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Abstract—According to the International Agency for 

Research on Cancer, cervical cancer is a major cause of death 

among Moroccan women, with high incidence and mortality 

rates. Early detection remains essential to increasing patients’ 

chances of recovery. Our study combines polarized light imaging, 

digital image correlation (DIC), Gray-Level Co-occurrence 

Matrix (GLCM) texture analysis, and fractal-based local 

standard deviation mapping to identify microstructural 

alterations in cervical tissue. Smear and biopsy samples were 

collected and anonymized in hospitals in Agadir, Morocco. Our 

goal is to develop an optical system based on the interaction 

between polarized light and tissue, as well as a complementary 

computational framework to distinguish between different types 

of healthy, precancerous, and cancerous tissue. DIC revealed 

heterogeneous deformation patterns in cancerous regions, fractal 

analysis highlighted increased structural complexity, and GLCM 

features showed higher contrast and entropy in malignant 

samples. This pilot study introduces a novel approach combining 

polarimetric imaging and computational analysis, applied to 

cervical tissue samples from Moroccan women in Africa. Despite 

the small size of the ex vivo dataset, the results obtained 

encourage the conduct of larger-scale prospective and in vivo 

studies. 
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I. INTRODUCTION 

Cervical cancer remains a major global public health 
concern, particularly in low- and middle-income countries 
(LMICs), where it represents one of the leading causes of 
cancer-related mortality among women. According to recent 
estimates from the World Health Organization and 
GLOBOCAN, more than 85% of cervical cancer deaths occur 
in these regions, largely due to late diagnosis and limited 
access to effective screening and early detection programs [1]. 
In North Africa, and specifically in Morocco, cervical cancer is 
among the most common gynecological malignancies, with 
incidence and mortality rates remaining high despite ongoing 
prevention efforts [2]. The cervical samples analyzed in the 
present study were obtained exclusively from Moroccan 
women, providing direct clinical relevance to this regional 
context. 

In this context, one of the major challenges is the lack of 
screening tools that are simultaneously reliable, objective, cost-
effective, and adaptable to constrained healthcare 

infrastructures. Conventional diagnostic approaches often rely 
on subjective visual assessment, requiring specialized expertise 
and equipment. This limits their scalability in environments 
with limited resources. In this regard, optical imaging 
techniques based on light polarization analysis offer a 
promising and innovative alternative. Polarimetric imaging is 
intrinsically sensitive to microstructural and organizational 
changes in biological tissues associated with early stages of 
carcinogenesis. Polarization-based methods can reveal subtle 
pathological alterations that are undetectable using 
conventional imaging techniques. This is achieved by 
examining the properties of anisotropy, scattering and 
structural organization. 

In this work, we propose a computational framework based 
on polarimetric imaging for the analysis of cervical tissue 
samples, aiming to address current limitations to cervix 
screening. The proposed framework is well-suited for low-
resource settings by combining availability, affordability and 
sensitivity to early microstructural alterations. The 
methodology integrates polarization analysis with advanced 
image processing and quantitative analysis methods, including 
digital image correlation (DIC), Gray-Level Co-occurrence 
Matrix (GLCM) analysis, and fractal analysis. The 
investigation of tissue architecture and organization enables 
discrimination between malignant and healthy regions, while 
texture analysis and structural complexity metrics provide 
quantitative biomarkers of early pathological alterations. 

The main potential contributions of this study are threefold. 
First, the development of a polarimetric imaging framework 
specifically tailored for the characterization of cervical tissue in 
resource-limited settings. Second, the integration of 
polarization-derived parameters with multi-scale computational 
descriptors (DIC, GLCM, and fractal features) in order to 
achieve objective and quantitative tissue discrimination. Third, 
the experimental validation of the proposed approach using 
real ex vivo cervical tissue samples from anonymized 
Moroccan patients demonstrates its ability to reliably 
distinguish healthy tissue from malignant regions. 

Building upon this framework, the present study first 
reviews related work on optical and polarization-based imaging 
techniques applied to cervical cancer detection. It then 
describes the experimental setup and materials, emphasizing a 
non-invasive, low-cost, and non-harmful imaging modality that 
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operates within the visible light spectrum and requires no 
contrast agents, in contrast to many conventional imaging 
techniques. The use of ex vivo cervical tissue samples is 
subsequently detailed, followed by a comprehensive 
presentation of the proposed computational methodology. The 
results are presented and discussed to demonstrate the 
robustness and effectiveness of the proposed framework to 
reliably distinguish healthy cervical tissue from malignant 
regions, highlighting its potential clinical relevance for early 
cancer detection and its contribution to reducing disparities in 
LMICs. Finally, the study ends with a conclusion. 

II. RELATED WORK 

Polarization is a fundamental property of light and a 
powerful detection tool applied in many fields, including 
biomedical diagnosis. According to the literature, several 
works have been realized on the interaction between polarized 
light and tissue [3], [4], [5], [6]. In biomedical imaging, unlike 
non-polarized light, linear polarization is particularly useful for 
detecting early pathological changes due to the defined 
orientation of the electric field, which enhances sensitivity to 
tissue alteration and microstructural organization [7]. Different 
polarization measurement types have been used for cancer 
detection. For instance, in 2021, researchers at Tokyo Institute 
of Technology experimentally demonstrated a novel cancer 
diagnosis technique based on the scattering of circularly 
polarized light, which computational studies revealed can 
detect the progression of precancerous lesions and early cancer 
[8], [9]. 

In diagnostic applications, the interaction of polarized light 
with biological tissues provides valuable structural 
information, enhancing contrast, characterizing tissue, reducing 
surface reflections, and revealing subtle alterations for earlier 
and more accurate detection. Elliptically polarized light has 
demonstrated significant potential, offering complementary 
structural and compositional insights, while linearly polarized 
light [10] remains essential for reliable contrast enhancement 
and detailed assessment of tissue organization, and should not 
be overlooked. 

Building on the ability of linearly polarized light to enhance 
contrast and reveal structural features, Orthogonal State 
Contrast (OSC) has emerged as a promising technique in 
biological imaging, and more broadly as a robust metric in 
laser-illuminated active polarimetric systems. Used as a 
practical surrogate for the degree of polarization, OSC enables 
efficient discrimination of targets with distinct polarimetric 
signatures, notably in remote sensing applications [11], [12]. 

Recent research has focused on refining Orthogonal State 
Contrast techniques to achieve higher precision in biological 
tissue analysis. For example, Pierangelo et al. analyzed 
cancerous and healthy human colon samples ex vivo using a 
multispectral Mueller polarimeter in the visible range (500–700 
nm). Their study demonstrated that depolarization 
measurements under linearly polarized light depend on tumor 
presence, type, thickness, and tissue composition, allowing 
clear differentiation between healthy tissue, various tumor 
subtypes, and post-radiochemotherapy tissue. These results 
highlight the potential of polarization-based imaging for 
precise tissue characterization and rapid cancer staging [13]. 

Beyond colon studies, several investigations have applied 
Orthogonal State Contrast (OSC) and Mueller Matrix (MM) 
polarimetry to cervical tissue analysis. The cervix consists of 
squamous epithelium and connective tissue, with collagen 
fibers providing structural strength. Pathologies such as 
cervical intraepithelial neoplasia (CIN), cancer, pregnancy, and 
spontaneous preterm birth remodel both epithelial and 
connective layers. OSC and MM polarimetry, using polarized 
light, enable quantification of these changes, with parameters 
like depolarization and birefringence providing contrast linked 
to tissue organization and pathology. Advances in OSC-based 
imaging, including specialized colposcopes, support detailed, 
non-invasive assessment of cervical alterations, highlighting 
the potential of polarization techniques for early detection and 
clinical diagnostics [14]. 

Leveraging the benefits of polarized light for enhancing 
tissue contrast and revealing structural features, fractal analysis 
has emerged as a powerful tool for cancer detection. By 
quantifying the complexity of tissue architecture, fractal 
dimension measures can distinguish malignant regions from 
healthy tissues, capturing subtle morphological alterations that 
are often invisible to conventional imaging [15]. 
Complementing this, Gray-Level Co-occurrence Matrix 
(GLCM) analysis provides quantitative information about 
tissue texture, such as contrast, correlation, and homogeneity, 
which has been successfully applied to differentiate cancerous 
from normal cells in various tissue types [16], [17]. The 
combination of polarized light imaging and computational 
analysis offers a reliable and objective approach for early 
malignancy detection, highlighting its promise in non-invasive 
cancer diagnostics. 

Motivated by previous research, this work employs 
polarized light imaging combined with computational 
techniques to analyze cervical tissue samples. The next section 
details the experimental approach, covering sample handling, 
imaging procedures, and computational analysis for tissue 
classification. 

III. MATERIALS AND METHODS 

A. Instruments and Measurement Protocol 

We studied the interaction of histological slides of the 
cervix with polarized light on a microscopic level. This 
approach, known as polarization microscopy, can reveal 
detailed structural information about tissue. The optical setup 
employs a commercially available polarized light microscope 
(OPTIKA, Italy) to enable detailed observation and analysis of 
microscopic structures, revealing intricate details and providing 
insights across various scientific disciplines. For polarized light 
observations, a polarizer and an analyzer were used, and for 
image acquisition, a charge-coupled device (CCD) camera 
(OPTIKA C-B18+, SN 621237) was employed. 

1) Equipment and imaging setup: The biological samples 

must be prepared in a specific manner to minimize diffusion 

and irrelevant absorption, and to avoid any optical aberrations 

that could introduce intensity variations or polarization-related 

artifacts. The microscope is directly connected to a dedicated 

computer for real-time image acquisition and data analysis. 
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The CCD camera is mounted via a C-mount adapter on the 

trinocular port; it captures images and transmits them to the 

computer for processing in MATLAB. 

2) Camera specifications: The imaging system was 

equipped with a high-resolution OPTIKA CCD camera (SN 

621237) to capture detailed microstructural features. The 

camera sensor provides a resolution of 4912 × 3684 pixels (18 

MP) with an Aptina color CMOS sensor of 1/2.3″ and a pixel 

size of 1.25 µm, allowing for high-detail imaging. The frame 

rate reaches up to 5.6 fps at full resolution and up to 32.2 fps 

at 1228 × 922 resolution, facilitating rapid positioning of 

samples. The bit depth is configurable from 1 to 24 bits, with 

8–12-bit A/D conversion ensuring accurate color fidelity. An 

integrated IR-CUT filter (380–650 nm) minimizes infrared 

interference, and the camera is compatible with Windows, 

macOS, and Linux via ProView and Liteview software. 

3) Image acquisition under parallel polarized light: The 

experimental procedure began with sample preparation and 

ROI selection, where thin sections were carefully placed on 

the mechanical stage, and regions of interest (ROIs) were 

visually identified through the eyepiece. For polarization 

measurements, incident light passed sequentially through a 

linear polarizer, the sample, and a linear analyzer aligned 

parallel to the polarizer, allowing the acquisition of intensity 

images under parallel-polarized conditions. Image capture was 

performed using an OPTIKA camera controlled via ProView, 

with exposure and gain adjusted to prevent saturation. Finally, 

the acquired images were processed in MATLAB to extract 

quantitative information about local structural variations. 

Maps of intensity changes were generated, highlighting subtle 

alterations in tissue organization and optical properties, 

thereby enabling a detailed assessment of microstructural 

features and their spatial distribution. 

4) Methodological overview: The optical behavior of a 

sample under complete polarization can be described by a 4×4 

Mueller matrix, requiring 16 independent intensity 

measurements for fully characterizing diattenuation, 

retardance, and depolarization [18]. In this study, the 

measurements are limited to a linear polarization (parallel 

polarizer/analyzer). To simplify the analysis, we exclude from 

consideration circular or depolarizing effects to reduce 

acquisition time and computational complexity. Such an 

approach has been proven in prior studies using reduced 3×3 

Mueller-matrix decomposition for quantitative tissue 

polarimetry [19], [20]. 

B. Sample Preparation 

Histological samples are prepared through standardized and 
sequential procedures to preserve tissue architecture and enable 
microscopic examination. The typical steps include tissue 
collection, fixation, dehydration, clearing, embedding, 
sectioning, mounting, staining, cover slipping and final 
microscopic evaluation. These histological procedures ensure 
good-quality sections suitable for reliable optical analysis [21]. 

The actual specimens used in this study were obtained from 
the Pathological Anatomy Laboratory of the Faculty of 

Medicine and Pharmacy of Agadir. Fig. 1 presents 
representative cervical tissue sections: infiltrating tumor (left, 
number 559) and healthy tissue (right, number 332). The black 
rectangles indicate the regions of interest (ROIs) selected for 
quantitative analysis under polarized light. 

 

Fig. 1. Cervical tissue samples: cancerous specimen (left) and healthy 

specimen (right). Black boxes indicate the ROIs selected for analysis. 

Fig. 2 establishes the link between the preparation process 
and the anonymized samples used in our study, highlighting 
the importance of adequate tissue preparation for polarimetric 
imaging analysis. 

(a)

 

(b)

 
(c)

 

(d)

 
Fig. 2. Epithelial region of cervical tissue under 400× magnification with 

parallel polarized light. (a, c) healthy tissue and (b, d) invasive cancer. 

C. Orthogonal State Contrast and Stokes-Mueller Formalism 

Since the early 1990s, the polarimetry technique has been 
applied to study biological tissues, initially in dermatology. In 
1991, R. Anderson introduced a pioneering approach using 
polarizers and filters to eliminate surface specular reflections 
during the imaging of human skin, thereby improving lesion 
visibility [22]. Further developments polished this strategy by 
using linearly polarized light to illuminate damaged tissue, and 
analyzing the returned light in the orthogonal polarization state 
[23]. 

In 2002, the configuration proposed by S. L. Jacques et al. 
improved the imaging of pathological skin regions. Their 
system included a two-state analyzer alternately aligned 
parallel or perpendicular to the incident polarization. This 
property made it possible to extract pixel-by-pixel orientation-
dependent intensity maps [24]. Similar approaches based on 
two orthogonal linear polarization states produced images 
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comparable to linear polarization degree maps, enabling rapid 
contrast enhancement in low-scattering tissues [25]. 

In this work, the adoption of polarimetric imaging was 
motivated by the robustness of the Stokes-Mueller formalism 
[26], [27], [28] for two main reasons: 

• It relies entirely on optical intensities, as these can be 
measured directly in experiments. 

• It has a natural aptitude for partially polarized light, a 
situation that occurs frequently due to multiple 
scattering and structural heterogeneities in biological 
tissues. 

The polarization state of light is represented by a Stokes 
vector: 

S= [S0, S1, S2, S3] T 

where, S0 represents the total intensity, S1 and S2 describe 
the linear polarization components, and S3 corresponds to the 
circular polarization component. For analysis purposes, the 
Stokes vector is often normalized by its total intensity: 

[
S0

S0

,
S1

S0

,    
S2

S0

,
S3

S0
]

T

= [1, S1,   S2,   S3]T 

 (1) 

The Mueller matrix, M, characterizes the complete 
polarimetric response of a sample by mapping the input Stokes 
vector to the output vector. In normalized form, its elements 
are expressed as:  

M = [

1 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

] 

  (2) 

where, mij = Mij / M11. 

The element M11 quantifies attenuation for an unpolarized 
incident beam. For completely unpolarized illumination (S1 = 
S2 = S3 = 0), the outgoing intensity reduces to: 

S’0 = M11 S0 

This formalism provides a comprehensive description of 
the interaction between light and biological tissues, which are 
heterogeneous and highly scattering media. This is allowing 
each matrix element to be interpreted in terms of diattenuation, 
retardance, depolarization and structural anisotropy. 

Based on this approach, polarimetric imaging has become a 
highly effective research tool for analyzing the microstructural 
properties of tissues. The combination of its major advantages 
makes it particularly relevant, such as improved contrast, high 
sensitivity to anisotropies, and its non-invasive nature, which 
are essential qualities for the early detection of tissue 
abnormalities. Moreover, recent studies have confirmed the 
utility of Mueller polarimetry in the detection of cancer in 
cervical tissue specimens, whether in the laboratory (ex vivo) 
or directly on the patient (in vivo) [29], [30], [31], [32]. 

In this study, the configuration chosen is simple and 
accessible, with linear polarimetry using a simple parallel 1 
polarizer-analyzer setup. Without the need for more complex 
circular and elliptical analysis, this approach is more than 
sufficient for us to observe the essential effects related to 
polarization. Our method is based on combining the simplified 
optical system with state-of-the-art computer image processing. 
This allows us to extract markers that provide information on 
the architecture, texture, and complexity of the structure. These 
multimodal optical and image descriptors significantly improve 
the sensitivity and objectivity of our diagnosis, as they are 
closely linked to the microscopic remodeling typical of cancer 
development. 

IV. RESULTS 

A. Digital Image Correlation 

Digital Image Correlation (DIC) is an optical technique 
used to measure the full-field deformation, and is used in 
several applications (biological tissues, metals…). It is a 
powerful method because it can detect the most subtle 
structural changes and deformation patterns within images. 
Unlike traditional pixel-based comparisons, digital image 
correlation tracks local texture variations to measure 
displacement with high spatial accuracy, even at the 
microscopic scale. This is particularly useful in biomedical 
imaging, where subtle mechanical differences between healthy 
and abnormal tissues can be identified at an early stage by 
analyzing their deformation [33], [34], [35]. 

Concerning DIC analysis, two strictly identical regions of 
interest (ROIs), one healthy and one cancerous, were selected. 
Fig. 3 shows the statistical distribution of strain magnitudes, 
established by taking the reference ROI as the healthy sample, 
while the cancerous sample was analyzed using the same ROI 
dimensions. The histogram is clearly skewed to the left. Most 
of the points are concentrated around high deformation values 
(around 8–9 on the x-axis). In addition, the histogram exhibits 
a very sharp peak with a frequency close to 3.5×10^4 for a 
deformation magnitude of 8.5 to 9. This peak highlights a 
dominant deformability in the analyzed region, revealing 
mechanically weakened and highly altered tissue, indicating 
the presence of anomalous areas. Further insight is provided by 
Fig. 4, which illustrates the microscopic displacement vectors, 
revealing spatial variations in tissue deformation and 
highlighting underlying tissue heterogeneity. 

Our future work will focus on analyzing tissue samples 
from the same patient over an extended period of time, 
maintaining a consistent ROI in order to track the 
chronological evolution of local deformations. Although this 
approach is technically demanding, establishing collaborations 
with hospitals and obtaining patient consent would enable 
longitudinal studies to be conducted, particularly in the context 
of cervical cancer. Such datasets would facilitate a more 
accurate characterization of the mechanical changes that occur 
during the progression of the disease. 

 
1
 For a first-stage study of cervical cancer, the parallel-polarizer 

configuration is sufficient because it captures co-polarized light that highlights 
differences in tissue scattering and structure between normal and malignant 

regions, providing clear contrast with simple and rapid acquisition. 
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Fig. 3. Histogram of local strain magnitude in cervical epithelium via DIC. 

 

Fig. 4. Microscopic displacement vectors highlighting tissue heterogeneity. 

The interpretation of these findings will be presented in the 
next section. Following the biomechanical insights from DIC, 
fractal analysis was applied to capture variations in tissue 
architectural complexity, providing complementary 
information on microstructural heterogeneity. 

B. Fractal Dimension Measurement 

Fractal analysis quantifies the degree of complexity and 
self-similarity of biological tissues, thus capturing tissue 
heterogeneity at different scales. In biomedical research, this 
technique is used to evaluate tumor morphology, epithelial 
organization and microvascular networks, providing 
information about pathological alterations that are difficult to 
detect using standard imaging techniques [36], [37], [38], [39], 
[40]. 

For this analysis, we applied the Fractal Map Analysis 
(FMA) approach on microscopic images. To achieve this, we 
used the local standard deviation (StdDev) to evaluate the 
structural complexity, because it is highly sensitive to spatial 
variations and irregularities. The images were first pre-
processed (median filtering, contrast enhancement, and slight 
Gaussian smoothing). We then computed a high-resolution 
local standard deviation map to quantify spatial heterogeneity. 
The distribution was analyzed using histograms and statistical 
markers (mean, median, maximum, 90th percentile) to 

characterize tissue complexity, differentiating healthy from 
cancerous regions. 

(a) (b) 

  
(c) (d) 

  
 

Fig. 5. Quantitative standard deviation maps of epithelial tissue: (a, c) 

healthy regions and (b, d) cancerous regions. 

Fig. 5 illustrates the results of applying the fractal 
complexity map to the samples under parallel-polarized light, 
while Fig. 6 shows the corresponding histograms for each 
sample. In this study, fractal analysis was performed using the 
standard deviation of the complexity map to quantify tissue 
heterogeneity. While this approach effectively highlights 
differences between healthy and cancerous tissues, other fractal 
analysis methods, such as the box-counting method, could be 
explored in future work to provide complementary insights and 
potentially enhance diagnostic accuracy. 

(a) (b) 

  
(c) (d) 

  

Fig. 6. Distribution of tissue complexity via fractal-based standard deviation. 

(a, c) healthy tissue and (b, d) invasive cancer. 
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Fractal analysis revealed marked differences in structural 
complexity between healthy and cancerous tissues. To further 
characterize local variations, GLCM analysis was applied, 
capturing variations in texture such as contrast, correlation, 
energy, and entropy, which provide additional quantitative 
indicators to distinguish healthy from malignant regions. 

C. Gray-Level Co-occurrence Matrix Texture Features 

Texture analysis is essential for characterizing tissue 
microstructure. The GLCM quantifies spatial relationships 
between pixel intensities, providing quantitative markers to 
distinguish healthy from pathological regions. 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

Fig. 7. GLCM-derived correlation, energy, homogeneity, entropy, and 

contrast maps: (a, c) healthy samples and (b, d) malignant samples. 

In biomedical imaging, GLCM is widely used to 
characterize the microstructure of biological tissues (such as 
the cervix), since subtle differences in cell arrangement, 
nuclear chromatin, or extracellular matrix produce measurable 
variations in texture [41], [42], [43], [44]. In Fig. 7, the metrics 
are displayed in the following order: contrast, correlation, 
energy, homogeneity, and entropy, with each represented by a 
separate bar corresponding to this sequence, providing a clear 
and quantitative comparison of tissue texture. 

The GLCM analysis presented in Fig. 7 highlights clear 
differences in texture between healthy and cancerous tissue 
samples. For the two healthy samples, correlation, 
homogeneity, and energy are all very high (≈0.92–0.99), while 
contrast and entropy are low (≈0.25–0.30), indicating a highly 
uniform and regular microstructure with minimal local 
intensity variation, typical of normal epithelial tissue. 

In contrast, the cancerous samples exhibit markedly 
increased contrast (0.83–1.31) and entropy (0.50–0.56), 
reflecting greater heterogeneity and structural disorder in the 
tissue. Correlation, energy, and homogeneity are reduced 
compared to healthy tissue, indicating that pixel intensities are 
less spatially coherent and more irregular, potentially 
consistent with the disrupted cellular architecture found in 
malignant epithelium. Notably, sample “d” shows the highest 
contrast and entropy, suggesting the most pronounced 

microstructural heterogeneity among the cancerous tissues 
analyzed. 

TABLE I. GLCM TEXTURE: HEALTHY VS. CANCEROUS. 

GLCM 

texture 

features 

Healthy 

sample "a" 

Healthy 

sample "c" 

Cancerous 

sample "b" 

Cancerous 

sample "d" 

Contrast 0.2780 0.2568 0.8351 1.3082 

Correlation 0.9316 0.9173 0.8785 0.8223 

Energy 0.9115 0.9314 0.8429 0.8238 

Entropy 0.3002 0.2471 0.4955 0.5610 

Homogeneity 0.9950 0.9954 0.9851 0.9766 

Overall, these results, as shown in Table I, confirm that 
GLCM-derived texture features effectively capture the 
increased randomness and decreased uniformity associated 
with pathological epithelial tissue, making them valuable 
markers for distinguishing healthy from cancerous regions. 

V. DISCUSSION 

A. Digital Image Correlation 

As shown in Fig. 3, the strain-magnitude histogram 
provides a statistical view of local deformation distribution 
within the ROI. Each DIC block contributes a displacement 

magnitude (Ux
2 + Uy

2)
0.5

, and these values are grouped into 

bins to represent their frequency. The presence of higher 
frequencies at large strain values indicates that a significant 
portion of the ROI is undergoing solid local deformation. As 
the results show, this distribution exhibits accentuated 
heterogeneity, indicating irregularity and weakening of the 
tissue structure, which may reveal abnormal behavior. In 
biomedical imaging, such a distribution is generally associated 
with pathological regions where altered microarchitecture 
causes increased and widespread deformation. 

Fig. 4 displays the filtered reference ROI (healthy region) 
overlaid with red displacement vectors computed by DIC. Each 
arrow characterizes the local motion of a small image block: its 
direction indicates how the tissue moved between the reference 
(healthy tissue) and deformed states (invasive tumor), and its 
length reflects the displacement magnitude. Variations in arrow 
orientation and magnitude provide a spatial visualization of 
how different regions within the tissue deform. 

The heterogeneous orientations and amplitudes of the 
vectors reveal non-uniform deformation across the ROI. 
Regions with long arrows correspond to strong local 
displacement, while short arrows indicate nearly static areas. In 
our case, the displacement field shows pronounced and 
irregular motion, consistent with mechanically abnormal tissue. 
The strain indicators (mean ≈ 7.2 px, median ≈ 7.8 px, 90th 
percentile ≈ 8.5 px) confirm the presence of high-magnitude 
deformation, supporting the interpretation of increased 
structural heterogeneity typically associated with malignant 
regions. 

In summary, DIC provides a rapid, non-invasive, and 
highly precise method for capturing local tissue deformation, 
generating detailed displacement and stress maps that reveal 
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mechanical heterogeneity. Its primary diagnostic value lies in 
detecting subtle biomechanical abnormalities, making it a 
powerful tool for distinguishing between healthy and cancerous 
tissue. Complementing this, fractal analysis characterizes the 
architectural complexity and heterogeneity of tissue structures, 
offering unique insights into morphological irregularities. 
Together, these modalities provide distinct and complementary 
diagnostic information, each contributing a unique perspective 
to tissue characterization. 

B. Fractal Dimension Measurement 

Fig. 5 presents the spatial standard deviation maps, which 
reveal clear differences in tissue heterogeneity between healthy 
and cancerous samples, particularly within the epithelial 
region. Healthy tissues show high uniformity, with most values 
clustered around low standard deviations (mean ≈ 0.07–0.08, 
90th percentile ≈ 0.14–0.17), corresponding to the 
predominantly blue areas on the color map, indicating 
homogeneous microstructure. In contrast, cancerous tissues 
exhibit markedly higher and more variable local standard 
deviations (mean ≈ 0.13–0.17, 90th percentile ≈ 0.23–0.26), 
with color maps showing scattered regions of blue, green, 
yellow, and orange. This reflects increased structural 
heterogeneity and irregularity in the epithelium, consistent with 
disrupted cellular architecture. The cancerous sample “d” 
illustrates the most pronounced variability and the highest local 
complexity. 

Fig. 6 presents the distribution of local Std Dev for 4 
specimens of cervical epithelium (two healthy, and two 
cancerous). This measure is used to quantify the structural 
complexity of tissue using FMA. As illustrated in Fig. 6, the 
histograms of the local standard deviation quantitatively 
confirm the observations made on the complexity maps. The 
healthy samples ("a" and "c") show narrow distributions, 
strongly skewed toward low values (≈0.07–0.08 mean), 
reflecting a uniform and consistent tissue structure. The cancer 
samples ("b" and "d"), on the other hand, show wider 
distributions with higher median and 90th percentile values 
(≈0.13–0.17 mean, 0.23–0.26 90th percentile), indicating 
greater local variability and increased structural complexity. 
These histogram profiles support the idea that malignant 
epithelial regions are significantly more heterogeneous and 
disorganized than healthy tissue. 

In conclusion, local standard deviation analysis is an 
effective method for quantifying tissue heterogeneity. Healthy 
epithelium exhibits low variability and a uniform structure, 
while cancerous regions display higher and more dispersed 
local standard deviations, reflecting increased structural 
complexity. This method therefore provides a quantitative and 
sensitive measure for distinguishing healthy tissue from 
malignant tissue. 

While fractal analysis highlights the architectural 
complexity of tissues, GLCM-based texture analysis 
quantitatively captures microstructural variations in pixel 
intensity. Combined with polarized light, these methods 
provide complementary diagnostic information: fractal analysis 
reveals structural heterogeneity, whereas GLCM metrics, 
including contrast, entropy, correlation, energy and 

homogeneity, objectively characterize microstructural patterns, 
each offering distinct insights into tissue characterization. 

C. Gray-Level Co-occurrence Matrix Texture Features 

Fig. 7 and Table I show that GLCM metrics effectively 
distinguish non-neoplastic from neoplastic tissue. Healthy 
samples display high correlation, homogeneity, and energy 
with low contrast and entropy, indicating a uniform 
microstructure. Conversely, cancerous tissues exhibit elevated 
contrast and entropy with reduced correlation and energy, 
reflecting structural heterogeneity and disorganization. These 
quantitative differences provide clear markers for 
differentiating normal and malignant regions. 

Fig. 8 shows the entropy distribution and confirms the 
heterogeneity of the tissues by introducing a measure of 
disorder and texture complexity. When the healthy samples are 
considered (red and blue curves), we observe narrower 
distributions concentrated around low modal values (between 
0.35 and 0.45), indicating low dispersion of local pixel 
intensities and characteristic of an organized and homogeneous 
tissue structure. In contrast, tumoral samples (green and 
magenta curves) show wider distributions, with a mode 
significantly shifted toward higher entropy values (up to 
approximately 0.65 for sample “d”). This spread and alteration 
indicate an overall increased microstructural disorder and local 
complexity. This entropic marker thus reinforces the 
conclusions drawn from the fractal analysis, as entropy is 
strongly correlated with fractal dimension. 

Entropy allows for highly sensitive quantitative 
measurement of pathological conditions. Despite a slight 
overlap between the distributions of samples a and b (healthy 
and cancerous, respectively), analysis of the statistical 
parameters of the distribution makes it possible to quantify the 
degree of tissue disorder and effectively use this metric as a 
multimodal descriptor for classification. 

 

Fig. 8. Histogram of GLCM entropy in four cervical tissue samples. 

Collectively, the GLCM analysis clearly differentiates 
healthy from tumorous epithelial tissue. Healthy samples 
exhibit high correlation, homogeneity, and energy with low 
contrast and entropy, indicating a uniform and regular 
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microstructure. Cancerous samples show markedly increased 
contrast and entropy alongside reduced correlation, energy, and 
homogeneity, reflecting greater structural heterogeneity and 
disorganization. The progressive increase in entropy from 
healthy to cancerous samples demonstrates the sensitivity of 
GLCM-derived features in detecting gradual changes in tissue 
architecture associated with malignancy. 

Although the ex vivo dataset in the present study was 
limited in size, the results are highly promising and highlight 
the need for larger-scale prospective and in vivo investigations. 
Addressing the current limitations would allow for more robust 
validation of the findings, a comprehensive assessment of 
inter-patient variability, and a deeper understanding of the 
feasibility and translational potential of these imaging 
techniques in clinical practice. Future studies will focus on 
expanding the sample size, incorporating diverse patient 
populations, and optimizing the methodologies for in vivo 
application. Such efforts are critical to bridge the gap between 
experimental observations and practical diagnostic 
implementation, ultimately facilitating the translation of these 
techniques into routine clinical care. 

To summarize, polarized light imaging was combined with 
computational techniques, including DIC, GLCM, and fractal 
analysis, to characterize cervical tissue microstructure. The key 
findings from these complementary approaches are outlined in 
Table II, providing an integrated overview of the most relevant 
imaging indicators for distinguishing healthy from malignant 
tissue. 

TABLE II. SUMMARY OF KEY IMAGING INDICATORS 

Indicators / 

Metrics 

DIC 

(Displacement 

Magnitude) 

Fractal 

(StdDev) 
GLCM Metrics 

Mean 

7.2px  

→confirm the 

presence of high-
magnitude 

deformation. 

0.07–0.08 

(Healthy). 

 
0.13–0.17 

(Cancerous). 

-Contrast: 
0.25–0.30 

(Healthy), 
0.83–1.31 

(Cancerous). 

 
-Entropy: 

0.25–0.30 

(Healthy), 
0.50–0.56 

(Cancerous). 

Median/90th 

Percentile 

Median ≈ 7.8 px 

  
90th ≈ 8.5 px 

90th: 

0.14-0.17 
(Healthy). 

 
90th: 

0.23–0.26 

(Cancerous). 

Energy:  

0.91–0.93 
(Healthy). 

 

 0.82–0.87 
(Cancerous). 

Analysis 

High strain  

→ mechanically 
altered tissue 

Low StdDev 

→uniform 

(healthy).  

 
High StdDev 

→Irregular 

(cancer). 

Healthy tissue  

→ uniform, low 

contrast / entropy. 

 
 Cancerous tissue 

→disordered, high 

contrast / entropy. 

VI. CONCLUSION 

Cervical cancer remains a leading cause of cancer-related 
mortality among women worldwide, particularly in low Human 
Development Index countries. Despite advances in screening 

and treatment, early detection is critical to improving 
outcomes. Polarimetric imaging with digital analysis methods 
has emerged as a promising tool for enhancing diagnostic 
accuracy by characterizing structural properties of biological 
tissues. This study investigates early diagnosis of cervical 
cancer in Moroccan women, using computational polarimetric 
imaging to differentiate healthy from malignant tissue. 
Combined analyses with DIC, GLCM texture, and fractal-
based local standard deviation consistently reveal clear 
distinctions; healthy tissue shows low texture entropy, high 
correlation and homogeneity, and minimal local variability, 
whereas cancerous tissue exhibits random, multidirectional 
deformation patterns, increased contrast and entropy, reduced 
correlation and homogeneity, and higher local variability. 
These quantitative imaging biomarkers provide a robust 
framework for detecting and characterizing malignant changes. 
Building on these findings, future work will focus on 
validating the diagnostic performance and clinical applicability 
of this approach using full Mueller Matrix measurements on 
intact cervical specimens from a diverse patient cohort. Key 
challenges for clinical translation, including in vivo acquisition 
where motion artifacts and tissue accessibility must be 
managed, patient variability in anatomy and tissue properties, 
and instrumentation costs related to complex polarimetric 
setups, will be addressed. In addition, machine learning 
classifiers, such as support vector machines and convolutional 
neural networks, will be explored for multimodal feature fusion 
to enhance diagnostic accuracy and enable robust, automated 
tissue classification. 
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