced 
deep learning techniques such as Recurrent Neural Networks 
(RNN), Long Short-Term Memory (LSTM), and hybrid 
intelligent models. Finally, this chapter emphasizes the 
significance of the Nonlinear Autoregressive with Exogenous 
Input (NARX) model in hydrological forecasting and identifies 
the research gap motivating the present study. 

A. Flooding in Malaysia and the Pantai Timur Region 

Malaysia experiences frequent flooding due to its tropical 
climate and high-intensity rainfall patterns. The Pantai Timur 
region — consisting of Kelantan, Terengganu, and Pahang — 
is the most flood-prone zone in Peninsular Malaysia, 
particularly during the Northeast Monsoon season [1]. The 
region’s river basins, low-lying settlements, and coastal 
geography increase vulnerability to overflow and prolonged 
inundation [2]. The Northeast Monsoon (NEM) typically 
occurs between November and March, bringing strong winds 
and heavy rainfall from the South China Sea [3]. The 
Malaysian Meteorological Department (2023) states that this 
seasonal event produces prolonged rainfall that causes river 
water levels to rise rapidly, triggering severe flooding across 
Pantai Timur [4]. The intensity and duration of monsoon 
rainfall directly affect river discharge, making water level 
prediction a crucial preventive measure. Several major flood 
events have occurred in Pantai Timur over the past decades, 
including those in Kelantan (2014) [5], Pahang (2021) [6], and 
Terengganu (2022) [7]. The 2014 Kelantan flood, widely 
referred to as “Bah Kuning” [8], affected more than half a 
million people, resulting in extensive property damage and 
infrastructure collapse. Such recurring events highlight the 
importance of accurate forecasting systems to mitigate disaster 
impacts. 

B. Importance of River Level Forecasting 

River level forecasting plays a crucial role in early warning 
systems, evacuation planning, and resource mobilization. 
Government agencies such as the Department of Irrigation and 
Drainage (DID) and the National Disaster Management 
Agency (NADMA) rely on real-time hydrological forecasting 
for decision-making [9]. Therefore, forecasting models must be 
accurate, reliable, and capable of capturing nonlinear 
hydrological behaviors. 

C. Conventional Flood Forecasting Methods 

1) Statistical time-series models (ARIMA, Regeression): 

The Autoregressive Integrated Moving Average (ARIMA) 

model is one of the most widely used statistical methods in 

river flow forecasting [10]. However, ARIMA assumes 

linearity and struggles to model complex nonlinear patterns 

that often characterize hydrological systems [11]. Regression-

based models face similar limitations, particularly when 

dealing with high-variability rainfall-runoff relationships. 

2) Physically-based hydrological models (SWAT, HEC-

HMS): Physically-based models such as Soil and Water 

Assessment Tool  (SWAT) and Hydrologic Engineering 

Center – Hydrologic Modeling System  (HEC-HMS) simulate 

watershed hydrology using environmental and land-use 

parameters [12]. While these models provide insight into 

hydrological processes, they require extensive data input and 

calibration, making them difficult to apply in regions with 

limited monitoring networks [12]. Furthermore, parameter 

uncertainties can significantly reduce model reliability during 

extreme flooding events [13]. 

D. Machine Learning Approaches in Flood Forecasting 

With advancements in computational power and data 
availability, machine learning has become an attractive 
approach for modeling hydrological processes.  Artificial 
Neural Networks (ANNs) are capable of learning complex 
nonlinear relationships from data and have shown promising 
performance in flood forecasting applications. However, 
standard feed-forward ANNs are limited in handling long-term 
temporal dependencies in time-series data [14]. Support Vector 
Regression (SVR) offers good generalization performance but 
requires careful tuning of kernel functions and regularization 
parameters [15]. Random Forest (RF) performs well in 
capturing nonlinear patterns but may become computationally 
intensive with large datasets [16]. Both methods demonstrate 
improvement over linear models, yet are still constrained in 
modeling sequential dependencies over time. 

E. Deep Learning Models in Hydrological Time-Series 

Forecasting 

Recurrent Neural Networks introduced time-sequence 
modeling capability. However, traditional RNNs suffer from 
gradient vanishing issues, limiting their ability to learn long-
term dependencies [16]. Long Short-Term Memory (LSTM) 
and Gated Recurrent Unit (GRU) models were specifically 
developed to address memory retention issues and have 
demonstrated superior performance in predicting streamflow 
and river water levels [17]. These models capture temporal 
dependencies more effectively than simple ANNs [18].  Hybrid 
models that integrate convolutional and recurrent architectures 
or attention mechanisms have further improved forecasting 
accuracy by extracting temporal and spatial patterns [19]. 
However, these models require large datasets and high 
computational resources, limiting their real-time deployment in 
some regions [20]. 

F. NARX Model for Hydrological and Flood Forecasting 

The Nonlinear Autoregressive with Exogenous Input 
(NARX) model is a dynamic neural network that uses previous 
output values and external variables (e.g., rainfall) to predict 
future water levels [21]. This architecture enables the model to 
represent nonlinear hydrological dynamics effectively. NARX 
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models converge faster and provide higher prediction accuracy 
than traditional ANN and RNN due to their explicit memory 
mechanism [22]. They are particularly effective in modeling 
systems where external forcing influences the target variable. 
Studies demonstrate that NARX achieves high accuracy in 
river level forecasting across Southeast Asian river basins [23]. 
Its performance is notably superior when dealing with short-
term and multi-step forecasting [23]. 

G. Research Gap 

Although a variety of hydrological and data-driven flood 
forecasting models have been applied in Malaysia, most 
previous research has focused on river basins in Kelantan and 
Terengganu [24], while significantly less attention has been 
given to Pahang, particularly the Pekan district. Existing flood 
prediction frameworks do not adequately represent the 
hydrological and rainfall–runoff characteristics of Pahang’s 
river systems. As a result, there is currently no dedicated flood 
prediction model specifically developed for Pekan, despite its 
recurring seasonal floods and high socio-economic 
vulnerability. Furthermore, previous studies rarely examine 
flood behavior along the entire river course, from upstream to 
downstream, which is critical for understanding how rainfall 
and runoff propagate through the watershed before causing 
overflow in low-lying coastal areas like Pekan. Developing a 
tailored model would therefore not only improve prediction 
accuracy but also enable a better understanding of flood 
dynamics along the river continuum, supporting more effective 
local early-warning and disaster preparedness strategies. 
Hence, this study focuses on designing and evaluating an 
NARX-based prediction model specifically for the Pekan 
region, to address this gap. 

H. Summary of the Literature Review 

While conventional statistical and physically-based models 
provide foundational hydrological understanding, their 
performance declines due to the nonlinear and dynamic 
characteristics of flood behavior. Machine learning and deep 
learning methods such as ANN, SVR, RF, LSTM, and hybrid 
architectures have shown improved predictive ability by 
capturing complex temporal dependencies. The NARX model, 
in particular, has demonstrated strong performance in multi-
step hydrological forecasting due to its capability to 
incorporate external variables and maintain memory of past 
system states. 

However, the review shows that little research has focused 
on flood prediction in Pahang, and almost none has been 
conducted specifically for Pekan, even though the district is 
highly affected by recurring monsoon floods [1]. Additionally, 
there is limited study on flood progression along the river 
system from upstream to downstream, which is essential for 
understanding how floodwater develops and travels before 
reaching populated flood-prone areas. Therefore, the present 
study aims to develop a NARX-based river level prediction 
model specifically tailored for the Pekan river system, 
providing more localized and accurate early-warning insights 
to support flood management and preparedness. 

III. METHODOLOGY 

A. Dataset 

The dataset consists of hourly hydrological measurements 
collected over five years (2020–2024) from four river stations: 
Sungai Pahang, Sungai Pahang Tua, Sungai Paloh Hinai, and 
Sungai Mentiga. The target station for prediction is Sungai 
Pahang at Pekan, which represents the confluence point of the 
other three rivers. 

Each dataset contains several attributes, including Station 
ID, Station Code, Station Name, Date, Time, Water Level (m), 
Rainfall (mm), Cumulative Daily Rainfall (mm), and 
Cumulative Annual Rainfall (mm). For this study, only the 
Water Level (m) parameter was retained to ensure model focus 
and reduce noise from unrelated variables. 

B. Data Preprocessing 

To standardize the temporal resolution, the hourly data 
were aggregated into daily averages, resulting in one 
representative water level value per day for each station. The 
daily average water level, 𝐻‾ 𝑑, was computed as: 

𝐻‾ 𝑑 =
1

𝑛
∑ 𝐻𝑖

𝑛
𝑖=1   (1) 

where, 𝐻𝑖represents the water level recorded at the 𝑖 𝑡ℎhour 
of a given day, and 𝑛is the total number of hourly observations 
within that day (typically 𝑛 = 24). 

C. Interpolation of Short Gaps 

Short gaps, defined as missing periods of fewer than 5 
consecutive days, were imputed using linear interpolation. For 
a missing value at time t, the estimate was calculated as: 

𝑥𝑡 =
(𝑡−𝑡𝑝𝑟𝑒𝑣)∗𝑥𝑛𝑒𝑥𝑡+(𝑡𝑛𝑒𝑥𝑡−𝑡)∗𝑥𝑝𝑟𝑒𝑣

𝑡𝑛𝑒𝑥𝑡−𝑡𝑝𝑟𝑒𝑣
  (2) 

where, 𝑥𝑝𝑟𝑒𝑣  and 𝑥𝑛𝑒𝑥𝑡  represent the nearest observed 

values surrounding the gap. This approach is appropriate for 
short-duration gaps where hydrological changes are typically 
gradual and continuous. 

Large gaps (≥5 consecutive days) were not imputed. 
Instead, the entire row corresponding to that timestamp was 
removed across all stations. This ensures that each training 
instance contains complete values for Sungai Pahang, Sungai 
Pahang Tua, Sungai Paloh Hinai, and Sungai Mentiga, thereby 
avoiding inconsistencies caused by high-uncertainty 
imputations. 

The removal of rows containing long gaps is motivated by 
several scientific and statistical considerations: 

• Non-linear and event-driven hydrological behavior: 
Water levels in rivers respond to rainfall, upstream 
releases, tidal influences, and runoff processes that 
evolve non-linearly. Over multi-day periods, such 
dynamics cannot be reliably reconstructed using linear 
or low-order imputation techniques. Long-gap 
interpolation introduces unrealistic smoothing and 
distorts natural fluctuations. 

• Autocorrelation decay in river-level time series: 
Hydrological time series typically exhibit rapid 
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autocorrelation decay within a few days. When 
observations are separated by long gaps, their statistical 
dependence becomes weak, making interpolated values 
unreliable. Avoiding long synthetic intervals preserves 
the natural temporal structure of the data. 

• Uncertainty amplification: Interpolation error grows 
with gap duration. Long-gap estimates carry high 
uncertainty that may propagate into model training, 
degrading predictive performance and weakening the 
model’s ability to capture extreme events. 

• Avoidance of model bias and artefact learning: Machine 
learning models are sensitive to artificial patterns 
caused by imputation. Long imputed segments may 
lead the model to learn interpolation artefacts rather 
than genuine hydrological relationships among the four 
stations. 

After preprocessing, the dataset was divided into 
continuous segments—defined as sequences of dates in which 
none of the stations (Sungai Pahang, Sungai Pahang Tua, 
Sungai Paloh Hinai, Sungai Mentiga) exhibits a large missing 
gap. Separate regression models were trained on these fully 
complete segments. Training regression models on continuous, 
fully observed segments is scientifically valid and 
methodologically justified for several reasons: 

• Preservation of underlying hydrological dynamics: 
Continuous segments represent uninterrupted periods 
during which the inter-station relationships reflect real 
hydrological behavior. This allows the model to learn 
authentic temporal patterns rather than artefacts arising 
from imputed values. 

• Assumption of local stationarity: River systems often 
exhibit local stationarity, meaning their statistical 
properties remain stable within reasonably short 
continuous periods. Segment-wise modelling respects 
this property and allows consistent parameter 
estimation. 

• Avoidance of cross-regime contamination: Long 
missing gaps often coincide with unusual hydrological 
states (e.g., floods, sensor outages, maintenance). 
Segmentation prevents mixing incompatible regimes 
that could introduce non-physical relationships into the 
model. 

• Reduction of structural bias: Restricting training to fully 
observed data ensures that regression parameters reflect 
true input–output relationships rather than smoothed or 
synthetic signals. 

• Hypothetical validity via conditional independence: If 
each continuous segment is assumed to originate from 
the same underlying hydrological process governing the 
four stations, then each segment provides an 
independent sample from the same distribution. This 
satisfies the theoretical assumptions required for 
regression modelling. 

• Improved generalization: Models trained only on high-
quality, continuous data are better able to generalize to 

unseen periods, particularly during rapidly changing 
hydrological conditions such as rising or receding river 
stages. 

These grouped datasets were then utilized for the Nonlinear 
AutoRegressive model with eXogenous inputs (NARX) during 
the modeling stage. 

The NARX model was implemented using Python with 
TensorFlow and Keras frameworks. The dataset was divided 
into training and testing sets, with the training phase used to 
optimize network weights. 

The loss function used to evaluate model performance is 
the Mean Squared Error (MSE), calculated as: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖)

2𝑁

𝑖=1
  (3) 

where, 𝑦𝑖and 𝑦𝑖are the observed and predicted water levels, 
respectively, and 𝑁 is the total number of samples. 
Lower MSE values indicate higher prediction accuracy and 
better model generalization. 

D. NARX Model Structure  

The general form of the NARX model is expressed as: 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦),𝑥(𝑡 − 1), 𝑥(𝑡 −
2), … , 𝑥(𝑡 − 𝑛𝑥))  (4) 

where, 

• 𝑦(𝑡) is the predicted river water level at time 𝑡, 

• 𝑥(𝑡) represents the exogenous input variable (e.g., 
rainfall or other influencing factors), 

• 𝑛𝑦and 𝑛𝑥denote the feedback (lag) orders, and 

• 𝑓(⋅) is a nonlinear function approximated using an MLP 
network. 

E. Model Architecture 

Table I shows that the predictive model used a feedforward 
neural network with one hidden layer, following the structure: 

TABLE I.  THE STRUCTURE OF THE MODEL 

Layer Description 

Input Layer 
Dimension determined by the lag size and number of 

variables. 

Hidden Layer 
Fully connected, with variable neuron counts (150, 

300, or 600 units). 

Activation Function Rectified Linear Unit (ReLU). 

Dropout Layer 
20% dropout for regularization and overfitting 

prevention. 

Output Layer 
A single linear neuron producing the next-step 

forecast. 

The model was defined using the Sequential API in 
TensorFlow Keras. The network was compiled with the Adam 
optimizer (learning rate = 1×10⁻³, weight decay = 1×10⁻⁵) and 
Mean Squared Error (MSE) as the loss function. 
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F. Training Procedure 

Each configuration was trained under varying combinations 
of: 

• Lags:{3,4,5,6,7} 

• Hidden Units:{150,300,600} 

• Epochs:{100,300,500,1000,5000} 

This yielded a total of 45 experimental runs.  

Training was executed with a batch size of 128 and data 
shuffling enabled to prevent temporal bias. 

During each experiment: 

• The model was trained on the training set and validated 
on the test set. 

• The training and validation loss histories were recorded. 

• Predictions were generated for both training and test 
datasets. 

• Diagnostic visualizations were saved, including: 

o Loss curve (training vs. validation loss), 

o Residual plots (train/test residuals), 

o Prediction plots (actual vs. predicted values). 

G. Evaluation Metrics 

The model’s predictive performance was primarily 
evaluated using Mean Squared Error (MSE) as the loss 
function. Additional diagnostic analyses included: 

• Residual distribution to assess error randomness and 
bias. 

• Train vs. Validation loss comparison to detect 
overfitting. 

• Actual vs. Predicted plots to visually assess alignment 
between predictions and ground truth. 

IV. IMPLEMENTATION, RESULTS AND DISCUSSION 

A series of experiments were conducted to evaluate the 
performance of a neural network model trained with different 
lag values and hidden unit configurations for time-series 
forecasting. The parameter grid covered lags {3, 4, 5, 6, 7}, 
hidden units {150, 300, 600}, and epochs {100, 300, 500, 
1000, 5000}. The primary evaluation metric was validation 
loss (Mean Squared Error), with train loss also monitored to 
assess potential overfitting or underfitting. 

A. Best Validation Performance by Lag and Hidden Units 

The heatmap in Fig. 1 illustrates the best validation loss 
achieved for each combination of lag and hidden unit count. 

 
Fig. 1. Heatmap. 

Fig. 1 shows that the model achieved its lowest validation 
loss (0.102) for Lag = 6 and Hidden Units = 300, indicating 
that this configuration provides an optimal balance between 
temporal dependency capture and model complexity. 
Generally, lags between 3 and 6 produced comparable results, 
while performance deteriorated at lag = 4 and lag = 5, 
especially when the hidden layer size was small (150). 
Increasing the hidden units to 300 consistently improved 
performance for most lags, whereas using 600 units did not 
always yield further benefits — suggesting possible 
overparameterization for the dataset size. 

B. Relationship Between Training and Validation Loss 

The scatter plot in Fig. 2 compares the final train loss 
against validation loss across all configurations. 

 
Fig. 2. Scatter plot. 
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As shown in Fig. 2, most points lie close to or above the 
diagonal reference line, indicating that validation losses were 
typically higher than training losses — a standard indicator of 
slight overfitting. However, several configurations (particularly 
those with hidden units = 300 and moderate lags) exhibited a 
close alignment between train and validation losses, suggesting 
good generalization. Notably, models trained with Lag = 4 and 
Lag = 5 showed larger gaps between train and validation 
losses, reflecting unstable learning dynamics or insufficient 
temporal context. 

C. Validation Loss Trends Across Epochs 

Fig. 3 to Fig 7 show validation loss progression across 
training epochs for each lag value. 

Lag = 3: Validation loss decreased sharply up to 1000 
epochs for hidden units = 150 and 300, followed by an increase 
at 5000 epochs, indicating early convergence and later 
overfitting. 

Lag = 4: All configurations exhibited diverging losses 
beyond 1000 epochs, implying unstable training or excessive 
learning rates for deeper models. 

Lag = 5: The validation loss initially improved but then 
rose steeply for higher epochs, confirming overfitting at 
extended training durations. 

Lag = 6: The trend showed consistent improvement as 
training progressed, achieving the lowest validation loss 
(≈0.10) at 5000 epochs, particularly with hidden units = 300. 
This indicates a robust generalization pattern. 
- Lag = 7: The loss curves demonstrated oscillation and mild 
overfitting beyond 2000 epochs, though the overall 
performance remained stable within a 0.18–0.25 MSE range. 

 
Fig. 3. Lag 3 validation loss. 

 
Fig. 4. Lag 4 validation loss. 

 
Fig. 5. Lag 5 validation loss. 

 
Fig. 6. Lag 6 validation loss. 

 
Fig. 7. Lag 7 validation loss. 

D. Cross-Lag Performance Interpretation 

Comparing across lags, the results suggest that: 

• Short lags (3–4) capture limited temporal dependencies, 
causing early saturation in validation performance. 

• Intermediate lag (6) offers an optimal trade-off — long 
enough to model dependencies, but not too large to 
introduce noise. 

• Longer lag (7) yields diminishing returns, potentially 
due to redundant temporal information or vanishing 
gradients. 

This aligns with the hypothesis that increasing input 
sequence length does not guarantee improved forecasting 
accuracy beyond a certain point. 
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E. Summary of Key Observations 

From Table II, the observed behavior underscores the 
importance of balancing model capacity, temporal depth, and 
training duration. While larger models (600 units) have higher 
representational power, they are also prone to overfitting when 
training data are limited. Conversely, too few hidden units 
(150) restrict learning capability.  Hence, medium-sized 
architectures (300 units) paired with sufficient historical 
context (Lag = 6) represent an optimal trade-off for this 
dataset. These findings can guide future hyperparameter 
selection for similar neural forecasting tasks, where data 
periodicity and temporal correlation length are critical factors. 

TABLE II.  THE BEST RESULT FOR EACH LAG 

Lag Hidden Units Best Val Loss Notes 

3 300 0.114 Stable and generalizable 

4 300 0.214 
Poor stability beyond 1000 

epochs 

5 600 0.153 Unstable, possibly overfitted 

6 300 0.102 (best) 
Strong generalization and 

stable learning 

7 150 0.174 
Gradual improvement but 

limited gain 

F. Detailed Evaluation of the Best Model (Lag = 6, Hidden 

Units = 300) 

1) Loss curve analysis: The loss curve in Fig. 8 depicts the 

evolution of training and validation losses across 5000 epochs. 

The training loss exhibits a steep decline during the early 

epochs, stabilizing near zero after approximately 1000 epochs. 

 
Fig. 8. Training and validation loss curves showing convergence behavior 

for the best model configuration (Lag = 6, Hidden Units = 300). 

The validation loss follows a similar trend but converges to 
a higher steady-state value around 0.10, consistent with the 
best validation loss recorded in the summary. The relatively 
small gap between training and validation losses indicates 
effective generalization and minimal overfitting. Both curves 
maintain stability without significant oscillation or divergence, 
suggesting that the model converged smoothly. This steady 
behavior reflects robust learning dynamics, where the model 
captures relevant temporal dependencies without memorizing 
noise from the training set. 

2) Residual diagnostics: The residual plots in Fig. 9 

illustrate the difference between predicted and actual values 

for both training and test sets. 

 
Fig. 9. Residual plots for training and test datasets, showing randomness and 

unbiased prediction errors. 

In the training residuals, values fluctuate randomly around 
zero with no visible pattern or trend, implying that the model’s 
predictions are unbiased and errors are normally distributed. 
The magnitude of residuals remains small (within ±0.1), 
confirming that the model fits the training data accurately 
without systematic error. The test residuals display slightly 
larger fluctuations, ranging within ±0.25, which is expected 
due to unseen data. However, no clear autocorrelation or drift 
is present, supporting the conclusion that the model generalizes 
well beyond the training sample. This diagnostic outcome 
supports the statistical soundness of the model and its ability to 
perform consistent predictions across both datasets. 

3) Prediction performance on training data: The training 

prediction plot in Fig. 10 demonstrates an almost perfect 

overlap between actual and predicted values. The consistency 

across the full sequence confirms the model’s high accuracy in 

reconstructing training samples while maintaining 

generalization, as verified in the test results. This balance 

reinforces that the selected architecture (Lag = 6, Hidden 

Units = 300) achieves optimal expressiveness without 

overfitting.  The model appears to have successfully extracted 

dominant temporal patterns and relationships within the data. 

4) Prediction performance on test data: Fig. 11 compares 

actual and predicted values for the test set. The predicted 

curve closely tracks the actual target trend, capturing both 

peaks and troughs of the series effectively. Minor deviations 

occur at extreme points, which may be attributed to local 

variations not captured by the lag window of six. 

The close alignment between both curves indicates that the 
model successfully learns the non-linear temporal 
dependencies within the data. The prediction continuity and 
minimal phase lag between actual and predicted signals further 
validate the model’s capacity to anticipate short-term dynamics 
with good precision. 

5) Summary of findings for optimal model: The results 

highlight the importance of appropriate lag selection in 

temporal modeling. With a lag of 6, the network accesses 
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sufficient historical context to infer meaningful sequential 

dependencies without introducing redundant or noisy 

information. Moreover, the moderate hidden layer size of 300 

provides adequate representational capacity to capture non-

linear relations while preserving regularization balance. The 

residual randomness and low validation loss collectively 

confirm that the model achieved an optimal bias–variance 

tradeoff. This configuration will be considered as the final 

candidate for deployment or further comparative experiments 

with other forecasting or hybrid deep learning approaches (see 

Table III). 

 
Fig. 10. Training prediction performance showing close alignment between 

predicted and actual series. 

 
Fig. 11. Test prediction performance comparison between actual and predicted 

values. 

TABLE III.  FINDING SUMMARY 

Metric Observation 

Lag 6 

Hidden Units 300 

Best Validation Loss 0.102 

Training Stability Excellent (Smooth convergence) 

Generalization Strong (Low validation gap) 

Residual Behavior Random, low magnitude 

Test Prediction Fit High correlation with actual series 

V. CONCLUSION 

This study set out to develop a reliable and accurate river 
water level forecasting model for the Pekan region using the 

Nonlinear Autoregressive model with Exogenous Inputs 
(NARX). The motivation derived from recurring monsoon-
driven floods in the East Coast of Peninsular Malaysia, where 
existing forecasting systems lack models tailored specifically 
to Pahang’s hydrological characteristics. The literature review 
highlighted that while conventional statistical and physically-
based models offer foundational insights, their performance 
often deteriorates under nonlinear and dynamic flood 
conditions. Modern machine learning and deep learning 
techniques provide improved predictive capabilities, yet most 
previous research remains concentrated in Kelantan and 
Terengganu, leaving a significant gap for Pahang—particularly 
the low-lying Pekan district. 

A comprehensive dataset of daily water levels from 2020 to 
2024 was preprocessed, cleaned, and segmented into 
continuous temporal sequences to ensure robust model 
training. Using this dataset, a series of 75 experiments was 
conducted across varying lag values, hidden unit sizes, and 
training epochs to identify the optimal NARX configuration. 
Performance evaluation relied primarily on Mean Squared 
Error (MSE), supported by residual diagnostics and actual-
versus-predicted comparisons for both training and test sets. 

The experimental results demonstrated that Lag = 6 and 
Hidden Units = 300 provided the most effective and stable 
predictive performance, achieving a minimum validation loss 
of 0.102. This configuration offered a balanced combination of 
temporal memory and model complexity, outperforming 
smaller architectures, which lacked representational strength, 
as well as larger models, which tended to overfit. Loss curve 
analyses further confirmed smooth convergence and minimal 
divergence between training and validation losses, indicating 
strong generalization. Residual analyses showed randomness 
without bias, while prediction plots revealed close alignment 
with actual water level fluctuations, successfully capturing 
trend variations and peak events. 

From a scientific perspective, this study contributes a 
structured and reproducible NARX modelling framework that 
integrates multi-station river dynamics with systematic lag–
capacity optimization for district-level hydrological 
forecasting. Practically, the proposed model offers actionable 
value for local flood early warning systems by providing 
accurate short-term water level predictions that can support 
decision-making by authorities in flood-prone areas such as 
Pekan. 

Despite these encouraging results, several limitations of 
this study should be acknowledged. First, the model relies 
solely on historical water level data and does not explicitly 
incorporate rainfall, tidal influence, or reservoir release 
information, which may further enhance predictive accuracy 
during extreme hydrological events. Second, model training 
was conducted using daily-aggregated data, which may limit 
responsiveness to rapid intra-day water level changes during 
flash flood conditions. 

Future work will focus on extending the proposed 
framework by incorporating additional hydrometeorological 
variables and evaluating multi-step-ahead forecasting 
performance for longer early warning lead times. Integration 
with real-time sensor networks and comparative evaluation 
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against alternative data-driven models may further strengthen 
the operational applicability of the approach. 

In conclusion, the NARX-based approach developed in this 
work offers a valuable contribution toward strengthening flood 
preparedness and decision-support mechanisms in Pahang. 
With continued refinement and integration into operational 
forecasting systems, it can play a significant role in mitigating 
the socio-economic impacts of seasonal flooding and 
enhancing resilience in vulnerable communities. 
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