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Abstract—The quality of the road is an important issue that 

contributes to accidents, resulting in the loss of time, resources, 

and lives. To manually survey the road issue. This is very delayed 

and costly. Automatic detection of road conditions facilitates 

surveys more efficiently than human methods. This research 

identifies three objects: cracks, potholes, and manhole covers. 

This research shown the highest efficiency with YOLO V6 

compared to YOLO V5, V7, and V8. This paper proposes 

RoadSCNet, designed for YOLOv6 implementations, has been 

developed for road research. A key part is the customized 

Horizon block, which enhances horizontal contextual feature 

extraction efficacy and reduces the limitations of traditional 

YOLO architecture in identifying road surface condition by long 

and low light variation, such as cracks and potholes. 
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I. INTRODUCTION 

Road safety is a critical issue. Road accidents are the 
primary cause of loss of life and property. Improving 
monitoring for safety and driver assistance is important. The 
performance of pavement, covering surface friction and 
roughness, has been statistically associated with crash 
frequency and severity, highlighting the necessity for 
maintenance-based infrastructure design [1],[2]. Image 
Processing and Artificial Intelligence (AI) are methodologies 
employed to solve this issue. Object detection is crucial for 
effectively understanding the road environment. Road object 
detection is a critical and challenging area of research in 
computer vision, essential for Intelligent Transportation 
Systems (ITS), Advanced Driver-Assistance Systems (ADAS), 
and autonomous driving. The objective of many studies is to 
ascertain the position and boundaries of objects. For instance, 
automobiles, bicycles, and people. On the other hand, the 
inspection of roads and infrastructure is included. An example 
includes detecting potholes and evaluating road performance, 
which enhances safety and reduces accidents. Road object 
detection has numerous problems in real-life situations. For 
instance, poor brightness, cloudy conditions, and blocking by 
other objects. The previous method was limited by limitations 
in two-dimensional image processing techniques. Under 
situations where the roadway is missing of distinct markers or 
significantly obstructed. In recent years, deep learning has 
played a significant role in computer vision tasks. AI is a 
technology capable of learning, planning, problem-solving, and 
performing activities similar to those of humans. AI is widely 

utilized across various fields which enhancing labor efficiency. 
A dataset is essential for generating the model for each task. 
For instance, video, image, text, signal, etc. A convolutional 
neural network (CNN) is a component of deep learning that 
produces the suitable model for tasks. Typically encompassing 
categorization and object detection tasks. Examples of 
categorization in medical applications include generating 
models to diagnose diabetic retinopathy, identify cerebral 
microbleeds from MRI scans, and recognize abnormalities in 
lung X-ray images, among others. For object detection tasks, 
CNNs can automatically identify vehicles on the road, 
demonstrating superior speed and accuracy compared to 
manual methods. In the last ten years, the application of Deep 
Learning methods, especially CNN architectures, has 
significantly transformed the area of object detection. Two 
phase detection models for instance, Faster R-CNN provides 
superior accuracy, while single-stage models such as YOLO, 
SSD, and RetinaNet provide high processing rates for real-time 
applications, which are important for activities that depend on 
data from onboard cameras. However, though these high 
performance models, their real efficacy is based upon multiple 
factors. Including data set reliability, parameter selection, 
management of different situations, and performance on 
devices with limited processing resources. Other gap in road 
object detection research is the ability for domain adaptation to 
particular road issues, including urban, rural, or regionally 
distinct environmental features. Datasets frequently utilized, 
such as COCO, KITTI, or Waymo which are typically gathered 
from countries with particular environments, thus resulting in 
reduced efficiency when implemented in different situations. 
Moreover, specialized object detection tasks, such pothole 
recognition, road surface condition detection, and small object 
identification which remain underexplored because to missing 
of comprehensive, targeted datasets. Consequently, creating 
models capable of learning diversity from real data presents a 
significant difficulty in this domain. Current development 
trends in hardware systems focus both validation and real 
world testing to authenticate models that collect real data (real 
time inference) on limited hardware. For example, embedded 
systems or IoT devices in cars has the capability to process 
images from many data sources, such as RGB cameras, depth 
cameras, or LiDAR sensors. This strategy can substantially 
enhance detection accuracy. However, combining data from 
several sensors requires combining sensors using 
methodologies, which is increasing the system’s complexity. 
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In Thailand, road conditions significantly affect the 
performance of the system. Thailand features various road 
conditions, including heavily packed urban roads and narrow, 
uncertain community footpaths. This includes rural roads that 
often do not have suitable signs or lighting. The diversity and 
inconsistency of these road conditions present an enormous 
challenge for object detection programs. One common problem 
is the damaged road surfaces, including potholes, cracked 
asphalt, bridge joints, or subsidence resulting from flooding, 
which frequently occurs in multiple regions of the country. 
Particularly during the rainy season, these defects show 
different features and may be smaller in size, making object 
detection models trained on external datasets often ineffective 
in accurately identifying them. Consequently, detecting road 
surface degeneration is a critical research area within the Thai 
context, as it can mitigate accidents and facilitate preventive 
maintenance. The other issue is the unique features of road 
usage in Thailand, like motorcyclists mixing with cars and 
parking in unauthorized locations. Crossing the roadway at 
locations other than designated crosswalks, or in the path of 
temporary barriers such as barriers, traffic cones, or 
unregulated roadside vendors. These generate various and 
unexpected objects. Object detection under these conditions 
requires models capable of learning from real-world data 
supplied from Thailand for the highest level of accuracy. 
Moreover, the issue of traffic and warning sign systems on 
Thai roads is a barrier, as certain road signs might not be up to 
standards, may be hidden by trees, or may get old and faded. 
This complicates the detection of traffic signs using models 
trained on foreign datasets, particularly with temporary 
warning signs employed at construction sites. These often 
appear in many ways and lack standardization which important 
to driving safety so require detection. Moreover, the lighting 
conditions in various regions of Thailand, including rural roads 
missing of streetlights and urban roads light by vehicle 
headlights and visible advertising signs, result in issues of 
backlighting and reflection, which negatively affect the 
accuracy of object detection systems. Consequently, 
developing a model that can adapting different lighting 
conditions for application in Thailand. Traffic jams is a 
significant issue that results in time loss for individuals. An 
accident is an issue that results in the loss of lives and property. 
Accident causes include driver health issues, vehicle 
breakdowns, and road surface conditions. Examples of road 
surface abnormalities include potholes, road humps, irregular 
manhole covers, spaces between bridges and roads, bumpers, 
and cracks. An accident resulted in the loss of lives, time, and 
resources. However, the Department of Highways in Thailand 
often conducts manual road surveys and implements 
improvements. This method caused significant risks, 
expensive, and time-consuming. Deep learning can assist in 
resolving all issues. The government has opted for a survey of 
the road, which is efficient and cost-effective. Consumers can 
determine road surface quality and prevent accident risk. 
Entrepreneurs can minimize transportation costs through faster 
driving and a reduction in accidents. Current object detection 
CNNs, such as different versions of YOLO, may generate 
models for detecting road conditions [3],[4]. Nonetheless, the 
accuracy is not sufficient. 

Therefore, research in road object detection is a significant 
domain with considerable potential for development. This 
research examines object detection methodologies employing 
deep learning techniques. Evaluation of the model’s efficacy 
on actual road condition datasets, including an analysis of 
precision, speed and robustness to different environments. To 
develop a model that effectively matches the requirements of 
real road usage and can also provide a basis for future 
implementations in intelligent safety systems and autonomous 
cars. While YOLO-based detectors displayed strong efficacy in 
identifying general objects, they were not optimized for the 
detection of road surface and abnormalities. Cracks and 
potholes have long shapes, high horizontal continuity, and 
minimal class differentiation, frequently appearing segmented 
or partially ignored. Traditional convolution transform blocks 
are designed for small objects. This limitation necessitates 
structures that may more effectively identify horizontal data 
along road surfaces. This research is to customize the YOLO 
structure according to the data obtained in Phuket and 
Bangkok, Thailand. The novel CNN architecture is capable of 
accurately detecting three objects. The aim of this research is to 
create a model utilizing novel CNN for the detection of road 
objects, including cracks, potholes, and manhole covers. 
Subsequently, maintain it in the cloud. Subsequently, the pre-
processing phase is executed. Ultimately, to develop the road 
surface condition detecting model utilizing CNN. The model is 
capable of identifying three items on the roadway from video 
footage. This research contributions include 1) a novel CNN 
architecture for detecting road conditions that provides 
empirical evidence that implementing horizontal contextual 
features is essential for delicate detection of road surface 
condition, 2) suggested an adaptive architectural change for 
YOLOv6, which improves robustness in under real-world road 
condition, and 3) Additionally, provide outcomes from 
experiments utilizing Thai road datasets, demonstrating the 
limitations of conventional object detectors in detecting surface 
condition. 

The organization of this paper is as follows: Section II 
discusses the related work. Section III presents the research 
methodology, encompassing data collecting, frame extraction, 
and object labeling. Section IV explains the novel CNN 
architecture termed “RoadSCNet”. The subsequent section, 
Section V, addresses the experiment results concerning three 
hyperparameters which are dropout, learning rate, and kernel. 
Section VI presents an experiment including three structures: 
the modified horizon block, vertical block, and pooling layer. 
Subsequently, analyze the structural experiment results. This 
part facilitates the implementation of a revolutionary CNN 
architecture. The conclusion is located in Section VII. 

II. RELATED WORKS 

This section described previous research. Beginning with 
image preprocessing, which is necessary for the preprocess of 
object detection. Cleaning datasets or managing data is the 
initial stage. Subsequently, the task involves separating or 
labelling data. The cleaned data is utilized in the model 
generation phase. The object detection Evolution is detailed in 
Section II(A). The next step is to generate the model. CNN is 
appropriate for this step, as numerous CNNs have been utilized 
in previous research, as detailed in Section II(B). The next 
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discussion relates to object detection on the road, as outlined in 
Section II(C). The last section for evaluating the theoretical 
framework of the approach is detailed in Section II(D). 

A. Object Detection Evaluation 

The preprocessing phase occurs before the generation of 
the object detection model, whether using traditional or deep 
learning methods. Examples of data collection equipment 
include cameras, smartphones, stereos, LiDAR, and others. 
This section discusses various techniques employed in the 
preprocessing phase, including lane detection and road surface 
analysis. 

Before the development of deep learning, object 
recognition tasks mainly utilized classical image processing 
and computer vision methodologies, including edge detectors, 
corner detectors, and sliding windows. The Canny edge 
detector is employed to identify edges in images, providing the 
fundamental structure of objects. The Harris corner detector is 
another instance that identifies significant corners inside an 
image. Furthermore, a HOG (Histogram of Oriented Gradients) 
descriptor is employed, which defines the attributes of objects 
by aggregating the gradient directions in segmented regions of 
the image, for use in object classification and detection tasks. 
In classical learning, cascading classifiers, such as Viola-Jones, 
utilize Haar features and a cascade classifier for sliding 
window detection. These approaches display accuracy in 
controlled environments. For example, identifying faces in 
static photographs which although display several 
limitations—suboptimal performance on complex images, 
dependence on manually designed features, and limited 
generalization over a wide range of objects. Many research 
worked on image processing. image Quality Enhancement is 
the standard technique to help reducing noise and increasing an 
accuracy. The smoothing and filtering technique worked on 
Gaussian or Median filter [3]. Next technique is Brightness and 
Contrast Adjustment which working on Histogram 
Equalization (HE) and Recursively Separated and Weighted, 
Histogram Equalization (RSWHE) and Gamma Correction. 
(RSWHE) and Gamma Correction used to solve the Mean 
Shift problem [4]. Color transformation has to convert the 
image to grayscale to reduce complex calculations and 
decrease processing time. The HSV (Hue, Saturation, Value) or 
Lab transformation is employed in segmentation tasks that 
focus on color properties. This method employed in traffic sign 
recognition [5],[6]. Dark Channel Prior (DCP) or Temporal 
Correlations are employed to decrease fog and dehazing in the 
management of weather or illumination handling. 
Subsequently, Otsu’s technique or Adaptive Thresholding is 
employed to automatically convert the image to binary before 
doing contrast adjustment [3]. The limiting of the Region of 
Interest (RoI) is useful in minimizing the quantity of complex 
data and computational complexity. In spatial division, the RoI 
will be separated from the background. One strategy applied to 
reduce computational complexity and improve accuracy in 
various contrast images is Adaptive Region of Interest (ARoI). 
Horizon line detection is a technique in ARoI utilized to divide 
the scene into road and sky regions. [3],[7]. Subsequently, edge 
detection and feature extraction are employed to identify the 
characteristics of geometry, road surfaces, or objects. This 
technique is necessary for traditional vision-based method. The 

Sobel and Canny operators are widely utilized approaches. 
Sobel is utilized more frequently than Canny and Prewitt due 
to both lower complexity and greater resistance to interference. 
Canny has incredible accuracy in identifying borders and 
positions [3], [8]. A method for edge detection is binarization, 
specifically Otsu’s thresholding. This method aims to 
automatically identify parameters for separating background 
and foreground, hence reducing computation time and 
managing brightness [3]. One feature extraction technique is 
the Histogram of Oriented Gradients (HOG), which utilizes 
edge characteristics for feature extraction. This algorithm 
functions for detected traffic signs. [9],[10]. To improve binary 
image, Morphological processing is used to remove noise. An 
example are corrosion, expansion, open operation, and closed 
operation, etc. [9]. Image resizing is used to set up image 
dimensions for deep learning preparation. For instance, 32x32, 
256x256, etc., this technique operates before training with 
CNN. The subsequent step involves identifying the RoI before 
cropping, concentrating only on the RoI area. The multi-
channel input operates using transfer learning on the RGB 
model, example by ImageNet. The gray Computed 
Tomography (CT) picture is converted to three dimensions and 
utilized in the model [11],[12],[13]. 

Since the development of CNN, object detection has 
entered a new phase, utilizing CNNs as feature extractors. 
RCNN (Region-based CNN) is a critical advancement, 
employing a selective search technique for region proposals 
which is generating object region proposals and inputting each 
area into a CNN for classification and bounding box 
improvement. This was created by Ross Girshick and his crew. 
However, R-CNN is limited by slow progress due to the 
processing tens or hundreds of region proposals per image. 
Fast RCNN operates more efficiently by initially convolving 
the full image, subsequently extracting proposal points by RoI 
pooling to identify regions from the feature map, and also 
executing classification and regression, therefore minimizing 
the number of steps involved [14]. Subsequently, Faster RCNN 
incorporated a Region Proposal Network (RPN) into the CNN, 
facilitating expedited and more efficient region proposal 
creation by the utilization of convolutional characteristics 
shared between the RPN and the detection head [15]. The R-
CNN Series approach, which consists of two steps: proposal 
and classification, achieves excellent accuracy. However, the 
limitations include significant delay and making real-time 
application challenging [16]. After the success of the R-CNN 
Series which remains limited in speed. Consequently, the 
notion of a “single shot detector” or “single-stage detector” 
which avoids the need to segregate suggestions and classify in 
a separate phase. An example is the Single Shot MultiBox 
Detector (SSD), which employs a singular network, segments 
the feature map at various scales, and simultaneously predicts 
bounding boxes and classifications for multiple default box 
configurations and aspect ratios, thereby allowing the SSD to 
identify objects with multiple sizes within a single image 
without requiring separate region proposals. SSDs have fast 
performance and excellent accuracy, make more appropriate 
for real-time applications compared to two-stage methods [17]. 
In 2015-2016, Redmon et al., introduced the You Only Look 
Once (YOLO) model as a novel approach which 
conceptualizes object detection as a regression problem rather 
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than generating proposals and classifying them separately. 
Both the bounding box prediction and class probability are 
executed within a singular network by processing all input 
images in one pass. YOLO divides the image into grids, with 
each grid predicting a bounding box and a class at once, 
resulting in high speed. The first model achieved 
approximately 45 frames per second. The benefits include low 
latency and comprehensive learning which including 
simultaneous training of bounding box and classification. A 
disadvantage is might have lower localization accuracy 
compared to proposal-based models, particularly for small 
objects [18]. YOLOv2 or YOLO9000 improves YOLOv1 with 
the addition of batch normalization, an increase in input 
resolution, and the utilization of anchor boxes to improve 
bounding accuracy. This includes joint classification and 
detection utilizing ImageNet and COCO datasets for training, 
allowing multi-category detection over more than 9,000 classes 
[19]. YOLOv3 enhances the backbone network, employs 
multi-scale prediction (three levels) to more effectively detect 
small, medium, and large objects, and utilizes a logistic 
classifier instead of softmax for class prediction. After that, 
YOLOv4, YOLOv5, and others were introduced for improving 
both accuracy and speed. Each model has an improved 
backbone architecture, optimized loss function, and advanced 
data training/augmentation techniques to better accommodate 
real-world applications. YOLO changed object detection by 
proving the feasibility of real-time detection using a single-
stage neural network, independent of external region proposals. 
The YOLO model is widely utilized in applications 
necessitating real-time processing, including surveillance 
systems, driverless vehicles, and CCTV. Furthermore, the 
YOLO (single network, end-toend) concept has inspired the 
development of other models that enhance the speed and 
accuracy trade-off such as SSD, RetinaNet, and several YOLO 
variants. The deep learning evolution as  shown in Fig. 1. 

 
Fig. 1. Evaluation of Object Detection, begin classification image processing 

until YOLO object detection. 

Object detection initiates with traditional image processing 
techniques, including edge detection, corner detection, 
Histogram of Oriented Gradients (HOG), and cascade 
classifiers. Continuing with the R-CNN series, which covers R-
CNN, Fast R-CNN, and Faster R-CNN. Thus, YOLO is a 
single-stage detector, similar to SSD. Several versions of 
YOLO are currently operational. 

B. CNN Object Detection 

Object detection is an important component of computer 
vision that has gained popularity in recent years. This can 
analyze video, recognize images, and be applied in everyday 
life. For instance, autonomous driving, drone and robotics 
analysis, and safety surveillance, among others. The aim of 
object detection is to identify the localization of objects (object 
localization) and to classify object types (object classification). 
Object identification is a subset of deep learning that enhances 
the accuracy and speed of computer learning. Machine 
Learning is a method for creating models that operate 
autonomously. The handcrafted features and shallow trainable 
architectures were utilized. Initially, the selection of 
informative regions is conducted by scanning images with 
multiple sizes of sliding windows. Subsequently, feature 
extraction is conducted using SIFT, HOG, Haar-like features, 
among others. The classification is enhanced by methods such 
as SVM and AdaBoost. Deep Learning (DL) is a more 
advanced technique than machine learning. Neural networks 
can enhance model performance [20], [21]. Convolutional 
Neural Networks (CNNs) are utilized to create models with 
various architectures. The CNN architecture combines One-
stage and Two-stage Detectors. The two-stage detector 
employs Regions with CNN features (RNN) as the principal 
model, demonstrating the efficiency of CNN in object 
detection. RNN employs a bottom-up approach for locating 
positions and objects within images. Subsequently, obtain the 
region suggestion by selective search and compute the features 
using a convolutional neural network (CNN). Subsequently, 
categorize the region type utilizing Support Vector Machine 
(SVM) methodology. This procedure is time-consuming and 
presents a bottleneck issue. This study achieves a mAP of 
53.30% utilizing the PASCAL VOC 2012 dataset. The model 
generated by VGG16 achieved a mAP of 66.00% on the VOC 
Convolutional Networks (SPP-net) addresses the bottleneck 
issue of R-CNN by employing a Spatial Pyramid Pooling layer 
(SPP layer) in its final layer. Consequently, CNN can process 
input and output images of a fixed dimension. SPP-net (ZF) 
achieves a mAP of 60.9% on the VOC 2007 dataset [23]. Fast 
R-CNN enhances R-CNN and SPP-net by end-to-end training 
that integrates area selection, feature extraction, and 
classification. The VOC 2007 test set achieved a mAP of 
70.00% [15]. Subsequently, Faster R-CNN is executed on Fast 
R-CNN utilizing the Region Proposal Network (RPN) instead 
selective search. This method generates region proposals from 
the features of a CNN RPN and predicts box regression (reg) 
and box classification (cls) using a sliding window approach. 
The results indicate a mAP of 83.80% [24]. Mask R-CNN is 
the instance segmentation framework that extends Faster R-
CNN. Mask R-CNN achieves an Average Precision (AP) of 
39.8% on the COCO test set [25]. The R-FCN, or Region-
based Fully Convolutional Networks, achieves a mean Average 
Precision (mAP) of 85.00% on the VOC 2012 test set [26]. 

One-stage detectors, such as the Single Shot MultiBox 
Detector (SSD), perform classification and bounding box 
regression immediately. SSD300 has a mAP of 79.60%, 
whereas SSD512 demonstrates a mAP of 81.60% when 
evaluated on the VOC 2007 test set. SSD512 exhibits a mean 
mAP of 81.60%. Feature Pyramid Networks (FPN) are utilized 
for the extraction of features across diverse data sizes [17]. 
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YOLO (You Only Look Once) is a famous real-time object 
detection model known for its speed and accuracy. YOLO V1 
is the first end-to-end real-time object detection model [18]. 
YOLO V2 (YOLO9000) operates on the Darknet-19 backbone, 
employs batch normalization, utilizes anchor boxes for 
predictions, and includes a passthrough layer for feature 
extraction [27]. YOLO V3 employs the Darknet-53 backbone 
which is larger than the backbone utilized in YOLO V2. 
Bounding box prediction employs logistic regression and three 
sizes of multi-scale predictions. All operations involving the 
SPP block [28]. YOLO V4 was created for fast and accurate 
performance. The Bag of Freebies and the Bag of Specials are 
utilized to enhance performance and combine a receptive field. 
The backbone is CSPDarknet53. The SPP module, PANet path 
aggregation neck, and YOLO V3 head are processed [29]. 
YOLO V5 utilizes a modified CSPDarknet53 as backbone 
commencing with a Stem and SPPF (Spatial Pyramid Pooling 
Fast) layer. This facilitated rapid accuracy. The auto anchor 
verifies and enhances anchor boxes [30]. YOLO V6 is the 
suitable framework for industry applications. The EfficientRep 
backbone (RepBlock/RepConv) has been processed. The 
quantization employs GloU (Generalized IoU), Clou 
(Complete-IoU Loss), Slou loss, self-distillation, and channel-
wise distillation [31]. YOLO V7 utilized the Extended 
Efficient Layer Aggregation Network (E-ELAN) and 
RepConvN, which lacks identity connections. YOLO V8 
modified C3 to C2f and implemented 3x3 convolution [31] - 
[33]. In addition to YOLO, Pelee is a real-time object detection 
framework for mobile devices utilizing PeleeNet. PeeleeNet is 
produced using traditional convolution rather than depthwise 
separable convolution with SSD Pelee [34].  

C. Road Object Detection 

Numerous studies on road surface conditions utilize video 
and imagery. The model identified a road traffic sign utilizing 
Support Vector Machine (SVM) technology. This is classified 
and identified in the video. The Histogram of Oriented 
Gradients (HOG) is utilized to extract features previous to 
model generation [9]. Traffic light recognition employs image 
processing techniques based on color segmentation and the 
Hough transform for circles. Machine learning is utilized to 
generate the model. This model was designed to identify the 
traffic light in the autonomous vehicle [6]. Utilization of 
Helmets Detection on motorcycles is an important part of their 
widespread usage. YOLO V3 and multi-task learning are 
employed for helmet detection. Positional Encoding (PE) 
resolved the issue of class imbalance in this research, resulting 
in PE is better than the class-balanced loss [35],[36],[37]. 
Advanced Driver-Assistance Systems (ADAS) contain a 
collection of sensors, cameras, and other technologies within 
the vehicle that enhance driving safety and convenience. 
ADAS and safety alerts contribute to accident reduction 
studies. The Collision Avoidance System utilized the Google 
TensorFlow Object Detection (GTOD) API to build a driving 
safety alert and real-time vehicle detection, trained using the 
Microsoft Common Objects in Context (COCO) dataset [38]. 
Then the motorcycle curve warning presented the curve alert 
system including the intra-lane localization and roll angle 
estimation using CNN. The industry standard maps is used for 
improve an accuracy [39]. The pothole was detected using 
thermal imaging captured by a FLIR ONE camera. The 

principle that the temperature of the pothole is lower than that 
of the surrounding road because of water retention. This 
research performed effectively at night, during rain, and in fog, 
remaining unaffected by light, exhibiting a high response time, 
lower energy consumption, and reduced costs compared to 
laser-based techniques. The training with the ResNet101 model 
achieved an accuracy of 97.08% [40]. A pothole detecting 
system was developed for road surfaces to help blind people 
utilizing Convolutional Neural Networks (CNN) and the 
KITTI dataset. This system achieved an accuracy of 97.12% 
[11]. Numerous CNN models have been trained to detect 
potholes, including Inception v4, Inception ResNet v2, ResNet 
v2 152, and MobileNet v1. An accuracy above 96%. The 
grayscale image can be utilized in this research [14]. Crack 
detection is performed automatically using CNN on images 
captured by smartphones, employing YOLO and SSD 
methodologies [41],[42]. Research to present a 3D map as the 
outcome. The SSD can develop a model to detect potholes and 
humps by utilizing data collected from a Raspberry Pi, GPS 
module, and camera [43]. The video data is utilized to identify 
cars, trucks, and buses using Faster R-CNN in comparison to a 
mixture of Gaussian (MoG) background subtraction and SVM 
vehicle classification. The results indicated that Faster RCNN 
exhibited superior performance [44]. Furthermore, the 
accelerometer, gyroscope, and GPS in smartphones gather data 
that is utilized with machine learning to classify multiple 
categories, including smooth roads, potholes, and deep 
transverse cracks. The three feature axes of the sensor provide 
more accuracy, precision, and recall compared to a single axis 
[45]. In addition, the fog and darkness decreased the driver’s 
visibility, presenting a problem that must be resolved for 
safety. Recursively Separated and Weighted Histogram 
Equalization (RSWHE) and Gamma Correction techniques 
were worked to increase the image and video performance. 
Detecting road surfaces at night can be achieved using the 
headlights of a vehicle [4], [46]. The summary table of 
techniques for road condition detection is presented in Table I. 

TABLE I.  SUMMARY OF THE ROAD CONDITION DETECTION TECHNIQUES 

Method Techniques 

Data Collector Smartphone, Video, Camera, Raspberry Pi, GPSmodule 

Data Preparation 
Frame extraction, Lane detection, Labelling, Image 

processing 

Model 

Generation 

YOLO, Faster R-CNN, ResNet, Inception, MobileNet, 

SSD, SVM, HOG 

D. Evaluation 

In object detection and classification, evaluation is crucial 
to evaluating performance during the development and 
maintenance phases. The object detection task needs to allow 
for both localization accuracy and classification accuracy. The 
confusion matrix, Intersection over Union (IoU), and mean 
Average Precision (mAP) are widely utilized metrics. 

The Confusion Matrix is a fundamental instrument to 
evaluate the accuracy of a classification model by comparing 
the actual class with the predicted class. There are four values 
in a confusion matrix. A True Positive (TP) occurs when a 
prediction is positive and the actual outcome is also positive. A 
True Negative (TN) occurs when a prediction is negative and 
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the actual outcome is also negative. A False Positive (FP) 
occurs when a prediction indicates a positive result when the 
actual outcome is negative. A False Negative (FN) occurs 
when a prediction is negative while the actual outcome is 
positive. Subsequently, these four variables are utilized to 
compute additional values below.  

Accuracy is the proportion of correct predictions, which 
may be calculated using Eq. (1). 

Accuracy =
𝑇𝑃+𝑇𝑁

TP+TN+FP+FN
                       () 

Precision refers to the quality of a model concerning 
positive precision. The precision is illustrated in Eq. (2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

TP+FP
                           () 

Recall assesses the efficacy of a model in predicting 
positive results. The value of recall can be calculated using Eq. 
(3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

TP+FN
                           () 

The F1-score is the harmonic mean of precision and recall, 
serving as a singular metric to assess model performance. The 
F1-score equation is shown in Eq. (4). 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
                   () 

In the object detection job, the Intersection over Union 
(IoU) serves as the localization measure that compares the area 
between the predicted bounding box and the ground truth 
bounding box. The IoU equation is illustrated in Eq. (5). 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

Area of Union
                          () 

Then Area of Overlap is two boxes overlap area. And Area 
of Union is total area of both boxes. 

The IoU value ranges from 0 to 1. If the IoU is greater than 
or equal to 0.5, determine it as a true detection (True Positive). 
The higher IoU mean predicts the bounding box’s closer to the 
object’s actual position.  

Normally in object detection task has multiple object type 
and different confidence score. The average precision (AP) is 
measure model performance for each class and calculate by 
Precision-Recall Curve. After that calculate average AP of all 
class that is mean Average Precision (mAP) as calculate by Eq. 
(6). 

𝑚𝐴𝑃 =
1

N
 ∑ 𝐴𝑃𝑖

𝑁
𝑖=1                          (6) 

N represents the total number of classes, while APi is the 
average precision for class i. The mAP summarizes the 
model’s performance in object detection and classification over 
all objects. 

III. RESEARCH METHODOLOGY 

This section described the methods employed in this 
research. Subsection A. presents the framework, which 
includes an overview of the research. The subsequent step is 
the preprocessing phase which involves data collection and 
frame extraction. Frame extraction can divide the video dataset 

into multiple images, which is the initial important phase as 
illustrated in subsection B. The following procedure is object 
labelling, which enables the model to recognize the item as 
illustrated in C. 

A. Framework 

This section described the research framework. Data was 
gathered from May 2020 to September 2021 in Phuket and 
Bangkok, Thailand. The smartphone is a collection instrument 
mounted to the vehicle’s windshield. All data belongs in cloud 
storage. The video data is segmented into numerous frames 
with the frame extraction technique. The work involves image 
labelling, which encompasses cropping and identifying each 
object within all images. Laberu is an appropriate tool for this 
stage. This is a novel labelling tool created by our team. This 
study examines cracks, potholes, and manhole covers. 24,276 
frames are utilized for labelling. The XML file provides the 
result of the labelling phase. The object detection model is built 
using a novel CNN customized on the backbone of YOLO V6. 
The research framework is illustrated in Fig. 2. 

 
Fig. 2. Framework for the development of novel CNN architectures. 

B. Data Collection and Frame Extraction 

The initial phase of this research has involved the collection 
of video data. The equipment of this research is the 
smartphone. The smartphone was installed on the windshield 
of the vehicle operating on the roads of Phuket and Bangkok 
from May 2020 to September 2021. The total distance is 
1,118.13 kilometers. 125 videos had collected a total duration 
of 134,176 seconds. Subsequently, the frame extraction goes 
into processing. This phase involves separating all of the video 
into multiple images. The quantity of data collected, 

Data Collecting 

Pre-processing Process 

Frame Extraction Object Labelling 

Object Detection Model 

Model Generation 

Structure Development 
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comprising 125 videos with a total duration of 134,176 
seconds. Following the frame extraction process, a total of 
1,341,760 frames were obtained. Selected 31,803 frames 
containing three objects. Ultimately, 24,276 frames were 
selected for the subsequent stage. 

The data categories are identified as three objects inspected 
by the Department of Highways in Thailand. This investigation 
encompasses crack, pothole, and manhole cover. An example 
of manhole cover after extended from video as shown in Fig. 3. 

C. Object Labelling 

This subsection explained the process of object labelling. 
The step is to separate and select all three objects. This phase 
was successful when the video was captured and the frame was 
extracted. This process employs three tools. LabelMe and 
LabelImg are universal labelling tools. Labelru is the labeling 
tool developed by our research team. This research is 

designated by Labelru. This tool allows for multiple users 
immediately. Fig. 4 illustrates an example of each object post-
labeling. The object’s name and its position are indicated 
within the red rectangle. 

 
Fig. 3. The image including Manhole cover extracted from the video. 

 
Fig. 4. An example of a labelled XML file, red rectangle show object name and coordinates.

IV. ROAD SURFACE CONDITION DETECTION NETWORK 

Convolutional Neural Network (CNN) is the popular 
technique to generate a model to detect an object. At the time, 
there are many CNN structure work for classification and 
object detection work. The concept of CNN is learning similar 
the human brain, CNN is in the bio-inspire group. The object 
detection works base on classification and object detection 
[22]. 

This section presents Road Surface Condition Detection, or 
RoadSCNet. This section explores the novel framework for the 
object detection job. YOLO is a renowned convolutional neural 
network design utilized for object detection tasks. Numerous 
iterations of YOLO exist, ranging from YOLO V1 to YOLO 
V8, together with YOLONas, developed from 2016 to the 
present. This research focuses on YOLO V6 and a novel CNN 
called “RoadSCNet” which is based on this version. 

RoadSCNet is a novel convolutional neural network derived 
from YOLO V6. Typically, YOLO V6 is suitable for fast and 
accurate real-time object recognition. There are multiple 
versions of YOLO V6: YOLO V6-n, YOLO V6-S, YOLO V6-
M, YOLO V6-L, and YOLO V6-tiny. YOLO V6-tiny is 
compact and suitable for IoT or mobile applications. The 
structure of YOLO V6 is illustrated in Fig. 5. 

The architecture of the YOLO V6 backbone has five 
RepVGGBlock layers, four BepC3StageBlock layers, and 
concludes with an SPPFBottleneck. The kernel sizes 4x4. The 
BN layer refers to the batch normalization layer which 
enhances the mean and standard deviation of the activation 
output from the layer above. The appropriateness and stability 
of the mean and standard deviation facilitate the training of a 
more stable and effective model. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

947 | P a g e  
www.ijacsa.thesai.org 

 
Fig. 5. The architecture of YOLO V6. The red rectangle on the RepVGGBlock indicates the position for block customization. Figure is based on study [47] 

V. HYPERPARAMETER EXPERIMENT 

This part offered the experiment results and comments 
regarding hyperparameters. Video data was taken using a 
smartphone mounted on the windshield of the car. Data was 
obtained in Phuket and Bangkok, Thailand. The initial pre-
processing stage involved frame extraction, which converted 
the video into several images. Subsequently, every three 
images were selected for the following step. The object 
labelling was subsequently processed. During the labelling 
phase, the novel labelling tool in this research, named 
“Labelru” received approval. This tool can be labelled by 
multiple users simultaneously. The produced model was 
enhanced. The experiment has dropout, learning rate, and 
kernel which are as mentioned in subsection A - C. The 
experiment setup utilizes a computer equipped with an i9-
10900KF CPU, 32GB of RAM, and an RTX 3080 10GB GPU. 
Miniconda3 and Python 3.6 are software applications. 

A. Dropout 

Overfitting is a challenge encountered throughout the 
model training process. The method employed to reduce the 
overfitting issue is dropout. The dropout layer randomly 
deactivates certain neurons within that layer. This strategy 
enables the model to learn by distributing tasks among other 
neurons, hence enhancing its performance when predicting 
fresh datasets. The experiment with four dropouts is analyzed 
below using the mAP value. This research focused on dropout 
rates 0.2, 0.4, 0.6, and 0.8. The outcome with a dropout of 0.6 
yielded a mAP value of 86.97. The subsequent dropout values 
are 0.2, 0.4, and 0.8 yielding mAP values of 86.41, 86.30, and 
85.62, respectively. Subsequently, a dropout rate of 0.6 was 

employed in the subsequent experiment learning rate as 
delineated in subsection B. 

B. Learning Rate 

The learning rate is a hyperparameter that controls weights 
and biases of the model. In each iteration of the training 
process, the learning rate is multiplied by the gradient to adjust 
the weights and minimize loss. Particularly in Gradient 
Descent training. If the learning rate is excessively high, the 
model will set the weights and biases in an unstable manner 
during training. The low learning rate results in minimal 
weight and bias adjustments which are leading to protracted 
and time-intensive training. This section elucidates the learning 
rate experiment. The values are 0.1, 0.01, 0.001, and 0.00001. 
The outcome is presented in Table II. 

According to Table II, the learning rate of 0.01 achieved 
the greatest mAP value of 86.97. The subsequent learning rates 
are 0.1, 0.001, 0.0001, and 0.00001, yielding mAP values of 
85.78, 83.26, 82.33, and 62.54, respectively. The learning rate 
of 0.01 was utilized in the subsequent experiment. 

TABLE II.  VARIOUS EXPERIMENT OUTCOMES LEARNING RATE 

Learning Rate mAP Time (hour) 

0.1 85.78 13.95 

0.01 86.97 13.34 

0.001 83.26 13.10 

0.0001 82.33 13.22 

0.00001 62.54 13.20 
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C. Kernel 

In CNN, a kernel or filter operates on the input image by 
performing convolution to process the data. This stage involves 
extracting features from the image. The convolution applies a 
stride kernel to a region of the image and computes the result 
based on the image pixels and weights in terms of the feature 
map. This subsection discusses the kernel experiment. The 3x3 
and 4x4 kernels have been utilized. The 3x3 kernel 
demonstrates a superior mAP value compared to the 4x4 
kernel. The mAP values are 86.97 and 86.29. Consequently, a 
3x3 kernel is suitable for this research. 

VI. STRUCTURE EXPERIMENT 

After completing the hyperparameter experiments outlined 
in Section V. This section explains the experiment structure. 
Three experiments are being conducted on the RepVGGBlock 

based on YOLO V6. The system comprises a CPU i9-
10900KF, 32GB of RAM, and an RTX 3080 10GB GPU. 
Miniconda3 and Python 3.6 are software applications. 
Subsection A. illustrates the various versions of YOLO when 
generating models utilizing the data. Subsections B. to D. 
analyzed three experiments. 

A. Existing YOLO 

Before developing the CNN structure, the model generated 
with the existing CNN is active. YOLO V5, YOLO V6, YOLO 
V7, and YOLO V8 are active. The image resolution of three 
objects is 1280x720 pixels, processed with a batch size of 8 
within 100 epochs. The outcomes of the four existing YOLO 
models are presented in Table III. 

TABLE III.  THREE OBJECTS DETECTION USING EXISTING YOLO 

Architecture mAP 

YOLO V5 74.50 

YOLO V6 86.19 

YOLO V7 61.30 

YOLO V8 73.82 

Table III presents the results for YOLO V5 to YOLO V8, 
displaying mAP values of 74.50, 86.19, 61.30, and 73.82, 
respectively. YOLO V6 has the greatest mAP value. YOLO 
V5 and YOLO V8 are similar. YOLO V7 displays a lower 
mAP compared to others. After that, the normalization process 
was compared with four different batch sizes: 4, 8, 16, and 32. 
The results gave mAP values of 82.70, 86.19, 86.98, and 87.38, 
respectively. Batch size 32 displays the highest mAP. The next 
batch size of 32 is employed in dropout regularization. There 
are four dropout rates in running: 0.25, 0.50, 0.75, and 1.00. 
The mAP values are 85.40, 85.73, 85.15, and 39.24, 
respectively. The no dropout showed better results [48]. While 
evaluating the results, the maximum mAP is 87.38, which is 
minimal for the collected data. The improvement of the mAP 
value in the backbone of YOLO V6 architecture is discussed in 
the next subsection. 

B. Horizon Block 

The initial experiment construction is incorporating 
Conv2d into the RepVGGBlock. In the YOLO V6 architecture, 

Conv2d operates before Batch Normalization (BN). The initial 
experiment involves executing Conv2d subsequent to the BN 
layer, as illustrated in Fig. 6. The outcome is presented in E. 

 
Fig. 6. The newly introduced horizon module within the RepVGGBlock. 

C. Vertical Block 

This subsection examines the new vertical block in 
RepVGGBlock following the initial experiment. Conv2d is 
already integrated with the Batch Normalization layer. The 
other parameter is k=4x4. This layer typically has two Conv2d 
and two BN layers; however, this experiment incorporated both 
Conv2d and BN layers. The revised structure is depicted in 
Fig. 7. The outcome as indicated in E. 

 
Fig. 7. The newly vertical module in RepVGGBlock. 

D. Pooling Layer 

The SPPFBottleneck operates in the final layer of the 
backbone. The YOLO V6 architecture operates on max 
pooling. The final experiment utilized average pooling. 
Compare the outcome as detailed in Table IV. 
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TABLE IV.   THE MAP OF EXPERIMENT RESULTS FROM DIFFERENT 

POOLING METHODS 

Experiment Max Pooling Average Pooling 

Original 86.13 86.60 

Width Multiple 0.6 88.07 88.25 

Width Multiple 0.65 88.73 88.89 

Width Multiple 0.7 89.96 89.09 

Width Multiple 0.7 with Learning Rate 

Learning Rate 0.1 89.38 89.19 

Learning Rate 0.01 89.96 89.09 

Learning Rate 0.001 89.38 88.89 

Learning Rate 0.0001 89.26 89.47 

According to Table IV, a width multiple of 0.7 for max 
pooling yields the greatest mAP value of 89.96. The 
subsequent width multiples are 0.65 and 0.6, corresponding to 
mAP values of 88.73 and 88.07, respectively. The average 
pooling with a width multiplied by 0.7 achieves the maximum 
mAP value of 89.09. Multiply 0.65 and 0.6 by 88.89 and 88.25. 
The width is multiplied by 0.7 using max pooling for late 
experiment learning. When evaluating the Learning Rate using 
a width multiplier of 0.7 and max pooling, a learning rate of 
0.01 yields the greatest mAP value of 89.96. The learning rates 
of 0.1 and 0.001 yield a mean Average Precision (mAP) value 
of 89.38, while a learning rate of 0.0001 results in a mAP value 
of 89.26. The learning rate of 0.0001 yields the highest mean 
Average Precision (mAP) value of 89.47 for average pooling. 
The subsequent learning rates are 0.1, 0.01, and 0.001, yielding 
mAP values of 89.19, 89.09, and 88.89, respectively. In this 
research, a maximum pooling width of 0.7 and a learning rate 
of 0.01 have been accepted as appropriate. Nevertheless, the 
comprehensive outcomes of all experiments are elucidated in 
subsection E. 

E. Structure Experiment Result 

This part examined all experiments in the Structure 
Experiment which including the results of the inserted horizon 
block, vertical block in RepVGGBlock, and the application of 
average pooling in SPPFBottleneck, as presented in sections 
VI.B. – VI.D. The experiment commenced with the original 
YOLO V6, utilizing a width multiplier of 0.5 and a learning 
rate of 0.01. The two hyperparameters modified in this study 
are presented in Table V. The experiment run consisted of 100 
epochs using a machine equipped with an Intel i9-10900KF 
CPU, 32GB of RAM, and an RTX 3080 10GB GPU. 
Miniconda3 and Python 3.6 are software applications. 
Experiment 3 presents the results of maximum pooling. 

According to Table V, Experiment 1 involves a modified 
horizon block within the RepVGGBlock. The outcome of a 
width multiplier of 0.7 yields the maximum mAP value of 
89.91. The width multiples of 0.65 and 0.6 yield mAP values 
of 88.70 and 88.22, respectively. The width multiplied by 0.7 
was effective for the learning rate experiment. The learning 
rate experiment with a width multiplier of 0.7 achieved the 
greatest mAP value of 90.01 at a learning rate of 0.001. The 
learning rates of 0.01, 0.0001, and 0.1 yield mAP values of 
89.91, 89.51, and 89.27, respectively. The combination of a 

width multiplier of 0.7 and a learning rate of 0.001 yields the 
highest mAP value of 90.01. 

TABLE V.  THE MAP OUTCOMES OF MANY EXPERIMENTS 

 Experiment 1 Experiment 2 Experiment 3 

Original 86.97 86.12 86.60 

Width Multiple 0.6 88.22 88.07 88.25 

Width Multiple 0.65 88.70 88.73 88.89 

Width Multiple 0.7 89.91 88.97 89.09 

Width Multiple 0.7 with Learning Rate  

Learning Rate 0.1 89.27 89.38 89.19 

Learning Rate 0.01 89.91 88.97 89.09 

Learning Rate 0.001 90.01 89.69 88.89 

Learning Rate 0.0001 89.51 89.26 89.47 

Experiment 3 compared the average pooling layer in 
SPPFBottleneck with max pooling. The width multiple of 0.7 
for max pooling and a learning rate of 0.0001 yielded the 
greatest mAP value of 89.47. Table V presents the results of 
Experiment 3 conducted with max pooling. 

Upon evaluating the maximum mAP value from three 
experiments, Experiment 1, which utilized a width multiplier 
of 0.7 and a learning rate of 90.01, exhibited the highest mAP 
value. Experiment 2 achieved a mAP of 89.69 with a width 
multiplier of 0.7 and a learning rate of 0.001. Experiment 3 
achieved a mAP of 89.47 when employing max pooling, a 
width multiplier of 0.7, and a learning rate of 0.0001. 
Ultimately, the modified horizon block in RepVGGBlock, after 
200 epochs, achieved a mAP value of 96.03, which is 
conclusive for this research. 

YOLO V6 employs RepVGGBlock for object detection, 
providing both high performance and speed. This study focuses 
on specific convolution. The result is positive for objects with 
specific boundaries. This is unsuitable given the road 
conditions characterized by cracks, potholes, and manhole 
covers. The three objects contain shapes, low sharpness, and 
irregular borders, primarily aligned along the horizontal axis of 
the road. Specifically, RepVGGBlock misses an element of 
context that clearly considers direction. This limits the ability 
to represent the horizontal continuity necessary for accurate 
identification of road conditions. Motivated by this limitation, 
RoadSCNet enhances the fundamental architecture of 
YOLOv6 by integrating a customized Horizon block with the 
RepVGGBlock to improve horizontal context learning efficacy 
while preserving computational efficiency. Then when run the 
new RoadSCNet model with 182 unseen data images which 
collected in Phuket, the result shown 91.60% accuracy. As 
displayed in Fig 8. The confusion matrix shows the model can 
identify 64 cracks, 3 potholes, and 122 manhole covers. All 
three objects include 72 cracks, 11 potholes, and 122 manhole 
covers. The accuracy is 91.60% and the precision is 94.50%. 
Then the model shows the performance to detect three objects. 
An example of three objects when detected using the model as 
shown in Fig. 9. 
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Fig. 8. The confusion matrix when test model with unseen data. 

 
Fig. 9. Three examples when detected by RoadSCnet model. 

The limitations of this investigation include window of the 
car which resulted in erroneous detection, the blurred images 
which made difficult the identification of the actual object, and 
the limitaion of equipment caused in reduced operational 
speed. Future work will focus on improving the mAP value and 
decreasing the loss value of the model. 

VII. CONCLUSION 

This research introduces RoadSCNet, an innovative CNN 
architecture that achieves a high mAP value for the dataset. 
The evaluation of three hyperparameters showed dropout 0.6, 
learning rate 0.01, and kernel 4x4 yielded the greatest mAP 
value. Subsequently, three distinct structures yield results for 
modeling under three road conditions, incorporating the new 
horizon block which demonstrates a superior mAP, followed 
by the integration of vertical adjustments and pooling 
modifications. The RoadSCNet enhances YOLO V6 by 
incorporating the new horizon block within the 
RepVGGBlock. RoadSCNet outperforms classic YOLO V6 
due to a greater ability to gather horizontal contextual 
information, essential for identifying long cracks and rough 
road conditions, including cracks pothole and manhole covers. 
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