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Abstract—This study models the "coffee shop dilemma", 

where customer attendance is discouraged by both overcrowding 

and emptiness. Using an agent-based model with Q-learning 

reinforcement learning, this study simulates the daily decisions of 

100 agents over a one-year period. The results reveal a self-

organizing attendance cycle around a $60\%$ capacity threshold. 

This study demonstrates that customer satisfaction is not driven 

by visit frequency, but by adaptive decision-making strategies 

shaped by learned congestion values. Clustering analysis identifies 

distinct behavioral patron groups (e.g., Ultra-Frequent, 

Optimized) that emerge from these subtle value differences. The 

study provides a data-driven framework for optimizing shop space 

and customer flow, offering conceptual insights into balancing the 

needs of quick-service and long-stay customers by dynamically 

managing perceived occupancy. 
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I. INTRODUCTION 

The modern coffee shop—exemplified by global chains that 
have evolved beyond a beverage outlet into a multifaceted 
“third place” that serves as both a social and professional hub 
distinct from home and office environments. This evolution 
introduces a complex operational challenge: managing two 
often conflicting customer flows. On one hand, the business 
must serve quick-service customers who prioritize speed and 
convenience during peak hours. On the other hand, it must 
accommodate remote workers, students, and long-stay patrons 
who value comfort and consistency, a key component of the 
brand’s identity. 

This tension gives rise to what may be termed the modern 
coffee shop dilemma, a real-world analogue of the El Farol Bar 
problem [1]. In the original formulation, agents independently 
decide whether to attend a bar, with the utility of attendance 
declining as crowding increases. Similarly, in coffee shops, 
customers decide whether to visit based on perceived crowding. 
Overcrowding deters visitors due to limited seating, excessive 
noise, and reduced comfort, while under-crowding can signal a 
lack of social energy or desirability. The resulting dynamic 
equilibrium emerges from individual decisions that collectively 
influence store congestion levels. 

Although the El Farol problem has been widely studied in 
economics and complex systems theory, its application to high-
volume retail environments remain limited. Prior research has 
predominantly emphasized theoretical agent behavior or 
macroeconomic implications, with less attention to data-driven 
micro-level business insights. 

The main contributions of this study are summarized as 
follows: 

• Operational reframing of El Farol: The El Farol Bar 
problem is translated into a retail coffee shop context, 
enabling the analysis of customer attendance decisions 
under perceived occupancy constraints rather than 
abstract capacity rules. Unlike classical El Farol 
formulations, capacity in this study represents a 
subjective comfort threshold rather than a hard physical 
limit. 

• Satisfaction-based reward design: A reward-shaping 
mechanism is introduced that explicitly links customer 
satisfaction and dissatisfaction to congestion levels, 
allowing agents to learn from perceived crowding rather 
than visit frequency alone. 

• Emergent behavioral segmentation: Post-learning 
clustering reveals distinct customer archetypes with 
stable attendance routines, demonstrating how 
heterogeneous strategies emerge from decentralized Q-
learning dynamics. 

• Retail space insights: The learning outcomes are 
connected to practical retail implications, showing how 
managing perceived occupancy can balance quick-
service and long-stay customers without centralized 
control. 

II. RELATED WORK 

This section reviews prior studies relevant to the present 
work across three complementary research streams. First, 
foundational models of the El Farol Bar problem and related 
congestion games are discussed to establish the theoretical basis 
for decentralized attendance decisions. Second, reinforcement 
learning approaches applied to congestion and coordination 
settings are reviewed, with emphasis on adaptive agent 
behavior. Finally, empirical and simulation-based studies on 
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perceived crowding and retail space optimization are examined 
to situate the model within operational retail contexts. 

A. The El Farol Bar Problem 

The El Farol Bar Problem, first introduced by Arthur [1], 
illustrates how boundedly rational agents make attendance 
decisions when utility depends on aggregate participation. This 
foundational model inspired a broad family of coordination and 
congestion problems, including the Minority Game [2], which 
formalizes inductive reasoning and self-organization under 
limited information. 

Subsequent studies extended the El Farol paradigm through 
agent-based modeling (ABM) and reinforcement learning (RL) 
to analyze emergent equilibrium behavior and resource 
utilization [3]. Schosser [4] examined fairness considerations in 
the allocation of limited shared resources during the COVID-
19 pandemic through an El Farol–type framework, analyzing 
how individual attendance decisions affect equitable outcomes 
under scarcity, without explicitly modeling infection dynamics. 

The anti-coordination nature of the El Farol problem has 
been extensively studied through various methodological 
lenses. Guarnieri and Spadoni [5] investigated the role of social 
norms in anti-coordination decisions through experimental 
elicitation and priming methods. Their findings revealed that 
subjects tend to comply with perceived descriptive norms 
(empirical expectations about majority behavior) rather than 
injunctive norms (normative expectations about what is 
considered appropriate). As a result, overall attendance 
becomes less volatile and stays closer to the bar’s capacity more 
consistently. This reduces the inefficiency of both 
overcrowding (too many go) and underutilization (too few go) 
[6]. 

Atilgan et al. [7] explored collective behavior in the El Farol 
Bar through the lens of memory horizon and selection criteria 
for prediction algorithms. Their work demonstrated that the 
distribution of algorithm clusters varies significantly with 
shorter agent memories, directly impacting long-term 
attendance dynamics. They identified a critical memory horizon 
where correlations in attendance deviations take longer to decay, 
suggesting a phase transition in collective behavior. 

However, existing El Farol and Minority Game 
formulations primarily investigate coordination and 
equilibrium properties in abstract settings, without explicitly 
modeling recurring customer decisions driven by perceived 
congestion in operational retail environments, which is the 
focus of the present study. 

B. Reinforcement Learning in Congestion Games 

In applying Q-learning to a Minority Game, Zheng et al. [8] 
demonstrated that optimal coordination emerges when agents 
balance exploration and exploitation, governed by a specific 
temperature parameter. This balance prevents the system from 
being trapped in suboptimal, exploitative periodic states or 
degrading into random, exploratory behavior. Compared to 
conventional methods, the Q-Learning algorithm achieves 
improved financial performance and able to yield the highest 
financial returns through its dynamic adaptation to evolving 
market conditions and its effective management of price 
demand complexities [9], [10]. 

Kossack [11] extended reinforcement learning approaches 
by introducing an emotional machine framework that 
incorporates artificial emotions (satisfaction, fear, ambition) as 
states influencing decision-making. Applied to a 3-player El 
Farol scenario, this work demonstrated that emotional states 
evolve through differential equations weighted by personality 
parameters, producing different collective outcomes. When 
satisfaction dominates, agents form stable coalitions; when fear 
dominates, volatility increases; and when ambition dominates, 
agents pursue aggressive entry strategies leading to congestion. 

While reinforcement learning has been extensively applied 
to congestion and coordination games, prior studies largely 
emphasize convergence behavior or algorithmic performance. 
In contrast, the present study examines how learned congestion 
valuations translate into persistent attendance routines and 
interpretable behavioral segments within a retail like 
environment, rather than examining how learned congestion 
valuations translate into stable attendance routines and 
interpretable customer segments in a retail context. Research on 
multi-agent coordination problems, such as traffic signal 
control, demonstrates the efficacy of reinforcement learning in 
managing distributed congestion [12]. 

In contrast, the present study focuses on how learned 
congestion valuations translate into persistent attendance 
routines and interpretable behavioral segments in a retail-like 
environment. 

C. Retail Space Optimization 

 Prior research has established that perceived crowding is a 
critical factor influencing consumer behavior in retail 
environments. Zein et al. [13] demonstrate that high human and 
spatial density directly shape customer satisfaction through 
emotional responses, where perceived crowding negatively 
impacts pleasure and arousal, leading to approach behaviors. 
For instance, the optimal rush-hour staffing model (3 cashiers, 
3 baristas) addressed the checkout bottleneck, cutting customer 
wait times by 40\% and increasing throughput [14] and also 
optimized retails space usage [15]. This underscores that it is 
not just objective occupancy but the customer's perception of 
that density that dictates their experience and loyalty. 

This foundation is directly relevant to the "coffee shop 
dilemma" in our study. While Zein et al. establish a causal link 
between density and emotion in a retail context, this study aims 
to investigate how this perception drives adaptive decision-
making in a recurrent visitation scenario and operationalize 
their core finding—that crowding perception alters behavior—
by using an agent-based model to simulate how customers learn 
to avoid dissatisfaction.  

A key strength of this approach, as evidenced in institutional 
policy work, is its capacity to model how macro-level patterns 
emerge from micro-level behaviors—a core focus of this 
simulation [16]. 

In contrast to empirical and optimization-based retail 
studies that treat crowding as an exogenous condition, this work 
models perceived occupancy as an endogenous signal learned 
through repeated interaction, enabling the analysis of adaptive 
customer behavior and emergent attendance patterns over time. 
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III. EXPERIMENTAL SETUP 

The study employs a modeling approach that balances 
analytical tractability with realistic behavior. The 60\% 
capacity threshold approximates the subjective transition from 
comfortable activity to perceived overcrowding in retail 
environments, rather than denoting a strict physical constraint. 
The 60\% threshold is not claimed to be universal, but 
represents a plausible comfort boundary used to induce 
congestion dynamics; sensitivity analysis is left for future work. 
This design frames dissatisfaction as a function of experienced 
congestion. Customer decisions are modeled as binary (attend 
or not), capturing the recurring nature of real world visit choices 
while maintaining simplicity. To preserve interpretability, a 
tabular Q-learning method is preferred over more complex deep 
reinforcement learning techniques. This enables direct 
examination of how persistent congestion influences long-term 
attendance strategies and the emergence of distinct behavioral 
groupings. 

A. Environment Parameters 

The simulation assumes a total of $N = 100$ agents, with a 
bar capacity set at $60\%$ of $N$ to induce congestion 
dynamics. Time is modeled in discrete rounds, where all agents 
simultaneously decide whether to attend the bar, allowing 
sufficient convergence of learning dynamics, as in Table I. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Agents () 100 

Simulation days () 365 

Capacity threshold (C) 0.6 

Learning rate () 0.1 

Discount factor () 0.9 

Initial exploration rate (initial) 0.3 

Minimum exploration rate (min) 0.01 

Satisfaction penalty () -2 

The model parameters were selected to balance realism, 
computational efficiency, and learning stability. 

• Agents ( = 100): A population size that generates 
complex emergent behavior. 

• Simulation days ( = 365): A one-year horizon that 
allows agents to experience multiple seasonal cycles and 
fully converge their learning strategies, ensuring 
observed patterns are stable and not transient. 

• Capacity threshold (C = 0.6): The 60\% occupancy 
threshold where the venue shifts from "vibrant" to 
"crowded". 

• Learning rate ( = 0.1): A value that controls how 
quickly agents update their Q-values based on new 
experiences. A rate of 0.1 ensures stable learning by 
preventing Q-values from fluctuating too drastically 
from a single day’s outcome. 

• Discount factor ( = 0.9): Determines the importance of 
future rewards. A high value of 0.9 encourages agents to 
be farsighted, considering the long-term consequences 
of their attendance patterns rather than just immediate 
gratification. 

• Initial exploration rate (initial = 0.3): The starting 
probability that an agent will choose is a random action. 
A 30\% rate promotes sufficient exploration of the 
action space in the early stages of the simulation to 
prevent premature convergence to suboptimal strategies. 

• Minimum exploration rate (min = 0.01): The lower 
bound for exploration. A 1% rate ensures that agents 
never completely stop exploring, allowing them to adapt 
to slow changes in the collective attendance pattern over 
time. 

• Satisfaction penalty ( = -2): A scalar that quantifies the 
dissatisfaction of encountering a crowded venue. The 
value of −2 creates a strong negative reward for a 
“Punished Visit” (R = −1), making it a distinctly 
undesirable outcome compared to the high reward of a 
“Rewarded Visit” (R = 3). 

The selected parameter values do not simulate a specific 
retail instance; rather, they are calibrated to facilitate the 
observation and examination of stable learning patterns that 
arise from constraints imposed by subjective congestion. 

B. Reward Function 

The reward function R(at,dt) is the core mechanism that 
encodes the “congestion paradox,” guiding agent learning by 
quantifying the desirability of each outcome. The function takes 
the daily attendance at and an agent's decision dt as inputs, 
where dt = 1 signifies “Go” and dt = 0 signifies “Stay.” The 
function is formally defined as: 

𝑅(𝑎𝑡, 𝑑𝑡)  =  

{
 

 
1 +  ,   𝑖𝑓 𝑑𝑡 = 1 ∧  𝑎𝑡 > N ∙ C (Punished Visit)

1 −  , 𝑖𝑓 𝑑𝑡 = 1 ∧ 𝑎𝑡 ≤ N ∙ C (Rewarded Visit)

0,   𝑖𝑓 𝑑𝑡 = 0 ∧ 𝑎𝑡 ≤ N ∙ C (Justified Absence)

1, 𝑖𝑓 𝑑𝑡 = 0 ∧ 𝑎𝑡 > N ∙ C (Strategic  Avoidance)

  

This reward structure is designed to reflect experiential 
outcomes rather than transactional utility, allowing agents to 
learn attendance strategies based on perceived satisfaction and 
avoidance of negative congestion experiences. 

The rationale for each case, with the satisfaction penalty 
ϕ=−2, is as follows: 

• Punished Visit (R=−1): The agent goes but finds the 
shop overcrowded (at > N⋅C). They receive a base 
reward of 1 for making a decision but a strong penalty 
ϕ, resulting in a net negative reward. This discourages 
visiting during peak times. 

• Rewarded Visit (R=3): The agent goes and finds the 
shop pleasantly occupied (at  ≤ N⋅C). The base reward 
is augmented by the negative of the penalty (−ϕ), 
creating a high positive reward. This reinforces visiting 
during optimal capacity. 
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• Justified Absence (R=0): The agent stays away and the 
shop is not crowded. This neutral reward reflects no gain 
or loss for correctly avoiding an unnecessary trip. 

• Strategic Avoidance (R=1): The agent stays away and 
correctly avoids a crowded shop (at > N⋅C). The positive 
reward reflects the benefit of a smart, strategic decision 
to avoid a negative experience. 

C. Simulation Procedure 

The daily simulation procedure, outlined in Table II, 
executes the core agent-based learning cycle. Each step is 
elaborated below: 

• Initialize Agents: Each agent i is initialized with a Q-
table, Qi, with state-action values set to zero for the 
actions ‘Stay’ (0) and ‘Go’ (1), forcing learning from 
experience. 

• Decay Exploration Rate: The exploration rate 𝑡 decays 
linearly from 𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = 0.3 to 𝑚𝑖𝑛  = 0.01, promoting 
early experimentation and later exploitation. 

• Action Selection: Each agent uses an -greedy policy. 
With probability 𝑡  , it explores (random action); 
otherwise, it exploits by choosing  arg max Qi. 

• Calculate Attendance: The daily attendance at is 
computed as the sum of all agents’ ‘Go’ decisions (𝑑𝑡

𝑖 = 
1), forming the environmental state. 

• Assign Rewards: Each agent receives an immediate 
reward rt based on the function 𝑅(𝑎𝑡, 𝑑𝑡

𝑖) from Eq. (1), 
implementing the congestion paradox. 

• Update Q-values: Agents update their Q-value for the 
chosen action using the Q-learning rule, incorporating 
the immediate reward rt and the discounted future 
reward estimate (γ⋅maxQi). 

• Log Data: Comprehensive data (global attendance 𝑎𝑡, 
individual actions 𝑑𝑡

𝑖, rewards rt, and Q-values) is 
recorded for post-simulation analysis. 

TABLE II.  DAILY SIMULATION PROCEDURE 

Step Description 

1 
Initialize agents with Q-tables 

𝑄𝑖 = [0,0]𝑓𝑜𝑟 𝑎𝑐𝑡𝑖𝑜𝑛 {0 = 𝑆𝑡𝑎𝑦 , 1 = 𝐺𝑜} 

2 
Decay exploration rate: 

𝑡 = max (𝑚𝑖𝑛 , 𝑡−1 − 
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑚𝑖𝑛

𝑇
) 

3 
Action selection: For each agent, with probability  t choose 

random action; otherwise, select arg max Qi 

4 

Calculate attendance: 

𝑎𝑡 =  ∑ 𝑑𝑡
𝑖

𝑁

𝑖=1
 

Where 𝑑𝑡
𝑖 is agent 𝑖 decision 

5 
Assign rewards: Compute 𝑅(𝑎𝑡 ,𝑑𝑡

𝑖) for each agent using Equation 

(1) 

6 
Update Q-values: 

𝑄𝑖(𝑑𝑡)  ←  𝑄𝑖(𝑑𝑡) +  𝛼[𝑟𝑡 + 𝛾 ∙ 𝑚𝑎𝑥𝑄𝑖 − 𝑄𝑖(𝑑𝑡)] 

7 
Log data: Record attendance, decisions, rewards, and Q-values for 

analysis 

D. Data Collection 

The following agent-level data was collected for post-
simulation analysis: 

• Agent_ID: Unique identifier (1–100) 

• Total_Reward: Sum of all rewards over 365 days 

• Historical_decision: Sequence of daily actions (Go/Stay) 

• Cumulative_Reward: Time-series of cumulative 
rewards 

• Q_Values: Final learned Q-values for Stay/Go actions 

This comprehensive data collection enables clustering 
analysis and behavioral pattern identification as discussed in the 
results section. 

E. Implementation Details 

All experiments were executed using Python 3.10 with 
NumPy and Matplotlib libraries for computation and 
visualization. Data analytics, including clustering of attendance 
patterns and convergence plots, were performed using the 
pandas and scikit-learn libraries. Each experiment was repeated 
for 30 independent runs with different random seeds to ensure 
statistical robustness. 

IV. RESULTS AND DISCUSSION 

This is a summary of analytical steps, as in Table III. 

TABLE III.  SUMMARY OF ANALYTICAL STEPS 

No. Analytical Phase Description 

1 
Overall Agent  

Performance 

Analyzed the distribution of total cumulative 

rewards and the attendance over time across 

all agents to establish baseline performance 

and identify variance in strategy success. 

2 

Agent Clustering 

and Behavioral 

Analysis 

Applied K-means clustering to agent 

behavioral features (frequency, Q-values, 

reward) to segment the population into 

distinct strategic archetypes (e.g., Ultra-

Frequent, Optimized, Frequent). 

3 
Cluster 

Characteristics 

Quantified and compared the properties of 

the identified clusters (size, Q-Go and Go 

Rate by Cluster, mean Q-values, mean 

reward) to define their strategic profiles. 

4 

Cluster Behavior 

and Decision  

Pattern Analysis 

Visualized top weekly decision sequences 

for each cluster to reveal the temporal 

patterns and adaptive (or non-adaptive) 

nature of their strategies. 

5 

Discussion of 

Weekly Decision  

Patterns 

Discuss on revealing behaviorally realistic  

routines which reflect strategic diversity and 

real-world influences. 

A. Overall Agent Performance 

The plot in Fig. 1 illustrates the cumulative reward 
trajectories of all Q-learning agents over 365 simulation days. 
The red line represents the population-average cumulative 
reward across n=100n=100 agents, while the shaded blue area 
denotes ±1±1 standard deviation. The dashed green lines mark 
the minimum and maximum cumulative rewards observed 
among agents. 
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Fig. 1. Cumulative reward: all agents performance. 

The learning trend indicates that agents progressively 
improve their cumulative rewards over time, suggesting that the 
Q-learning mechanism successfully guides decision adaptation. 
The mean cumulative reward at the final day reached 248.65, 
with a standard deviation of 54.24, a minimum of 163.00, and 
a maximum of 315.00. These values imply moderate 
heterogeneity in agent performance, reflecting differences in 
learned strategies and convergence rates. 

 

Fig. 2. Attendance overtime with 60 per cent threshold. 

Fig. 2 illustrates the average attendance over time compared 
with the bar capacity threshold. The system exhibits 
convergence toward the capacity level after an initial transient 
phase, indicating that agents collectively learn to balance the 
exploration–exploitation trade-off. The variance of attendance 
decreases as episodes progress, confirming the stabilization of 
the learning dynamics. 

Overall, the steady upward trajectory of the mean reward 
curve demonstrates that the agents collectively adapt to the 
attendance-constrained environment inherent in the El Farol 
Bar problem. The increasing spread over time reflects diversity 
in learning outcomes—some agents adopt efficient attendance 
policies, yielding higher rewards, whereas others stabilize at 
suboptimal attendance frequencies. 

B. Agent Clustering and Behavioral Analysis 

A k-means clustering procedure with k=3 was applied to 
characterize heterogeneity among agents using two behavioral 
features: the learned Q-value for attending (Q_Go) and the 
attendance probability (GoRate). The clustering separated the 
population into three distinct groups. The scatter plot of agents 
with centroids is presented in Fig. 3, and the cluster summary 
statistics are reported in Table IV. 

 

Fig. 3. Agent strategy cluster. 

TABLE IV.  CLUSTER SUMMARY STATISTICS 

Cluster Count Q_Go (mean) GoRate Total Reward (mean) 

0 60 8.71 0.92 291.30 

1 37 3.54 0.09 181.03 

2 3 5.00 0.66 229.67 

The three clusters are interpreted as follows: 

Cluster 0 — Regular Attenders: Cluster 0 (60 agents) 
exhibits the highest Q_Go values (mean = 8.71) and the highest 
attendance probability (mean GoRate = 0.92). Agents in this 
group consistently choose to attend and, on average, obtain the 
largest cumulative reward (mean total reward = 291.30), 
representing the dominant “frequent attender” or “optimistic 
learner” archetype. 

Cluster 1 — Non-Attenders / Cautious Agents: Cluster 1 (37 
agents) is characterized by low Q_Go (mean = 3.54) and very 
low attendance probability (mean GoRate = 0.09). These agents 
adopt cautious strategies, rarely attending; as a consequence 
they obtain lower cumulative rewards (mean total reward = 
181.03), reflecting missed opportunities when the bar is below 
capacity as well as avoidance of congestion penalties. 

Cluster 2 — Opportunistic / Small Sample: Cluster 2 
contains only 3 agents with intermediate Q_Go (mean = 5.00) 
and moderate attendance (GoRate = 0.66). Descriptively, these 
agents are opportunists, balancing attendance with restraint for 
intermediate rewards (mean = 229.67). However, because this 
cluster comprises only three samples, it is too small for reliable 
inferential comparisons (e.g., hypothesis testing or robust 
summary statistics). Therefore, Cluster 2 is reported here for 
completeness and qualitative interpretation only; subsequent 
comparative analyses and statistical tests focus on the two large 
clusters (Cluster 0 and Cluster 1). 

C. Cluster Characteristics 

The clustering reveals three distinct behavioral archetypes: 
persistent regulars (Cluster 0), cautious non-attenders (Cluster 
1), and a very small opportunistic group (Cluster 2). The 
dominance of Cluster 0 in cumulative reward suggests that 
proactive attendance strategies can be advantageous when the 
collective system converges toward the bar capacity. The small 
size of Cluster 2 warrants caution in its interpretation: it may 
reflect a transient or niche strategy that emerged under the 
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specific random seed and parameterization of this simulation, 
rather than a robust population mode. 

 

Fig. 4. Q-go and go rate by cluster. 

Overall, these clustering results support the view that Q-
learning agents self-organize into clearly separated behavioral 
groups with markedly different attendance policies and long-
term payoffs. The explicit exclusion of the small Cluster 2 from 
inferential comparisons preserves the statistical validity of 
subsequent analyses, while all observed patterns are reported 
for transparency. 

The comparative visualization in Fig. 4 highlights the mean 
Q-values, Go rates, and total rewards across clusters. Cluster 0 
clearly dominates in terms of performance, suggesting that 
proactive strategies yield the greatest long-term benefits when 
collective learning drives the population toward an optimal 
equilibrium. 

D. Cluster Behavior and Decision Pattern Analysis 

To further investigate the heterogeneity of agent behaviors, 
a post-hoc clustering analysis was performed based on agents’ 

weekly decision sequences and cumulative performance. Three 
distinct clusters were identified; however, Cluster 2 was 
excluded from interpretation due to its extremely small sample 
size (n = 3), which is unlikely to represent a statistically 
meaningful behavioral pattern. The analysis therefore focuses 
on Cluster 0 and Cluster 1. 

 

Fig. 5. Cluster 0 weekly decision patterns. 

 

Fig. 6. Cluster 1 weekly decision patterns. 

 

Fig. 7. Cluster 0 : visualization of top weekly decision patterns. 

 

Fig. 8. Cluster 1 : visualization of top weekly decision patterns. 
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1) Cluster 0: Consistent high-attendance strategy: Fig. 5 

shows that Cluster 0 agents exhibit a steadily increasing 

probability of attendance throughout the week, starting from 

approximately 0.28 on Mondays and peaking near 0.92 on 

Sundays. This clear upward trend indicates that agents in this 

cluster are not only frequent attendees but also increasingly 

confident in their decision to attend as the week progresses. 

When mapped to their behavioral sequences, these agents 
adopt highly consistent attendance patterns. Fig. 7 illustrates the 
dominant weekly decision patterns observed in Cluster 0. Most 
agents in this group exhibit highly consistent attendance 
behaviors, frequently following the pattern 1111111 or slight 
variants such as 1111110 and 1111101, indicating that they tend 
to attend the bar almost every day of the week. This persistent 
attendance pattern suggests a highly exploitative strategy where 
agents have learned that the long-term expected reward of 
attending is greater than skipping, even under conditions of 
possible congestion. 

Cluster 0 achieved the highest rewards, indicating that, 
under the modelled assumptions, a stable high-attendance 
strategy yields higher cumulative rewards. Despite incurring 
regular overcrowding penalties, their consistent exploitation of 
the venue yielded superior cumulative gains, demonstrating that 
persistent participation dominates more adaptive strategies. 

2) Cluster 1: Consistent high-attendance strategy: By 

contrast, the weekly attendance patterns in Fig. 6 for Cluster 1 

agents reveal a markedly different behavioural dynamic. 

Attendance probabilities remain below 0.20 across all 

weekdays, with only a modest rise on weekends (peaking at 

0.16 on Sundays). This indicates a strong inclination to avoid 

attendance most of the time, suggesting either: 1) heightened 

sensitivity to congestion penalties or 2) a persistent 

underestimation of the long-term benefits of frequent 

attendance. 

In addition, agents in Cluster 1 demonstrate more diverse 
and selective attendance patterns, as shown in Fig. 8. Their top 
decision sequences often include multiple “0” entries (non-
attendance days), suggesting an explorative or cautious strategy. 
Such agents appear to attend intermittently to avoid congestion 
penalties, but this moderation also limits their cumulative 
reward growth compared to Cluster 0. 

Their decision sequences often contain multiple “0” days, 
resulting in sparse attendance policies. With a mean QGo value 
of just 3.54 and a very low GoRate (0.09), Cluster 1 agents 
embody a conservative or exploratory policy, where the 
avoidance of potential overcrowding outweighs the pursuit of 
maximum rewards. This strategy, while adaptive in balancing 
risk and reward, is ultimately suboptimal under the given 
simulation settings. Indeed, their average cumulative reward 
(181.03) lags significantly behind Cluster 0, highlighting that 
overly cautious attendance reduces the opportunity for long-
term gain. 

E. Discussion of Weekly Decision Patterns 

A granular analysis of the top weekly decision sequences 
within each cluster reveals profound insights into the learned 
strategies and their potential real-world correlates. 

1) Cluster 0: The persistence of high-frequency patterns: 

Within Cluster 0 (Ultra-Frequent), a single dominant pattern 

emerged: an “Always go” strategy. Designated Pattern 1, it was 

used 1,831 times, far more than any other. Its persistence 

indicates that agents learned that the high reward of a successful 

visit outweighs occasional penalties. This reflects a necessity-

driven and risk-tolerant strategy for a venue that is an essential 

daily routine. 

2) The emergence of rest-day patterns: Other patterns in 

Cluster 0 and patterns in Cluster 1 (Optimized) frequently 

featured an absence, or “Stay” decision, on a specific day—

most mapped to a Sunday. This emerging “rest day” is a 

significant finding. This interpretation is speculative and 

intended as an analogy rather than a claim about real-world 

behaviour. 

From a behavioral standpoint, this can be interpreted in two 
ways: 

• Learned Depletion: Agents may have implicitly learned 
that after a sustained period of attendance, the marginal 
utility of visiting diminishes or the probability of fatigue 
(both their own and systemic overcrowding) increases. 
A rest day serves as a strategic reset. 

• Real-World Rhythms: This pattern strongly mirrors 
human social behavior, where Sunday is culturally 
designated as a day of rest and preparation for the 
upcoming week. The agents have effectively discovered 
that avoiding the venue on this day is a robust strategy, 
possibly because it aligns with a period of lower overall 
utility or higher opportunity cost for going out. 

3) Strategic heterogeneity in cluster 1: The lower 

frequency of pattern usage for non-dominant strategies, 

particularly in the Optimized cluster (Cluster 1), highlights the 

role of strategic flexibility. The “sudden” decision to go out on 

a day that is typically a rest day, or to deviate from a routine, 

can be interpreted as the model’s representation of stochastic 

real-world influences. 

F. Theoretical and Managerial Implications 

The results of this study offer several implications that 
extend beyond the specific simulation setting, contributing to 
theory, methodology, and retail practice. At the theoretical level, 
the findings reinforce the El Farol Bar problem’s central insight 
that bounded rational agents can achieve stable collective 
outcomes through repeated learning rather than centralized 
coordination. Importantly, the observed equilibrium emerges in 
response to perceived congestion rather than objective capacity 
constraints, highlighting the role of subjective evaluation in 
shaping attendance decisions. 
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This suggests that equilibrium behavior in congestion 
games may be driven as much by learned perceptions as by 
physical limits, particularly in recurrent decision environments 
such as retail visitation. 

From a methodological perspective, the analysis 
demonstrates the value of combining reinforcement learning 
with post-learning behavioral clustering. While Q-learning 
governs individual adaptation during the simulation, clustering 
enables ex post identification of stable behavioral archetypes 
that are not explicitly encoded in the model. The results further 
illustrate how reward shaping functions as a critical design 
lever, influencing not only convergence properties but also the 
diversity of emergent strategies within the agent population. 
This layered analytical approach supports more interpretable 
insights than aggregate performance measures alone. 

Taken together, these findings imply that retail space 
management should not be viewed solely as a problem of 
maximizing customer throughput or maintaining high 
occupancy levels. Instead, the way customers experience and 
interpret congestion appears to play a central role in shaping 
attendance behavior. Design choices such as seating 
configuration may influence perceived occupancy, spatial 
layout, and time-based incentives may therefore serve as 
practical tools for influencing perceived occupancy. In settings 
where customers make repeated visit decisions, such 
perception-sensitive approaches are likely to offer greater 
flexibility than strategies based exclusively on fixed capacity 
targets. 

V. CONCLUSION 

This work explored how adaptive learning influences 
attendance behavior in a congested retail environment by 
framing the coffee shop dilemma as a multi-agent 
reinforcement learning problem. Rather than treating customer 
behavior as a function of visit frequency alone, the analysis 
indicates that collective regularities emerge from how 
individuals gradually interpret and respond to congestion 
experiences. More specifically, differences in how agents 
experience satisfaction or dissatisfaction under varying 
occupancy conditions influence how their decisions evolve 
over time. These differences are reflected in the emergence of 
stable attendance routines, as well as in persistent variation in 
behavior among agents exposed to the same environment. 

Viewed more broadly, these results relate to existing work 
on congestion games and bounded rationality. In line with the 
El Farol Bar problem, the findings suggest that coordinated 
outcomes can arise without centralized control or complete 
information. Notably, the equilibrium observed in this study is 
guided by learned perceptions of congestion rather than by 
explicit awareness of physical capacity limits. This observation 
underscores the role of subjective evaluation in recurrent 
decision environments and supports the inclusion of 
perception-driven learning mechanisms in models of collective 
behavior involving shared resources. 

The study also carries implications for retail space 
optimization and customer flow management. The presence of 
distinct behavioral patterns indicates that customers may 
respond differently to congestion even when exposed to 

identical operational conditions. As a result, managing retail 
spaces solely through capacity targets or throughput 
maximization may overlook important behavioral dynamics. 
Paying closer attention to how occupancy is experienced—
through layout decisions, seating arrangements, or time-based 
incentives—may therefore provide additional flexibility in 
influencing customer behavior. Further research may extend 
this modeling approach by considering richer state descriptions, 
incorporating social interaction effects, or grounding the model 
in observational retail data to better examine adaptive behavior 
in complex service settings. 

Moreover, this study is subject to limitations. The model 
abstracts away social interaction, heterogeneous preferences, 
and empirical calibration. Future work may integrate 
observational retail data, richer state representations, and 
adaptive capacity thresholds to further validate the findings. 
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