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Abstract—According to the International Agency for
Research on Cancer, cervical cancer is a major cause of death
among Moroccan women, with high incidence and mortality
rates. Early detection remains essential to increasing patients’
chances of recovery. Our study combines polarized light imaging,
digital image correlation (DIC), Gray-Level Co-occurrence
Matrix (GLCM) texture analysis, and fractal-based local
standard deviation mapping to identify microstructural
alterations in cervical tissue. Smear and biopsy samples were
collected and anonymized in hospitals in Agadir, Morocco. Our
goal is to develop an optical system based on the interaction
between polarized light and tissue, as well as a complementary
computational framework to distinguish between different types
of healthy, precancerous, and cancerous tissue. DIC revealed
heterogeneous deformation patterns in cancerous regions, fractal
analysis highlighted increased structural complexity, and GLCM
features showed higher contrast and entropy in malignant
samples. This pilot study introduces a novel approach combining
polarimetric imaging and computational analysis, applied to
cervical tissue samples from Moroccan women in Africa. Despite
the small size of the ex vivo dataset, the results obtained
encourage the conduct of larger-scale prospective and in vivo
studies.

Keywords—Polarized light; digital image correlation; Gray-
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L INTRODUCTION

Cervical cancer remains a major global public health
concern, particularly in low- and middle-income countries
(LMICs), where it represents one of the leading causes of
cancer-related mortality among women. According to recent
estimates from the World Health Organization and
GLOBOCAN, more than 85% of cervical cancer deaths occur
in these regions, largely due to late diagnosis and limited
access to effective screening and early detection programs [1].
In North Africa, and specifically in Morocco, cervical cancer is
among the most common gynecological malignancies, with
incidence and mortality rates remaining high despite ongoing
prevention efforts [2]. The cervical samples analyzed in the
present study were obtained exclusively from Moroccan
women, providing direct clinical relevance to this regional
context.

In this context, one of the major challenges is the lack of
screening tools that are simultaneously reliable, objective, cost-
effective, and adaptable to constrained healthcare

infrastructures. Conventional diagnostic approaches often rely
on subjective visual assessment, requiring specialized expertise
and equipment. This limits their scalability in environments
with limited resources. In this regard, optical imaging
techniques based on light polarization analysis offer a
promising and innovative alternative. Polarimetric imaging is
intrinsically sensitive to microstructural and organizational
changes in biological tissues associated with early stages of
carcinogenesis. Polarization-based methods can reveal subtle
pathological alterations that are undetectable using
conventional imaging techniques. This is achieved by
examining the properties of anisotropy, scattering and
structural organization.

In this work, we propose a computational framework based
on polarimetric imaging for the analysis of cervical tissue
samples, aiming to address current limitations to cervix
screening. The proposed framework is well-suited for low-
resource settings by combining availability, affordability and
sensitivity to early microstructural alterations. The
methodology integrates polarization analysis with advanced
image processing and quantitative analysis methods, including
digital image correlation (DIC), Gray-Level Co-occurrence
Matrix (GLCM) analysis, and fractal analysis. The
investigation of tissue architecture and organization enables
discrimination between malignant and healthy regions, while
texture analysis and structural complexity metrics provide
quantitative biomarkers of early pathological alterations.

The main potential contributions of this study are threefold.
First, the development of a polarimetric imaging framework
specifically tailored for the characterization of cervical tissue in
resource-limited  settings. Second, the integration of
polarization-derived parameters with multi-scale computational
descriptors (DIC, GLCM, and fractal features) in order to
achieve objective and quantitative tissue discrimination. Third,
the experimental validation of the proposed approach using
real ex vivo cervical tissue samples from anonymized
Moroccan patients demonstrates its ability to reliably
distinguish healthy tissue from malignant regions.

Building upon this framework, the present study first
reviews related work on optical and polarization-based imaging
techniques applied to cervical cancer detection. It then
describes the experimental setup and materials, emphasizing a
non-invasive, low-cost, and non-harmful imaging modality that
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operates within the visible light spectrum and requires no
contrast agents, in contrast to many conventional imaging
techniques. The use of ex vivo cervical tissue samples is
subsequently detailed, followed by a comprehensive
presentation of the proposed computational methodology. The
results are presented and discussed to demonstrate the
robustness and effectiveness of the proposed framework to
reliably distinguish healthy cervical tissue from malignant
regions, highlighting its potential clinical relevance for early
cancer detection and its contribution to reducing disparities in
LMIC:s. Finally, the study ends with a conclusion.

II.  RELATED WORK

Polarization is a fundamental property of light and a
powerful detection tool applied in many fields, including
biomedical diagnosis. According to the literature, several
works have been realized on the interaction between polarized
light and tissue [3], [4], [5], [6]. In biomedical imaging, unlike
non-polarized light, linear polarization is particularly useful for
detecting early pathological changes due to the defined
orientation of the electric field, which enhances sensitivity to
tissue alteration and microstructural organization [7]. Different
polarization measurement types have been used for cancer
detection. For instance, in 2021, researchers at Tokyo Institute
of Technology experimentally demonstrated a novel cancer
diagnosis technique based on the scattering of circularly
polarized light, which computational studies revealed can
detect the progression of precancerous lesions and early cancer

(8], [9].

In diagnostic applications, the interaction of polarized light
with  biological tissues provides valuable structural
information, enhancing contrast, characterizing tissue, reducing
surface reflections, and revealing subtle alterations for earlier
and more accurate detection. Elliptically polarized light has
demonstrated significant potential, offering complementary
structural and compositional insights, while linearly polarized
light [10] remains essential for reliable contrast enhancement
and detailed assessment of tissue organization, and should not
be overlooked.

Building on the ability of linearly polarized light to enhance
contrast and reveal structural features, Orthogonal State
Contrast (OSC) has emerged as a promising technique in
biological imaging, and more broadly as a robust metric in
laser-illuminated active polarimetric systems. Used as a
practical surrogate for the degree of polarization, OSC enables
efficient discrimination of targets with distinct polarimetric
signatures, notably in remote sensing applications [11], [12].

Recent research has focused on refining Orthogonal State
Contrast techniques to achieve higher precision in biological
tissue analysis. For example, Pierangelo et al. analyzed
cancerous and healthy human colon samples ex vivo using a
multispectral Mueller polarimeter in the visible range (500—700
nm). Their study demonstrated that depolarization
measurements under linearly polarized light depend on tumor
presence, type, thickness, and tissue composition, allowing
clear differentiation between healthy tissue, various tumor
subtypes, and post-radiochemotherapy tissue. These results
highlight the potential of polarization-based imaging for
precise tissue characterization and rapid cancer staging [13].
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Beyond colon studies, several investigations have applied
Orthogonal State Contrast (OSC) and Mueller Matrix (MM)
polarimetry to cervical tissue analysis. The cervix consists of
squamous epithelium and connective tissue, with collagen
fibers providing structural strength. Pathologies such as
cervical intraepithelial neoplasia (CIN), cancer, pregnancy, and
spontaneous preterm birth remodel both epithelial and
connective layers. OSC and MM polarimetry, using polarized
light, enable quantification of these changes, with parameters
like depolarization and birefringence providing contrast linked
to tissue organization and pathology. Advances in OSC-based
imaging, including specialized colposcopes, support detailed,
non-invasive assessment of cervical alterations, highlighting
the potential of polarization techniques for early detection and
clinical diagnostics [14].

Leveraging the benefits of polarized light for enhancing
tissue contrast and revealing structural features, fractal analysis
has emerged as a powerful tool for cancer detection. By
quantifying the complexity of tissue architecture, fractal
dimension measures can distinguish malignant regions from
healthy tissues, capturing subtle morphological alterations that
are often invisible to conventional imaging [15].
Complementing this, Gray-Level Co-occurrence Matrix
(GLCM) analysis provides quantitative information about
tissue texture, such as contrast, correlation, and homogeneity,
which has been successfully applied to differentiate cancerous
from normal cells in various tissue types [16], [17]. The
combination of polarized light imaging and computational
analysis offers a reliable and objective approach for early
malignancy detection, highlighting its promise in non-invasive
cancer diagnostics.

Motivated by previous research, this work employs
polarized light imaging combined with computational
techniques to analyze cervical tissue samples. The next section
details the experimental approach, covering sample handling,
imaging procedures, and computational analysis for tissue
classification.

III. MATERIALS AND METHODS

A. Instruments and Measurement Protocol

We studied the interaction of histological slides of the
cervix with polarized light on a microscopic level. This
approach, known as polarization microscopy, can reveal
detailed structural information about tissue. The optical setup
employs a commercially available polarized light microscope
(OPTIKA, Italy) to enable detailed observation and analysis of
microscopic structures, revealing intricate details and providing
insights across various scientific disciplines. For polarized light
observations, a polarizer and an analyzer were used, and for
image acquisition, a charge-coupled device (CCD) camera
(OPTIKA C-B18+, SN 621237) was employed.

1) Equipment and imaging setup: The biological samples
must be prepared in a specific manner to minimize diffusion
and irrelevant absorption, and to avoid any optical aberrations
that could introduce intensity variations or polarization-related
artifacts. The microscope is directly connected to a dedicated
computer for real-time image acquisition and data analysis.
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The CCD camera is mounted via a C-mount adapter on the
trinocular port; it captures images and transmits them to the
computer for processing in MATLAB.

2) Camera specifications: The imaging system was
equipped with a high-resolution OPTIKA CCD camera (SN
621237) to capture detailed microstructural features. The
camera sensor provides a resolution of 4912 x 3684 pixels (18
MP) with an Aptina color CMOS sensor of 1/2.3" and a pixel
size of 1.25 pm, allowing for high-detail imaging. The frame
rate reaches up to 5.6 fps at full resolution and up to 32.2 fps
at 1228 x 922 resolution, facilitating rapid positioning of
samples. The bit depth is configurable from 1 to 24 bits, with
8—12-bit A/D conversion ensuring accurate color fidelity. An
integrated IR-CUT filter (380-650 nm) minimizes infrared
interference, and the camera is compatible with Windows,
macOS, and Linux via ProView and Liteview software.

3) Image acquisition under parallel polarized light: The
experimental procedure began with sample preparation and
ROI selection, where thin sections were carefully placed on
the mechanical stage, and regions of interest (ROIs) were
visually identified through the eyepiece. For polarization
measurements, incident light passed sequentially through a
linear polarizer, the sample, and a linear analyzer aligned
parallel to the polarizer, allowing the acquisition of intensity
images under parallel-polarized conditions. Image capture was
performed using an OPTIKA camera controlled via ProView,
with exposure and gain adjusted to prevent saturation. Finally,
the acquired images were processed in MATLAB to extract
quantitative information about local structural variations.
Maps of intensity changes were generated, highlighting subtle
alterations in tissue organization and optical properties,
thereby enabling a detailed assessment of microstructural
features and their spatial distribution.

4) Methodological overview: The optical behavior of a
sample under complete polarization can be described by a 4x4
Mueller matrix, requiring 16 independent intensity
measurements for fully characterizing diattenuation,
retardance, and depolarization [18]. In this study, the
measurements are limited to a linear polarization (parallel
polarizer/analyzer). To simplify the analysis, we exclude from
consideration circular or depolarizing effects to reduce
acquisition time and computational complexity. Such an
approach has been proven in prior studies using reduced 3x3
Mueller-matrix ~ decomposition for quantitative tissue
polarimetry [19], [20].

B. Sample Preparation

Histological samples are prepared through standardized and
sequential procedures to preserve tissue architecture and enable
microscopic examination. The typical steps include tissue
collection, fixation, dehydration, clearing, embedding,
sectioning, mounting, staining, cover slipping and final
microscopic evaluation. These histological procedures ensure
good-quality sections suitable for reliable optical analysis [21].

The actual specimens used in this study were obtained from
the Pathological Anatomy Laboratory of the Faculty of
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Medicine and Pharmacy of Agadir. Fig. 1 presents

representative cervical tissue sections: infiltrating tumor (left,
number 559) and healthy tissue (right, number 332). The black
rectangles indicate the regions of interest (ROIs) selected for
quantitative analysis under polarized light.

T )

Fig. 1. Cervical tissue samples: cancerous specimen (left) and healthy
specimen (right). Black boxes indicate the ROISs selected for analysis.

Fig. 2 establishes the link between the preparation process
and the anonymized samples used in our study, highlighting
the importance of adequate tissue preparation for polarimetric
imaging analysis.

Fig. 2. Epithelial region of cervical tissue under 400x magnification with
parallel polarized light. (a, c) healthy tissue and (b, d) invasive cancer.

C. Orthogonal State Contrast and Stokes-Mueller Formalism

Since the early 1990s, the polarimetry technique has been
applied to study biological tissues, initially in dermatology. In
1991, R. Anderson introduced a pioneering approach using
polarizers and filters to eliminate surface specular reflections
during the imaging of human skin, thereby improving lesion
visibility [22]. Further developments polished this strategy by
using linearly polarized light to illuminate damaged tissue, and
analyzing the returned light in the orthogonal polarization state
[23].

In 2002, the configuration proposed by S. L. Jacques et al.
improved the imaging of pathological skin regions. Their
system included a two-state analyzer alternately aligned
parallel or perpendicular to the incident polarization. This
property made it possible to extract pixel-by-pixel orientation-
dependent intensity maps [24]. Similar approaches based on
two orthogonal linear polarization states produced images
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comparable to linear polarization degree maps, enabling rapid
contrast enhancement in low-scattering tissues [25].

In this work, the adoption of polarimetric imaging was
motivated by the robustness of the Stokes-Mueller formalism
[26], [27], [28] for two main reasons:

e It relies entirely on optical intensities, as these can be
measured directly in experiments.

e It has a natural aptitude for partially polarized light, a
situation that occurs frequently due to multiple
scattering and structural heterogeneities in biological
tissues.

The polarization state of light is represented by a Stokes
vector:

S: [So, S1, Sz, S3] T

where, Sy represents the total intensity, S; and S, describe
the linear polarization components, and Sz corresponds to the
circular polarization component. For analysis purposes, the
Stokes vector is often normalized by its total intensity:

So Si S, 53]T

y a0 o =[1;
Soo So So So

S, Sy Ssl”

(D

The Mueller matrix, M, characterizes the complete
polarimetric response of a sample by mapping the input Stokes
vector to the output vector. In normalized form, its elements
are expressed as:

1 ml2 ml3 ml4
m21 m22 m23 m24

" Im31 m32 m33 m34
m41 m42 m43 mé4

2
where, mij=Mij/ M11.

The element Mi; quantifies attenuation for an unpolarized
incident beam. For completely unpolarized illumination (S; =
S, = S3 = 0), the outgoing intensity reduces to:

S’o=MI11 S,

This formalism provides a comprehensive description of
the interaction between light and biological tissues, which are
heterogeneous and highly scattering media. This is allowing
each matrix element to be interpreted in terms of diattenuation,
retardance, depolarization and structural anisotropy.

Based on this approach, polarimetric imaging has become a
highly effective research tool for analyzing the microstructural
properties of tissues. The combination of its major advantages
makes it particularly relevant, such as improved contrast, high
sensitivity to anisotropies, and its non-invasive nature, which
are essential qualities for the early detection of tissue
abnormalities. Moreover, recent studies have confirmed the
utility of Mueller polarimetry in the detection of cancer in
cervical tissue specimens, whether in the laboratory (ex vivo)
or directly on the patient (in vivo) [29], [30], [31], [32].
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In this study, the configuration chosen is simple and
accessible, with linear polarimetry using a simple parallel!
polarizer-analyzer setup. Without the need for more complex
circular and elliptical analysis, this approach is more than
sufficient for us to observe the essential effects related to
polarization. Our method is based on combining the simplified
optical system with state-of-the-art computer image processing.
This allows us to extract markers that provide information on
the architecture, texture, and complexity of the structure. These
multimodal optical and image descriptors significantly improve
the sensitivity and objectivity of our diagnosis, as they are
closely linked to the microscopic remodeling typical of cancer
development.

IV. RESULTS

A. Digital Image Correlation

Digital Image Correlation (DIC) is an optical technique
used to measure the full-field deformation, and is used in
several applications (biological tissues, metals...). It is a
powerful method because it can detect the most subtle
structural changes and deformation patterns within images.
Unlike traditional pixel-based comparisons, digital image
correlation tracks local texture variations to measure
displacement with high spatial accuracy, even at the
microscopic scale. This is particularly useful in biomedical
imaging, where subtle mechanical differences between healthy
and abnormal tissues can be identified at an early stage by
analyzing their deformation [33], [34], [35].

Concerning DIC analysis, two strictly identical regions of
interest (ROIs), one healthy and one cancerous, were selected.
Fig. 3 shows the statistical distribution of strain magnitudes,
established by taking the reference ROI as the healthy sample,
while the cancerous sample was analyzed using the same ROI
dimensions. The histogram is clearly skewed to the left. Most
of the points are concentrated around high deformation values
(around 8-9 on the x-axis). In addition, the histogram exhibits
a very sharp peak with a frequency close to 3.5x10"4 for a
deformation magnitude of 8.5 to 9. This peak highlights a
dominant deformability in the analyzed region, revealing
mechanically weakened and highly altered tissue, indicating
the presence of anomalous areas. Further insight is provided by
Fig. 4, which illustrates the microscopic displacement vectors,
revealing spatial variations in tissue deformation and
highlighting underlying tissue heterogeneity.

Our future work will focus on analyzing tissue samples
from the same patient over an extended period of time,
maintaining a consistent ROI in order to track the
chronological evolution of local deformations. Although this
approach is technically demanding, establishing collaborations
with hospitals and obtaining patient consent would enable
longitudinal studies to be conducted, particularly in the context
of cervical cancer. Such datasets would facilitate a more
accurate characterization of the mechanical changes that occur
during the progression of the disease.

! For a first-stage study of cervical cancer, the parallel-polarizer
configuration is sufficient because it captures co-polarized light that highlights
differences in tissue scattering and structure between normal and malignant
regions, providing clear contrast with simple and rapid acquisition.
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Fig. 3. Histogram of local strain magnitude in cervical epithelium via DIC.
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Fig. 4. Microscopic displacement vectors highlighting tissue heterogeneity.

The interpretation of these findings will be presented in the
next section. Following the biomechanical insights from DIC,
fractal analysis was applied to capture variations in tissue
architectural complexity,  providing complementary
information on microstructural heterogeneity.

B. Fractal Dimension Measurement

Fractal analysis quantifies the degree of complexity and
self-similarity of biological tissues, thus capturing tissue
heterogeneity at different scales. In biomedical research, this
technique is used to evaluate tumor morphology, epithelial
organization and microvascular networks, providing
information about pathological alterations that are difficult to
detect using standard imaging techniques [36], [37], [38], [39],
[40].

For this analysis, we applied the Fractal Map Analysis
(FMA) approach on microscopic images. To achieve this, we
used the local standard deviation (StdDev) to evaluate the
structural complexity, because it is highly sensitive to spatial
variations and irregularities. The images were first pre-
processed (median filtering, contrast enhancement, and slight
Gaussian smoothing). We then computed a high-resolution
local standard deviation map to quantify spatial heterogeneity.
The distribution was analyzed using histograms and statistical
markers (mean, median, maximum, 90th percentile) to
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characterize tissue complexity, differentiating healthy from
cancerous regions.

(a) (b)
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Fig. 5. Quantitative standard deviation maps of epithelial tissue: (a, ¢)
healthy regions and (b, d) cancerous regions.

Fig. 5 illustrates the results of applying the fractal
complexity map to the samples under parallel-polarized light,
while Fig. 6 shows the corresponding histograms for each
sample. In this study, fractal analysis was performed using the
standard deviation of the complexity map to quantify tissue
heterogeneity. While this approach effectively highlights
differences between healthy and cancerous tissues, other fractal
analysis methods, such as the box-counting method, could be
explored in future work to provide complementary insights and
potentially enhance diagnostic accuracy.
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Fig. 6. Distribution of tissue complexity via fractal-based standard deviation.
(a, ¢) healthy tissue and (b, d) invasive cancer.
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Fractal analysis revealed marked differences in structural
complexity between healthy and cancerous tissues. To further
characterize local variations, GLCM analysis was applied,
capturing variations in texture such as contrast, correlation,
energy, and entropy, which provide additional quantitative
indicators to distinguish healthy from malignant regions.

C. Gray-Level Co-occurrence Matrix Texture Features
Texture analysis is essential for characterizing tissue
microstructure. The GLCM quantifies spatial relationships
between pixel intensities, providing quantitative markers to
distinguish healthy from pathological regions.
(a) (b)

GLCM Texture Features

Feature Value

xxxxxxx

Feature Value

Contrast  Corrlation

Fig. 7. GLCM-derived correlation, energy, homogeneity, entropy, and
contrast maps: (a, ¢) healthy samples and (b, d) malignant samples.

In biomedical imaging, GLCM is widely used to
characterize the microstructure of biological tissues (such as
the cervix), since subtle differences in cell arrangement,
nuclear chromatin, or extracellular matrix produce measurable
variations in texture [41], [42], [43], [44]. In Fig. 7, the metrics
are displayed in the following order: contrast, correlation,
energy, homogeneity, and entropy, with each represented by a
separate bar corresponding to this sequence, providing a clear
and quantitative comparison of tissue texture.

The GLCM analysis presented in Fig. 7 highlights clear
differences in texture between healthy and cancerous tissue
samples. For the two healthy samples, correlation,
homogeneity, and energy are all very high (=0.92-0.99), while
contrast and entropy are low (=~0.25-0.30), indicating a highly
uniform and regular microstructure with minimal local
intensity variation, typical of normal epithelial tissue.

In contrast, the cancerous samples exhibit markedly
increased contrast (0.83-1.31) and entropy (0.50-0.56),
reflecting greater heterogeneity and structural disorder in the
tissue. Correlation, energy, and homogeneity are reduced
compared to healthy tissue, indicating that pixel intensities are
less spatially coherent and more irregular, potentially
consistent with the disrupted cellular architecture found in
malignant epithelium. Notably, sample “d” shows the highest
contrast and entropy, suggesting the most pronounced
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microstructural heterogeneity among the cancerous tissues
analyzed.

TABLE L. GLCM TEXTURE: HEALTHY VS. CANCEROUS.
e | S S
features
Contrast 0.2780 0.2568 0.8351 1.3082
Correlation 0.9316 0.9173 0.8785 0.8223
Energy 09115 0.9314 0.8429 0.8238
Entropy 0.3002 0.2471 0.4955 0.5610
Homogeneity 0.9950 0.9954 0.9851 0.9766

Overall, these results, as shown in Table I, confirm that
GLCM-derived texture features effectively capture the
increased randomness and decreased uniformity associated
with pathological epithelial tissue, making them valuable
markers for distinguishing healthy from cancerous regions.

V. DISCUSSION

A. Digital Image Correlation

As shown in Fig. 3, the strain-magnitude histogram
provides a statistical view of local deformation distribution
within the ROI. Each DIC block contributes a displacement

magnitude (U2 + U}Z,)O'S, and these values are grouped into
bins to represent their frequency. The presence of higher
frequencies at large strain values indicates that a significant
portion of the ROI is undergoing solid local deformation. As
the results show, this distribution exhibits accentuated
heterogeneity, indicating irregularity and weakening of the
tissue structure, which may reveal abnormal behavior. In
biomedical imaging, such a distribution is generally associated
with pathological regions where altered microarchitecture
causes increased and widespread deformation.

Fig. 4 displays the filtered reference ROI (healthy region)
overlaid with red displacement vectors computed by DIC. Each
arrow characterizes the local motion of a small image block: its
direction indicates how the tissue moved between the reference
(healthy tissue) and deformed states (invasive tumor), and its
length reflects the displacement magnitude. Variations in arrow
orientation and magnitude provide a spatial visualization of
how different regions within the tissue deform.

The heterogeneous orientations and amplitudes of the
vectors reveal non-uniform deformation across the ROI.
Regions with long arrows correspond to strong local
displacement, while short arrows indicate nearly static areas. In
our case, the displacement field shows pronounced and
irregular motion, consistent with mechanically abnormal tissue.
The strain indicators (mean = 7.2 px, median = 7.8 px, 90th
percentile =~ 8.5 px) confirm the presence of high-magnitude
deformation, supporting the interpretation of increased
structural heterogeneity typically associated with malignant
regions.

In summary, DIC provides a rapid, non-invasive, and
highly precise method for capturing local tissue deformation,
generating detailed displacement and stress maps that reveal
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mechanical heterogeneity. Its primary diagnostic value lies in
detecting subtle biomechanical abnormalities, making it a
powerful tool for distinguishing between healthy and cancerous
tissue. Complementing this, fractal analysis characterizes the
architectural complexity and heterogeneity of tissue structures,
offering unique insights into morphological irregularities.
Together, these modalities provide distinct and complementary
diagnostic information, each contributing a unique perspective
to tissue characterization.

B. Fractal Dimension Measurement

Fig. 5 presents the spatial standard deviation maps, which
reveal clear differences in tissue heterogeneity between healthy
and cancerous samples, particularly within the epithelial
region. Healthy tissues show high uniformity, with most values
clustered around low standard deviations (mean ~ 0.07—0.08,
90th percentile =~ 0.14-0.17), corresponding to the
predominantly blue areas on the color map, indicating
homogeneous microstructure. In contrast, cancerous tissues
exhibit markedly higher and more variable local standard
deviations (mean =~ 0.13-0.17, 90th percentile ~ 0.23—0.26),
with color maps showing scattered regions of blue, green,
yellow, and orange. This reflects increased structural
heterogeneity and irregularity in the epithelium, consistent with
disrupted cellular architecture. The cancerous sample “d”
illustrates the most pronounced variability and the highest local
complexity.

Fig. 6 presents the distribution of local Std Dev for 4
specimens of cervical epithelium (two healthy, and two
cancerous). This measure is used to quantify the structural
complexity of tissue using FMA. As illustrated in Fig. 6, the
histograms of the local standard deviation quantitatively
confirm the observations made on the complexity maps. The
healthy samples ("a" and "c") show narrow distributions,
strongly skewed toward low wvalues (=0.07-0.08 mean),
reflecting a uniform and consistent tissue structure. The cancer
samples ("b" and "d"), on the other hand, show wider
distributions with higher median and 90th percentile values
(=0.13-0.17 mean, 0.23-0.26 90th percentile), indicating
greater local variability and increased structural complexity.
These histogram profiles support the idea that malignant
epithelial regions are significantly more heterogeneous and
disorganized than healthy tissue.

In conclusion, local standard deviation analysis is an
effective method for quantifying tissue heterogeneity. Healthy
epithelium exhibits low variability and a uniform structure,
while cancerous regions display higher and more dispersed
local standard deviations, reflecting increased structural
complexity. This method therefore provides a quantitative and
sensitive measure for distinguishing healthy tissue from
malignant tissue.

While fractal analysis highlights the architectural
complexity of tissues, GLCM-based texture analysis
quantitatively captures microstructural variations in pixel
intensity. Combined with polarized light, these methods
provide complementary diagnostic information: fractal analysis
reveals structural heterogeneity, whereas GLCM metrics,
including contrast, entropy, correlation, energy and
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homogeneity, objectively characterize microstructural patterns,
each offering distinct insights into tissue characterization.

C. Gray-Level Co-occurrence Matrix Texture Features

Fig. 7 and Table I show that GLCM metrics effectively
distinguish non-neoplastic from neoplastic tissue. Healthy
samples display high correlation, homogeneity, and energy
with low contrast and entropy, indicating a uniform
microstructure. Conversely, cancerous tissues exhibit elevated
contrast and entropy with reduced correlation and energy,
reflecting structural heterogeneity and disorganization. These
quantitative  differences provide clear markers for
differentiating normal and malignant regions.

Fig. 8 shows the entropy distribution and confirms the
heterogeneity of the tissues by introducing a measure of
disorder and texture complexity. When the healthy samples are
considered (red and blue curves), we observe narrower
distributions concentrated around low modal values (between
0.35 and 0.45), indicating low dispersion of local pixel
intensities and characteristic of an organized and homogeneous
tissue structure. In contrast, tumoral samples (green and
magenta curves) show wider distributions, with a mode
significantly shifted toward higher entropy values (up to
approximately 0.65 for sample “d”). This spread and alteration
indicate an overall increased microstructural disorder and local
complexity. This entropic marker thus reinforces the
conclusions drawn from the fractal analysis, as entropy is
strongly correlated with fractal dimension.

Entropy allows for highly sensitive quantitative
measurement of pathological conditions. Despite a slight
overlap between the distributions of samples a and b (healthy
and cancerous, respectively), analysis of the statistical
parameters of the distribution makes it possible to quantify the
degree of tissue disorder and effectively use this metric as a
multimodal descriptor for classification.

Entropy Distribution - All Images
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Fig. 8. Histogram of GLCM entropy in four cervical tissue samples.
Collectively, the GLCM analysis clearly differentiates
healthy from tumorous epithelial tissue. Healthy samples

exhibit high correlation, homogeneity, and energy with low
contrast and entropy, indicating a uniform and regular
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microstructure. Cancerous samples show markedly increased
contrast and entropy alongside reduced correlation, energy, and
homogeneity, reflecting greater structural heterogeneity and
disorganization. The progressive increase in entropy from
healthy to cancerous samples demonstrates the sensitivity of
GLCM-derived features in detecting gradual changes in tissue
architecture associated with malignancy.

Although the ex vivo dataset in the present study was
limited in size, the results are highly promising and highlight
the need for larger-scale prospective and in vivo investigations.
Addressing the current limitations would allow for more robust
validation of the findings, a comprehensive assessment of
inter-patient variability, and a deeper understanding of the
feasibility and translational potential of these imaging
techniques in clinical practice. Future studies will focus on
expanding the sample size, incorporating diverse patient
populations, and optimizing the methodologies for in vivo
application. Such efforts are critical to bridge the gap between
experimental  observations and  practical  diagnostic
implementation, ultimately facilitating the translation of these
techniques into routine clinical care.

To summarize, polarized light imaging was combined with
computational techniques, including DIC, GLCM, and fractal
analysis, to characterize cervical tissue microstructure. The key
findings from these complementary approaches are outlined in
Table II, providing an integrated overview of the most relevant
imaging indicators for distinguishing healthy from malignant
tissue.

TABLE IL SUMMARY OF KEY IMAGING INDICATORS

. DIC
Inl(\i,;c:t? rs/ (Displacement g:;ﬁtal GLCM Metrics

etrics Magnitude) ( ev)

-Contrast:
0.25-0.30
(Healthy),
7.2px 0.07-0.08 0.83-1.31
—confirm the | (Healthy). (Cancerous).
Mean presence of high-
magnitude 0.13-0.17 -Entropy:
deformation. (Cancerous). 0.25-0.30
(Healthy),
0.50-0.56
(Cancerous).
90th: Energy:
0.14-0.17 )

. Median=7.8 px | (Healthy) 0.91-0.93
Median/90th ' ' (Healthy).
Percentile | 904 ~ 8.5 px 90th: 082087

0.23-0.26 (C'ancer'ous)
(Cancerous). )
Low  StdDev | Healthy tissue
—uniform — uniform, low
High strain (healthy). contrast / entropy.
Analysis — mechanically
altered tissue High StdDev | Cancerous tissue
—Irregular —disordered, high
(cancer). contrast / entropy.

VI. CONCLUSION

Cervical cancer remains a leading cause of cancer-related
mortality among women worldwide, particularly in low Human
Development Index countries. Despite advances in screening

Vol. 16, No. 12, 2025

and treatment, early detection is critical to improving
outcomes. Polarimetric imaging with digital analysis methods
has emerged as a promising tool for enhancing diagnostic
accuracy by characterizing structural properties of biological
tissues. This study investigates early diagnosis of cervical
cancer in Moroccan women, using computational polarimetric
imaging to differentiate healthy from malignant tissue.
Combined analyses with DIC, GLCM texture, and fractal-
based local standard deviation consistently reveal clear
distinctions; healthy tissue shows low texture entropy, high
correlation and homogeneity, and minimal local variability,
whereas cancerous tissue exhibits random, multidirectional
deformation patterns, increased contrast and entropy, reduced
correlation and homogeneity, and higher local variability.
These quantitative imaging biomarkers provide a robust
framework for detecting and characterizing malignant changes.
Building on these findings, future work will focus on
validating the diagnostic performance and clinical applicability
of this approach using full Mueller Matrix measurements on
intact cervical specimens from a diverse patient cohort. Key
challenges for clinical translation, including in vivo acquisition
where motion artifacts and tissue accessibility must be
managed, patient variability in anatomy and tissue properties,
and instrumentation costs related to complex polarimetric
setups, will be addressed. In addition, machine learning
classifiers, such as support vector machines and convolutional
neural networks, will be explored for multimodal feature fusion
to enhance diagnostic accuracy and enable robust, automated
tissue classification.
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