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Abstract—The quality of the road is an important issue that
contributes to accidents, resulting in the loss of time, resources,
and lives. To manually survey the road issue. This is very delayed
and costly. Automatic detection of road conditions facilitates
surveys more efficiently than human methods. This research
identifies three objects: cracks, potholes, and manhole covers.
This research shown the highest efficiency with YOLO V6
compared to YOLO VS5, V7, and V8. This paper proposes
RoadSCNet, designed for YOLOvV6 implementations, has been
developed for road research. A key part is the customized
Horizon block, which enhances horizontal contextual feature
extraction efficacy and reduces the limitations of traditional
YOLO architecture in identifying road surface condition by long
and low light variation, such as cracks and potholes.
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I.  INTRODUCTION

Road safety is a critical issue. Road accidents are the
primary cause of loss of life and property. Improving
monitoring for safety and driver assistance is important. The
performance of pavement, covering surface friction and
roughness, has been statistically associated with crash
frequency and severity, highlighting the necessity for
maintenance-based infrastructure design [1],[2]. Image
Processing and Artificial Intelligence (AI) are methodologies
employed to solve this issue. Object detection is crucial for
effectively understanding the road environment. Road object
detection is a critical and challenging area of research in
computer vision, essential for Intelligent Transportation
Systems (ITS), Advanced Driver-Assistance Systems (ADAS),
and autonomous driving. The objective of many studies is to
ascertain the position and boundaries of objects. For instance,
automobiles, bicycles, and people. On the other hand, the
inspection of roads and infrastructure is included. An example
includes detecting potholes and evaluating road performance,
which enhances safety and reduces accidents. Road object
detection has numerous problems in real-life situations. For
instance, poor brightness, cloudy conditions, and blocking by
other objects. The previous method was limited by limitations
in two-dimensional image processing techniques. Under
situations where the roadway is missing of distinct markers or
significantly obstructed. In recent years, deep learning has
played a significant role in computer vision tasks. Al is a
technology capable of learning, planning, problem-solving, and
performing activities similar to those of humans. Al is widely
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utilized across various fields which enhancing labor efficiency.
A dataset is essential for generating the model for each task.
For instance, video, image, text, signal, etc. A convolutional
neural network (CNN) is a component of deep learning that
produces the suitable model for tasks. Typically encompassing
categorization and object detection tasks. Examples of
categorization in medical applications include generating
models to diagnose diabetic retinopathy, identify cerebral
microbleeds from MRI scans, and recognize abnormalities in
lung X-ray images, among others. For object detection tasks,
CNNs can automatically identify vehicles on the road,
demonstrating superior speed and accuracy compared to
manual methods. In the last ten years, the application of Deep
Leaming methods, especially CNN architectures, has
significantly transformed the area of object detection. Two
phase detection models for instance, Faster R-CNN provides
superior accuracy, while single-stage models such as YOLO,
SSD, and RetinaNet provide high processing rates for real-time
applications, which are important for activities that depend on
data from onboard cameras. However, though these high
performance models, their real efficacy is based upon multiple
factors. Including data set reliability, parameter selection,
management of different situations, and performance on
devices with limited processing resources. Other gap in road
object detection research is the ability for domain adaptation to
particular road issues, including urban, rural, or regionally
distinct environmental features. Datasets frequently utilized,
such as COCO, KITTIL or Waymo which are typically gathered
from countries with particular environments, thus resulting in
reduced efficiency when implemented in different situations.
Moreover, specialized object detection tasks, such pothole
recognition, road surface condition detection, and small object
identification which remain underexplored because to missing
of comprehensive, targeted datasets. Consequently, creating
models capable of learning diversity from real data presents a
significant difficulty in this domain. Current development
trends in hardware systems focus both validation and real
world testing to authenticate models that collect real data (real
time inference) on limited hardware. For example, embedded
systems or IoT devices in cars has the capability to process
images from many data sources, such as RGB cameras, depth
cameras, or LiDAR sensors. This strategy can substantially
enhance detection accuracy. However, combining data from
several sensors requires combining sensors  using
methodologies, which is increasing the system’s complexity.
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In Thailand, road conditions significantly affect the
performance of the system. Thailand features various road
conditions, including heavily packed urban roads and narrow,
uncertain community footpaths. This includes rural roads that
often do not have suitable signs or lighting. The diversity and
inconsistency of these road conditions present an enormous
challenge for object detection programs. One common problem
is the damaged road surfaces, including potholes, cracked
asphalt, bridge joints, or subsidence resulting from flooding,
which frequently occurs in multiple regions of the country.
Particularly during the rainy season, these defects show
different features and may be smaller in size, making object
detection models trained on external datasets often ineffective
in accurately identifying them. Consequently, detecting road
surface degeneration is a critical research area within the Thai
context, as it can mitigate accidents and facilitate preventive
maintenance. The other issue is the unique features of road
usage in Thailand, like motorcyclists mixing with cars and
parking in unauthorized locations. Crossing the roadway at
locations other than designated crosswalks, or in the path of
temporary barriers such as barriers, traffic cones, or
unregulated roadside vendors. These generate various and
unexpected objects. Object detection under these conditions
requires models capable of learning from real-world data
supplied from Thailand for the highest level of accuracy.
Moreover, the issue of traffic and waming sign systems on
Thai roads is a barrier, as certain road signs might not be up to
standards, may be hidden by trees, or may get old and faded.
This complicates the detection of traffic signs using models
trained on foreign datasets, particularly with temporary
waming signs employed at construction sites. These often
appear in many ways and lack standardization which important
to driving safety so require detection. Moreover, the lighting
conditions in various regions of Thailand, including rural roads
missing of streetlights and urban roads light by vehicle
headlights and visible advertising signs, result in issues of
backlighting and reflection, which negatively affect the
accuracy of object detection systems. Consequently,
developing a model that can adapting different lighting
conditions for application in Thailand. Traffic jams is a
significant issue that results in time loss for individuals. An
accident is an issue that results in the loss of lives and property.
Accident causes include driver health issues, vehicle
breakdowns, and road surface conditions. Examples of road
surface abnormalities include potholes, road humps, irregular
manhole covers, spaces between bridges and roads, bumpers,
and cracks. An accident resulted in the loss of lives, time, and
resources. However, the Department of Highways in Thailand
often conducts manual road surveys and implements
improvements. This method caused significant risks,
expensive, and time-consuming. Deep learning can assist in
resolving all issues. The government has opted for a survey of
the road, which is efficient and cost-effective. Consumers can
determine road surface quality and prevent accident risk.
Entrepreneurs can minimize transportation costs through faster
driving and a reduction in accidents. Current object detection
CNNs, such as different versions of YOLO, may generate
models for detecting road conditions [3],[4]. Nonetheless, the
accuracy is not sufficient.
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Therefore, research in road object detection is a significant
domain with considerable potential for development. This
research examines object detection methodologies employing
deep leaming techniques. Evaluation of the model’s efficacy
on actual road condition datasets, including an analysis of
precision, speed and robustness to different environments. To
develop a model that effectively matches the requirements of
real road usage and can also provide a basis for future
implementations in intelligent safety systems and autonomous
cars. While YOLO-based detectors displayed strong efficacy in
identifying general objects, they were not optimized for the
detection of road surface and abnormalities. Cracks and
potholes have long shapes, high horizontal continuity, and
minimal class differentiation, frequently appearing segmented
or partially ignored. Traditional convolution transform blocks
are designed for small objects. This limitation necessitates
structures that may more effectively identify horizontal data
along road surfaces. This research is to customize the YOLO
structure according to the data obtained in Phuket and
Bangkok, Thailand. The novel CNN architecture is capable of
accurately detecting three objects. The aim of this research is to
create a model utilizing novel CNN for the detection of road
objects, including cracks, potholes, and manhole covers.
Subsequently, maintain it in the cloud. Subsequently, the pre-
processing phase is executed. Ultimately, to develop the road
surface condition detecting model utilizing CNN. The model is
capable of identifying three items on the roadway from video
footage. This research contributions include 1) a novel CNN
architecture for detecting road conditions that provides
empirical evidence that implementing horizontal contextual
features is essential for delicate detection of road surface
condition, 2) suggested an adaptive architectural change for
YOLOV6, which improves robustness in under real-world road
condition, and 3) Additionally, provide outcomes from
experiments utilizing Thai road datasets, demonstrating the
limitations of conventional object detectors in detecting surface
condition.

The organization of this paper is as follows: Section II
discusses the related work. Section III presents the research
methodology, encompassing data collecting, frame extraction,
and object labeling. Section IV explains the novel CNN
architecture termed “RoadSCNet” . The subsequent section,
Section V, addresses the experiment results concerning three
hyperparameters which are dropout, leaming rate, and kernel.
Section VI presents an experiment including three structures:
the modified horizon block, vertical block, and pooling layer.
Subsequently, analyze the structural experiment results. This
part facilitates the implementation of a revolutionary CNN
architecture. The conclusion is located in Section VIL

II. RELATED WORKS

This section described previous research. Beginning with
image preprocessing, which is necessary for the preprocess of
object detection. Cleaning datasets or managing data is the
initial stage. Subsequently, the task involves separating or
labelling data. The cleaned data is utilized in the model
generation phase. The object detection Evolution is detailed in
Section II(A). The next step is to generate the model. CNN is
appropriate for this step, as numerous CNNs have been utilized
in previous research, as detailed in Section II(B). The next
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discussion relates to object detection on the road, as outlined in
Section II(C). The last section for evaluating the theoretical
framework of the approach is detailed in Section II(D).

A. Object Detection Evaluation

The preprocessing phase occurs before the generation of
the object detection model, whether using traditional or deep
learmning methods. Examples of data collection equipment
include cameras, smartphones, stereos, LiDAR, and others.
This section discusses various techniques employed in the
preprocessing phase, including lane detection and road surface
analysis.

Before the development of deep leaming, object
recognition tasks mainly utilized classical image processing
and computer vision methodologies, including edge detectors,
comer detectors, and sliding windows. The Canny edge
detector is employed to identify edges in images, providing the
fundamental structure of objects. The Harris corner detector is
another instance that identifies significant comers inside an
image. Furthermore, a HOG (Histogram of Oriented Gradients)
descriptor is employed, which defines the attributes of objects
by aggregating the gradient directions in segmented regions of
the image, for use in object classification and detection tasks.
In classical learning, cascading classifiers, such as Viola-Jones,
utilize Haar features and a cascade classifier for sliding
window detection. These approaches display accuracy in
controlled environments. For example, identifying faces in
static  photographs  which although display several
limitations—suboptimal performance on complex images,
dependence on manually designed features, and limited
generalization over a wide range of objects. Many research
worked on image processing. image Quality Enhancement is
the standard technique to help reducing noise and increasing an
accuracy. The smoothing and filtering technique worked on
Gaussian or Median filter [3]. Next technique is Brightness and
Contrast  Adjustment which working on Histogram
Equalization (HE) and Recursively Separated and Weighted,
Histogram Equalization (RSWHE) and Gamma Correction.
(RSWHE) and Gamma Correction used to solve the Mean
Shift problem [4]. Color transformation has to convert the
image to grayscale to reduce complex calculations and
decrease processing time. The HSV (Hue, Saturation, Value) or
Lab transformation is employed in segmentation tasks that
focus on color properties. This method employed in traffic sign
recognition [5],[6]. Dark Channel Prior (DCP) or Temporal
Correlations are employed to decrease fog and dehazing in the
management of weather or illumination handling.
Subsequently, Otsu’s technique or Adaptive Thresholding is
employed to automatically convert the image to binary before
doing contrast adjustment [3]. The limiting of the Region of
Interest (Rol) is useful in minimizing the quantity of complex
data and computational complexity. In spatial division, the Rol
will be separated from the background. One strategy applied to
reduce computational complexity and improve accuracy in
various contrast images is Adaptive Region of Interest (ARol).
Horizon line detection is a technique in ARol utilized to divide
the scene into road and sky regions. [3],[7]. Subsequently, edge
detection and feature extraction are employed to identify the
characteristics of geometry, road surfaces, or objects. This
technique is necessary for traditional vision-based method. The
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Sobel and Canny operators are widely utilized approaches.
Sobel is utilized more frequently than Canny and Prewitt due
to both lower complexity and greater resistance to interference.
Canny has incredible accuracy in identifying borders and
positions [3], [8]. A method for edge detection is binarization,
specifically Otsu’s thresholding. This method aims to
automatically identify parameters for separating background
and foreground, hence reducing computation time and
managing brightness [3]. One feature extraction technique is
the Histogram of Oriented Gradients (HOG), which utilizes
edge characteristics for feature extraction. This algorithm
functions for detected traffic signs. [9],[ 10]. To improve binary
image, Morphological processing is used to remove noise. An
example are corrosion, expansion, open operation, and closed
operation, etc. [9]. Image resizing is used to set up image
dimensions for deep learning preparation. For instance, 32x32,
256x256, etc., this technique operates before training with
CNN. The subsequent step involves identifying the Rol before
cropping, concentrating only on the Rol area. The multi-
channel input operates using transfer learning on the RGB
model, example by ImageNet. The gray Computed
Tomography (CT) picture is converted to three dimensions and
utilized in the model [11],[12],[13].

Since the development of CNN, object detection has
entered a new phase, utilizing CNNs as feature extractors.
RCNN (Region-based CNN) is a critical advancement,
employing a selective search technique for region proposals
which is generating object region proposals and inputting each
area into a CNN for classification and bounding box
improvement. This was created by Ross Girshick and his crew.
However, R-CNN is limited by slow progress due to the
processing tens or hundreds of region proposals per image.
Fast RCNN operates more efficiently by initially convolving
the full image, subsequently extracting proposal points by Rol
pooling to identify regions from the feature map, and also
executing classification and regression, therefore minimizing
the number of steps involved [ 14]. Subsequently, Faster RCNN
incorporated a Region Proposal Network (RPN) into the CNN,
facilitating expedited and more efficient region proposal
creation by the utilization of convolutional characteristics
shared between the RPN and the detection head [15]. The R-
CNN Series approach, which consists of two steps: proposal
and classification, achieves excellent accuracy. However, the
limitations include significant delay and making real-time
application challenging [16]. After the success of the R-CNN
Series which remains limited in speed. Consequently, the
notion of a “single shot detector” or “single-stage detector”
which avoids the need to segregate suggestions and classify in
a separate phase. An example is the Single Shot MultiBox
Detector (SSD), which employs a singular network, segments
the feature map at various scales, and simultaneously predicts
bounding boxes and classifications for multiple default box
configurations and aspect ratios, thereby allowing the SSD to
identify objects with multiple sizes within a single image
without requiring separate region proposals. SSDs have fast
performance and excellent accuracy, make more appropriate
for real-time applications compared to two-stage methods [17].
In 2015-2016, Redmon et al., introduced the You Only Look
Once (YOLO) model as a novel approach which
conceptualizes object detection as a regression problem rather
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than generating proposals and classifying them separately.
Both the bounding box prediction and class probability are
executed within a singular network by processing all input
images in one pass. YOLO divides the image into grids, with
each grid predicting a bounding box and a class at once,
resulting in high speed. The first model achieved
approximately 45 frames per second. The benefits include low
latency and comprehensive leaming which including
simultaneous training of bounding box and classification. A
disadvantage is might have lower localization accuracy
compared to proposal-based models, particularly for small
objects [18]. YOLOV2 or YOLO9000 improves YOLOv1 with
the addition of batch normalization, an increase in input
resolution, and the utilization of anchor boxes to improve
bounding accuracy. This includes joint classification and
detection utilizing ImageNet and COCO datasets for training,
allowing multi-category detection over more than 9,000 classes
[19]. YOLOV3 enhances the backbone network, employs
multi-scale prediction (three levels) to more effectively detect
small, medium, and large objects, and utilizes a logistic
classifier instead of softmax for class prediction. After that,
YOLOv4, YOLOVS, and others were introduced for improving
both accuracy and speed. Each model has an improved
backbone architecture, optimized loss function, and advanced
data training/augmentation techniques to better accommodate
real-world applications. YOLO changed object detection by
proving the feasibility of real-time detection using a single-
stage neural network, independent of external region proposals.
The YOLO model is widely utilized in applications
necessitating real-time processing, including surveillance
systems, driverless vehicles, and CCTV. Furthermore, the
YOLO (single network, end-toend) concept has inspired the
development of other models that enhance the speed and
accuracy trade-off such as SSD, RetinaNet, and several YOLO
variants. The deep learning evolution as shown in Fig. 1.

Classic Image Processing
e Edge Detector

e Comer Detector
e HOG »
L]

Cascading classifier

R-CNN Series
e R-CNN
e Fast R-CNN
e Faster R-CNN

A

YOLO

e V1 Single-Stage Detector
. V2 ‘ o SSD

e V3 e YOLO

e etc.

Fig. 1. Evaluation of Object Detection, begin classification image processing
until YOLO object detection.

Object detection initiates with traditional image processing
techniques, including edge detection, corner detection,
Histogram of Oriented Gradients (HOG), and cascade
classifiers. Continuing with the R-CNN series, which covers R-
CNN, Fast R-CNN, and Faster R-CNN. Thus, YOLO is a
single-stage detector, similar to SSD. Several versions of
YOLO are currently operational.
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B. CNN Object Detection

Object detection is an important component of computer
vision that has gained popularity in recent years. This can
analyze video, recognize images, and be applied in everyday
life. For instance, autonomous driving, drone and robotics
analysis, and safety surveillance, among others. The aim of
object detection is to identify the localization of objects (object
localization) and to classify object types (object classification).
Object identification is a subset of deep learning that enhances
the accuracy and speed of computer learning. Machine
Leaming is a method for creating models that operate
autonomously. The handcrafted features and shallow trainable
architectures were utilized. Initially, the selection of
informative regions is conducted by scanning images with
multiple sizes of sliding windows. Subsequently, feature
extraction is conducted using SIFT, HOG, Haar-like features,
among others. The classification is enhanced by methods such
as SVM and AdaBoost. Deep Leaming (DL) is a more
advanced technique than machine learning. Neural networks
can enhance model performance [20], [21]. Convolutional
Neural Networks (CNNs) are utilized to create models with
various architectures. The CNN architecture combines One-
stage and Two-stage Detectors. The two-stage detector
employs Regions with CNN features (RNN) as the principal
model, demonstrating the efficiency of CNN in object
detection. RNN employs a bottom-up approach for locating
positions and objects within images. Subsequently, obtain the
region suggestion by selective search and compute the features
using a convolutional neural network (CNN). Subsequently,
categorize the region type utilizing Support Vector Machine
(SVM) methodology. This procedure is time-consuming and
presents a bottleneck issue. This study achieves a mAP of
53.30% utilizing the PASCAL VOC 2012 dataset. The model
generated by VGG16 achieved a mAP of 66.00% on the VOC
Convolutional Networks (SPP-net) addresses the bottleneck
issue of R-CNN by employing a Spatial Pyramid Pooling layer
(SPP layer) in its final layer. Consequently, CNN can process
input and output images of a fixed dimension. SPP-net (ZF)
achieves a mAP of 60.9% on the VOC 2007 dataset [23]. Fast
R-CNN enhances R-CNN and SPP-net by end-to-end training
that integrates area selection, feature extraction, and
classification. The VOC 2007 test set achieved a mAP of
70.00% [15]. Subsequently, Faster R-CNN is executed on Fast
R-CNN utilizing the Region Proposal Network (RPN) instead
selective search. This method generates region proposals from
the features of a CNN RPN and predicts box regression (reg)
and box classification (cls) using a sliding window approach.
The results indicate a mAP of 83.80% [24]. Mask R-CNN is
the instance segmentation framework that extends Faster R-
CNN. Mask R-CNN achieves an Average Precision (AP) of
39.8% on the COCO test set [25]. The R-FCN, or Region-
based Fully Convolutional Networks, achieves a mean Average
Precision (mAP) of 85.00% on the VOC 2012 test set [26].

One-stage detectors, such as the Single Shot MultiBox
Detector (SSD), perform classification and bounding box
regression immediately. SSD300 has a mAP of 79.60%,
whereas SSD512 demonstrates a mAP of 81.60% when
evaluated on the VOC 2007 test set. SSD512 exhibits a mean
mAP of 81.60%. Feature Pyramid Networks (FPN) are utilized
for the extraction of features across diverse data sizes [17].
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YOLO (You Only Look Once) is a famous real-time object
detection model known for its speed and accuracy. YOLO V1
is the first end-to-end real-time object detection model [18].
YOLO V2 (YOLO9000) operates on the Darknet-19 backbone,
employs batch normalization, utilizes anchor boxes for
predictions, and includes a passthrough layer for feature
extraction [27]. YOLO V3 employs the Darknet-53 backbone
which is larger than the backbone utilized in YOLO V2.
Bounding box prediction employs logistic regression and three
sizes of multi-scale predictions. All operations involving the
SPP block [28]. YOLO V4 was created for fast and accurate
performance. The Bag of Freebies and the Bag of Specials are
utilized to enhance performance and combine a receptive field.
The backbone is CSPDarknet53. The SPP module, PANet path
aggregation neck, and YOLO V3 head are processed [29].
YOLO V5 utilizes a modified CSPDarknet53 as backbone
commencing with a Stem and SPPF (Spatial Pyramid Pooling
Fast) layer. This facilitated rapid accuracy. The auto anchor
verifies and enhances anchor boxes [30]. YOLO V6 is the
suitable framework for industry applications. The EfficientRep
backbone (RepBlock/RepConv) has been processed. The
quantization employs GloU (Generalized IoU), Clou
(Complete-IoU Loss), Slou loss, self-distillation, and channel-
wise distillation [31]. YOLO V7 utilized the Extended
Efficient Layer Aggregation Network (E-ELAN) and
RepConvN, which lacks identity connections. YOLO V8
modified C3 to C2f and implemented 3x3 convolution [31] -
[33]. In addition to YOLO, Pelee is a real-time object detection
framework for mobile devices utilizing PeleeNet. PeeleeNet is
produced using traditional convolution rather than depthwise
separable convolution with SSD Pelee [34].

C. Road Object Detection

Numerous studies on road surface conditions utilize video
and imagery. The model identified a road traffic sign utilizing
Support Vector Machine (SVM) technology. This is classified
and identified in the video. The Histogram of Oriented
Gradients (HOG) is utilized to extract features previous to
model generation [9]. Traffic light recognition employs image
processing techniques based on color segmentation and the
Hough transform for circles. Machine learning is utilized to
generate the model. This model was designed to identify the
traffic light in the autonomous vehicle [6]. Utilization of
Helmets Detection on motorcycles is an important part of their
widespread usage. YOLO V3 and multi-task leaming are
employed for helmet detection. Positional Encoding (PE)
resolved the issue of class imbalance in this research, resulting
in PE is better than the class-balanced loss [35],[36],[37].
Advanced Driver-Assistance Systems (ADAS) contain a
collection of sensors, cameras, and other technologies within
the vehicle that enhance driving safety and convenience.
ADAS and safety alerts contribute to accident reduction
studies. The Collision Avoidance System utilized the Google
TensorFlow Object Detection (GTOD) API to build a driving
safety alert and real-time vehicle detection, trained using the
Microsoft Common Objects in Context (COCO) dataset [38].
Then the motorcycle curve warning presented the curve alert
system including the intra-lane localization and roll angle
estimation using CNN. The industry standard maps is used for
improve an accuracy [39]. The pothole was detected using
thermal imaging captured by a FLIR ONE camera. The
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principle that the temperature of the pothole is lower than that
of the surrounding road because of water retention. This
research performed effectively at night, during rain, and in fog,
remaining unaffected by light, exhibiting a high response time,
lower energy consumption, and reduced costs compared to
laser-based techniques. The training with the ResNet101 model
achieved an accuracy of 97.08% [40]. A pothole detecting
system was developed for road surfaces to help blind people
utilizing Convolutional Neural Networks (CNN) and the
KITTI dataset. This system achieved an accuracy of 97.12%
[11]. Numerous CNN models have been trained to detect
potholes, including Inception v4, Inception ResNet v2, ResNet
v2 152, and MobileNet v1. An accuracy above 96%. The
grayscale image can be utilized in this research [14]. Crack
detection is performed automatically using CNN on images
captured by smartphones, employing YOLO and SSD
methodologies [41],[42]. Research to present a 3D map as the
outcome. The SSD can develop a model to detect potholes and
humps by utilizing data collected from a Raspberry Pi, GPS
module, and camera [43]. The video data is utilized to identify
cars, trucks, and buses using Faster R-CNN in comparison to a
mixture of Gaussian (MoG) background subtraction and SVM
vehicle classification. The results indicated that Faster RCNN
exhibited superior performance [44]. Furthermore, the
accelerometer, gyroscope, and GPS in smartphones gather data
that is utilized with machine leaming to classify multiple
categories, including smooth roads, potholes, and deep
transverse cracks. The three feature axes of the sensor provide
more accuracy, precision, and recall compared to a single axis
[45]. In addition, the fog and darkness decreased the driver’s
visibility, presenting a problem that must be resolved for
safety. Recursively Separated and Weighted Histogram
Equalization (RSWHE) and Gamma Correction techniques
were worked to increase the image and video performance.
Detecting road surfaces at night can be achieved using the
headlights of a vehicle [4], [46]. The summary table of
techniques for road condition detection is presented in Table L

TABLE I. SUMMARY OF THE ROAD CONDITION DETECTION TECHNIQUES

Method Techniques

Data Collector Smartphone, Video, Camera, Raspberry Pi, GPSmodule

Frame extraction, Lane detection, Labelling, Image

Data Preparation .
processing

Model
Generation

YOLO, Faster R-CNN, ResNet, Inception, MobileNet,
SSD, SVM, HOG

D. Evaluation

In object detection and classification, evaluation is crucial
to evaluating performance during the development and
maintenance phases. The object detection task needs to allow
for both localization accuracy and classification accuracy. The
confusion matrix, Intersection over Union (loU), and mean
Average Precision (mAP) are widely utilized metrics.

The Confusion Matrix is a fundamental instrument to
evaluate the accuracy of a classification model by comparing
the actual class with the predicted class. There are four values
in a confusion matrix. A True Positive (TP) occurs when a
prediction is positive and the actual outcome is also positive. A
True Negative (TN) occurs when a prediction is negative and
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the actual outcome is also negative. A False Positive (FP)
occurs when a prediction indicates a positive result when the
actual outcome is negative. A False Negative (FN) occurs
when a prediction is negative while the actual outcome is
positive. Subsequently, these four variables are utilized to
compute additional values below.

Accuracy is the proportion of correct predictions, which
may be calculated using Eq. (1).
TP+TN

Accuracy = ——
Y = TP+TN+FP+EN

(1
Precision refers to the quality of a model concerning
positive precision. The precision is illustrated in Eq. (2).

TP
TP+FP

Precision =

()

Recall assesses the efficacy of a model in predicting
positive results. The value of recall can be calculated using Eq.
3).

TP
TP+FN

Recall = 3)

The F1-score is the harmonic mean of precision and recall,
serving as a singular metric to assess model performance. The
F1-score equation is shown in Eq. (4).

2 * Precision * Recall
F1 score =———— (4)

Precision+ Recall

In the object detection job, the Intersection over Union
(IoU) serves as the localization measure that compares the area
between the predicted bounding box and the ground truth
bounding box. The IoU equation is illustrated in Eq. (5).

Area of Overlap

IoU = ()

Then Area of Overlap is two boxes overlap area. And Area
of Union is total area of both boxes.

Area of Union

The IoU value ranges from 0 to 1. If the loU is greater than
or equal to 0.5, determine it as a true detection (True Positive).
The higher IoU mean predicts the bounding box’s closer to the
object’s actual position.

Normally in object detection task has multiple object type
and different confidence score. The average precision (AP) is
measure model performance for each class and calculate by
Precision-Recall Curve. After that calculate average AP of all
class that is mean Average Precision (mAP) as calculate by Eq.

(6).
mAP = % YN AP, (6)

N represents the total number of classes, while APi is the
average precision for class i. The mAP summarizes the
model’s performance in object detection and classification over
all objects.

III. RESEARCH METHODOLOGY

This section described the methods employed in this
research. Subsection A. presents the framework, which
includes an overview of the research. The subsequent step is
the preprocessing phase which involves data collection and
frame extraction. Frame extraction can divide the video dataset
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into multiple images, which is the initial important phase as
illustrated in subsection B. The following procedure is object
labelling, which enables the model to recognize the item as
illustrated in C.

A. Framework

This section described the research framework. Data was
gathered from May 2020 to September 2021 in Phuket and
Bangkok, Thailand. The smartphone is a collection instrument
mounted to the vehicle’s windshield. All data belongs in cloud
storage. The video data is segmented into numerous frames
with the frame extraction technique. The work involves image
labelling, which encompasses cropping and identifying each
object within all images. Laberu is an appropriate tool for this
stage. This is a novel labelling tool created by our team. This
study examines cracks, potholes, and manhole covers. 24,276
frames are utilized for labelling. The XML file provides the
result of the labelling phase. The object detection model is built
using anovel CNN customized on the backbone of YOLO V6.
The research framework is illustrated in Fig. 2.

Data Collecting
o
CO—O)

¥
processing Process

Pre

s [

Frame Extraction

Structure Development

AN
(e
_(=
4
Object Detection Model

Fig.2. Framework for the development of novel CNN architectures.

B. Data Collection and Frame Extraction

The initial phase of this research has involved the collection
of video data. The equipment of this research is the
smartphone. The smartphone was installed on the windshield
of the vehicle operating on the roads of Phuket and Bangkok
from May 2020 to September 2021. The total distance is
1,118.13 kilometers. 125 videos had collected a total duration
of 134,176 seconds. Subsequently, the frame extraction goes
into processing. This phase involves separating all of the video
into multiple images. The quantity of data collected,
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comprising 125 videos with a total duration of 134,176
seconds. Following the frame extraction process, a total of
1,341,760 frames were obtained. Selected 31,803 frames
containing three objects. Ultimately, 24,276 frames were
selected for the subsequent stage.

The data categories are identified as three objects inspected
by the Department of Highways in Thailand. This investigation
encompasses crack, pothole, and manhole cover. An example
of manhole coverafter extended from video as shown in Fig. 3.

C. Object Labelling

This subsection explained the process of object labelling.
The step is to separate and select all three objects. This phase
was successful when the video was captured and the frame was
extracted. This process employs three tools. LabelMe and
Labellmg are universal labelling tools. Labelru is the labeling
tool developed by our research team. This research is

Vol. 16, No. 12, 2025

designated by Labelru. This tool allows for multiple users
immediately. Fig. 4 illustrates an example of each object post-
labeling. The object’s name and its position are indicated
within the red rectangle.

Fig. 3. The image including Manhole cover extracted from the video.

v<annotation>
<folder>picture</folder>

v {source>
<database>Unknown</database>
</source>
v<size>
<width>1920</width>
<height>1080</height>
<depth>3</depth>
</size>
<segmented>@</segmented>
v<object>
{<name>Manhole covers</name> |
<pose>Unspecitied</pose>
<truncated>@</truncated>
<difficult>@</difficult>
v <bndbox>
Kxmin>125</xmin>
Kymin>762</ymin>
Kxmax>270</xmax>
Kymax>801</ymax>
</bndbox>
</object>
</annotation>

<filename>2-session-1610784850-7866.jpg</filename>
<path>E:\select\211011\211011\picture\2-session-1610784850-7866.jpg</path>

Fig. 4. An example of a labelled XML file, red rectangle show object name and coordinates.

IV. RoAD SURFACE CONDITION DETECTION NETWORK

Convolutional Neural Network (CNN) is the popular
technique to generate a model to detect an object. At the time,
there are many CNN structure work for classification and
object detection work. The concept of CNN is learning similar
the human brain, CNN is in the bio-inspire group. The object
detection works base on classification and object detection
[22].

This section presents Road Surface Condition Detection, or
RoadSCNet. This section explores the novel framework for the
object detection job. YOLO is a renowned convolutional neural
network design utilized for object detection tasks. Numerous
iterations of YOLO exist, ranging from YOLO V1 to YOLO
V8, together with YOLONas, developed from 2016 to the
present. This research focuses on YOLO V6 and a novel CNN
called “RoadSCNet” which is based on this version.

RoadSCNet is a novel convolutional neural network derived
from YOLO V6. Typically, YOLO V6 is suitable for fast and
accurate real-time object recognition. There are multiple
versions of YOLO V6: YOLO V6-n, YOLO V6-S, YOLO V6-
M, YOLO V6-L, and YOLO V6-tiny. YOLO V6-tiny is
compact and suitable for IoT or mobile applications. The
structure of YOLO V6 is illustrated in Fig. 5.

The architecture of the YOLO V6 backbone has five
RepVGGBIlock layers, four BepC3StageBlock layers, and
concludes with an SPPFBottleneck. The kernel sizes 4x4. The
BN layer refers to the batch normalization layer which
enhances the mean and standard deviation of the activation
output from the layer above. The appropriateness and stability
of the mean and standard deviation facilitate the training of a
more stable and effective model.
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Fig.5. The architecture of YOLO V6. The red rectangle on the RepVGGBlock indicates the position for block customization. Figure is based on study [47]

V. HYPERPARAMETER EXPERIMENT

This part offered the experiment results and comments
regarding hyperparameters. Video data was taken using a
smartphone mounted on the windshield of the car. Data was
obtained in Phuket and Bangkok, Thailand. The initial pre-
processing stage involved frame extraction, which converted
the video into several images. Subsequently, every three
images were selected for the following step. The object
labelling was subsequently processed. During the labelling
phase, the novel labelling tool in this research, named
“Labelru” received approval. This tool can be labelled by
multiple users simultaneously. The produced model was
enhanced. The experiment has dropout, learning rate, and
kernel which are as mentioned in subsection A - C. The
experiment setup utilizes a computer equipped with an i9-
10900KF CPU, 32GB of RAM, and an RTX 3080 10GB GPU.
Miniconda3 and Python 3.6 are software applications.

A. Dropout

Overfitting is a challenge encountered throughout the
model training process. The method employed to reduce the
overfitting issue is dropout. The dropout layer randomly
deactivates certain neurons within that layer. This strategy
enables the model to learn by distributing tasks among other
neurons, hence enhancing its performance when predicting
fresh datasets. The experiment with four dropouts is analyzed
below using the mAP value. This research focused on dropout
rates 0.2, 04, 0.6, and 0.8. The outcome with a dropout of 0.6
yielded a mAP value of 86.97. The subsequent dropout values
are 0.2, 04, and 0.8 yielding mAP values of 8641, 86.30, and
85.62, respectively. Subsequently, a dropout rate of 0.6 was

employed in the subsequent experiment learning rate as
delineated in subsection B.

B. Learning Rate

The learning rate is a hyperparameter that controls weights
and biases of the model. In each iteration of the training
process, the learning rate is multiplied by the gradient to adjust
the weights and minimize loss. Particularly in Gradient
Descent training. If the leaming rate is excessively high, the
model will set the weights and biases in an unstable manner
during training. The low learning rate results in minimal
weight and bias adjustments which are leading to protracted
and time-intensive training. This section elucidates the learning
rate experiment. The values are 0.1, 0.01, 0.001, and 0.00001.
The outcome is presented in Table II.

According to Table II, the learning rate of 0.01 achieved
the greatest mAP value of 86.97. The subsequent learning rates
are 0.1, 0.001, 0.0001, and 0.00001, yielding mAP values of
85.78, 83.26, 82.33, and 62.54, respectively. The learning rate
of 0.01 was utilized in the subsequent experiment.

TABLE II. VARIOUS EXPERIMENT OUTCOMES LEARNING RATE
Learning Rate mAP Time (hour)
0.1 85.78 13.95
0.01 86.97 13.34
0.001 83.26 13.10
0.0001 8233 13.22
0.00001 62.54 13.20
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C. Kernel

In CNN, a kernel or filter operates on the input image by
performing convolution to process the data. This stage involves
extracting features from the image. The convolution applies a
stride kernel to a region of the image and computes the result
based on the image pixels and weights in terms of the feature
map. This subsection discusses the kemel experiment. The 3x3
and 4x4 kemels have been utilized. The 3x3 kemel
demonstrates a superior mAP value compared to the 4x4
kernel. The mAP values are 86.97 and 86.29. Consequently, a
3x3 kernel is suitable for this research.

VI. STRUCTURE EXPERIMENT

After completing the hyperparameter experiments outlined
in Section V. This section explains the experiment structure.
Three experiments are being conducted on the RepVGGBIlock
based on YOLO V6. The system comprises a CPU i9-
10900KF, 32GB of RAM, and an RTX 3080 10GB GPU.
Miniconda3 and Python 3.6 are software applications.
Subsection A. illustrates the various versions of YOLO when
generating models utilizing the data. Subsections B. to D.
analyzed three experiments.

A. Existing YOLO

Before developing the CNN structure, the model generated
with the existing CNN is active. YOLO V5, YOLO V6, YOLO
V7, and YOLO V8 are active. The image resolution of three
objects is 1280x720 pixels, processed with a batch size of 8
within 100 epochs. The outcomes of the four existing YOLO
models are presented in Table IIL

TABLEIII.  THREE OBJECTS DETECTION USING EXISTING YOLO
Architecture mAP
YOLO V5 74.50
YOLO V6 86.19
YOLO V7 61.30
YOLO V8 73.82

Table III presents the results for YOLO V5 to YOLO VS,
displaying mAP values of 74.50, 86.19, 61.30, and 73.82,
respectively. YOLO V6 has the greatest mAP value. YOLO
V5 and YOLO V8 are similar. YOLO V7 displays a lower
mAP compared to others. After that, the normalization process
was compared with four different batch sizes: 4, 8, 16, and 32.
The results gave mAP values of 82.70, 86.19, 86.98, and 87.38,
respectively. Batch size 32 displays the highest mAP. The next
batch size of 32 is employed in dropout regularization. There
are four dropout rates in running: 0.25, 0.50, 0.75, and 1.00.
The mAP values are 8540, 85.73, 85.15, and 3924,
respectively. The no dropout showed better results [48]. While
evaluating the results, the maximum mAP is 87.38, which is
minimal for the collected data. The improvement of the mAP
value in the backbone of YOLO V6 architecture is discussed in
the next subsection.

B. Horizon Block

The initial experiment construction is incorporating
Conv2d into the RepVGGBIlock. In the YOLO V6 architecture,

Vol. 16, No. 12, 2025

Conv2d operates before Batch Normalization (BN). The initial
experiment involves executing Conv2d subsequent to the BN
layer, as illustrated in Fig. 6. The outcome is presented in E.

RepVGGBlock

c_incl=c_outorsi=1

Conv2d Conv2d
k=3,s,p=1,c¢ | k=1, s, p=0, ¢
BN BN |
Conv2d ;
k=4s,p=1,c | i
BN
v...“.............A...........:+,7
Relu

Fig. 6. The newly introduced horizon module within the RepVGGBlock.

C. Vertical Block

This subsection examines the new vertical block in
RepVGGBIlock following the initial experiment. Conv2d is
already integrated with the Batch Normalization layer. The
other parameter is k=4x4. This layer typically has two Conv2d
and two BN layers; however, this experiment incorporated both
Conv2d and BN layers. The revised structure is depicted in
Fig. 7. The outcome as indicated in E.

RepVGGBIlock

c incl=c outorsi=1

...............................

Conv2d

ConVZd Conv2d | :
‘ k=3, s, p=1, c k=1, s, p=0, ¢ k=4s,p=1,c
BN BN BN
L
Relu

Fig. 7. The newly vertical module in RepVGGBIlock.

D. Pooling Layer

The SPPFBottleneck operates in the final layer of the
backbone. The YOLO V6 architecture operates on max
pooling. The final experiment utilized average pooling.
Compare the outcome as detailed in Table IV.
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width multiplier of 0.7 and a leaming rate of 0.001 yields the
highest mAP value 0f 90.01.

TABLEIV. THE MAP OF EXPERIMENT RESULTS FROM DIFFERENT
POOLING METHODS
Experiment Max Pooling Average Pooling
Original 86.13 86.60
Width Multiple 0.6 88.07 88.25
Width Multiple 0.65 88.73 88.89
Width Multiple 0.7 89.96 89.09
Width Multiple 0.7 with Learning Rate
Leaming Rate 0.1 89.38 89.19
Leaming Rate 0.01 89.96 89.09
Leaming Rate 0.001 89.38 88.89
Leaming Rate 0.0001 89.26 89.47

According to Table IV, a width multiple of 0.7 for max
pooling yields the greatest mAP value of 89.96. The
subsequent width multiples are 0.65 and 0.6, corresponding to
mAP values of 88.73 and 88.07, respectively. The average
pooling with a width multiplied by 0.7 achieves the maximum
mAP value 0f 89.09. Multiply 0.65 and 0.6 by 88.89 and 88.25.
The width is multiplied by 0.7 using max pooling for late
experiment learning. When evaluating the Learning Rate using
a width multiplier of 0.7 and max pooling, a leaming rate of
0.01 yields the greatest mAP value of 89.96. The learning rates
of 0.1 and 0.001 yield a mean Average Precision (mAP) value
01 89.38, while a learning rate of 0.0001 results in a mAP value
of 89.26. The learning rate of 0.0001 yields the highest mean
Average Precision (mAP) value of 8947 for average pooling.
The subsequent leaming rates are 0.1, 0.01, and 0.001, yielding
mAP values of 89.19, 89.09, and 88.89, respectively. In this
research, a maximum pooling width of 0.7 and a leaming rate
of 0.01 have been accepted as appropriate. Nevertheless, the
comprehensive outcomes of all experiments are elucidated in
subsection E.

E. Structure Experiment Result

This part examined all experiments in the Structure
Experiment which including the results of the inserted horizon
block, vertical block in RepVGGBIlock, and the application of
average pooling in SPPFBottleneck, as presented in sections
VLB. — VLD. The experiment commenced with the original
YOLO V6, utilizing a width multiplier of 0.5 and a learning
rate of 0.01. The two hyperparameters modified in this study
are presented in Table V. The experiment run consisted of 100
epochs using a machine equipped with an Intel i19-10900KF
CPU, 32GB of RAM, and an RTX 3080 10GB GPU.
Miniconda3 and Python 3.6 are software applications.
Experiment 3 presents the results of maximum pooling.

According to Table V, Experiment 1 involves a modified
horizon block within the RepVGGBlock. The outcome of a
width multiplier of 0.7 yields the maximum mAP value of
89.91. The width multiples of 0.65 and 0.6 yield mAP values
of 88.70 and 88.22, respectively. The width multiplied by 0.7
was effective for the learning rate experiment. The leaming
rate experiment with a width multiplier of 0.7 achieved the
greatest mAP value of 90.01 at a learning rate of 0.001. The
learning rates of 0.01, 0.0001, and 0.1 yield mAP values of
89.91, 89.51, and 89.27, respectively. The combination of a

TABLE V. THE MAP OUTCOMES OF MANY EXPERIMENTS
Experiment 1 Experiment 2 Experiment 3
Original 86.97 86.12 86.60
Width Multiple 0.6 88.22 88.07 88.25
Width Multiple 0.65 88.70 88.73 88.89
Width Multiple 0.7 89.91 88.97 89.09
Width Multiple 0.7 with Learning Rate
Leaming Rate 0.1 89.27 89.38 89.19
Learning Rate 0.01 89.91 88.97 89.09
Leamning Rate 0.001 90.01 89.69 88.89
Learning Rate 0.0001 89.51 89.26 89.47

Experiment 3 compared the average pooling layer in
SPPFBottleneck with max pooling. The width multiple of 0.7
for max pooling and a learning rate of 0.0001 yielded the
greatest mAP value of 89.47. Table V presents the results of
Experiment 3 conducted with max pooling.

Upon evaluating the maximum mAP value from three
experiments, Experiment 1, which utilized a width multiplier
of 0.7 and a learning rate of 90.01, exhibited the highest mAP
value. Experiment 2 achieved a mAP of 89.69 with a width
multiplier of 0.7 and a leaming rate of 0.001. Experiment 3
achieved a mAP of 89.47 when employing max pooling, a
width multiplier of 0.7, and a learning rate of 0.0001.
Ultimately, the modified horizon block in RepVGGBIlock, after
200 epochs, achieved a mAP value of 96.03, which is
conclusive for this research.

YOLO V6 employs RepVGGBIlock for object detection,
providing both high performance and speed. This study focuses
on specific convolution. The result is positive for objects with
specific boundaries. This is unsuitable given the road
conditions characterized by cracks, potholes, and manhole
covers. The three objects contain shapes, low sharpness, and
irregular borders, primarily aligned along the horizontal axis of
the road. Specifically, RepVGGBIlock misses an element of
context that clearly considers direction. This limits the ability
to represent the horizontal continuity necessary for accurate
identification of road conditions. Motivated by this limitation,
RoadSCNet enhances the fundamental architecture of
YOLOV6 by integrating a customized Horizon block with the
RepVGGBIlock to improve horizontal context learning efficacy
while preserving computational efficiency. Then when run the
new RoadSCNet model with 182 unseen data images which
collected in Phuket, the result shown 91.60% accuracy. As
displayed in Fig 8. The confusion matrix shows the model can
identify 64 cracks, 3 potholes, and 122 manhole covers. All
three objects include 72 cracks, 11 potholes, and 122 manhole
covers. The accuracy is 91.60% and the precision is 94.50%.
Then the model shows the performance to detect three objects.
An example of three objects when detected using the model as
shown in Fig. 9.
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Fig. 8. The confusion matrix when test model with unseen data.

Fig.9. Three examples when detected by RoadSCnet model.

The limitations of this investigation include window of the
car which resulted in erroneous detection, the blurred images
which made difficult the identification of the actual object, and
the limitaion of equipment caused in reduced operational
speed. Future work will focus on improving the mAP value and
decreasing the loss value of the model.

VII. CONCLUSION

This research introduces RoadSCNet, an innovative CNN
architecture that achieves a high mAP value for the dataset.
The evaluation of three hyperparameters showed dropout 0.6,
learning rate 0.01, and kemnel 4x4 yielded the greatest mAP
value. Subsequently, three distinct structures yield results for
modeling under three road conditions, incorporating the new
horizon block which demonstrates a superior mAP, followed
by the integration of vertical adjustments and pooling
modifications. The RoadSCNet enhances YOLO V6 by
incorporating the new horizon block within the
RepVGGBIlock. RoadSCNet outperforms classic YOLO V6
due to a greater ability to gather horizontal contextual
information, essential for identifying long cracks and rough
road conditions, including cracks pothole and manhole covers.
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