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Abstract—This study models the '"coffee shop dilemma",
where customer attendance is discouraged by both overcrowding
and emptiness. Using an agent-based model with Q-learning
reinforcement learning, this study simulates the daily decisions of
100 agents over a one-year period. The results reveal a self-
organizing attendance cycle around a $60\%$ capacity threshold.
This study demonstrates that customer satisfaction is not driven
by visit frequency, but by adaptive decision-making strategies
shaped by learned congestion values. Clustering analysis identifies
distinct behavioral patron groups (e.g., Ultra-Frequent,
Optimized) that emerge from these subtle value differences. The
study provides a data-driven framework for optimizing shop space
and customer flow, offering conceptual insights into balancing the
needs of quick-service and long-stay customers by dynamically
managing perceived occupancy.
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I.  INTRODUCTION

The modern coffee shop—exemplified by global chains that
have evolved beyond a beverage outlet into a multifaceted
“third place” that serves as both a social and professional hub
distinct from home and office environments. This evolution
introduces a complex operational challenge: managing two
often conflicting customer flows. On one hand, the business
must serve quick-service customers who prioritize speed and
convenience during peak hours. On the other hand, it must
accommodate remote workers, students, and long-stay patrons
who value comfort and consistency, a key component of the
brand’s identity.

This tension gives rise to what may be termed the modern
coffee shop dilemma, a real-world analogue of the El Farol Bar
problem[1]. In the original formulation, agents independently
decide whether to attend a bar, with the utility of attendance
declining as crowding increases. Similarly, in coffee shops,
customers decide whether to visitbased on perceived crowding,
Overcrowding deters visitors due to limited seating, excessive
noise, and reduced comfort, while under-crowding can signal a
lack of social energy or desirability. The resulting dynamic
equilibrium emerges fromindividual decisions that collectively
influence store congestion levels.

Although the El Farol problem has been widely studied in
economics and complex systems theory, its application to high-
volume retail environments remain limited. Prior research has
predominantly emphasized theoretical agent behavior or
macroeconomic implications, with less attention to data-driven
micro-level business insights.

The main contributions of this study are summarized as
follows:

e Operational reframing of El Farol: The El Farol Bar
problem is translated into a retail coffee shop context,
enabling the analysis of customer attendance decisions
under perceived occupancy constraints rather than
abstract capacity rules. Unlike classical El Farol
formulations, capacity in this study represents a
subjective comfort threshold rather than a hard physical
limit.

e Satisfaction-based reward design: A reward-shaping
mechanism is introduced that explicitly links customer
satisfaction and dissatisfaction to congestion levels,
allowingagents to learn fromperceived crowding rather
than visit frequency alone.

e Emergent behavioral segmentation: Post-learning
clustering reveals distinct customer archetypes with
stable attendance routines, demonstrating how
heterogeneous strategies emerge from decentralized Q-
learning dynamics.

e Retail space insights: The learning outcomes are
connected to practical retail implications, showing how
managing perceived occupancy can balance quick-
service and long-stay customers without centralized
control.

II. RELATED WORK

This section reviews prior studies relevant to the present
work across three complementary research streams. First,
foundational models of the El Farol Bar problem and related
congestion games are discussed to establish the theoretical basis
for decentralized attendance decisions. Second, reinforcement
learning approaches applied to congestion and coordination
settings are reviewed, with emphasis on adaptive agent
behavior. Finally, empirical and simulation-based studies on
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perceived crowding and retail space optimization are examined
to situate the model within operational retail contexts.

A. The El Farol Bar Problem

The El Farol Bar Problem, first introduced by Arthur [1],
illustrates how boundedly rational agents make attendance
decisions when utility depends on aggregate participation. This
foundational model inspired a broad family of coordination and
congestion problems, including the Minority Game [2], which
formalizes inductive reasoning and self-organization under
limited information.

Subsequent studies extended the El Farol paradigm through
agent-based modeling (ABM) and reinforcement learning (RL)
to analyze emergent equilibrium behavior and resource
utilization [3]. Schosser [4] examined fairness considerations in
the allocation of limited shared resources during the COVID-
19 pandemic through an El Farol-type framework, analyzing
how individual attendance decisions affect equitable outcomes
under scarcity, without explicitly modeling infection dynamics.

The anti-coordination nature of the El Farol problem has
been extensively studied through various methodological
lenses. Guarnieri and Spadoni [ 5] investigated the role of social
norms in anti-coordination decisions through experimental
elicitation and priming methods. Their findings revealed that
subjects tend to comply with perceived descriptive norms
(empirical expectations about majority behavior) rather than
injunctive norms (normative expectations about what is
considered appropriate). As a result, overall attendance
becomes less volatile andstays closer to the bar’s capacity more
consistently. This reduces the inefficiency of both
overcrowding (too many go) and underutilization (too few go)

[6].

Atilganetal.[7] explored collectivebehavior in the El Farol
Bar through the lens of memory horizon and selection criteria
for prediction algorithms. Their work demonstrated that the
distribution of algorithm clusters varies significantly with
shorter agent memories, directly impacting long-term
attendance dynamics. They identified a critical memory horizon
where correlations in attendance deviations take longerto decay,
suggesting a phase transition in collective behavior.

However, existing El Farol and Minority Game
formulations primarily investigate coordination and
equilibrium properties in abstract settings, without explicitly
modeling recurring customer decisions driven by perceived
congestion in operational retail environments, which is the
focus of the present study.

B. Reinforcement Learning in Congestion Games

In applying Q-learning to a Minority Game, Zheng et al. [§]
demonstrated that optimal coordination emerges when agents
balance exploration and exploitation, governed by a specific
temperature parameter. This balance prevents the system from
being trapped in suboptimal, exploitative periodic states or
degrading into random, exploratory behavior. Compared to
conventional methods, the Q-Learning algorithm achieves
improved financial performance and able to yield the highest
financial returns through its dynamic adaptation to evolving
market conditions and its effective management of price
demand complexities [9], [10].
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Kossack [11] extended reinforcement learning approaches
by introducing an emotional machine framework that
incorporates artificial emotions (satisfaction, fear, ambition) as
states influencing decision-making. Applied to a 3-player El
Farol scenario, this work demonstrated that emotional states
evolve through differential equations weighted by personality
parameters, producing different collective outcomes. When
satisfaction dominates, agents formstable coalitions; when fear
dominates, volatility increases; and when ambition dominates,
agents pursue aggressive entry strategies leading to congestion.

While reinforcement learning has been extensively applied
to congestion and coordination games, prior studies largely
emphasize convergence behavior or algorithmic performance.
In contrast, the present study examines how learned congestion
valuations translate into persistent attendance routines and
interpretable behavioral segments within a retail like
environment, rather than examining how learned congestion
valuations translate into stable attendance routines and
interpretable customer segments in aretail context. Researchon
multi-agent coordination problems, such as traffic signal
control, demonstrates the efficacy of reinforcement leaming in
managing distributed congestion [12].

In contrast, the present study focuses on how learned
congestion valuations translate into persistent attendance
routines and interpretable behavioral segments in a retail-like
environment.

C. Retail Space Optimization

Prior research has established that perceived crowding is a
critical factor influencing consumer behavior in retail
environments. Zein etal.[13] demonstrate that high human and
spatial density directly shape customer satisfaction through
emotional responses, where perceived crowding negatively
impacts pleasure and arousal, leading to approach behaviors.
For instance, the optimal rush-hour staffing model (3 cashiers,
3 baristas) addressed the checkout bottleneck, cutting customer
wait times by 40\% and increasing throughput [14] and also
optimized retails space usage [15]. This underscores that it is
not just objective occupancy but the customer's perception of
that density that dictates their experience and loyalty.

This foundation is directly relevant to the "coffee shop
dilemma" in our study. While Zein et al. establish a causal link
between density and emotion in a retail context, this study aims
to investigate how this perception drives adaptive decision-
making in a recurrent visitation scenario and operationalize
their core finding—that crowding perception alters behavior—
by usingan agent-based model to simulate how customers learn
to avoid dissatisfaction.

A key strengthofthisapproach, as evidenced in institutional
policy work, is its capacity to model how macro-level patterns
emerge from micro-level behaviors—a core focus of this
simulation [16].

In contrast to empirical and optimization-based retail
studies that treat crowdingas an exogenous condition, this work
models perceived occupancy as an endogenous signal learned
through repeated interaction, enabling the analysis of adaptive
customer behavior and emergent attendance patterns over time.
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III. EXPERIMENTAL SETUP

The study employs a modeling approach that balances
analytical tractability with realistic behavior. The 60\%
capacity threshold approximates the subjective transition from
comfortable activity to perceived overcrowding in retail
environments, rather than denoting a strict physical constraint.
The 60\% threshold is not claimed to be universal, but
represents a plausible comfort boundary used to induce
congestiondynamics; sensitivity analysis is left for future work.
This design frames dissatisfaction as a function of experienced
congestion. Customer decisions are modeled as binary (attend
ornot), capturingthe recurringnature of real world visitchoices
while maintaining simplicity. To preserve interpretability, a
tabular Q-learing methodis preferred over more complex deep
reinforcement learning techniques. This enables direct
examination of how persistent congestion influences long-term
attendance strategies and the emergence of distinct behavioral
groupings.

A. Environment Parameters

The simulation assumes a total of $N = 100$ agents, with a
bar capacity set at $60\%$ of $N$ to induce congestion
dynamics. Time is modeled in discrete rounds, where all agents

simultaneously decide whether to attend the bar, allowing
sufficient convergence of learning dynamics, as in Table L

TABLE I. SIMULATION PARAMETERS
Parameter Value

Agents (N) 100
Simulation days (T) 365

Capacity threshold (C) 0.6

Leaming rate (o) 0.1

Discount factor (y) 0.9

Initial exploration rate (ginitial) 0.3

Minimum exploration rate (emin) 0.01
Satisfaction penalty (¢) -2

The model parameters were selected to balance realism,
computational efficiency, and learning stability.

e Agents (N = 100): A population size that generates
complex emergent behavior.

e Simulation days (T = 365): A one-year horizon that
allows agents to experience multiple seasonalcyclesand
fully converge their learning strategies, ensuring
observed patterns are stable and not transient.

e Capacity threshold (C = 0.6): The 60\% occupancy
threshold where the venue shifts from "vibrant" to
"crowded".

e Learning rate (oo = 0.1): A value that controls how
quickly agents update their Q-values based on new
experiences. A rate of 0.1 ensures stable learning by
preventing Q-values from fluctuating too drastically
from a single day’s outcome.
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e Discountfactor (y=0.9): Determines the importance of
future rewards. A high value 0f0.9 encourages agents to
be farsighted, considering the long-term consequences
of their attendance patterns rather than just immediate
gratification.

e Initial exploration rate (ginitial = 0.3): The starting
probability that an agent will choose is a random action.
A 30\% rate promotes sufficient exploration of the
action space in the early stages of the simulation to
prevent premature convergence to suboptimal strategies.

e Minimum exploration rate (emin = 0.01): The lower
bound for exploration. A 1% rate ensures that agents
never completely stop exploring, allowing them to adapt
toslowchanges in the collective attendance pattern over
time.

e Satisfaction penalty (¢ =-2): A scalar that quantifies the
dissatisfaction of encountering a crowded venue. The
value of —2 creates a strong negative reward for a
“Punished Visit” (R = —1), making it a distinctly
undesirable outcome compared to the high reward ofa
“Rewarded Visit” (R =3).

The selected parameter values do not simulate a specific
retail instance; rather, they are calibrated to facilitate the
observation and examination of stable learning patterns that
arise from constraints imposed by subjective congestion.

B. Reward Function

The reward function R(a,d,) is the core mechanism that
encodes the “congestion paradox,” guiding agent learning by
quantifyingthe desirability of each outcome. The function takes
the daily attendance at and an agent's decision d, as inputs,
where d,= 1 signifies “Go” and d, = 0 signifies “Stay.” The
function is formally defined as:
1+¢, ifdi =1 A a; > N-C (Punished Visit)
1—¢,ifd;=1 A a; < N-C (Rewarded Visit)

0, if d¢ =0 A a; < N-C (Justified Absence)
1, if d; =0 A a; > N- C(Strategic Avoidance)

R(at, dt) = J

This reward structure is designed to reflect experiential
outcomes rather than transactional utility, allowing agents to
learn attendance strategies based on perceived satisfaction and
avoidance of negative congestion experiences.

The rationale for each case, with the satisfaction penalty
#=-2, 1s as follows:

e Punished Visit (R=—1): The agent goes but finds the
shop overcrowded (at > N-C). They receive a base
reward of 1 for makinga decision but a strong penalty
0, resulting in a net negative reward. This discourages
visiting during peak times.

e Rewarded Visit (R=3): The agent goes and finds the
shop pleasantly occupied (at < N-C). The base reward
is augmented by the negative of the penalty (—¢),
creating a high positive reward. This reinforces visiting
during optimal capacity.
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e Justified Absence (R=0): The agent stays away and the
shop isnotcrowded. This neutral rewardreflects no gain
or loss for correctly avoiding an unnecessary trip.

e Strategic Avoidance (R=1): The agent stays away and
correctlyavoids a crowded shop (at>N-C). The positive
reward reflects the benefit of a smart, strategic decision
to avoid a negative experience.

C. Simulation Procedure

The daily simulation procedure, outlined in Table II,
executes the core agent-based learning cycle. Each step is
elaborated below:

o Initialize Agents: Each agent i is initialized with a Q-
table, Qi, with state-action values set to zero for the
actions ‘Stay’ (0) and ‘Go’ (1), forcing learning from
experience.

e Decay Exploration Rate: The exploration rate g, decays
linearly from &;,;4;0; = 0.3 to €p,;, = 0.01, promoting
early experimentation and later exploitation.

e Action Selection: Each agent uses an e-greedy policy.
With probability g, , it explores (random action);
otherwise, it exploits by choosing arg max Qi.

e C(Calculate Attendance: The daily attendance at is
computed as the sum of all agents’ ‘Go’ decisions (d; =
1), forming the environmental state.

e Assign Rewards: Each agent receives an immediate
reward rt based on the function R(a;, d;) from Eq. (1),
implementing the congestion paradox.

e Update Q-values: Agents update their Q-value for the
chosen action using the Q-learning rule, incorporating
the immediate reward rt and the discounted future
reward estimate (y-maxQi).

e Log Data: Comprehensive data (global attendance a,,
individual actions df, rewards rt, and Q-values) is
recorded for post-simulation analysis.

TABLEII. DAILY SIMULATION PROCEDURE

Step Description

Initialize agents with Q-tables

Q; = [0,0]for action {0 = Stay,1 = Go}
Decay exploration rate:
2 Einitial — Emin
& = max (&min, &-1 — T )

3 Action selection: For each agent, with probability €t choose
random action; otherwise, select arg max Qi

Calculate attendance:

N .
4 a, = Z d;
i=1

Where d; is agent i decision

Assign rewards: Compute R (a,,d}) foreach agentusing Equation

> |
6 Update Q-values:
0.d,) « 0;(d)+ alr, +y -maxQ; — Q;(d,)]
7 Log data: Record attendance, decisions, rewards, and Q-values for

analysis
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D. Data Collection

The following agent-level data was collected for post-
simulation analysis:

e Agent ID: Unique identifier (1-100)

e Total Reward: Sum of all rewards over 365 days

e Historical decision: Sequence of daily actions (Go/Stay)

e Cumulative Reward: Time-series of cumulative

rewards
e (Q Values: Final learned Q-values for Stay/Go actions

This comprehensive data collection enables clustering
analysis andbehavioral pattern identification as discussed in the
results section.

E. Implementation Details

All experiments were executed using Python 3.10 with
NumPy and Matplotlib libraries for computation and
visualization. Data analytics, including clustering of attendance
patterns and convergence plots, were performed using the
pandas andscikit-learn libraries. Each experiment was repeated
for 30 independent runs with different random seeds to ensure
statistical robustness.

IV. RESULTS AND DISCUSSION

This is a summary of analytical steps, as in Table IIL

TABLEIIl. SUMMARY OF ANALYTICAL STEPS

No. Analytical Phase Description

Analyzed the distribution of totalcumulative
rewards and the attendance overtime across
all agents to establish baseline performance
and identify variance in strategy success.

Applied K-means clustering to agent
behavioral features (frequency, Q-values,

Overall Agent
Performance

Agent Clustering

2 and  Behavioral | reward) to segment the population into
Analysis distinct strategic archetypes (e.g., Ultra-
Frequent, Optimized, Frequent).
Quantified and compared the properties of
3 Cluster the identified clusters (size, Q-Go and Go
Characteristics Rate by Cluster, mean Q-values, mean
reward) to define their strategic profiles.
Cluster Behavior Visualized top weekly decision sequences
.. for each cluster to reveal the temporal
4 and Decision

patterns and adaptive (or non-adaptive)

Pattern Analysis . .
nature of their strategies.

Discussion of | Discuss on revealing behaviorally realistic
5 Weekly Decision | routines which reflect strategic diversity and
Patterns real-world influences.

A. Overall Agent Performance

The plot in Fig. 1 illustrates the cumulative reward
trajectories of all Q-learning agents over 365 simulation days.
The red line represents the population-average cumulative
reward across n=100n=100 agents, while the shaded blue area
denotes +1+1 standard deviation. The dashed green lines mark
the minimum and maximum cumulative rewards observed
among agents.
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Cumulative Reward: All Agents Performance
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Fig. 1. Cumulative reward: all agents performance.

The learning trend indicates that agents progressively
improve their cumulative rewards over time, suggesting that the
Q-learningmechanismsuccessfully guides decision adaptation.
The mean cumulative reward at the final day reached 248.65,
with a standard deviation of 54.24, a minimum of 163.00, and
a maximum of 315.00. These values imply moderate
heterogeneity in agent performance, reflecting differences in
learned strategies and convergence rates.

Attendance Over Time (E| Farol Bar Problem)

EY Oaily Attendance
=== Capacity Threshold (60%)

[ ) 100 150 200 250 00 30
Dy

Fig.2. Attendance overtime with 60 per cent threshold.

Fig. 2 illustrates the average attendance over time compared
with the bar capacity threshold. The system exhibits
convergence toward the capacity level after an initial transient
phase, indicating that agents collectively learn to balance the
exploration—exploitation trade-off. The variance of attendance
decreases as episodes progress, confirming the stabilization of
the learning dynamics.

Overall, the steady upward trajectory of the mean reward
curve demonstrates that the agents collectively adapt to the
attendance-constrained environment inherent in the El Farol
Bar problem. The increasing spread over time reflects diversity
in learning outcomes—some agents adopt efficient attendance
policies, yielding higher rewards, whereas others stabilize at
suboptimal attendance frequencies.

B. Agent Clustering and Behavioral Analysis

A k-means clustering procedure with k=3 was applied to
characterize heterogeneity among agents using two behavioral
features: the learned Q-value for attending (Q_Go) and the
attendance probability (GoRate). The clustering separated the
population into three distinct groups. The scatter plot of agents
with centroids is presented in Fig. 3, and the cluster summary
statistics are reported in Table IV.
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Agent Strategy Clusters
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Fig. 3. Agent strategy cluster.
TABLEIV. CLUSTER SUMMARY STATISTICS
Cluster | Count | Q_Go (mean) | GoRate | Total Reward (mean)
0 60 8.71 0.92 291.30
1 37 3.54 0.09 181.03
2 3 5.00 0.66 229.67

The three clusters are interpreted as follows:

Cluster 0 — Regular Attenders: Cluster 0 (60 agents)
exhibits the highest Q Go values (mean=8.71) and the highest
attendance probability (mean GoRate = 0.92). Agents in this
group consistently choose to attend and, on average, obtain the
largest cumulative reward (mean total reward = 291.30),
representing the dominant “frequent attender” or “optimistic
learner” archetype.

Cluster | —Non-Attenders/Cautious Agents: Cluster1 (37
agents) is characterized by low Q_Go (mean = 3.54) and very
low attendance probability (mean GoRate=0.09). These agents
adopt cautious strategies, rarely attending; as a consequence
they obtain lower cumulative rewards (mean total reward =
181.03), reflecting missed opportunities when the bar is below
capacity as well as avoidance of congestion penalties.

Cluster 2 — Opportunistic / Small Sample: Cluster 2
contains only 3 agents with intermediate Q _Go (mean = 5.00)
and moderate attendance (GoRate = 0.66). Descriptively, these
agents are opportunists, balancing attendance with restraint for
intermediate rewards (mean =229.67). However, because this
cluster comprises only three samples, it is too small for reliable
inferential comparisons (e.g., hypothesis testing or robust
summary statistics). Therefore, Cluster 2 is reported here for
completeness and qualitative interpretation only; subsequent
comparative analyses and statistical tests focus on the two large
clusters (Cluster 0 and Cluster 1).

C. Cluster Characteristics

The clustering reveals three distinct behavioral archetypes:
persistent regulars (Cluster 0), cautious non-attenders (Cluster
1), and a very small opportunistic group (Cluster 2). The
dominance of Cluster 0 in cumulative reward suggests that
proactive attendance strategies can be advantageous when the
collective system converges toward the bar capacity. The small
size of Cluster 2 warrants caution in its interpretation: it may
reflect a transient or niche strategy that emerged under the

928 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

specific random seed and parameterization of this simulation,
rather than a robust population mode.

Q-Go and Go Rate by Cluster

8.709 s Q-Go Value
= Go Rate

4.998

Mean Value

3.540

~N

0919
L _0:91 0.662

0,087

o

Cluster 1 Cluster 2

Cluster

Cluster 0
Fig. 4. Q-go and go rate by cluster.

Overall, these clustering results support the view that Q-
learning agents self-organize into clearly separated behavioral
groups with markedly different attendance policies and long-
term payoffs. The explicit exclusion of the small Cluster 2 from
inferential comparisons preserves the statistical validity of
subsequent analyses, while all observed patterns are reported
for transparency.

The comparative visualization in Fig. 4 highlights the mean
Q-values, Go rates, and total rewards across clusters. Cluster 0
clearly dominates in terms of performance, suggesting that
proactive strategies yield the greatest long-term benefits when
collective learning drives the population toward an optimal
equilibrium.

D. Cluster Behavior and Decision Pattern Analysis

To further investigate the heterogeneity of agent behaviors,
a post-hoc clustering analysis was performed based on agents’

Vol. 16, No. 12, 2025

weekly decision sequences and cumulative performance. Three
distinct clusters were identified; however, Cluster 2 was
excluded from interpretation due to its extremely small sample
size (n = 3), which is unlikely to represent a statistically
meaningful behavioral pattermn. The analysis therefore focuses
on Cluster 0 and Cluster 1.

Cluster 0 Performers: Weekly Decision Patterns

0.8

o
EY

o
kS

Probability of Going

0.24

0.0~
Mon Tue Wed Thu Fri sat sun

Fig. 5. Cluster 0 weekly decision patterns.

Cluster 1 Performers: Weekly Decision Patterns

10

0.8

I
o

Probability of Going
o
S

0.2

Mon Tue Wed Thu Fri Sat Sun

Fig. 6. Cluster 1 weekly decision patterns.

Cluster0 ; Visualization of Top Weekly Decision Patterns
(Red=0, Green=1)
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Fig. 7. Cluster 0 : visualization of top weekly decision patterns.

Clusterl : Visualization of Top Weekly Decision Patterns
(Red=0, Green=1)
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Fig. 8. Cluster 1 : visualization of top weekly decision patterns.
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1) Cluster 0: Consistent high-attendance strategy: Fig. 5
shows that Cluster 0 agents exhibit a steadily increasing
probability of attendance throughout the week, starting from
approximately 0.28 on Mondays and peaking near 0.92 on
Sundays. This clear upward trend indicates that agents in this
cluster are not only frequent attendees but also increasingly
confident in their decision to attend as the week progresses.

When mapped to their behavioral sequences, these agents
adopthighly consistent attendance patterns. Fig. 7 illustrates the
dominant weekly decision patterns observed in Cluster 0. Most
agents in this group exhibit highly consistent attendance
behaviors, frequently following the pattern 1111111 or slight
variantssuchas 1111110and 1111101, indicating that they tend
to attend the bar almostevery day of the week. This persistent
attendance pattern suggests a highly exploitative strategy where
agents have learned that the long-term expected reward of
attending is greater than skipping, even under conditions of
possible congestion.

Cluster 0 achieved the highest rewards, indicating that,
under the modelled assumptions, a stable high-attendance
strategy yields higher cumulative rewards. Despite incurring
regular overcrowding penalties, their consistent exploitation of
the venueyielded superiorcumulative gains, demonstrating that
persistent participation dominates more adaptive strategies.

2) Cluster 1: Consistent high-attendance strategy: By
contrast, the weekly attendance patterns in Fig. 6 for Cluster 1
agents reveal a markedly different behavioural dynamic.
Attendance probabilities remain below 0.20 across all
weekdays, with only a modest rise on weekends (peaking at
0.16 on Sundays). This indicates a strong inclination to avoid
attendance most of the time, suggesting either: 1) heightened
sensitivity to congestion penalties or 2) a persistent
underestimation of the long-term benefits of frequent
attendance.

In addition, agents in Cluster 1 demonstrate more diverse
and selective attendance patterns, as shown in Fig. 8. Their top
decision sequences often include multiple “0” entries (non-
attendance days), suggestingan explorative or cautious strategy.
Such agents appear to attend intermittently to avoid congestion
penalties, but this moderation also limits their cumulative
reward growth compared to Cluster 0.

Their decision sequences often contain multiple “0” days,
resulting in sparse attendance policies. With a mean QGo value
of just 3.54 and a very low GoRate (0.09), Cluster 1 agents
embody a conservative or exploratory policy, where the
avoidance of potential overcrowding outweighs the pursuit of
maximum rewards. This strategy, while adaptive in balancing
risk and reward, is ultimately suboptimal under the given
simulation settings. Indeed, their average cumulative reward
(181.03) lags significantly behind Cluster 0, highlighting that
overly cautious attendance reduces the opportunity for long-
term gain.
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E. Discussion of Weekly Decision Patterns
A granular analysis of the top weekly decision sequences

within each cluster reveals profound insights into the learned
strategies and their potential real-world correlates.

1) Cluster 0: The persistence of high-frequency patterns:
Within Cluster 0 (Ultra-Frequent), a single dominant pattern
emerged: an “Always go” strategy. Designated Pattern 1, it was
used 1,831 times, far more than any other. Its persistence
indicatesthat agents learned that the high reward of'a successful
visit outweighs occasional penalties. This reflects a necessity-
driven andrisk-tolerant strategy for a venue that is an essential
daily routine.

2) The emergence of rest-day patterns: Other patterns in
Cluster 0 and patterns in Cluster 1 (Optimized) frequently
featured an absence, or “Stay” decision, on a specific day—
most mapped to a Sunday. This emerging “rest day” is a
significant finding. This interpretation is speculative and
intended as an analogy rather than a claim about real-world
behaviour.

From a behavioral standpoint, this can be interpreted in two
ways:

e Learned Depletion: Agents may have implicitly learned
that after a sustained period of attendance, the marginal
utility of visiting diminishes or the probability of fatigue
(both their own and systemic overcrowding) increases.
A rest day serves as a strategic reset.

e Real-World Rhythms: This pattern strongly mirrors
human social behavior, where Sunday is culturally
designated as a day of rest and preparation for the
upcoming week. The agents have effectively discovered
that avoiding the venue on this day is a robust strategy,
possibly because it aligns with a period of lower overall
utility or higher opportunity cost for going out.

3) Strategic heterogeneity in cluster 1: The lower
frequency of pattern usage for non-dominant strategies,
particularly in the Optimized cluster (Cluster 1), highlights the
role of strategic flexibility. The “sudden” decision to go out on
a day that s typically a rest day, or to deviate from a routine,
can be interpreted as the model’s representation of stochastic
real-world influences.

F. Theoretical and Managerial Implications

The results of this study offer several implications that
extend beyond the specific simulation setting, contributing to
theory, methodology, andretail practice. Atthe theoretical level,
the findings reinforce the El Farol Bar problem’s central insight
that bounded rational agents can achieve stable collective
outcomes through repeated learning rather than centralized
coordination. Importantly, the observed equilibrium emerges in
response to perceived congestion rather than objective capacity
constraints, highlighting the role of subjective evaluation in
shaping attendance decisions.
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This suggests that equilibrium behavior in congestion
games may be driven as much by learned perceptions as by
physical limits, particularly in recurrent decision environments
such as retail visitation.

From a methodological perspective, the analysis
demonstrates the value of combining reinforcement learning
with post-learning behavioral clustering. While Q-learning
governs individual adaptation during the simulation, clustering
enables ex post identification of stable behavioral archetypes
that are not explicitly encoded in the model. The results further
illustrate how reward shaping functions as a critical design
lever, influencing not only convergence properties but also the
diversity of emergent strategies within the agent population.
This layered analytical approach supports more interpretable
insights than aggregate performance measures alone.

Taken together, these findings imply that retail space
management should not be viewed solely as a problem of
maximizing customer throughput or maintaining high
occupancy levels. Instead, the way customers experience and
interpret congestion appears to play a central role in shaping
attendance behavior. Design choices such as seating
configuration may influence perceived occupancy, spatial
layout, and time-based incentives may therefore serve as
practical tools for influencing perceived occupancy. In settings
where customers make repeated visit decisions, such
perception-sensitive approaches are likely to offer greater
flexibility than strategies based exclusively on fixed capacity
targets.

V. CONCLUSION

This work explored how adaptive learning influences
attendance behavior in a congested retail environment by
framing the coffee shop dilemma as a multi-agent
reinforcement learning problem. Rather than treating customer
behavior as a function of visit frequency alone, the analysis
indicates that collective regularities emerge from how
individuals gradually interpret and respond to congestion
experiences. More specifically, differences in how agents
experience satisfaction or dissatisfaction under varying
occupancy conditions influence how their decisions evolve
over time. These differences are reflected in the emergence of
stable attendance routines, as well as in persistent variation in
behavior among agents exposed to the same environment.

Viewed more broadly, these results relate to existing work
on congestion games and bounded rationality. In line with the
El Farol Bar problem, the findings suggest that coordinated
outcomes can arise without centralized control or complete
information. Notably, the equilibrium observed in this study is
guided by learned perceptions of congestion rather than by
explicit awareness of physical capacity limits. This observation
underscores the role of subjective evaluation in recurrent
decision environments and supports the inclusion of
perception-driven learning mechanisms in models of collective
behavior involving shared resources.

The study also carries implications for retail space
optimization and customer flow management. The presence of
distinct behavioral patterns indicates that customers may
respond differently to congestion even when exposed to
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identical operational conditions. As a result, managing retail
spaces solely through capacity targets or throughput
maximization may overlook important behavioral dynamics.
Paying closer attention to how occupancy is experienced—
through layout decisions, seating arrangements, or time-based
incentives—may therefore provide additional flexibility in
influencing customer behavior. Further research may extend
this modelingapproach by consideringricher state descriptions,
incorporating social interaction effects, or grounding the model
in observational retail data to better examine adaptive behavior
in complex service settings.

Moreover, this study is subject to limitations. The model
abstracts away social interaction, heterogeneous preferences,
and empirical calibration. Future work may integrate
observational retail data, richer state representations, and
adaptive capacity thresholds to further validate the findings.
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