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Abstract—Flood forecasting is critical for improving early
warning systems in Malaysia’s East Coast region, particularly in
flood-prone Pekan. This study develops a Nonlinear
Autoregressive with Exogenous Inputs (NARX) model to predict
river water levels using data from four stations: Sungai Pahang,
Sungai Pahang Tua, Sungai Paloh Hinai, and Sungai Mentiga
(2020-2024). The dataset was preprocessed through short-gap
interpolation, removal of long missing segments, and
segmentation into continuous sequences to ensure high-quality
inputs for modeling. A total of 75 NARX configurations were
evaluated using different lag values, hidden neuron counts, and
training epochs. Model performance was assessed using Mean
Squared Error (MSE) and residual diagnostics. The best
model—lag = 6 and 300 hidden units—achieved a validation loss
of 0.102, demonstrating stable convergence and strong
generalization. Prediction results showed close alignment with
actual river levels. The findings confirm that the NARX
approach effectively captures nonlinear hydrological dynamics
and provides reliable short-term water level forecasts for Pekan,
addressing an existing gap in localized flood prediction studies.

Keywords—Flood prediction; NARX model; hydrological
modelling; Pekan

L INTRODUCTION

The East Coast region of Peninsular Malaysia frequently
experiences heavy rainfall during the Northeast Monsoon
season, which often leads to flooding in low-lying and riverine
areas. These flood events result in significant damage to
infrastructure, disruption of transportation systems, and
substantial economic losses for affected communities. Accurate
and timely flood forecasting is crucial to support early warning
systems and minimize flood-related impacts. Reliable river
water level prediction enables authorities to make proactive
decisions and implement preventive measures to safeguard
lives and reduce property damage.

Despite ongoing advancements in hydrological monitoring,
flood prediction in Malaysia remains challenging due to the
nonlinear, dynamic, and spatially heterogeneous nature of river
systems, particularly in monsoon-driven environments. These
challenges are more pronounced at the district level, where
complex upstream—downstream interactions and data
continuity issues limit the effectiveness of generic basin-scale
forecasting models.

In recent years, data-driven modelling has gained
increasing attention for flood forecasting due to its ability to
capture nonlinear and complex relationships  within
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hydrological systems. This study aims to develop a predictive
model using the Nonlinear Autoregressive model with
Exogenous Inputs (NARX) for river water level forecasting in
the East Coast region of Peninsular Malaysia. The NARX
model utilizes historical hydrological data to learn temporal
patterns, enabling more accurate predictions. By implementing
the NARX-based approach, this research seeks to improve the
accuracy and reliability of flood forecasting systems to enhance
early warning capabilities and reduce flood-related risks.

Although NARX models have been widely applied in
hydrological forecasting, most existing studies emphasize
major river basins or regional-scale analysis, with limited focus
on district-level river systems experiencing recurrent flooding.
In particular, the Pekan district in Pahang—despite its high
flood vulnerability—has received comparatively little attention
in terms of localized, data-driven river level prediction models.
Furthermore, prior work rarely investigates how multiple
upstream river stations collectively influence downstream
water level dynamics within an integrated modelling
framework.

This study presents a systematically optimized NARX-
based river water level prediction model tailored for the Pekan
river system. The model integrates water level data from
multiple upstream and downstream stations, including Sungai
Pahang Tua, Sungai Paloh Hinai, and Sungai Mentiga, to
predict downstream levels at Sungai Pahang (Pekan). A
structured preprocessing and segmentation strategy is
employed to ensure model training is conducted only on
continuous, fully observed temporal segments, thereby
preserving hydrological realism and avoiding artefacts
introduced by long-gap imputation. In addition, a
comprehensive exploration of lag length, hidden layer capacity,
and training duration is performed to identify an optimal
NARX configuration that balances prediction accuracy,
convergence stability, and generalization performance.
Through this approach, the study provides a localized and
transferable modelling framework that supports district-level
flood early warning applications.

The remainder of this study is organized as follows:
Section Il reviews related work on flood forecasting and data-
driven hydrological modelling. Section III describes the
dataset, preprocessing strategy, and NARX model architecture.
Section IV presents the experimental results and discussion.
Finally, Section V concludes the study and outlines limitations
and directions for future work.
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II. LITERATURE REVIEW

Flood disasters remain a major environmental and socio-
economic concern in many regions, particularly in Malaysia,
where seasonal monsoon patterns heavily influence
hydrological conditions [1]. Researchers have employed
various forecasting approaches to understand and predict flood
behavior, ranging from traditional statistical and hydrological
models to more recent machine learning and deep learning
techniques. This literature review provides an overview of
flooding characteristics in the Pantai Timur region, followed by
a review of conventional flood forecasting methods. It then
discusses the evolution of data-driven methods, including
Artificial Neural Networks (ANN), Support Vector Regression
(SVR), and Random Forest (RF), before examining advanced
deep learning techniques such as Recurrent Neural Networks
(RNN), Long Short-Term Memory (LSTM), and hybrid
intelligent models. Finally, this chapter emphasizes the
significance of the Nonlinear Autoregressive with Exogenous
Input (NARX) model in hydrological forecasting and identifies
the research gap motivating the present study.

A. Flooding in Malaysia and the Pantai Timur Region

Malaysia experiences frequent flooding due to its tropical
climate and high-intensity rainfall patterns. The Pantai Timur
region — consisting of Kelantan, Terengganu, and Pahang —
is the most flood-prone zone in Peninsular Malaysia,
particularly during the Northeast Monsoon season [1]. The
region’s river basins, low-lying settlements, and coastal
geography increase vulnerability to overflow and prolonged
inundation [2]. The Northeast Monsoon (NEM) typically
occurs between November and March, bringing strong winds
and heavy rainfall from the South China Sea [3]. The
Malaysian Meteorological Department (2023) states that this
seasonal event produces prolonged rainfall that causes river
water levels to rise rapidly, triggering severe flooding across
Pantai Timur [4]. The intensity and duration of monsoon
rainfall directly affect river discharge, making water level
prediction a crucial preventive measure. Several major flood
events have occurred in Pantai Timur over the past decades,
including those in Kelantan (2014) [5], Pahang (2021) [6], and
Terengganu (2022) [7]. The 2014 Kelantan flood, widely
referred to as “Bah Kuning” [8], affected more than half a
million people, resulting in extensive property damage and
infrastructure collapse. Such recurring events highlight the
importance of accurate forecasting systems to mitigate disaster
impacts.

B. Importance of River Level Forecasting

River level forecasting plays a crucial role in early warning
systems, evacuation planning, and resource mobilization.
Government agencies such as the Department of Irrigation and
Drainage (DID) and the National Disaster Management
Agency (NADMA) rely on real-time hydrological forecasting
for decision-making [9]. Therefore, forecasting models must be
accurate, reliable, and capable of capturing nonlinear
hydrological behaviors.

C. Conventional Flood Forecasting Methods

1) Statistical time-series models (ARIMA, Regeression):
The Autoregressive Integrated Moving Average (ARIMA)
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model is one of the most widely used statistical methods in
river flow forecasting [10]. However, ARIMA assumes
linearity and struggles to model complex nonlinear patterns
that often characterize hydrological systems [11]. Regression-
based models face similar limitations, particularly when
dealing with high-variability rainfall-runoff relationships.

2) Physically-based hydrological models (SWAT, HEC-
HMS): Physically-based models such as Soil and Water
Assessment Tool (SWAT) and Hydrologic Engineering
Center — Hydrologic Modeling System (HEC-HMS) simulate
watershed hydrology using environmental and land-use
parameters [12]. While these models provide insight into
hydrological processes, they require extensive data input and
calibration, making them difficult to apply in regions with
limited monitoring networks [12]. Furthermore, parameter
uncertainties can significantly reduce model reliability during
extreme flooding events [13].

D. Machine Learning Approaches in Flood Forecasting

With advancements in computational power and data
availability, machine learning has become an attractive
approach for modeling hydrological processes. Artificial
Neural Networks (ANNs) are capable of learning complex
nonlinear relationships from data and have shown promising
performance in flood forecasting applications. However,
standard feed-forward ANNs are limited in handling long-term
temporal dependencies in time-series data [ 14]. Support Vector
Regression (SVR) offers good generalization performance but
requires careful tuning of kernel functions and regularization
parameters [15]. Random Forest (RF) performs well in
capturing nonlinear patterns but may become computationally
intensive with large datasets [16]. Both methods demonstrate
improvement over linear models, yet are still constrained in
modeling sequential dependencies over time.

E. Deep Learning Models in Hydrological Time-Series
Forecasting

Recurrent Neural Networks introduced time-sequence
modeling capability. However, traditional RNNs suffer from
gradient vanishing issues, limiting their ability to learn long-
term dependencies [16]. Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) models were specifically
developed to address memory retention issues and have
demonstrated superior performance in predicting streamflow
and river water levels [17]. These models capture temporal
dependencies more effectively than simple ANNs [18]. Hybrid
models that integrate convolutional and recurrent architectures
or attention mechanisms have further improved forecasting
accuracy by extracting temporal and spatial patterns [19].
However, these models require large datasets and high
computational resources, limiting their real-time deployment in
some regions [20].

F. NARX Model for Hydrological and Flood Forecasting

The Nonlinear Autoregressive with Exogenous Input
(NARX) model is a dynamic neural network that uses previous
output values and external variables (e.g., rainfall) to predict
future water levels [21]. This architecture enables the model to
represent nonlinear hydrological dynamics effectively. NARX
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models converge faster and provide higher prediction accuracy
than traditional ANN and RNN due to their explicit memory
mechanism [22]. They are particularly effective in modeling
systems where external forcing influences the target variable.
Studies demonstrate that NARX achieves high accuracy in
river level forecasting across Southeast Asian river basins [23].
Its performance is notably superior when dealing with short-
term and multi-step forecasting [23].

G. Research Gap

Although a variety of hydrological and data-driven flood
forecasting models have been applied in Malaysia, most
previous research has focused on river basins in Kelantan and
Terengganu [24], while significantly less attention has been
given to Pahang, particularly the Pekan district. Existing flood
prediction frameworks do not adequately represent the
hydrological and rainfall-runoff characteristics of Pahang’s
river systems. As a result, there is currently no dedicated flood
prediction model specifically developed for Pekan, despite its
recurring seasonal floods and high socio-economic
vulnerability. Furthermore, previous studies rarely examine
flood behavior along the entire river course, from upstream to
downstream, which is critical for understanding how rainfall
and runoff propagate through the watershed before causing
overflow in low-lying coastal areas like Pekan. Developing a
tailored model would therefore not only improve prediction
accuracy but also enable a better understanding of flood
dynamics along the river continuum, supporting more effective
local early-waming and disaster preparedness strategies.
Hence, this study focuses on designing and evaluating an
NARX-based prediction model specifically for the Pekan
region, to address this gap.

H. Summary of the Literature Review

While conventional statistical and physically-based models
provide foundational hydrological understanding, their
performance declines due to the nonlinear and dynamic
characteristics of flood behavior. Machine learmning and deep
learning methods such as ANN, SVR, RF, LSTM, and hybrid
architectures have shown improved predictive ability by
capturing complex temporal dependencies. The NARX model,
in particular, has demonstrated strong performance in multi-
step hydrological forecasting due to its capability to
incorporate external variables and maintain memory of past
system states.

However, the review shows that little research has focused
on flood prediction in Pahang, and almost none has been
conducted specifically for Pekan, even though the district is
highly affected by recurring monsoon floods [1]. Additionally,
there is limited study on flood progression along the river
system from upstream to downstream, which is essential for
understanding how floodwater develops and travels before
reaching populated flood-prone areas. Therefore, the present
study aims to develop a NARX-based river level prediction
model specifically tailored for the Pekan river system,
providing more localized and accurate early-warming insights
to support flood management and preparedness.
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IIl. METHODOLOGY

A. Dataset

The dataset consists of hourly hydrological measurements
collected over five years (2020-2024) from four river stations:
Sungai Pahang, Sungai Pahang Tua, Sungai Paloh Hinai, and
Sungai Mentiga. The target station for prediction is Sungai
Pahang at Pekan, which represents the confluence point of the
other three rivers.

Each dataset contains several attributes, including Station
ID, Station Code, Station Name, Date, Time, Water Level (m),
Rainfall (mm), Cumulative Daily Rainfall (mm), and
Cumulative Annual Rainfall (mm). For this study, only the
Water Level (m) parameter was retained to ensure model focus
and reduce noise from unrelated variables.

B. Data Preprocessing

To standardize the temporal resolution, the hourly data
were aggregated into daily averages, resulting in one
representative water level value per day for each station. The
daily average water level, H,;, was computed as:

— 1
Ay =230 H, (1)

where, Hrepresents the water level recorded at the i ®*hour
of a given day, and nis the total number of hourly observations

within that day (typically n = 24).

C. Interpolation of Short Gaps

Short gaps, defined as missing periods of fewer than 5
consecutive days, were imputed using linear interpolation. For
a missing value at time t, the estimate was calculated as:

X = (t_tprev)*’:nextjftnext_t)*xprev (2)
next prev
where, X, and X, represent the nearest observed
values surrounding the gap. This approach is appropriate for
short-duration gaps where hydrological changes are typically
gradual and continuous.

Large gaps (=5 consecutive days) were not imputed.
Instead, the entire row corresponding to that timestamp was
removed across all stations. This ensures that each training
instance contains complete values for Sungai Pahang, Sungai
Pahang Tua, Sungai Paloh Hinai, and Sungai Mentiga, thereby
avoiding inconsistencies caused by  high-uncertainty
imputations.

The removal of rows containing long gaps is motivated by
several scientific and statistical considerations:

e Non-linear and event-driven hydrological behavior:
Water levels in rivers respond to rainfall, upstream
releases, tidal influences, and runoff processes that
evolve non-linearly. Over multi-day periods, such
dynamics cannot be reliably reconstructed using linear
or low-order imputation techniques. Long-gap
interpolation introduces unrealistic smoothing and
distorts natural fluctuations.

e Autocorrelation decay in river-level time series:
Hydrological time series typically exhibit rapid
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autocorrelation decay within a few days. When
observations are separated by long gaps, their statistical
dependence becomes weak, making interpolated values
unreliable. Avoiding long synthetic intervals preserves
the natural temporal structure of the data.

e Uncertainty amplification: Interpolation error grows
with gap duration. Long-gap estimates carry high
uncertainty that may propagate into model training,
degrading predictive performance and weakening the
model’s ability to capture extreme events.

e Avoidance of model bias and artefact learning: Machine
learning models are sensitive to artificial patterns
caused by imputation. Long imputed segments may
lead the model to learn interpolation artefacts rather
than genuine hydrological relationships among the four
stations.

After preprocessing, the dataset was divided into
continuous segments—defined as sequences of dates in which
none of the stations (Sungai Pahang, Sungai Pahang Tua,
Sungai Paloh Hinai, Sungai Mentiga) exhibits a large missing
gap. Separate regression models were trained on these fully
complete segments. Training regression models on continuous,
fully observed segments is scientifically wvalid and
methodologically justified for several reasons:

e Preservation of underlying hydrological dynamics:
Continuous segments represent uninterrupted periods
during which the inter-station relationships reflect real
hydrological behavior. This allows the model to learn
authentic temporal patterns rather than artefacts arising
from imputed values.

e Assumption of local stationarity: River systems often
exhibit local stationarity, meaning their statistical
properties remain stable within reasonably short
continuous periods. Segment-wise modelling respects

this property and allows consistent parameter
estimation.
e Avoidance of cross-regime contamination: Long

missing gaps often coincide with unusual hydrological
states (e.g., floods, sensor outages, maintenance).
Segmentation prevents mixing incompatible regimes
that could introduce non-physical relationships into the
model.

e Reduction of structural bias: Restricting training to fully
observed data ensures that regression parameters reflect
true input-output relationships rather than smoothed or
synthetic signals.

e Hypothetical validity via conditional independence: If
each continuous segment is assumed to originate from
the same underlying hydrological process governing the
four stations, then each segment provides an
independent sample from the same distribution. This
satisfies the theoretical assumptions required for
regression modelling.

e Improved generalization: Models trained only on high-
quality, continuous data are better able to generalize to
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unseen periods, particularly during rapidly changing
hydrological conditions such as rising or receding river
stages.

These grouped datasets were then utilized for the Nonlinear
AutoRegressive model with eXogenous inputs (NARX) during
the modeling stage.

The NARX model was implemented using Python with
TensorFlow and Keras frameworks. The dataset was divided
into training and testing sets, with the training phase used to
optimize network weights.

The loss function used to evaluate model performance is
the Mean Squared Error (MSE), calculated as:

N ~
izl(}’i - 9)? (3)

where, y;and y;are the observed and predicted water levels,
respectively, and N is the total number of samples.
Lower MSE values indicate higher prediction accuracy and
better model generalization.

D. NARX Model Structure
The general form of the NARX model is expressed as:

y@) =fE—-1,y—=2),..,y(t—ny),x(t —1),x(t -
2), ..., x(t —ny)) 4)

_1
MSE =~ 3

where,
e y(t)is the predicted river water level at time t,

e x(t) represents the exogenous input variable (e.g.,
rainfall or other influencing factors),

e n,and n,denote the feedback (lag) orders, and

e f(-)isanonlinear function approximated using an MLP
network.

E. Model Architecture

Table I shows that the predictive model used a feedforward
neural network with one hidden layer, following the structure:

TABLEI. THE STRUCTURE OF THE MODEL

Layer Description

Dimension determined by the lag size and number of

I tL .
nput Layer variables.

Fully connected, with variable neuron counts (150,

Hidden Layer 300, or 600 units).

Activation Function | Rectified Linear Unit (ReLU).

20% dropout for regularization and overfitting

Dropout Layer .
pout Lay prevention.
Output Layer A single linear neuron producing the next-step
forecast.

The model was defined using the Sequential API in
TensorFlow Keras. The network was compiled with the Adam
optimizer (learning rate = 1x10~°, weight decay = 1x10~°) and
Mean Squared Error (MSE) as the loss function.
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F. Training Procedure

Each configuration was trained under varying combinations
of:

e lags:{3,4,5,6,7}

e Hidden Units:{150,300,600}

e Epochs:{100,300,500,1000,5000}

This yielded a total of 45 experimental runs.

Training was executed with a batch size of 128 and data
shuffling enabled to prevent temporal bias.

During each experiment:

e The model was trained on the training set and validated
on the test set.

e The training and validation loss histories were recorded.

e Predictions were generated for both training and test
datasets.

o Diagnostic visualizations were saved, including:
o Loss curve (training vs. validation loss),
o Residual plots (train/test residuals),
o Prediction plots (actual vs. predicted values).

G. Evaluation Metrics

The model’s predictive performance was primarily
evaluated using Mean Squared Error (MSE) as the loss
function. Additional diagnostic analyses included:

e Residual distribution to assess error randomness and
bias.

e Train vs. Validation loss

overfitting.

comparison to detect

e Actual vs. Predicted plots to visually assess alignment
between predictions and ground truth.

IV. IMPLEMENTATION, RESULTS AND DISCUSSION

A series of experiments were conducted to evaluate the
performance of a neural network model trained with different
lag values and hidden unit configurations for time-series
forecasting. The parameter grid covered lags {3, 4, 5, 6, 7},
hidden units {150, 300, 600}, and epochs {100, 300, 500,
1000, 5000}. The primary evaluation metric was validation
loss (Mean Squared Error), with train loss also monitored to
assess potential overfitting or underfitting.

A. Best Validation Performance by Lag and Hidden Units

The heatmap in Fig. 1 illustrates the best validation loss
achieved for each combination of lag and hidden unit count.
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Best Validation Loss by Lag & Hidden Units

-0.26

m 0.107
-0.24

0.20

0.18

0.16

0.14

0.12

150 300 600
Hidden Units

Fig. 1. Heatmap.

Fig. 1 shows that the model achieved its lowest validation
loss (0.102) for Lag = 6 and Hidden Units = 300, indicating
that this configuration provides an optimal balance between
temporal dependency capture and model complexity.
Generally, lags between 3 and 6 produced comparable results,
while performance deteriorated at lag = 4 and lag = 5,
especially when the hidden layer size was small (150).
Increasing the hidden units to 300 consistently improved
performance for most lags, whereas using 600 units did not
always yield further benefits — suggesting possible
overparameterization for the dataset size.

B. Relationship Between Training and Validation Loss

The scatter plot in Fig. 2 compares the final train loss
against validation loss across all configurations.

Train vs Validation Loss

x hidden_units
150
0.6 1 * @ 300
® 600
lag
e 3
0.5 x 4
[ ] m 5
+ 6
0.4 * 7
S
c
2 " 3 x x
o x
T 031 m
° *
= N *e )(g
* ¢« 0%
0.2 . * - L] L I
- ¥ - LIS ®e
+ + + | I =
+ LY + [ ] =Tl
+ | °
o1 *++ ()
oot ="
T T T T T
0.00 0.05 0.10 0.15 0.20

Train Loss

Fig.2. Scatter plot.
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As shown in Fig. 2, most points lie close to or above the
diagonal reference line, indicating that validation losses were
typically higher than training losses — a standard indicator of
slight overfitting. However, several configurations (particularly
those with hidden units = 300 and moderate lags) exhibited a
close alignment between train and validation losses, suggesting
good generalization. Notably, models trained with Lag = 4 and
Lag = 5 showed larger gaps between train and validation
losses, reflecting unstable leamning dynamics or insufficient
temporal context.

C. Validation Loss Trends Across Epochs

Fig. 3 to Fig 7 show validation loss progression across
training epochs for each lag value.

Lag = 3: Validation loss decreased sharply up to 1000
epochs for hidden units = 150 and 300, followed by an increase
at 5000 epochs, indicating early convergence and later
overfitting.

Lag = 4: All configurations exhibited diverging losses
beyond 1000 epochs, implying unstable training or excessive
learning rates for deeper models.

Lag = 5: The validation loss initially improved but then
rose steeply for higher epochs, confirming overfitting at
extended training durations.

Lag = 6: The trend showed consistent improvement as
training progressed, achieving the lowest validation loss
(=0.10) at 5000 epochs, particularly with hidden units = 300.
This  indicates a  robust  generalization  pattern.
- Lag = 7: The loss curves demonstrated oscillation and mild
overfitting beyond 2000 epochs, though the overall
performance remained stable within a 0.18—0.25 MSE range.

Validation Loss vs Epochs (Lag=3)

hidden_units »
150
300

0.40 —a— 600

Validation Lass

oz /\/

0 1000 2000 3000 4000 5000
Epochs

Fig. 3. Lag3 validation loss.

Validation Loss vs Epochs (Lag=4)

hidden_units .
150
300
—e= 600

0.6

05

04

Validation Loss

Ne—"
03 /

02

o 1000 2000 3000 4000 5000
Epochs

Fig.4. Lag4 validation loss.
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Validation Loss vs Epochs (Lag=5)
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05] —+ 600

validation Loss

02 (,a\\/’//--—"'—’—'_’—-_‘#’_"-_’—__’—._.—'—_"-‘-_

o 1000 2000 3000 4000 5000
Epochs

Fig.5. Lag5 validation loss.

Validation Loss vs Epochs (Lag=6)

hidden_units

Validation Loss
\'

2000 3000 4000 5000
Epochs

o 1000

Fig. 6. Lag6 validation loss.

Validation Loss vs Epochs (Lag=7)

0.284 hidden_units
150
300
0.26 —e— 600

0.24 1

0.22 4

Validation Loss

o] 1000 2000 3000 4000 5000
Epochs

Fig.7. Lag?7 validation loss.

D. Cross-Lag Performance Interpretation
Comparing across lags, the results suggest that:

e Short lags (3—4) capture limited temporal dependencies,
causing early saturation in validation performance.

e Intermediate lag (6) offers an optimal trade-off — long
enough to model dependencies, but not too large to
introduce noise.

e Longer lag (7) yields diminishing returns, potentially
due to redundant temporal information or vanishing
gradients.

This aligns with the hypothesis that increasing input
sequence length does not guarantee improved forecasting
accuracy beyond a certain point.
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E. Summary of Key Observations

From Table II, the observed behavior underscores the
importance of balancing model capacity, temporal depth, and
training duration. While larger models (600 units) have higher
representational power, they are also prone to overfitting when
training data are limited. Conversely, too few hidden units
(150) restrict learning capability.  Hence, medium-sized
architectures (300 units) paired with sufficient historical
context (Lag = 6) represent an optimal trade-off for this
dataset. These findings can guide future hyperparameter
selection for similar neural forecasting tasks, where data
periodicity and temporal correlation length are critical factors.

TABLEII. THE BEST RESULT FOR EACH LAG
Lag Hidden Units Best Val Loss Notes

3 300 0.114 Stable and generalizable

4 300 0214 Poor stability beyond 1000
epochs

5 600 0.153 Unstable, possibly overfitted
Strong  generalization and

6 300 0.102 (best) stable learning

7 150 0174 Gradual improvement but

limited gain

F. Detailed Evaluation of the Best Model (Lag = 6, Hidden

Units = 300)

1) Loss curve analysis: The loss curve in Fig. 8 depicts the
evolution of training and validation losses across 5000 epochs.
The training loss exhibits a steep decline during the early
epochs, stabilizing near zero after approximately 1000 epochs.

Loss Curve

101 —— Train Loss

Val Loss

0.8 1

0.6

0.4 4

0.2 \
.

T T T T T T
0 1000 2000 3000 4000 5000

0.0 4

Fig. 8. Training and validation loss curves showing convergence behavior
for the best model configuration (Lag =6, Hidden Units = 300).

The validation loss follows a similar trend but converges to
a higher steady-state value around 0.10, consistent with the
best validation loss recorded in the summary. The relatively
small gap between training and validation losses indicates
effective generalization and minimal overfitting. Both curves
maintain stability without significant oscillation or divergence,
suggesting that the model converged smoothly. This steady
behavior reflects robust learning dynamics, where the model
captures relevant temporal dependencies without memorizing
noise from the training set.
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2) Residual diagnostics: The residual plots in Fig. 9
illustrate the difference between predicted and actual values
for both training and test sets.

Residuals - Train

—0.05

o 25 50 75 100 125 150

Residuals - Test

0.0 25 5.0 75 10.0 12.5 15.0 17.5

Fig. 9. Residual plots for training and test datasets, showing randomness and
unbiased prediction errors.

In the training residuals, values fluctuate randomly around
zero with no visible pattern or trend, implying that the model’s
predictions are unbiased and errors are normally distributed.
The magnitude of residuals remains small (within +0.1),
confirming that the model fits the training data accurately
without systematic error. The test residuals display slightly
larger fluctuations, ranging within +£0.25, which is expected
due to unseen data. However, no clear autocorrelation or drift
is present, supporting the conclusion that the model generalizes
well beyond the training sample. This diagnostic outcome
supports the statistical soundness of the model and its ability to
perform consistent predictions across both datasets.

3) Prediction performance on training data: The training
prediction plot in Fig. 10 demonstrates an almost perfect
overlap between actual and predicted values. The consistency
across the full sequence confirms the model’s high accuracy in
reconstructing  training samples while  maintaining
generalization, as verified in the test results. This balance
reinforces that the selected architecture (Lag = 6, Hidden
Units = 300) achieves optimal expressiveness without
overfitting. The model appears to have successfully extracted
dominant temporal patterns and relationships within the data.

4) Prediction performance on test data: Fig. 11 compares
actual and predicted values for the test set. The predicted
curve closely tracks the actual target trend, capturing both
peaks and troughs of the series effectively. Minor deviations
occur at extreme points, which may be attributed to local
variations not captured by the lag window of six.

The close alignment between both curves indicates that the
model  successfully learns the non-linear temporal
dependencies within the data. The prediction continuity and
minimal phase lag between actual and predicted signals further
validate the model’s capacity to anticipate short-term dynamics
with good precision.

5) Summary of findings for optimal model: The results
highlight the importance of appropriate lag selection in
temporal modeling. With a lag of 6, the network accesses
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sufficient historical context to infer meaningful sequential
dependencies without introducing redundant or noisy
information. Moreover, the moderate hidden layer size of 300
provides adequate representational capacity to capture non-
linear relations while preserving regularization balance. The
residual randomness and low validation loss collectively
confirm that the model achieved an optimal bias—variance
tradeoff. This configuration will be considered as the final
candidate for deployment or further comparative experiments
with other forecasting or hybrid deep learning approaches (see
Table III).

Train Prediction

1519

1.0 ;

0.54

— Actual
Predicted

0.0 q

[ 25 50 75 100 125 150

Fig. 10. Training prediction performance showing close alignment between
predicted and actual series.

Test Prediction

— Actual
Predicted

T T T T T T T T
0.0 2.5 5.0 75 10.0 12.5 15.0 175

Fig. 11. Test prediction performance comparison between actualand predicted

values.
TABLEIII.  FINDING SUMMARY
Metric Observation
Lag 6
Hidden Units 300
Best Validation Loss 0.102

Training Stability Excellent (Smooth convergence)

Generalization Strong (Low validation gap)

Residual Behavior Random, low magnitude

Test Prediction Fit High correlation with actual series

V. CONCLUSION

This study set out to develop a reliable and accurate river
water level forecasting model for the Pekan region using the

Vol. 16, No. 12, 2025

Nonlinear Autoregressive model with Exogenous Inputs
(NARX). The motivation derived from recurring monsoon-
driven floods in the East Coast of Peninsular Malaysia, where
existing forecasting systems lack models tailored specifically
to Pahang’s hydrological characteristics. The literature review
highlighted that while conventional statistical and physically-
based models offer foundational insights, their performance
often deteriorates under nonlinear and dynamic flood
conditions. Modern machine learning and deep learning
techniques provide improved predictive capabilities, yet most
previous research remains concentrated in Kelantan and
Terengganu, leaving a significant gap for Pahang—particularly
the low-lying Pekan district.

A comprehensive dataset of daily water levels from 2020 to
2024 was preprocessed, cleaned, and segmented into
continuous temporal sequences to ensure robust model
training. Using this dataset, a series of 75 experiments was
conducted across varying lag values, hidden unit sizes, and
training epochs to identify the optimal NARX configuration.
Performance evaluation relied primarily on Mean Squared
Error (MSE), supported by residual diagnostics and actual-
versus-predicted comparisons for both training and test sets.

The experimental results demonstrated that Lag = 6 and
Hidden Units = 300 provided the most effective and stable
predictive performance, achieving a minimum validation loss
0f 0.102. This configuration offered a balanced combination of
temporal memory and model complexity, outperforming
smaller architectures, which lacked representational strength,
as well as larger models, which tended to overfit. Loss curve
analyses further confirmed smooth convergence and minimal
divergence between training and validation losses, indicating
strong generalization. Residual analyses showed randomness
without bias, while prediction plots revealed close alignment
with actual water level fluctuations, successfully capturing
trend variations and peak events.

From a scientific perspective, this study contributes a
structured and reproducible NARX modelling framework that
integrates multi-station river dynamics with systematic lag—
capacity optimization for district-level hydrological
forecasting, Practically, the proposed model offers actionable
value for local flood early warning systems by providing
accurate short-term water level predictions that can support
decision-making by authorities in flood-prone areas such as
Pekan.

Despite these encouraging results, several limitations of
this study should be acknowledged. First, the model relies
solely on historical water level data and does not explicitly
incorporate rainfall, tidal influence, or reservoir release
information, which may further enhance predictive accuracy
during extreme hydrological events. Second, model training
was conducted using daily-aggregated data, which may limit
responsiveness to rapid intra-day water level changes during
flash flood conditions.

Future work will focus on extending the proposed
framework by incorporating additional hydrometeorological
variables and evaluating multi-step-ahead forecasting
performance for longer early warning lead times. Integration
with real-time sensor networks and comparative evaluation
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against alternative data-driven models may further strengthen
the operational applicability of the approach.

In conclusion, the NARX-based approach developed in this
work offers a valuable contribution toward strengthening flood
preparedness and decision-support mechanisms in Pahang.
With continued refinement and integration into operational
forecasting systems, it can play a significant role in mitigating
the socio-economic impacts of seasonal flooding and
enhancing resilience in vulnerable communities.
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